HEARING AID COMPATIBILITY T-COIL TEST REPORT

FCC ID : XD6U626AA

Equipment: Smart Phone

Model Name: U626AA

T-Rating: T4

Applicant: Shenzhen Tinno Mobile Technology Corp.

TINNO Building, No.33, Xiandong Rd, Xili, Nanshan

District, Shenzhen, Guangdong Province, PRC

Manufacturer: Shenzhen Tinno Mobile Technology Corp.

TINNO Building, No.33, Xiandong Rd, Xili, Nanshan

District, Shenzhen, Guangdong Province, PRC

Standard: FCC 47 CFR §20.19

ANSI C63.19-2011

We, Sporton International Inc. (Shenzhen), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Shenzhen), the test report shall not be reproduced except in full.

Hank Huang

Reviewed by: Hank Huang / Supervisor

Johnny Chen

lac-MRA

Report No.: HA1N0415B

Approved by: Johnny Chen / Manager

Sporton International Inc. (Shenzhen)

1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China

 Sporton International Inc. (Shenzhen)
 Page 1 of 25
 Issued Date
 : Feb. 10, 2022

 TEL: +86-755-86379589 / FAX: +86-755-86379595
 Form version.
 : 210422

Table of Contents

1.		tation of Test Results	
2.	Gene	ral Information	4
3.		ng Location	
4.	ilaaA	ed Standards	5
5.		terface and Operating Mode	
		urement standards for T-Coil	
	6.1	Frequency Response	
	6.2	T-Coil Signal Quality Categories	7
7.	T-Coi	l Test Procedure	8
	7.1	Test Flow Chart	
	7.2	Test Setup Diagram for VoLTE	
	7.3	Test Setup Diagram for VoWiFi	12
	7.4	Test Setup and Diagram for OTT VoIP – PAG Reuse	14
	7.5	Description of EUT Test Position	16
		Equipment List	
9.	T-Coi	I testing for CMRS IP Voice	18
	9.1	VoLTE Tests Results	18
	9.2	VoWiFi Tests Results	20
10.	T-Coi	I testing for OTT VoIP Application	22
11.	Unce	rtainty Assessment	24
12.	Refer	rences	25

Appendix A. Plots of T-Coil Measurement Appendix B. DASY Calibration Certificate Appendix C. Test Setup Photos Report No.: HA1N0415B

Form version. : 210422

History of this test report

Report No.: HA1N0415B

Report No.	Version	Description	Issued Date
HA1N0415B	Rev. 01	Initial issue of report	Feb. 10, 2022

 Sporton International Inc. (Shenzhen)
 Page 3 of 25
 Issued Date
 : Feb. 10, 2022

 TEL: +86-755-86379589 / FAX: +86-755-86379595
 Form version.
 : 210422

1. Attestation of Test Results

Air Interface	Band MHz	T-Rating	Frequency Response	Magnetic Intensity
	Band 2	T4	Pass	Pass
	Band 4	T4	Pass	Pass
VoLTE	Band 5	T4	Pass	Pass
VOLIE	Band 12	T4	Pass	Pass
	Band 14	T4	Pass	Pass
	Band 30	T4	Pass	Pass
OTT over LTE	Band 30	T4	Pass	Pass
	2450	T4	Pass	Pass
	5200	T4	Pass	Pass
VoWiFI	5300	T4	Pass	Pass
	5500	T4	Pass	Pass
	5800	T4	Pass	Pass
OTT over WiFi	2450	T4	Pass	Pass
OTT over WIFI	5500	T4	Pass	Pass
Date Tested		2022/1/15	~ 2022/1/25	

Report No.: HA1N0415B

2. General Information

	Product Feature & Specification
Applicant Name	Shenzhen Tinno Mobile Technology Corp.
Equipment Name	Smart Phone
Model Name	U626AA
IMEI Code	866289050018995
FCC ID	XD6U626AA
HW	V1.0
SW	U626AAV01.02.10
EUT Stage	Identical Prototype
Frequency Band	LTE Band 2: 1850 MHz ~ 1910 MHz LTE Band 4: 1710 MHz ~ 1755 MHz LTE Band 5: 824 MHz ~ 849 MHz LTE Band 12: 699 MHz ~ 716 MHz LTE Band 14: 788 MHz ~ 798 MHz LTE Band 30: 2305 MHz ~ 2315 MHz WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz WLAN 5.2GHz Band: 5180 MHz ~ 2462 MHz WLAN 5.3GHz Band: 5260 MHz ~ 5320 MHz WLAN 5.5GHz Band: 5500 MHz ~ 5700 MHz WLAN 5.8GHz Band: 5745 MHz ~ 5825 MHz Bluetooth: 2402 MHz ~ 2480 MHz
Mode	LTE: QPSK, 16QAM, 64QAM WLAN 2.4GHz 802.11b/g/n HT20 WLAN 5GHz 802.11a/n HT20/HT40 WLAN 5GHz 802.11ac VHT20/VHT40/VHT80 Bluetooth BR/EDR/LE

 Sporton International Inc. (Shenzhen)
 Page 4 of 25
 Issued Date
 : Feb. 10, 2022

 TEL: +86-755-86379589 / FAX: +86-755-86379595
 Form version.
 : 210422

The device is compliance with HAC limits specified in guidelines FCC 47CFR §20.19 and ANSI Standard ANSI C63.19.

3. Testing Location

Sporton International Inc. (Shenzhen) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01.

Report No.: HA1N0415B

	Testing Laboratory					
Test Firm	Sporton International Inc	Sporton International Inc. (Shenzhen)				
Test Site Location	1/F, 2/F, Bldg 5, Shiling People's Republic of Ch TEL: +86-755-86379589 FAX: +86-755-86379595	ina O	Xili, Nanshan, Shenzhen, 518055			
Sporton Site No. FCC Designation No. FCC Test Firm Registration						
Test Site No.	SAR01-SZ	CN1256	421272			

4. Applied Standards

- · FCC CFR47 Part 20.19
- ANSI C63.19 2011-version
- · FCC KDB 285076 D01 HAC Guidance v05r01
- · FCC KDB 285076 D02 T Coil testing v03r01
- FCC KDB 285076 D03 HAC FAQ v01r04

 Sporton International Inc. (Shenzhen)
 Page 5 of 25
 Issued Date
 : Feb. 10, 2022

 TEL: +86-755-86379589 / FAX: +86-755-86379595
 Form version.
 : 210422

5. Air Interface and Operating Mode

Air Interface	Band MHz	Туре	C63.19 Tested	Simultaneous Transmitter	Name of Voice Service	Power Reduction		
	Band 2			WLAN, BT		No		
	Band 4			WLAN, BT		No		
LTE	Band 5	VD	Yes	WLAN, BT	VoLTE	No		
(FDD)	Band 12	VD		WLAN, BT	Google Duo ⁽¹⁾	No		
	Band 14			WLAN, BT	300g.0 2 ac	No		
	Band 30			WLAN, BT		No		
	2450			LTE		No		
	5200				VoWiFi ⁽¹⁾	No		
Wi-Fi	5300	VD	Yes	Yes	1	No		
	5500						LTE, BT	Google Duo ⁽¹⁾
	5800					No		
ВТ	2450	DT	No	LTE, WLAN 5GHz	NA	No		

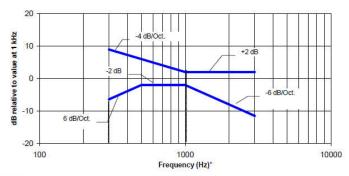
Report No.: HA1N0415B

Type Transport:

VO= Voice only

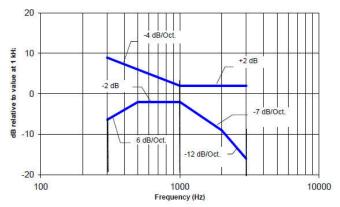
DT= Digital Transport only (no voice)
VD= CMRS and IP Voice Service over Digital Transport

Sporton International Inc. (Shenzhen) Page 6 of 25 Issued Date : Feb. 10, 2022 Form version. TEL: +86-755-86379589 / FAX: +86-755-86379595 : 210422


For protocols not listed in Table 7.1 of ANSI C63.19-2011 or the ANSI C63.19-2011 VoLTE interpretation, the average speech level of –20 dBm0 should be used.

6. Measurement standards for T-Coil

6.1 Frequency Response


The frequency response of the perpendicular component of the magnetic field, measured in 1/3 octave bands, shall follow the response curve specified in this sub-clause, over the frequency range 300 Hz to 3000 Hz. Figure 1.1 and Figure 1.2 provide the boundaries as a function of frequency. These response curves are for true field-strength measurements of the T-Coil signal. Thus, the 6 dB/octave probe response has been corrected from the raw readings.

Report No.: HA1N0415B

NOTE-The frequency response is between 300 Hz and 3000 Hz.

Fig. 1.1 Magnetic field frequency response for WDs with field strength≤-15dB at 1 KHz

NOTE-The frequency response is between 300 Hz and 3000 Hz.

Fig. 1.2 Magnetic field frequency response for WDs with a field that exceeds $-15~\mathrm{dB}(A/m)$ at 1 kHz

6.2 T-Coil Signal Quality Categories

This section provides the signal quality requirement for the intended T-Coil signal from a WD. Only the RF immunity of the hearing aid is measured in T-Coil mode. It is assumed that a hearing aid can have no immunity to an interference signal in the audio band, which is the intended reception band for this mode. A device is assessed beginning by determining the category of the RF environment in the area of the T-Coil source.

The RF measurements made for the T-Coil evaluation are used to assign the category T1 through T4. The limitation is given in Table 1. This establishes the RF environment presented by the WD to a hearing aid.

Category	Telephone parameters WD signal quality ((signal + noise) to noise ratio in dB)
Category T1	0 to 10 dB
Category T2	10 to 20 dB
Category T3	20 to 30 dB
Category T4	> 30 dB

Table 1 T-Coil Signal Quality Categories

 Sporton International Inc. (Shenzhen)
 Page 7 of 25
 Issued Date
 : Feb. 10, 2022

 TEL: +86-755-86379589 / FAX: +86-755-86379595
 Form Version.
 : 210422

7. T-Coil Test Procedure

Referenced to ANSI C63.19-2011, Section 7.4

This section describes the procedures used to measure the ABM (T-Coil) performance of the WD. In addition to measuring the absolute signal levels, the A-weighted magnitude of the unintended signal shall also be determined. To assure that the required signal quality is measured, the measurement of the intended signal and the measurement of the unintended signal must be made at the same location for each measurement position. In addition, the RF field strength at each measurement location must be at or below that required for the assigned category.

Report No.: HA1N0415B

Measurements shall not include undesired properties from the WD's RF field; therefore, use of a coaxial connection to a base station simulator or non-radiating load, there might still be RF leakage from the WD, which can interfere with the desired measurement. Pre-measurement checks should be made to avoid this possibility. All measurements shall be performed with the WD operating on battery power with an appropriate normal speech audio signal input level given in ANSI C63.19-2011 Table 7.1. If the device display can be turned off during a phone call, then that may be done during the measurement as well,

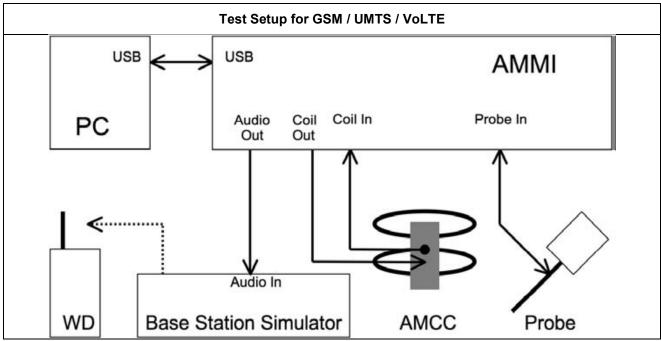
Measurement shall be performed at two locations specified in ANSI C63.19-2011 A.3, with the correct probe orientation for a particular location, in a multistage sequence by first measuring the field intensity of the desired T-Coil signal the same location as the desired ABM or T-Coil signal (ABM1), and the ratio of desired to undesired magnetic components (ABM2) must be measured at the same location as the desired ABM or T-Coil signal (ABM1), and the ratio of desired to undesired ABM signals must be calculated. For the perpendicular field location, only the ABM1 frequency response shall be determined in a third measurement stage.

The following steps summarize the basic test flow for determining ABM1 and ABM2. These steps assume that a sine wave or narrowband 1/3 octave signal can be used for the measurement of ABM1.

- a. A validation of the test setup and instrumentation may be performed using a TMFS or Helmholtz coil Measure the emissions and confirm that they are within the specified tolerance.
- b. Position the WD in the test setup and connect the WD RF connector to a base station simulator or a non-radiating load. Confirm that equipment that requires calibration has been calibrated, and that the noise level meets the requirements given in ANSI C63.19-2011 clause 7.3.1.
- c. The drive level to the WD ise set such that the reference input level specified in ANSI C63.19-2011 Table 7.1 is input to the base station simulator (or manufacturer's test mode equivalent) in 1 kHz, 1/3 octave band. This drive level shall be used for the T-Coil signal test (ABM1) at f = 1 kHz. Either a sine wave at 1025 Hz or a voice-like signal, band-limited to the 1 kHz 1/3 octave, as defined in ANSI C63.19-2011 clause 7.4.2, shall be used for the reference audio signal. If interference is found at 1025 Hz an alternative nearby reference audio signal frequency may be used. The same drive level shall be used for the ABM1 frequency response measurements at each 1/3 octave band center frequency. The WD volume control may be set at any level up to maximum, provided that a signal at any frequency at maximum modulation would not result in clipping or signal overload.
- d. Determine the magnetic measurement locations for the WD device (A.3), if not already specified by the manufacturer, as described in ANSI C63.19-2011 clause 7.4.4.1.1 and 7.4.4.2.
- e. At each measurement location, measure and record the desired T-Coil magnetic signals (ABM1 at fi) as described in ANSI C63.19-2011 clause 7.4.4.2 in each individual ISO 266-1975 R10 standard 1/3 octave band. The desired audio band input frequency (fi) shall be centered in each 1/3 octave band maintaining the same drive level as determined in item c) and the reading taken for that band.
- f. Equivalent methods of determining the frequency response may also be employed, such as fast Fourier transform (FFT) analysis using noise excitation or input-output comparison using simulated speech. The full-band integrated probe output, as specified in D.9, may be used, as long as the appropriate calibration curve is applied to the measured result, so as to yield an accurate measurement of the field magnitude. (The resulting measurement shall be an accurate measurement in dB A/m.)
- g. All Measurements of the desired signal shall be shown to be of the desired signal and not of an undesired signal. This may be shown by turning the desired signal ON and OFF with the probe measuring the same location. If the scanning method is used the scans shall show that all measurement points selected for the ABM1 measurement meet the ambient and test system noise criteria in ANSI C63.19-2011 clause 7.3.1.
- h. At the measurement location for each orientation, measure and record the undesired broadband audio magnetic signal (ABM2) as specified in ANSI C63.19-2011 clause 7.4.4.4 with no audio signal applied (or digital zero applied, if appropriate) using A-weighting and the half-band integrator. Calculate the ratio of the desired to undesired signal strength (i,e., signal quality).
- i. Obtain the data from the postprocessor, SEMCAD, and determine the category that properly classifies the signal quality based on ANSI C63.19-2011 Table 8.5.

 Sporton International Inc. (Shenzhen)
 Page 8 of 25
 Issued Date
 : Feb. 10, 2022

 TEL: +86-755-86379589 / FAX: +86-755-86379595
 Form version.
 : 210422


7.1 Test Flow Chart

Test Instructions Confirm calibration of test eq uip ment Configure and validate the test setup Establish WD reference level Find measurement locations Per sub clause 7.3, 7.4.1 a)-b) & 7.4.4.4 Position and orient probe Measure desired aud io b and signal strength Per sub clause 7.4.1 c)-e) Calculate signal strength Calculate signal quality Measure frequency resposne (perpendicular orientation only) Per sub clause 7.4.5 - 7.4.6 All locations measured? All locations measured? Determine and record signal quality category Done Per sub clause 8.2.4

Report No.: HA1N0415B

Fig. 2 T-Coil Signal Test flowchart

7.2 Test Setup Diagram for VoLTE

Report No.: HA1N0415B

General Note:

- Define the all applicable input audio level as below according to C63 and KDB 285076 D02v03:
 - VoLTE input level: -16dBm0
- CMU500 is able to output 1kHz audio signal equivalent to 3.14dBm0, the signal reference is used to adjust the AMMI gain setting to reach -16dBm0 for VoLTE. CMW500 input is calibrated and the relation between the analog input voltage and the internal level in dBm0 can be determined.
- Voice over Long-Term Evolution (VoLTE) is a standard for high-speed wireless communication for mobile phones and data terminals — including IoT devices and wearables. It is based on the IP Multimedia Subsystem (IMS) network, with specific profiles for control and media planes of voice service on LTE defined by GSMA in PRD IR.92. This approach results in the voice service (control and media planes) being delivered as data flows within the LTE data bearer. This means that there is no dependency on the legacy circuit-switched voice network to be maintained
- 4. The test setup used for VoLTE over IMS is via the callbox of CMW500 for T-coil measurement, The data application unit of the CMW500 was used to simulate the IP multimedia subsystem server. The CMW500 can be manually configured to ensure and control the speech input level result is -16dBm0 for VoLTE when the device during the IMS connection.

Page 10 of 25 Issued Date : Feb. 10, 2022 Sporton International Inc. (Shenzhen) Form version. TEL: +86-755-86379589 / FAX: +86-755-86379595 : 210422

 The Required gain factor for the specific signal shall typically be multiplied by this factor to achieve approx. the same level as for the 1kHz sine signal

Report No.: HA1N0415B

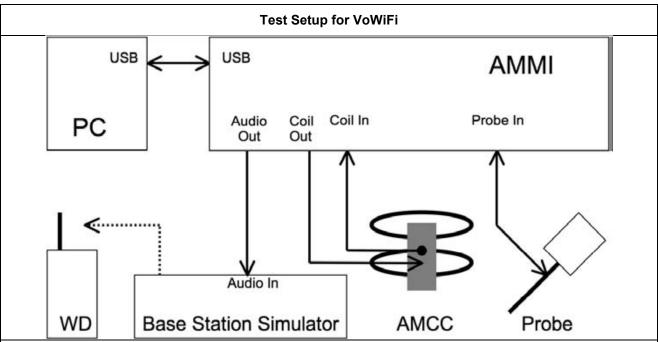
2. The below calculation formula is an example and showing how to determine the input level for the device.

The predefined signal types have the following differences / factors compared to the 1kHz sine signal:

Signal [file name]	Duration [s]	Peak-to- RMS [dB]	RMS [dB]	Required gain factor *)	Gain setting
1kHz sine		3.0	0.0	1.00	
48k_1.025kHz_10s.wav	10	3.0	0.0	1.00	
48k_1kHz_3.15kHz_10s.wav	10	6.0	-3.0	1.42	
48k_315Hz_1kHz_10s.wav	10	6.0	-2.9	1.40	
48k csek 8k 441 white 10s.wav	10	13.8	-10.5	3.34	
48k_multisine_50-5000_10s.wav	10	11.1	-7.9	2.49	
48k_voice_1kHz_1s.wav	1	16.2	-12.7	4.33	
48k voice 300-3000 2s.wav	2	21.6	-18.6	8.48	

(*) The gain for the specific signal shall typically be multiplied by this factor to acheive approx. the same level as for the 1kHz sine signal.

Insert the gain applicable for your setup in the last column of the table.


<Example define the input level for VoLTE>

Gain Value	dBm0	Full scal Voltage	dB	AMMI audio out dBv (RMS)	AMCC Coil Out (dBv (RMS)
	3.14	1.5		0.51	
100	5.73		40	3.1	3.25
8.20	-16		18.27		-18.48
Signal Type	Duration (s)	Peak to RMS (dB)	RMS (dB)	Gain Factor	Gain Setting
1kHz sine	•	3	0	1	8.20
48k_voice_1kHz	1	16.2	-12.7	4.33	35.49
48k voice 300-3000	2	21.6	-18.6	8.48	69.50

 Sporton International Inc. (Shenzhen)
 Page 11 of 25
 Issued Date
 : Feb. 10, 2022

 TEL: +86-755-86379589 / FAX: +86-755-86379595
 Form version.
 : 210422

7.3 Test Setup Diagram for VoWiFi

Report No.: HA1N0415B

General Note:

- Define the all applicable input audio level as below according to C63 and KDB 285076 D02v03:
 - VoWiFi input level: -20dBm0
- For Voice over Wi-Fi (VoWiFi) is a term typically employed to describe the delivery of commercial telephony services using Voice over IP (VoIP) technologies from mobile devices connected across Wi-Fi. This is typically counter to alternatives, predominantly Voice over LTE (VoLTE), in which a mobile network operator's (MNO's) licensed spectrum (i.e. 4G LTE) is used to carry packetized voice. Broadly speaking, VoWiFi terminology is assigned to all core IMS services accessed from unlicensed spectrum and across untrusted access infrastructures, such as public Wi-Fi access points
- 3. The test setup used for VoWiFi over IMS is via the callbox of CMW500 for T-coil measurement, The data application unit of the CMW500 was used to simulate the IP multimedia subsystem server. The CMW500 can be manually configured to ensure and control the speech input level result is -20dBm0 for VoWiFi when the device during the IMS
- An investigation was perfromed to determine worst case codec, bit rate and air interface configuration refer to section10.2

Sporton International Inc. (Shenzhen) Page 12 of 25 Issued Date : Feb. 10, 2022 Form version. TEL: +86-755-86379589 / FAX: +86-755-86379595 : 210422

HAC T-COIL TEST REPORT

<Define the input level for VoWiFi>

 The Required gain factor for the specific signal shall typically be multiplied by this factor to achieve approx. the same level as for the 1kHz sine signal

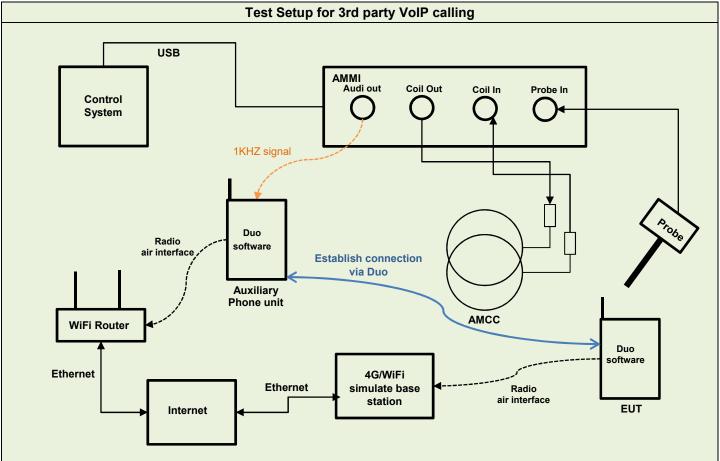
Report No.: HA1N0415B

The below calculation formula is an example and showing how to determine the input level for the device.

The predefined signal types have the following differences / factors compared to the 1kHz sine signal:

Signal [file name]	Duration [s]	Peak-to- RMS [dB]	RMS [dB]	Required gain factor *)	Gain setting
1kHz sine		3.0	0.0	1.00	
48k_1.025kHz_10s.wav	10	3.0	0.0	1.00	
48k_1kHz_3.15kHz_10s.wav	10	6.0	-3.0	1.42	
48k_315Hz_1kHz_10s.wav	10	6.0	-2.9	1.40	
48k_csek_8k_441_white_10s.wav	10	13.8	-10.5	3.34	
48k_multisine_50-5000_10s.wav	10	11.1	-7.9	2.49	
48k_voice_1kHz_1s.wav	1	16.2	-12.7	4.33	
48k_voice_300-3000_2s.wav	2	21.6	-18.6	8.48	

(*) The gain for the specific signal shall typically be multiplied by this factor to acheive approx. the same level as for the 1kHz sine signal.


Insert the gain applicable for your setup in the last column of the table.

Gain Value	dBm0	Full scal Voltage	dB	AMMI audio out dBv (RMS)	AMCC Coil Out (dBv (RMS)
	3.14	1.5		0.51	
100	5.57		40	2.94	3.09
5.27	-20		14.43		-22.48
Signal Type	Duration (s)	Peak to RMS (dB)	RMS (dB)	Gain Factor	Gain Setting
1kHz sine	-	3	0	1	5.17
48k_voice_1kHz	1	16.2	-12.7	4.33	22.81
48k_voice_300-3000	2	21.6	-18.6	8.48	44.67

 Sporton International Inc. (Shenzhen)
 Page 13 of 25
 Issued Date
 : Feb. 10, 2022

 TEL: +86-755-86379589 / FAX: +86-755-86379595
 Form version.
 : 210422

7.4 Test Setup and Diagram for OTT VoIP – PAG Reuse

Report No.: HA1N0415B

General Note:

- 1. Define the all applicable input audio level as below according to C63 and KDB 285076 D02v03:
 - OTT VoIP input Level: -20dBm0
- 2. Voice over Internet Protocol (VoIP) such as google duo application, also called IP telephony, is a methodology and group of technologies for the delivery of voice communications and multimedia sessions over Internet Protocol (IP) networks, such as the Internet. The terms Internet telephony, broadband telephony, and broadband phone service specifically refer to the provisioning of communications services (voice, fax, SMS, voice-messaging) over the public Internet, rather than via the public switched telephone network (PSTN)
- 3. The Google DUO service support code and bitrate are list in section11, the customized Google DUO software is installed on a mobile phone which is used as the Auxiliary for the test. The software enables audio coding rate to be changed, and reports the input digital audio level before audio processing which can be used to calibrate the input audio level.
- 4. This device comes with the preinstalled VoIP application that supports the Google DUO service and related codec. The test configuration establishes a call between the device under test and an auxiliary handset via the google DUO server
- 5. The test setup used for Google DUO VoIP call is via the data application unit on the 4G/WiFi simulate base station, connected to the internet via the google DUO serverr to the auxiliary device. The auxiliary device runs special software that allows the codecs and bit rate to be fixed to a specific value. Please refer to section11, an assessment was made of each of the different codec bit rates to determine the worst case for each of the different OTT transport (WiFi, LTE)
- 6. The auxiliary device includes software that displays the audio level in dBFS which allows calibration of the system to establish the -20dBm0 reference level. After establishing the voice call between auxiliary device and device under test the audio output from the AMMI is injected into the auxiliary device. The gain factor to establish a reference level of -20dBm0 for use during the test is determined as detailed in the next page based on the 0dBFull Scale (0dBFS) value being equivalent to 3.14dBm0.

 Sporton International Inc. (Shenzhen)
 Page 14 of 25
 Issued Date
 : Feb. 10, 2022

 TEL: +86-755-86379589 / FAX: +86-755-86379595
 Form version.
 : 210422

HAC T-COIL TEST REPORT

<Define the input level for OTT VoIP>

1. The Required gain factor for the specific signal shall typically be multiplied by this factor to achieve approx. the same level as for the 1kHz sine signal

Report No.: HA1N0415B

- 2. The below calculation formula is an example and showing how to determine the input level for the device.
- 3. Input a gain value to readout the -23dBFS level as reference. (0dBFS = 3.14 dBm0)
- 4. Adjust gain level until to readout the dBFS level until it changes to -24dBFS.
- 5. Based on the step 1 and 2, and then calculate the gain value(dB) by interpolation to get the -20dBm0 corresponding gain value.

The predefined signal types have the following differences / factors compared to the 1kHz sine signal:

Signal [file name]	Duration [s]	Peak-to- RMS [dB]	RMS [dB]	Required gain factor *)	Gain setting
1kHz sine		3.0	0.0	1.00	
48k_1.025kHz_10s.wav	10	3.0	0.0	1.00	
48k_1kHz_3.15kHz_10s.wav	10	6.0	-3.0	1.42	
48k_315Hz_1kHz_10s.wav	10	6.0	-2.9	1.40	
48k_csek_8k_441_white_10s.wav	10	13.8	-10.5	3.34	
48k_multisine_50-5000_10s.wav	10	11.1	-7.9	2.49	
48k_voice_1kHz_1s.wav	1	16.2	-12.7	4.33	
48k_voice_300-3000_2s.wav	2	21.6	-18.6	8.48	

(*) The gain for the specific signal shall typically be multiplied by this factor to acheive approx. the same level as for the 1kHz sine signal.

Insert the gain applicable for your setup in the last column of the table.

Cton	Cianal tuna	Audi	o out	Target Level				
Step	Signal type	Gain value	Gain value (dB)	dBFS	dBm0			
Step 1	1KHz Sine	7.7	17.73 (Ref.)	-23				
Step 2	1KHz Sine	6.8	16.65	-24				
Step 3	1KHz Sine	7.57**	17.58*	-23.14	-20			

Remark (*) Based on the step 1 and 2 and then via interpolation to get this value. (**) Gain value=10^Gain value(dB)/20

Signal type	Duration (s)	Peak to RMS (dB)	RMS (dB)	Gain Factor	Gain value
1kHz sine		3	0	1	7.57
48k_voice_1kHz_1s.wav	1	16.2	-12.7	4.33	32.77
48k_voice_300-3000_2s.wav	2	21.6	-18.6	8.48	64.17

- 1. According to the gain setting for 1kHz sine wave, determine the gain setting for signals above.
- 2. The gain for the specific signal is multiplied by this factor to achieve the same level as for the 1kHz sine signal.

 Sporton International Inc. (Shenzhen)
 Page 15 of 25
 Issued Date
 : Feb. 10, 2022

 TEL: +86-755-86379589 / FAX: +86-755-86379595
 Form version.
 : 210422

7.5 Description of EUT Test Position

Fig.3 illustrate the references and reference plane that shall be used in a typical EUT emissions measurement. The principle of this section is applied to EUT with similar geometry. Please refer to Appendix C for the setup photographs.

Report No.: HA1N0415B

- ♦ The area is 5 cm by 5 cm.
- ♦ The area is centered on the audio frequency output transducer of the EUT.
- ◆ The area is in a reference plane, which is defined as the planar area that contains the highest point in the area of the phone that normally rests against the user's ear. It is parallel to the centerline of the receiver area of the phone and is defined by the points of the receiver-end of the EUT handset, which, in normal handset use, rest against the ear.
- The measurement plane is parallel to, and 10 mm in front of, the reference plane.

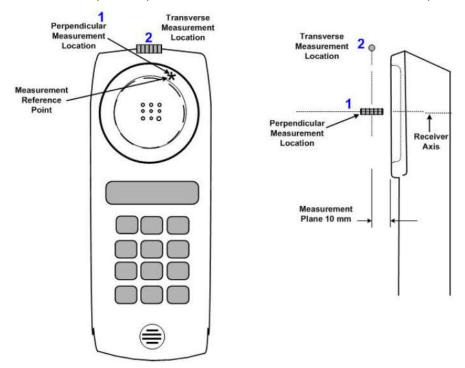


Fig.3 A typical EUT reference and plane for T-Coil measurements

 Sporton International Inc. (Shenzhen)
 Page 16 of 25
 Issued Date
 : Feb. 10, 2022

 TEL: +86-755-86379589 / FAX: +86-755-86379595
 Form version.
 : 210422

8. Test Equipment List

Manufacture	Name of Emiliane	Toma (Mandal	Serial Number	Calib	ration
Manufacturer	Name of Equipment	Type/Model	Seriai Number	Last Cal.	Due Date
SPEAG	Audio Magnetic 1D Field Probe	AM1DV3	3106	2021/11/23	2022/11/22
SPEAG	Audio Magnetic 1D Field Probe	AM1DV3	3130	2021/8/26	2022/8/25
SPEAG	Data Acquisition Electronics	DAE4	1210	2021/8/25	2022/8/24
SPEAG	Data Acquisition Electronics	DAE4	1311	2021/8/20	2022/8/19
SPEAG	Audio Magnetic Calibration Coil	AMCC	1128	NCR	NCR
SPEAG	Audio Measuring Instrument	AMMI	1137	NCR	NCR
Anymetre	Thermo-Hygrometer	JR593	2015030904	2021/7/17	2022/7/14
R&S	Base Station(Measure)	CMU200	121815	2021/10/20	2022/10/17
R&S	Base Station(Measure)	CMW500	143030	2021/7/30	2022/7/27
R&S	Wideband Radio Communication Tester	CMW500	115793	2021/11/30	2022/11/29
SPEAG	Test Arch Phantom	N/A	N/A	NCR	NCR
SPEAG	Phone Positioner	N/A	N/A	NCR	NCR
Agilent	Dual Directional Coupler	778D	50422	NCR	NCR

Report No.: HA1N0415B

Note:

1. NCR: "No-Calibration Required"

 Sporton International Inc. (Shenzhen)
 Page 17 of 25
 Issued Date
 : Feb. 10, 2022

 TEL: +86-755-86379589 / FAX: +86-755-86379595
 Form version.
 : 210422

9. T-Coil testing for CMRS IP Voice

9.1 VoLTE Tests Results

General Note:

Codec Investigation: For a voice service/air interface, investigate the variations of codec configurations (WB, NB bit rate) and document the parameters (ABM1, ABM2, S+N/N, frequency response) for that voice service. It is only necessary to document this for one channel / band, the following worst investigation codec would be remarked to be used for the testing for the handset.

Report No.: HA1N0415B

2. Air Interface Investigation:

- a. Use the worst-case codec test and document a limited set of bands / channel / bandwidths. Observe the effect of changing the band and bandwidth to ensure that there are no unexpected variations. Using the knowledge of the observed variations, it is necessary to report only a set band/channel/bandwidth for each orientation for a voice service/air interface and the following worst configure would be remarked to be used for the testing for the handset.
- b. Select LTE FDD one frequency band to do measurement at the worst SNR position was additionally performed with varying the BWs/Modulations/RB size to verify the variation to find out worst configuration, the observed variation is very little to be within 1.5 dB which is much less than the margin from the rating threshold.
- c. According to the ANSI C63.19 2011 section 7.3.2, test middle channel of each frequency band for HAC testing for each orientation to determine worst HAC T-Coil rating.

<Codec Investigation>

LTE FDD

	VoLTE AMR Codec											
Codec	NB AMR 4.75Kbps	WB AMR 8.85Kbps	NB AMR 12.2Kbps	WB AMR 23.85Kbps	Orientation	Band / BW / Channel						
ABM 1 (dBA/m)	-2.28	-2.46	-1.96	-3.1								
ABM 2 (dBA/m)	-43.38	-45.81	-42.84	-43.67	Axial	B2 / 20M /						
Signal Quality (dB)	41.1	43.35	40.88	40.57	Axidi	18900						
Freq. Response	pass	pass	pass	pass								

	VoLTE EVS Codec												
Codec	EVS WB 5.9Kbps	EVS WB 128Kbps	EVS NB 5.9Kbps	EVS NB 24.4Kbps	Orientation	Band / BW / Channel							
ABM 1 (dBA/m)	-9.23	-2.86	-5.37	-2.39									
ABM 2 (dBA/m)	-43.06	-44.38	-43.35	-43.64	Axial	B2 / 20M /							
Signal Quality (dB)	33.83	41.52	37.98	41.25	Axiai	18900							
Freq. Response	pass	pass	pass	pass									

Remark: According to codec investigation, the worst codec is EVS WB 5.9Kbps

 Sporton International Inc. (Shenzhen)
 Page 18 of 25
 Issued Date
 : Feb. 10, 2022

 TEL: +86-755-86379589 / FAX: +86-755-86379595
 Form version.
 : 210422

<Air Interface Investigation>

,	Air Interface	BW (MHz)	Modulation	RB Size	RB offset	Channel	UL-DL Configuration	Probe Position	ABM1 dB (A/m)	ABM2 dB (A/m)	Signal Quality dB
	LTE B2	20	QPSK	1	0	18900		Axial (Z)	-9.23	-43.06	33.83
	LTE B2	20	QPSK	50	0	18900		Axial (Z)	-4.53	-44.46	39.93
	LTE B2	20	QPSK	100	0	18900		Axial (Z)	-3.21	-44.37	41.16
	LTE B2	20	16QAM	1	0	18900		Axial (Z)	-4.21	-44.44	40.23
FDD	LTE B2	20	64QAM	1	0	18900		Axial (Z)	-5.46	-42.64	37.18
FUU	LTE B2	15	QPSK	1	0	18900		Axial (Z)	-4.33	-45.94	41.61
	LTE B2	10	QPSK	1	0	18900		Axial (Z)	-3.90	-44.58	40.68
	LTE B2	5	QPSK	1	0	18900		Axial (Z)	-5.94	-44.70	38.76
	LTE B2	3	QPSK	1	0	18900		Axial (Z)	-6.34	-44.61	38.27
	LTE B2	1.4	QPSK	1	0	18900		Axial (Z)	-3.20	-44.60	41.40

Report No.: HA1N0415B

Plot No.	Air Interface	BW (MHz)	Modulation / Mode	RB Size	RB offset	Channel	Probe Position	ABM1 dB (A/m)	dB	Signal Quality dB		Ambient Noise dB (A/m)	Freq. Response Variation dB	Frequency Response
1	LTE Band 2	20	QPSK	1	0	18900	Axial (Z)	-4.81	-45.32	40.51	T4	-50.28	1.16	PASS
•	LTL Dalid 2	20	Qr 5K		U	10900	Transversal (Y)	-13.56	-50.52	36.96	T4	-51.25	1.10	F A00
2	LTE Band 4	20	QPSK	1	0	20175	Axial (Z)	-3.75	-44.05	40.30	T4	-50.85	1.46	PASS
	LIE Daliu 4	20	QPSN	'	0	20175	Transversal (Y)	-12.72	-51.33	38.61	T4	-50.37	1.40	PASS
3	LTE Band 5	10	QPSK	1	0	20525	Axial (Z)	-5.60	-44.27	38.67	T4	-50.62	1.34	PASS
3	LIE Band 5	10	QPSK	'	0	20525	Transversal (Y)	-13.03	-50.68	37.65	T4	-50.21	1.34	PASS
4	LTE Band 12	10	QPSK	4	0	23095	Axial (Z)	-4.36	-43.73	39.37	T4	-50.99	1.44	DACC
4	LIE Band 12	10	QPSK	'	0	23095	Transversal (Y)	-11.53	-50.20	38.67	T4	-50.74	1.44	PASS
_	LTE D	40	ODOK			00000	Axial (Z)	-6.21	-44.20	37.99	T4	-50.36	4.40	DAGO
5	LTE Band 14	10	QPSK	'	0	23330	Transversal (Y)	-13.01	-50.46	37.45	T4	-50.47	1.42	PASS
•	LTE D100	40	ODOK		_	07740	Axial (Z)	-2.57	-43.83	41.26	T4	-50.38	0.00	DAGO
6	LTE Band 30	10	QPSK	1	0	27710	Transversal (Y)	-12.65	-49.49	36.84	T4	-50.46	0.39	PASS

 Sporton International Inc. (Shenzhen)
 Page 19 of 25
 Issued Date
 : Feb. 10, 2022

 TEL: +86-755-86379589 / FAX: +86-755-86379595
 Form version.
 : 210422

9.2 VoWiFi Tests Results

General Note:

Codec Investigation: For a voice service/air interface, investigate the variations of codec configurations (WB, NB bit rate) and document the parameters (ABM1, ABM2, S+N/N, frequency response) for that voice service. It is only necessary to document this for one channel/band, the following worst investigation codec would be remarked to be used for the testing for the handset.

Report No.: HA1N0415B

- Air Interface Investigation:
 - Use the worst-case codec test and document a limited set of bands/channel/bandwidths. Observe the effect of changing the band and bandwidth to ensure that there are no unexpected variations. Using the knowledge of the observed variations, it is necessary to report only a set band/channel/bandwidth for each orientation for a voice service/air interface and the following worst configure would be remarked to be used for the testing for the handset.
 - Select WLAN 2.4GHz and WLAN 5GHz one frequency band to do measurement at the worst SNR position was additionally performed with varying the BWs/Modulations/data rate to verify the variation to find out worst configuration, the observed variation is very little to be within 1 dB which is much less than the margin from the rating threshold.
 - According to the ANSI C63.19 2011 section 7.3.2, test middle channel of each frequency band for HAC testing for each orientation to determine worst HAC T-Coil rating.

<Codec Investigation>

	VoWIFI AMR Codec												
Codec	NB AMR 4.75Kbps	WB AMR 8.85Kbps	NB AMR 12.2Kbps	WB AMR 23.85Kbps	Orientation	Band / Channel							
ABM 1 (dBA/m)	-3.58	-0.31	-2.04	-0.58									
ABM 2 (dBA/m)	-45.45	-40.28	-45.4	-39.84	Axial	2.4GHz WLAN /							
Signal Quality (dB)	41.87	39.97	43.36	39.26	Axiai	6							
Freq. Response	Pass	Pass	Pass	Pass									

			VoWIFI EVS Codec			
Codec	EVS WB 5.9Kbps	EVS WB 128Kbps	EVS NB 5.9Kbps	EVS NB 24.4Kbps	Orientation	Band / BW / Channel
ABM 1 (dBA/m)	-4.8	-0.33	-5.63	-3.33		
ABM 2 (dBA/m)	-41.82	-40.76	-44.45	-43.99	Axial	2.4GHz WLAN /
Signal Quality (dB)	37.02	40.43	38.82	40.66	Axiai	6
Freq. Response	Pass	Pass	Pass	Pass		

Remark: According to codec investigation, the worst codec is EVS WB 5.9Kbps

Issued Date : Feb. 10, 2022 Sporton International Inc. (Shenzhen) Page 20 of 25 Form version. TEL: +86-755-86379589 / FAX: +86-755-86379595 : 210422

<Air Interface Investigation>

Frequency Bands	Modulation	Bandwidth	Data Rate	Channel	Probe Position	ABM1 dB (A/m)	ABM2 dB (A/m)	Signal Quality dB
	802.11b	20	1M	6	Axial (Z)	-5.56	-42.58	37.02
	802.11b	20	11M	6	Axial (Z)	-5.75	-43.54	37.79
WLAN 2.4GHz	802.11g	20	6M	6	Axial (Z)	-5.66	-43.43	37.77
WLAN 2.4GHZ	802.11g	20	54M	6	Axial (Z)	-5.91	-43.65	37.74
	802.11n-HT20	20	MCS0	6	Axial (Z)	-6.12	-43.84	37.72
	802.11n-HT20	20	MCS7	6	Axial (Z)	-6.03	-43.83	37.80
	802.11a	20	6M	40	Axial (Z)	-4.45	-40.43	35.98
	802.11a	20	54M	40	Axial (Z)	-4.66	-41.39	36.73
	802.11an-HT20	20	MCS0	40	Axial (Z)	-4.59	-41.13	36.54
	802.11an-HT20	20	MCS7	40	Axial (Z)	-4.82	-41.53	36.71
	802.11an-HT40	40	MCS0	38	Axial (Z)	-5.11	-41.76	36.65
\A/I AN 5011-	802.11an-HT40	40	MCS7	38	Axial (Z)	-5.01	-41.60	36.59
WLAN 5GHz	802.11ac-VHT20	20	MCS0	40	Axial (Z)	-4.98	-41.63	36.65
	802.11ac-VHT20	20	MCS8	40	Axial (Z)	-4.69	-41.21	36.52
	802.11ac-VHT40	40	MCS0	38	Axial (Z)	-4.78	-41.26	36.48
	802.11ac-VHT40	40	MCS8	38	Axial (Z)	-4.61	-41.10	36.49
	802.11ac-VHT80	80	MCS0	50	Axial (Z)	-4.89	-41.46	36.57
	802.11ac-VHT80	80	MCS8	50	Axial (Z)	-4.66	-41.17	36.51

Report No.: HA1N0415B

Plot No.	Air Interface	BW (MHz)	Modulation / Mode	Channel	Probe Position	ABM1 dB (A/m)	ABM2 dB (A/m)	~ ~ iii	T Rating	Ambient Noise dB (A/m)	Freq. Response Variation dB	Frequency Response
7	WLAN 2.4G	20	802.11b 1Mbps	6	Axial (Z)	-4.80	-41.82	37.02	T4	-50.35	1.04	Pass
,	WLAN 2.4G	20	002.11b 1Mbps	O	Transversal (Y)	-7.44	-40.06	32.62	T4	-50.26	1.04	Fass
8	WLAN 5.2G	20	802.11a 6Mbps	40	Axial (Z)	-4.45	-40.43	35.98	T4	-50.34	1.13	Pass
0	WLAN 5.2G	20	002.11a 0lvlbps	40	Transversal (Y)	-12.75	-45.75	33.00	T4	-50.28	1.13	Fass
9	WLAN 5.3G	20	902 11a 6Mbpa	60	Axial (Z)	-7.59	-44.95	37.36	T4	-50.32	1.57	Pass
9	WLAN 5.3G	20	802.11a 6Mbps	60	Transversal (Y)	-12.25	-46.24	33.99	T4	-50.28	1.57	Pass
10	WLAN 5.5G	20	000 44a 6Mbaa	116	Axial (Z)	-2.57	-39.05	36.48	T4	-50.33	1.92	Pass
10	WLAN 5.5G	20	802.11a 6Mbps	110	Transversal (Y)	-7.58	-45.43	37.85	T4	-50.27	1.92	Pass
11	MI AN E OC	20	000 44a 6Mbaa	157	Axial (Z)	-11.52	-51.87	40.35	T4	-50.34	0.66	Dana
11	WLAN 5.8G	20	802.11a 6Mbps	157	Transversal (Y)	-9.20	-45.78	36.58	T4	-50.28	0.66	Pass

 Sporton International Inc. (Shenzhen)
 Page 21 of 25
 Issued Date
 : Feb. 10, 2022

 TEL: +86-755-86379589 / FAX: +86-755-86379595
 Form version.
 : 210422

10. T-Coil testing for OTT VoIP Application

General Notes:

- According to the ANSI C63.19 2011 section 7.3.2, test middle channel of each frequency band for HAC testing for each orientation to determine worst HAC T-Coil rating.
- 2. The google Duo VoIP application are pre-installed on this device. According to KDB 285076 D02, all air interfaces via a data connection with VoIP application need to be considered HAC testing.

Report No.: HA1N0415B

- 3. The Google Duo only support OPUS audio codec and support 6Kbps to 75Kbps bitrate.
- 4. The test setup used for OTT VoIP call is the DUT connect to the CMW500 and via the data application unit on CMW500 connection to the Internet, the Auxiliary EUT is connected to the WiFi access point, the channel/Modulation/Frequency bands/data rate is configured on the CMW500 for the DUT unit. For the Auxiliary VoIP unit which is used to configure the audio codec rate and determine the audio input level of -20dBm0 based on the KDB 285076 D02v03 requirement.
- 5. <u>Codec Investigation:</u> For a voice service/air interface, investigate the variations of codec configurations (WB, NB bit rate) and document the parameters (ABM1, ABM2, S+N/N, frequency response) for that voice service. It is only necessary to document this for one channel/band, the following tests results which the worst case codec would be remarked to be used for the testing for the handset.
- 6. Air Interface Investigation:
 - a. Use the worst-case codec test and document a limited set of bands/channel/bandwidths. Observe the effect of changing the band and bandwidth to ensure that there are no unexpected variations. Using the knowledge of the observed variations, it is necessary to report only a set band/channel/bandwidth for each orientation for a voice service/air interface.
 - b. Due to OTT service and CMRS IP service are all be established over the internet protocol for the voice service, and on both services use the identical RF air interface for the WIFI and LTE, therefore according to VoLTE and VoWiFi test results of air interface investigation, the worst configuration and frequency band of air interface was used for OTT T-Coil testing.
 - -LTE FDD worst configuration and band: LTE Band 30/10MHz/ QPSK /1RB Size
 - -WLAN2.4GHz worst configuration: 802.11b / 1Mbps
 - -WLAN5GHz worst configuration and Band: WLAN 5.2GHz /11a / 6Mbps

<Codec Investigation>

LTE FDD

	VoIP Codec(Google Duo)												
Codec	Opus 6kbps	Opus 40kbps	Opus 75kbps	Orientation	Band / Channel								
ABM 1 (dBA/m)	-4.92	-7.11	-8.2										
ABM 2 (dBA/m)	-39.3	-41.35	-43.91	Axial	B30 / 10M / 27710								
Signal Quality (dB)	34.38	34.24	35.71	Axiai	B30 / 10W1 / 277 10								
Freq. Response	PASS	PASS	PASS										

Remark: According to codec investigation, the worst codec bitrate is 40Kbps

WLAN

VoIP Codec(Google Duo)									
Codec	Opus 6kbps	Opus 40kbps	Opus 75kbps	Orientation	Band / Channel				
ABM 1 (dBA/m)	-9.12	-7.86	-10.72						
ABM 2 (dBA/m)	-43.89	-43.43	-46.24	Axial	WLAN2.4G / 6				
Signal Quality (dB)	34.77	35.57	35.52	Axiai	WLAIN2.4G / 6				
Freq. Response	PASS	PASS	PASS						

Remark: According to codec investigation, the worst codec bitrate is 6Kbps

 Sporton International Inc. (Shenzhen)
 Page 22 of 25
 Issued Date
 : Feb. 10, 2022

 TEL: +86-755-86379589 / FAX: +86-755-86379595
 Form version.
 : 210422

<Air Interface Investigation>

Plot No.	Air Interface	Mode	Channel	Probe Position	ABM1 dB (A/m)	ABM2 dB (A/m)	Signal Quality dB	T Rating	Ambient Noise dB (A/m)	Freq. Response Variation dB	Frequency Response
12	2 LTE Band 30 10M QPSK 1	10M QPSK 1 0	27710	Axial (Z)	-7.11	-41.35	34.24	T4	-50.35	1.44	PASS
12 LIE Ballu 30	10W_QP3K_1_0	27710	Transversal (Y)	-8.96	-40.93	31.97	T4	-50.29	1.44	FASS	
10	40 14/1 45/0 40/1-	000 44h 4Mhna		Axial (Z)	-9.12	-43.89	34.77	T4	-50.37	4.00	PASS
13 WLAN2.4GHz	802.11b 1Mbps	6	Transversal (Y)	-9.31	-42.73	33.42	T4	-50.26	1.28	PASS	
1.1	44 14/1 45/5 50/1-	802.11a 6Mbps	40	Axial (Z)	-10.39	-45.20	34.81	T4	-50.36	0.14	PASS
14 WLAN5.5GHz	WLAN5.5GHz			Transversal (Y)	-13.42	-44.59	31.17	T4	-50.25		

Report No.: HA1N0415B

Remark:

1. Phone Condition: Mute on; Backlight off; Max Volume

2. The detail frequency response results please refer to appendix A.

Test Engineer : Kevin Xu, David Dai, Bin He

 Sporton International Inc. (Shenzhen)
 Page 23 of 25
 Issued Date
 : Feb. 10, 2022

 TEL: +86-755-86379589 / FAX: +86-755-86379595
 Form version.
 : 210422

11. Uncertainty Assessment

The evaluation of uncertainty by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance. The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances. Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is showed in Table 8.2. The judgment of conformity in the report is based on the measurement results excluding the measurement uncertainty.

Report No.: HA1N0415B

Error Description	Uncertainty Value (±%)	Probability	Divisor	(Ci) ABM1	(Ci) ABM2	Standard Uncertainty (ABM1) (±%)	Standard Uncertainty (ABM2) (±%)
Probe Sensitivity							
Reference Level	3.0	N	1	1	1	3.0	3.0
AMCC Geometry	0.4	R	1.732	1	1	0.2	0.2
AMCC Current	1.0	R	1.732	1	1	0.6	0.6
Probe Positioning during Calibr.	0.1	R	1.732	1	1	0.1	0.1
Noise Contribution	0.7	R	1.732	0.014	1	0.0	0.4
Frequency Slope	5.9	R	1.732	0.1	1	0.3	3.4
Probe System							
Repeatability / Drift	1.0	R	1.732	1	1	0.6	0.6
Linearity / Dynamic Range	0.6	R	1.732	1	1	0.3	0.3
Acoustic Noise	1.0	R	1.732	0.1	1	0.1	0.6
Probe Angle	2.3	R	1.732	1	1	1.3	1.3
Spectral Processing	0.9	R	1.732	1	1	0.5	0.5
Integration Time	0.6	N	1	1	5	0.6	3.0
Field Distribution	0.2	R	1.732	1	1	0.1	0.1
Test Signal							
Ref. Signal Spectral Response	0.6	R	1.732	0	1	0.0	0.3
Positioning							
Probe Positioning	1.9	R	1.732	1	1	1.1	1.1
Phantom Thickness	0.9	R	1.732	1	1	0.5	0.5
DUT Positioning	1.9	R	1.732	1	1	1.1	1.1
External Contributions							
RF Interference	0.0	R	1.732	1	0.3	0.0	0.0
Test Signal Variation	2.0	R	1.732	1	1	1.2	1.2
Com	4.0%	6.1%					
Coverage Factor for 95 %							K=2
Expanded STD Uncertainty						8.1%	12.2%

Table 8.2 Uncertainty Budget of audio band magnetic measurement

 Sporton International Inc. (Shenzhen)
 Page 24 of 25
 Issued Date
 : Feb. 10, 2022

 TEL: +86-755-86379589 / FAX: +86-755-86379595
 Form version.
 : 210422

12. References

[1] ANSI C63.19-2011, "American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids", 27 May 2011.

Report No.: HA1N0415B

- [2] FCC KDB 285076 D01v05r01, "Equipment Authorization Guidance for Hearing Aid Compatibility", Apr 06, 2020
- [3] FCC KDB 285076 D02 v03r01, "Guidance for performing T-Coil tests for air interfaces supporting voice over IP (e.g., LTE and WiFi) to support CMRS based telephone services", Apr 20, 2021
- [4] FCC KDB 285076 D03v01r04, "Hearing aid compatibility frequently asked questions", Apr 20, 2021
- [5] SPEAG DASY System Handbook

----THE END-----

 Sporton International Inc. (Shenzhen)
 Page 25 of 25
 Issued Date
 : Feb. 10, 2022

 TEL: +86-755-86379589 / FAX: +86-755-86379595
 Form version.
 : 210422

Appendix A. Plots of T-Coil Measurement

Report No.: HA1N0415B

The plots are shown as follows.

 Sporton International Inc. (Shenzhen)
 Page A1 of A1
 Issued Date
 : Feb. 10, 2022

 TEL: +86-755-86379589 / FAX: +86-755-86379595
 Form version.
 : 210422

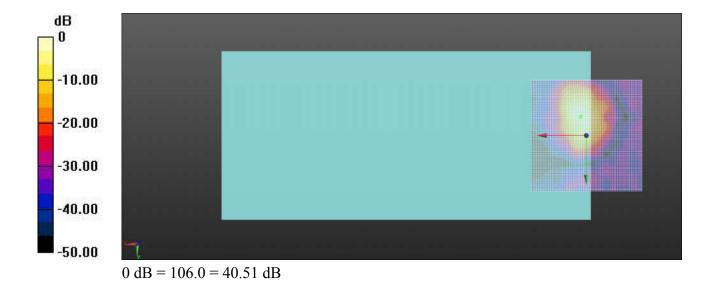
01_HAC T-Coil_LTE Band 2_20M_QPSK_1RB_0Offset_Ch18900_Z

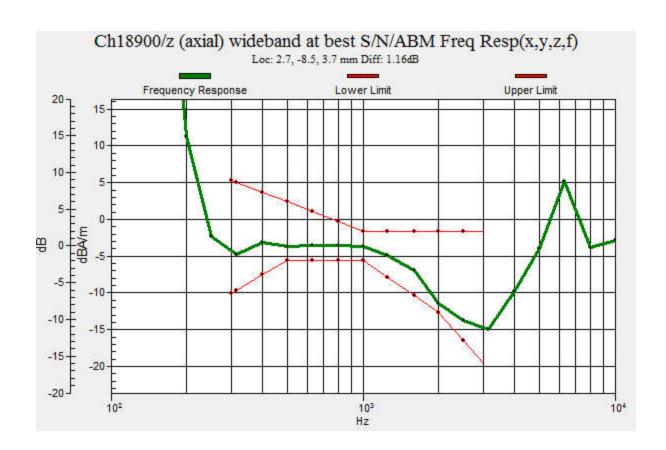
Date: 2022/1/22

Communication System: UID 0, LTE (0); Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.4 ℃


DASY5 Configuration:


- Probe: AM1DV3 3106; ; Calibrated: 2021/11/23
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn1210; Calibrated: 2021/8/25
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

Ch18900/z (axial) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

ABM1/ABM2 = 40.51 dB ABM1 comp = -4.81 dBA/m Location: 2.5, -8.3, 3.7 mm

01_HAC T-Coil_LTE Band 2_20M_QPSK_1RB_0Offset_Ch18900_Y

Date: 2022/1/22

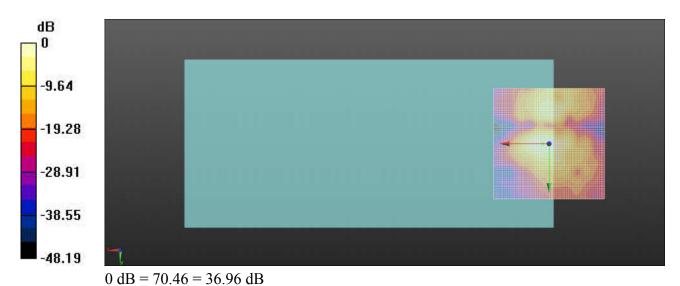
Communication System: UID 0, LTE (0); Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.4 ℃

DASY5 Configuration:

- Probe: AM1DV3 3106; ; Calibrated: 2021/11/23
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn1210; Calibrated: 2021/8/25
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)


Ch18900/y (transversal) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

ABM1/ABM2 = 36.96 dB

ABM1 comp = -13.56 dBA/m

Location: 2.9, 0, 3.7 mm

02_HAC T-Coil_LTE Band 4_20M_QPSK_1RB_0Offset_Ch20175_Z

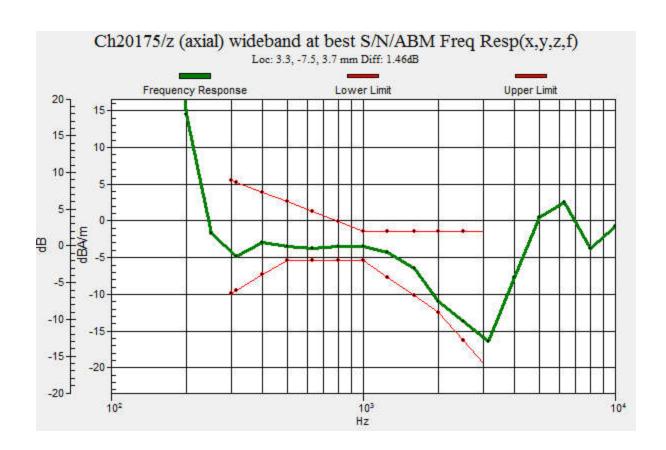
Date: 2022/1/22

Communication System: UID 0, LTE (0); Frequency: 1732.5 MHz; Duty Cycle: 1:1

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.4 ℃

DASY5 Configuration:


- Probe: AM1DV3 3106; ; Calibrated: 2021/11/23
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn1210; Calibrated: 2021/8/25
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

Ch20175/z (axial) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

ABM1/ABM2 = 40.30 dB ABM1 comp = -3.75 dBA/m Location: 3.3, -7.5, 3.7 mm

02_HAC T-Coil_LTE Band 4_20M_QPSK_1RB_0Offset_Ch20175_Y

Date: 2022/1/22

Communication System: UID 0, LTE (0); Frequency: 1732.5 MHz; Duty Cycle: 1:1

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.4 ℃

DASY5 Configuration:

- Probe: AM1DV3 3106; ; Calibrated: 2021/11/23
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn1210; Calibrated: 2021/8/25
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

Ch20175/y (transversal) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

ABM1/ABM2 = 38.61 dB

ABM1 comp = -12.72 dBA/m

Location: 0.8, 0, 3.7 mm

03_HAC T-Coil_LTE Band 5_10M_QPSK_1RB_0Offset_Ch20525_Z

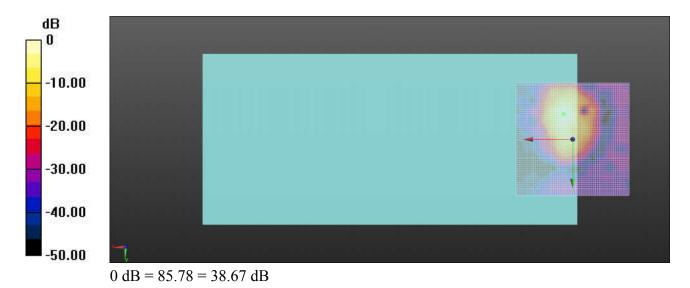
Date: 2022/1/22

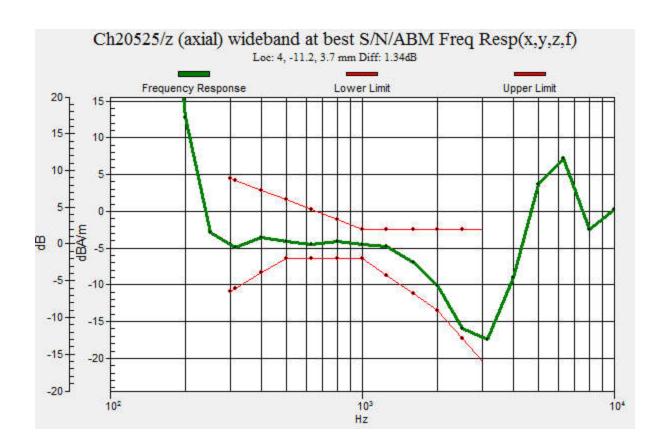
Communication System: UID 0, LTE (0); Frequency: 834.5 MHz; Duty Cycle: 1:1

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.4 ℃

DASY5 Configuration:


- Probe: AM1DV3 3106; ; Calibrated: 2021/11/23
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn1210; Calibrated: 2021/8/25
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)


Ch20525/z (axial) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

ABM1/ABM2 = 38.67 dBABM1 comp = -5.60 dBA/m

Location: 4.2, -11.3, 3.7 mm

03_HAC T-Coil_LTE Band 5_10M_QPSK_1RB_0Offset_Ch20525_Y

Date: 2022/1/22

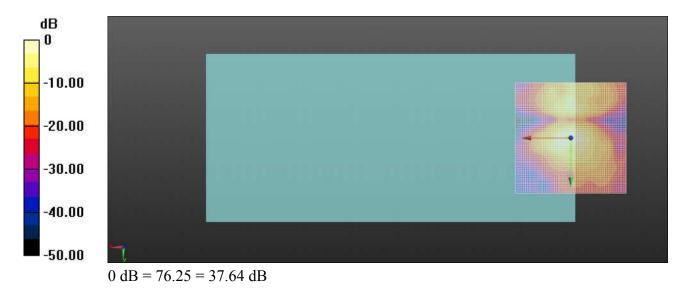
Communication System: UID 0, LTE (0); Frequency: 834.5 MHz; Duty Cycle: 1:1

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.4 ℃

DASY5 Configuration:

- Probe: AM1DV3 3106; ; Calibrated: 2021/11/23
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn1210; Calibrated: 2021/8/25
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)


Ch20525/y (transversal) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

ABM1/ABM2 = 37.65 dB

ABM1 comp = -13.03 dBA/m

Location: 1.3, 0, 3.7 mm

04 HAC T-Coil LTE Band 12 10M QPSK 1RB 0Offset Ch23095 Z

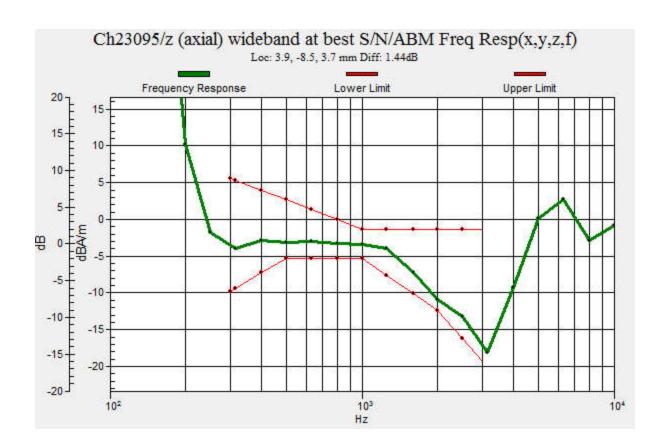
Date: 2022/1/22

Communication System: UID 0, LTE (0); Frequency: 707.5 MHz; Duty Cycle: 1:1

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.4 ℃

DASY5 Configuration:


- Probe: AM1DV3 3106; ; Calibrated: 2021/11/23
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn1210; Calibrated: 2021/8/25
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

Ch23095/z (axial) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

ABM1/ABM2 = 39.37 dB ABM1 comp = -4.36 dBA/m Location: 3.8, -8.3, 3.7 mm

04_HAC T-Coil_LTE Band 12_10M_QPSK_1RB_0Offset_Ch23095_Y

Date: 2022/1/22

Communication System: UID 0, LTE (0); Frequency: 707.5 MHz; Duty Cycle: 1:1

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.4 ℃

DASY5 Configuration:

- Probe: AM1DV3 3106; ; Calibrated: 2021/11/23
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn1210; Calibrated: 2021/8/25
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

Ch23095/y (transversal) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

ABM1/ABM2 = 38.67 dB

ABM1 comp = -11.53 dBA/m

Location: 3.8, 0, 3.7 mm

05_HAC T-Coil_LTE Band 14_10M_QPSK_1RB_0Offset_Ch23330_Z

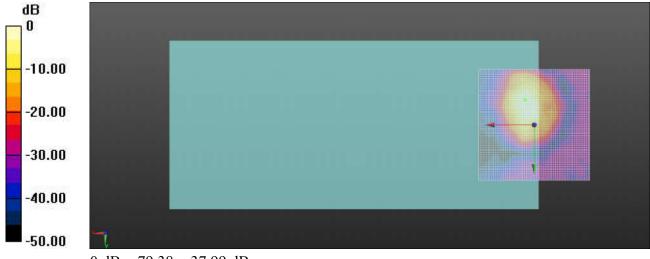
Date: 2022/1/22

Communication System: UID 0, LTE (0); Frequency: 793 MHz; Duty Cycle: 1:1

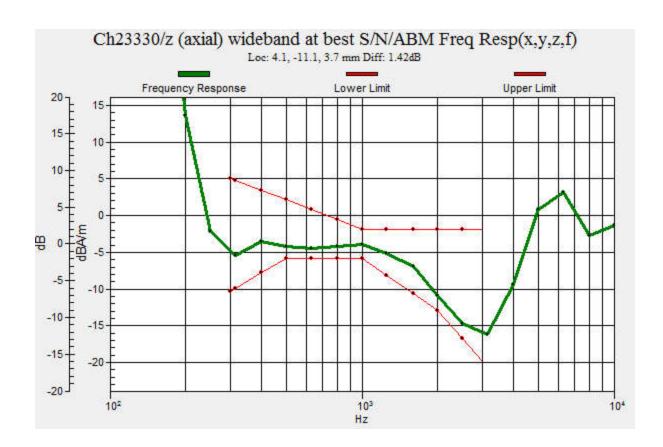
Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.4 ℃

DASY5 Configuration:


- Probe: AM1DV3 3106; ; Calibrated: 2021/11/23
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn1210; Calibrated: 2021/8/25
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

Ch23330/z (axial) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):


Interpolated grid: dx=1.000 mm, dy=1.000 mm

ABM1/ABM2 = 37.99 dBABM1 comp = -6.21 dBA/m

Location: 4.2, -11.3, 3.7 mm

0 dB = 79.38 = 37.99 dB

05_HAC T-Coil_LTE Band 14_10M_QPSK_1RB_0Offset_Ch23330_Y

Date: 2022/1/22

Communication System: UID 0, LTE (0); Frequency: 793 MHz; Duty Cycle: 1:1

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.4 ℃

DASY5 Configuration:

- Probe: AM1DV3 3106; ; Calibrated: 2021/11/23
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn1210; Calibrated: 2021/8/25
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

Ch23330/y (transversal) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

ABM1/ABM2 = 37.45 dBABM1 comp = -13.01 dBA/m

Location: 2.9, 0.4, 3.7 mm

06_HAC T-Coil_LTE Band 30_10M_QPSK_1RB_0Offset_Ch27710_Z

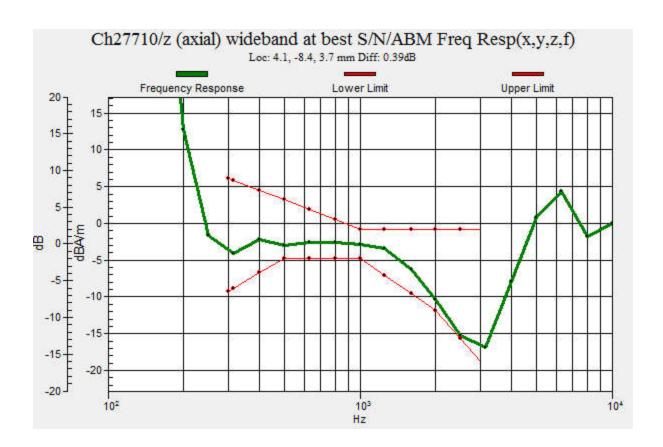
Date: 2022/1/22

Communication System: UID 0, LTE (0); Frequency: 2310 MHz; Duty Cycle: 1:1

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.4 ℃

DASY5 Configuration:


- Probe: AM1DV3 3106; ; Calibrated: 2021/11/23
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn1210; Calibrated: 2021/8/25
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

Ch27710/z (axial) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

ABM1/ABM2 = 41.26 dB ABM1 comp = -2.57 dBA/m Location: 4.2, -8.3, 3.7 mm

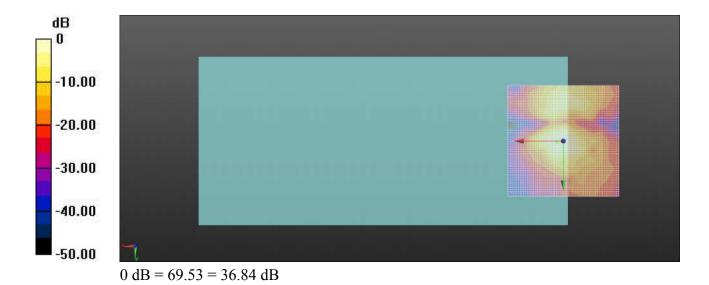
06_HAC T-Coil_LTE Band 30_10M_QPSK_1RB_0Offset_Ch27710_Y

Date: 2022/1/22

Communication System: UID 0, LTE (0); Frequency: 2310 MHz; Duty Cycle: 1:1

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.4 ℃


DASY5 Configuration:

- Probe: AM1DV3 3106; ; Calibrated: 2021/11/23
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn1210; Calibrated: 2021/8/25
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

Ch27710/y (transversal) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

ABM1/ABM2 = 36.84 dB ABM1 comp = -12.65 dBA/m Location: 2.9, 0.4, 3.7 mm

07_HAC_T-Coil_WLAN2.4GHz_802.11b 1Mbps_Ch6_Axial (Z)

Communication System: 802.11b; Frequency: 2437 MHz

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.5 ℃

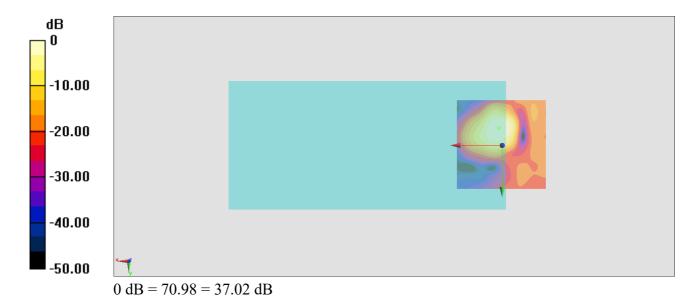
DASY5 Configuration

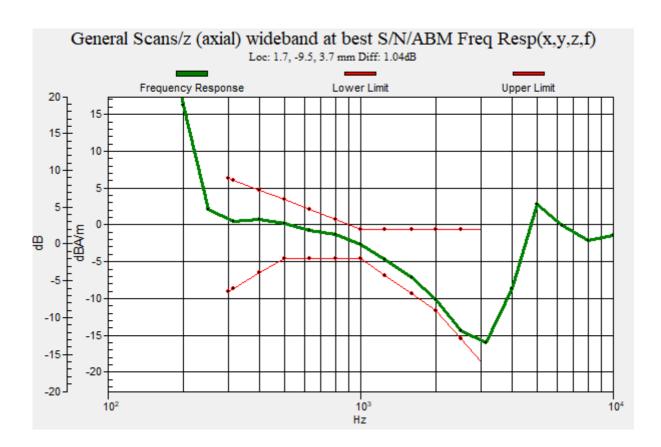
- Probe: AM1DV3 - 3130; ; Calibrated: 2021/8/26

- Sensor-Surface: 0mm (Fix Surface)

- Electronics: DAE4 Sn1311; Calibrated: 2021/8/20

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;


- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)


General Scans/z (axial) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Date: 2022/1/25

Interpolated grid: dx=1.000 mm, dy=1.000 mm

ABM1/ABM2 = 37.02 dB ABM1 comp = -4.80 dBA/m Location: 1.9, -9.6, 3.7 mm

07_HAC_T-Coil_WLAN2.4GHz_802.11b 1Mbps_Ch6_Transversal (Y)

Date: 2022/1/25

Communication System: 802.11b; Frequency: 2437 MHz

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

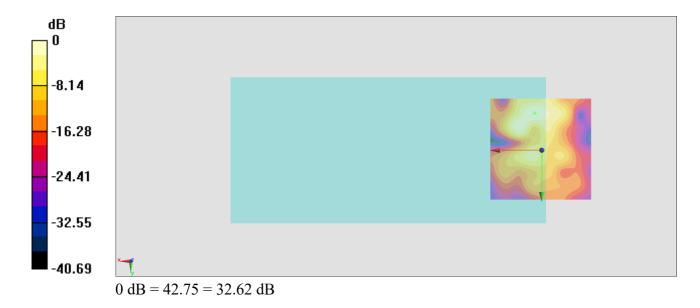
Ambient Temperature : 23.5 ℃

DASY5 Configuration

- Probe: AM1DV3 - 3130; ; Calibrated: 2021/8/26

- Sensor-Surface: 0mm (Fix Surface)

- Electronics: DAE4 Sn1311; Calibrated: 2021/8/20


- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

General Scans/y (transversal) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

ABM1/ABM2 = 32.62 dB ABM1 comp = -7.44 dBA/m Location: 3.3, -18, 3.7 mm

08_HAC_T-Coil_WLAN5GHz_802.11a 6Mbps_Ch40_Axial (Z)

Communication System: 802.11a; Frequency: 5200 MHz

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.5 °C

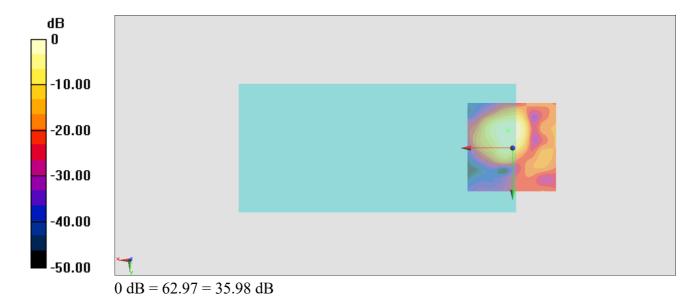
DASY5 Configuration

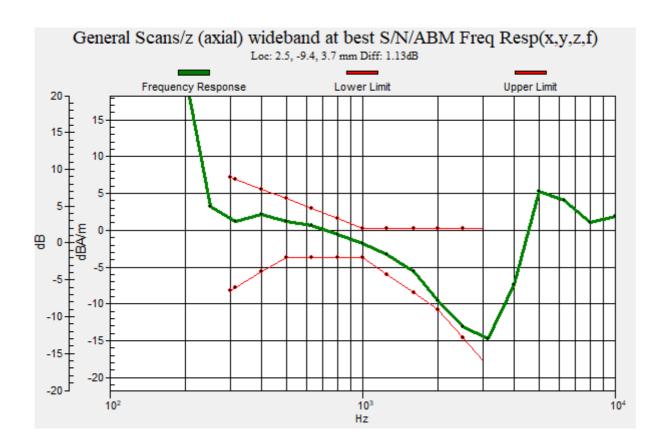
- Probe: AM1DV3 - 3130; ; Calibrated: 2021/8/26

- Sensor-Surface: 0mm (Fix Surface)

- Electronics: DAE4 Sn1311; Calibrated: 2021/8/20

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;


- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)


General Scans/z (axial) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Date: 2022/1/25

Interpolated grid: dx=1.000 mm, dy=1.000 mm

ABM1/ABM2 = 35.98 dB ABM1 comp = -4.45 dBA/m Location: 2.6, -9.6, 3.7 mm

08_HAC_T-Coil_WLAN5GHz_802.11a 6Mbps_Ch40_Transversal (Y)

Communication System: 802.11a; Frequency: 5200 MHz

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.5 °C

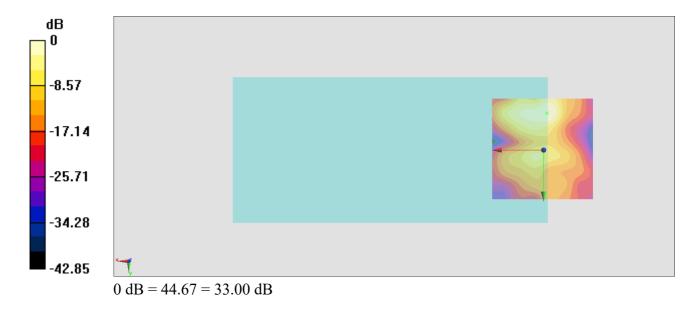
DASY5 Configuration

- Probe: AM1DV3 - 3130; ; Calibrated: 2021/8/26

- Sensor-Surface: 0mm (Fix Surface)

- Electronics: DAE4 Sn1311; Calibrated: 2021/8/20

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;


- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

General Scans/y (transversal) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Date: 2022/1/25

Interpolated grid: dx=1.000 mm, dy=1.000 mm

ABM1/ABM2 = 33.00 dB ABM1 comp = -12.75 dBA/m Location: -1.6, -18, 3.7 mm

09_HAC_T-Coil_WLAN5GHz_802.11a 6Mbps_Ch60_Axial (Z)

Communication System: 802.11a; Frequency: 5300 MHz

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.5 °C

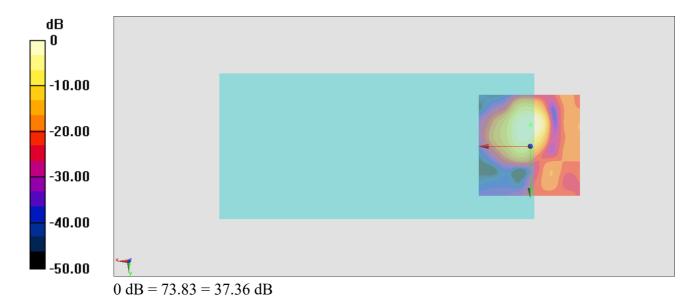
DASY5 Configuration

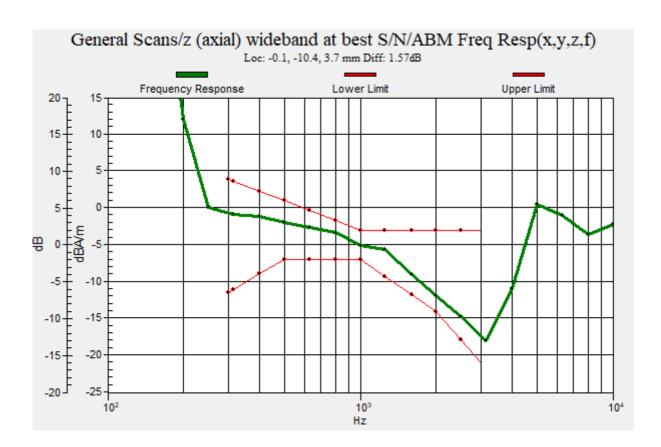
- Probe: AM1DV3 - 3130; ; Calibrated: 2021/8/26

- Sensor-Surface: 0mm (Fix Surface)

- Electronics: DAE4 Sn1311; Calibrated: 2021/8/20

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;


- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)


General Scans/z (axial) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Date: 2022/1/25

Interpolated grid: dx=1.000 mm, dy=1.000 mm

ABM1/ABM2 = 37.36 dB ABM1 comp = -7.59 dBA/m Location: -0.2, -10.3, 3.7 mm

09_HAC_T-Coil_WLAN5GHz_802.11a 6Mbps_Ch60_Transversal (Y)

Communication System:802.11a; Frequency: 5300 MHz

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.5 °C

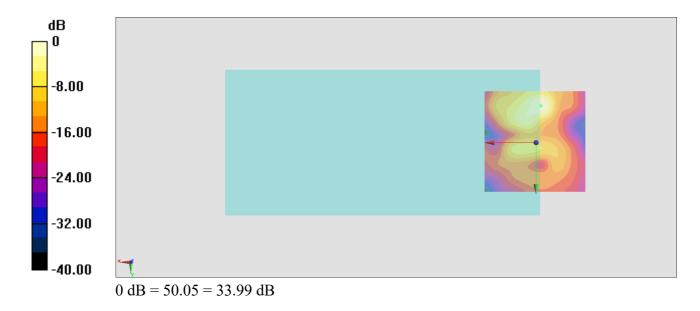
DASY5 Configuration

- Probe: AM1DV3 - 3130; ; Calibrated: 2021/8/26

- Sensor-Surface: 0mm (Fix Surface)

- Electronics: DAE4 Sn1311; Calibrated: 2021/8/20

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;


- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

General Scans/y (transversal) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Date: 2022/1/25

Interpolated grid: dx=1.000 mm, dy=1.000 mm

ABM1/ABM2 = 33.99 dB ABM1 comp = -12.25 dBA/m Location: -2.3, -18, 3.7 mm

10_HAC_T-Coil_WLAN5GHz_802.11a 6Mbps_Ch116_Axial (Z)

Date: 2022/1/25

Communication System: 802.11a; Frequency: 5580 MHz

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

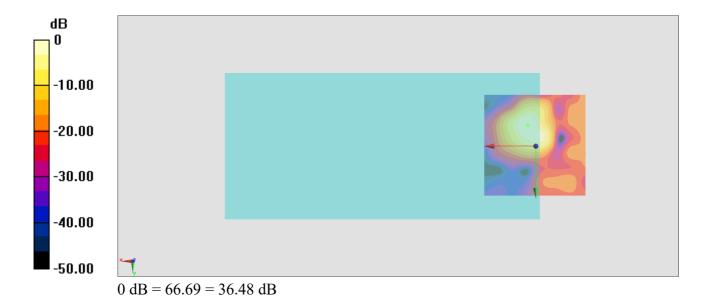
Ambient Temperature : 23.5 ℃

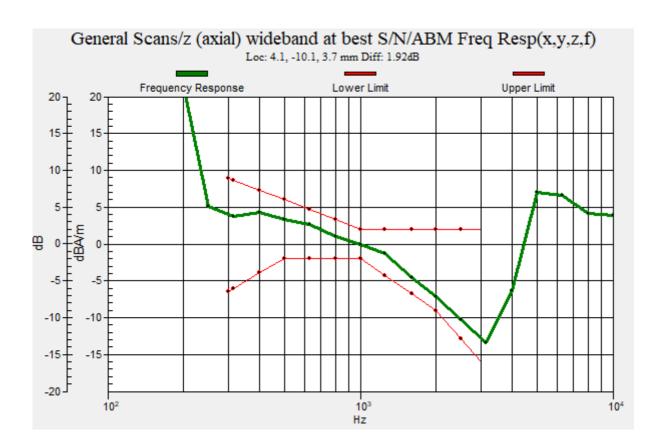
DASY5 Configuration

- Probe: AM1DV3 - 3130; ; Calibrated: 2021/8/26

- Sensor-Surface: 0mm (Fix Surface)

- Electronics: DAE4 Sn1311; Calibrated: 2021/8/20


- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;


- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

General Scans/z (axial) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

ABM1/ABM2 = 36.48 dB ABM1 comp = -2.57 dBA/m Location: 4, -10.3, 3.7 mm

10_HAC_T-Coil_WLAN5GHz_802.11a 6Mbps_Ch116_Transversal (Y)

Date: 2022/1/25

Communication System: 802.11a; Frequency: 5580 MHz

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

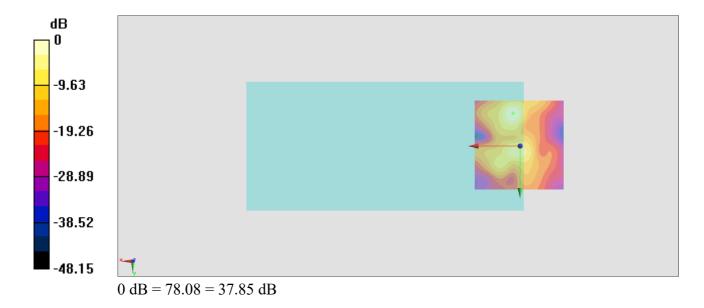
Ambient Temperature : 23.5 ℃

DASY5 Configuration

- Probe: AM1DV3 - 3130; ; Calibrated: 2021/8/26

- Sensor-Surface: 0mm (Fix Surface)

- Electronics: DAE4 Sn1311; Calibrated: 2021/8/20


- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

General Scans/y (transversal) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

ABM1/ABM2 = 37.85 dB ABM1 comp = -7.58 dBA/m Location: 4, -18, 3.7 mm

11_HAC_T-Coil_WLAN5GHz_802.11a 6Mbps_Ch157_Axial (Z)

Date: 2022/1/25

Communication System: 802.11a; Frequency: 5785 MHz

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

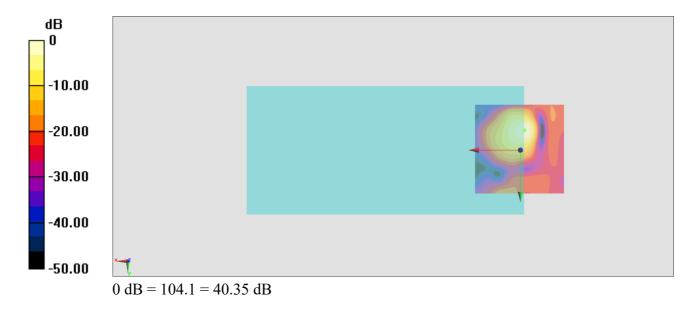
Ambient Temperature : 23.5 °C

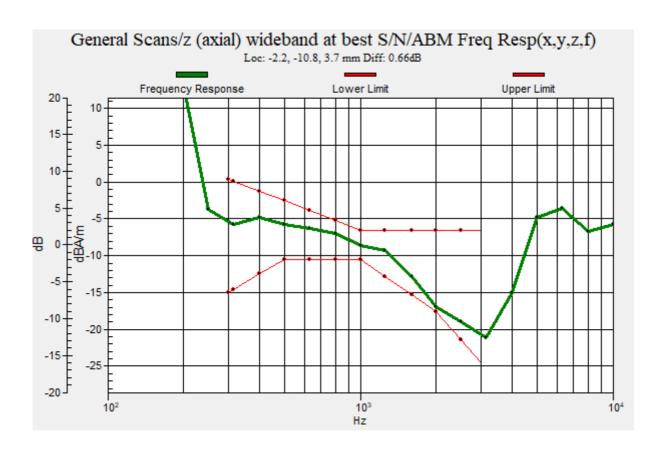
DASY5 Configuration

- Probe: AM1DV3 - 3130; ; Calibrated: 2021/8/26

- Sensor-Surface: 0mm (Fix Surface)

- Electronics: DAE4 Sn1311; Calibrated: 2021/8/20


- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;


- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

General Scans/z (axial) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

ABM1/ABM2 = 40.35 dB ABM1 comp = -11.52 dBA/m Location: -2.3, -11, 3.7 mm

11_HAC_T-Coil_WLAN5GHz_802.11a 6Mbps_Ch157_Transversal (Y)

Date: 2022/1/25

Communication System: 802.11a; Frequency: 5785 MHz

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

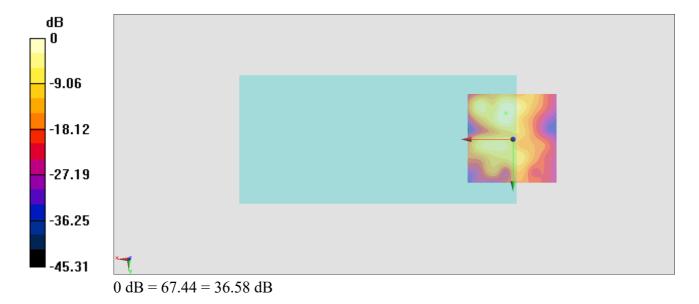
Ambient Temperature : 23.5 ℃

DASY5 Configuration

- Probe: AM1DV3 - 3130; ; Calibrated: 2021/8/26

- Sensor-Surface: 0mm (Fix Surface)

- Electronics: DAE4 Sn1311; Calibrated: 2021/8/20


- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

General Scans/y (transversal) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

ABM1/ABM2 = 36.58 dB ABM1 comp = -9.20 dBA/m Location: 4, -14.5, 3.7 mm

12_HAC_T-Coil_LTE Band 30_10M_QPSK_1_0_Ch27710_Axial (Z)

Date: 2022/1/15

Communication System: LTE; Frequency: 2310 MHz

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

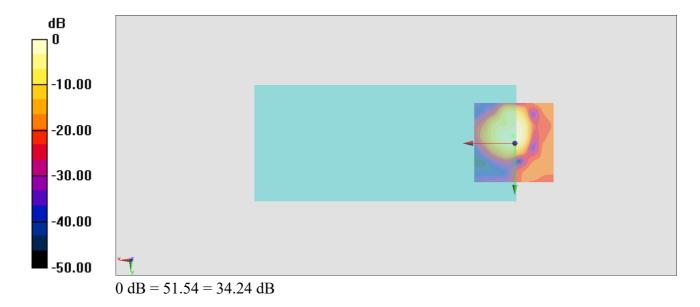
Ambient Temperature : 23.5 ℃

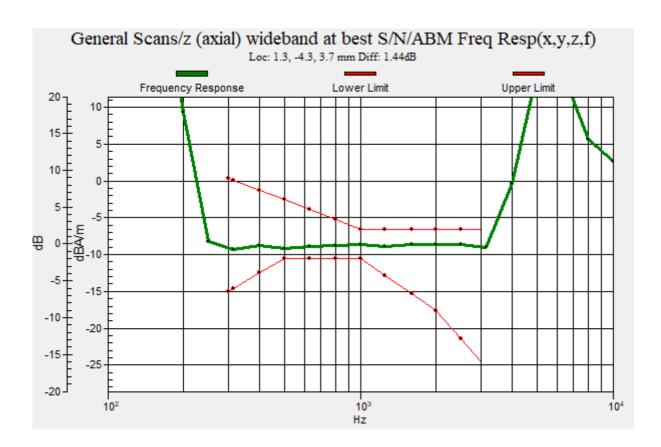
DASY5 Configuration

- Probe: AM1DV3 - 3130; ; Calibrated: 2021/8/26

- Sensor-Surface: 0mm (Fix Surface)

- Electronics: DAE4 Sn1311; Calibrated: 2021/8/20


- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;


- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

General Scans/z (axial) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

ABM1/ABM2 = 34.24 dB ABM1 comp = -7.11 dBA/m Location: 1.2, -4.7, 3.7 mm

12_HAC_T-Coil_LTE Band 30_10M_QPSK_1_0_Ch27710_Transversal (Y)

Date: 2022/1/15

Communication System: LTE; Frequency: 2310 MHz

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

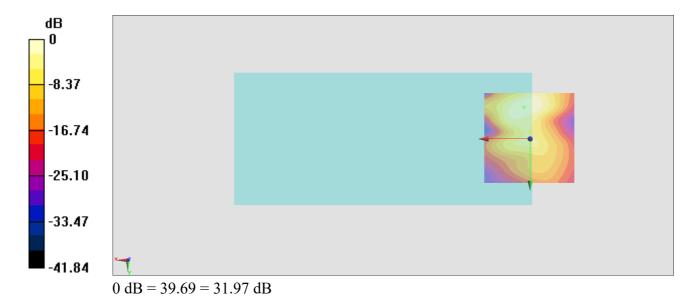
Ambient Temperature : 23.5 ℃

DASY5 Configuration

- Probe: AM1DV3 - 3130; ; Calibrated: 2021/8/26

- Sensor-Surface: 0mm (Fix Surface)

- Electronics: DAE4 Sn1311; Calibrated: 2021/8/20


- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

General Scans/y (transversal) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

ABM1/ABM2 = 31.97 dB ABM1 comp = -8.96 dBA/m Location: 3.3, -17.3, 3.7 mm

13_HAC_T-Coil_WLAN2.4GHz_802.11b 1Mbps_Ch6_Axial (Z)

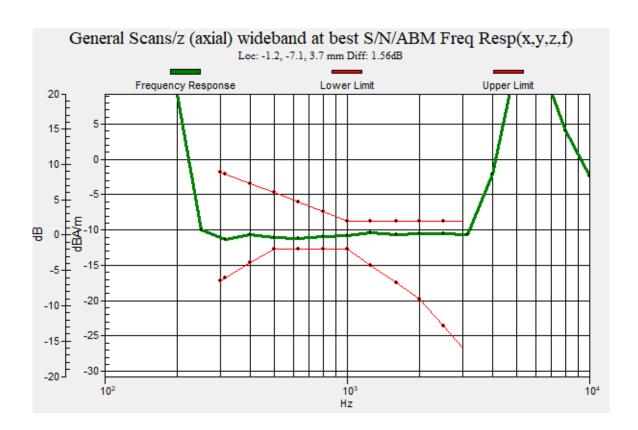
Communication System: 802.11b; Frequency: 2437 MHz

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.5 ℃

DASY5 Configuration

- Probe: AM1DV3 3130; ; Calibrated: 2021/8/26
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn1311; Calibrated: 2021/8/20
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)


General Scans/z (axial) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1): Interpolated

Date: 2022/1/15

grid: dx=1.000 mm, dy=1.000 mm

ABM1/ABM2 = 34.77 dB ABM1 comp = -9.12 dBA/m Location: -0.9, -7.5, 3.7 mm

13 HAC T-Coil WLAN2.4GHz 802.11b 1Mbps Ch6 Transversal (Y)

Date: 2022/1/15

Communication System: 802.11b; Frequency: 2437 MHz

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.5 ℃

DASY5 Configuration

- Probe: AM1DV3 3130; ; Calibrated: 2021/8/26
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn1311; Calibrated: 2021/8/20
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

General Scans/y (transversal) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

ABM1/ABM2 = 33.42 dB ABM1 comp = -9.31 dBA/m Location: 3.3, -18, 3.7 mm

14_HAC_T-Coil_WLAN5GHz_802.11a 6Mbps_Ch40_Axial (Z)

Communication System:802.11b; Frequency: 2437 MHz

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.5 ℃

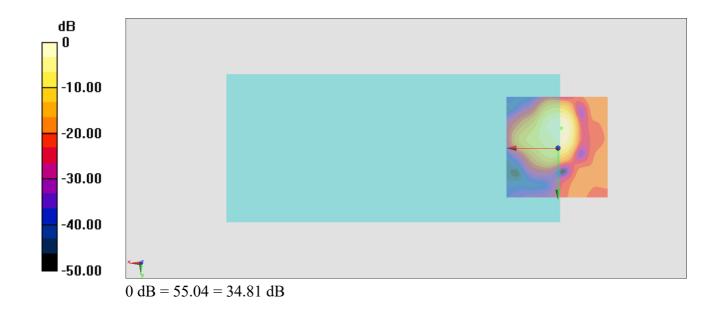
DASY5 Configuration

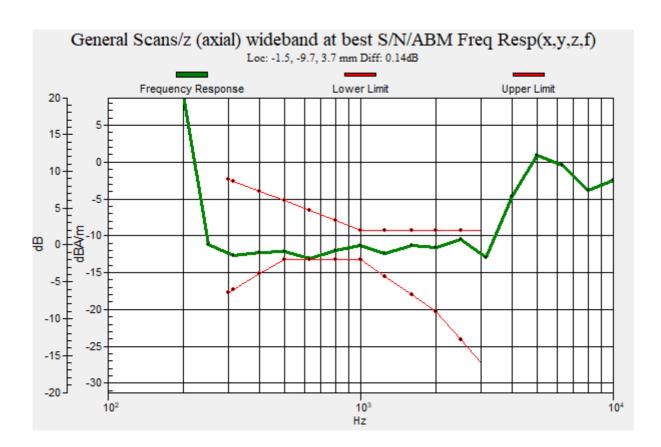
- Probe: AM1DV3 - 3130; ; Calibrated: 2021/8/26

- Sensor-Surface: 0mm (Fix Surface)

- Electronics: DAE4 Sn1311; Calibrated: 2021/8/20

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;


- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)


General Scans/z (axial) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Date: 2022/1/15

Interpolated grid: dx=1.000 mm, dy=1.000 mm

ABM1/ABM2 = 34.81 dB ABM1 comp = -10.39 dBA/m Location: -1.6, -9.6, 3.7 mm

14_HAC_T-Coil_WLAN5GHz_802.11a 6Mbps_Ch40_Transversal (Y)

Communication System:802.11b; Frequency: 2437 MHz

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.5 ℃

DASY5 Configuration

- Probe: AM1DV3 - 3130; ; Calibrated: 2021/8/26

- Sensor-Surface: 0mm (Fix Surface)

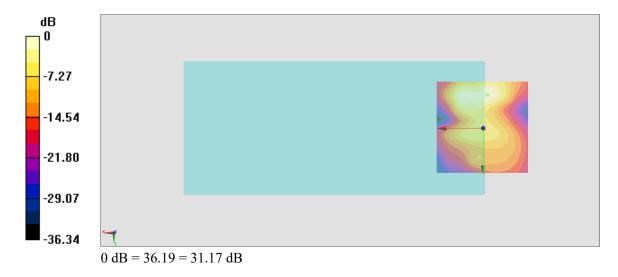
- Electronics: DAE4 Sn1311; Calibrated: 2021/8/20

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

General Scans/y (transversal) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1): Interpolated

Date: 2022/1/15


grid: dx=1.000 mm, dy=1.000 mm

ABM1/ABM2 = 31.17 dB

ABM1 comp = -13.42 dBA/m

BWC Factor = 0.16 dB

Location: -2.3, -18, 3.7 mm

Appendix B. **Calibration Data**

The DASY calibration certificates are shown as follows.

Report No.: HA1N0415B

Sporton International Inc. (Shenzhen) Page B1 of B1 Issued Date : Feb. 10, 2022 Form version. : 210422

TEL: +86-755-86379589 / FAX: +86-755-86379595