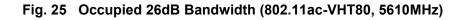
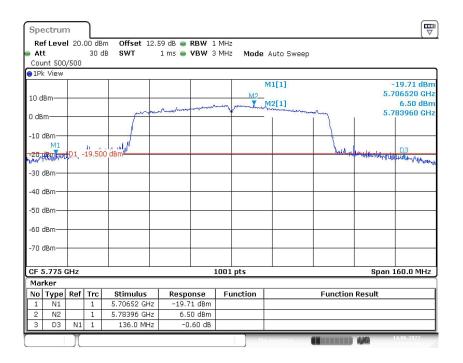
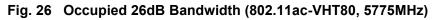


Spe	ctrun	n	٦							
Att			00 dB 30 d		.48 dB 👄 RBW 1 1 ms 👄 VBW 3		Auto Sweep			
●1Pk	View									
10 dB	Im				a have proved and the	M2	M1[1] M2[1]		5.2	20.25 dBm 12560 GHz 7.01 dBm
0 dBr	n			-				and	5.2	88240 GHz
-10 di M1		D1 -	к. 18.99	n durada				Mundar	municipalities	
-30 di										
-40 di	Bm—									
-50 di	Bm—									
-60 di	Bm—									
-70 di	Bm									
CF 5.	.29 GI	Ηz			1	.001 pts			Span :	160.0 MHz
Mark	ker									
No 1	Type N1	Ref	Trc 1	Stimulus 5.21256 GHz	Response -20.25 dBm	Function		Function	Result	
2	N2		1	5.28824 GHz	7.01 dBm					
3	D3	N1	1	156.64 MHz	1.05 dB					
		ſ				M	casuring		4/4	12.06.2022







Count 500/500	Spect	trun	1	٦							
IPk View M1[1] 19.91 dBr 10 dBm M2 M1[1] 5.53000 GH 0 dBm M2 M2[1] 6.22 d dBr -10 dBm M2[1] 6.22 d dBr 5.606480 GH -10 dBm -10 in 760 dBm M2[1] 6.22 d dBr -30 dBm -10 in 760 dBm -10 in 760 dBm -10 in 760 dBm -30 dBm -10 in 760 dBm -10 in 760 dBm -10 in 760 dBm -30 dBm -10 in 760 dBm -10 in 760 dBm -10 in 760 dBm -30 dBm -10 in 760 dBm -10 in 760 dBm -10 in 760 dBm -50 dBm -10 in 760 dBm -10 in 760 dBm -10 in 760 dBm -50 dBm -10 in 760 dBm -10 in 760 dBm -10 in 760 dBm -60 dBm -10 in 760 in 76	Att							Auto Sweep			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
0 dBm	10 dBm	n					M2	M2[1]		5.5	30000 GHz 6.24 dBm
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0 dBm-				prop	and Clarifference and	W	and the second s	my	5.6	06480 GHz
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1001110-1001104	~~~									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1 1628049	widow	D1 -	19.760	dBm				Julite	U. Hilling bookston	D3
-50 dBm -50 dBm Image:	-30 dBi	m—									and the second s
-60 dBm Image: Constraint of the sector of	-40 dBi	m—									
-70 dBm Image: Section of the section of	-50 dBi	m—									
CF 5.61 GHz 1001 pts Span 160.0 MHz Market Here No Type Ref Trc Stimulus Response Function Function Result 1 N1 1 5.53 GHz -19.91 dBm 2 N2 1 5.60648 GHz 6.24 dBm	-60 dBi	m									
Marker Stimulus Response Function Function Result 1 N1 1 5.53 GHz -19.91 dBm - 2 N2 1 5.60648 GHz 6.24 dBm -	-70 dBi	m									
Marker Response Function Function Result 1 N1 1 5.53 GHz -19.91 dBm 2 N2 1 5.60648 GHz 6.24 dBm	0E 5 4	51.01	1-1				1001 ptc			Pnan	160.0 MU-
No Type Ref Trc Stimulus Response Function Function Result 1 N1 1 5.53 GHz -19.91 dBm - - 2 N2 1 5.60648 GHz 6.24 dBm - -		_	12				1001 pts			арап .	
2 N2 1 5.60648 GHz 6.24 dBm			Ref	Trc	Stimulus	Response	Function		Function	Result	
	-										
3 D3 N1 1 147.36 MHz -1.34 dB	_			-							
	3	D3	N1	1	147.36 MHz	-1.34 dB					

A.5. Occupied 6dB Bandwidth (conducted)

Measurement of method: See KDB 789033 D02 v02r01, Section C.2.

Measurement Limit:

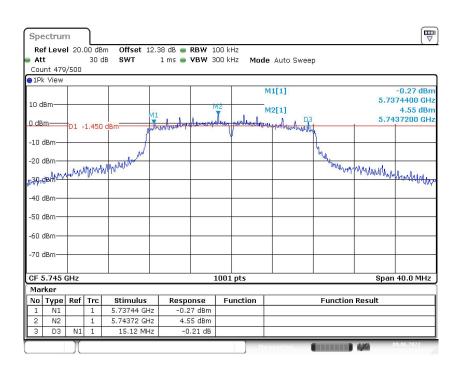
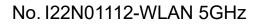
Standard	Limit (MHz)
FCC 47 CFR Part 15.407 (e)	≥ 0.5

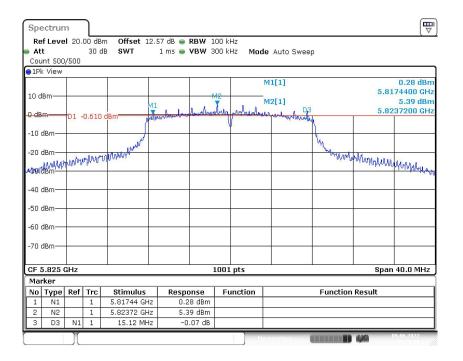
The measurement is made according to KDB 789033

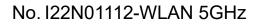
Measurement Result:

Mode	Channel		ed 6dB lth(MHz)	Conclusion
	5745MHz(Ch149)	Fig.27	15.12	Р
802.11a	5785MHz(Ch157)	Fig.28	15.12	Р
	5825MHz(Ch165)	Fig.29	15.12	Р
802.11n-HT40	5755MHz(Ch151)	Fig.30	35.04	Р
ου2. I III-Π I 40	5795MHz(Ch159)	Fig.31	35.12	Р
802.11ac-VHT80	5775MHz(Ch155)	Fig.32	75.20	Р

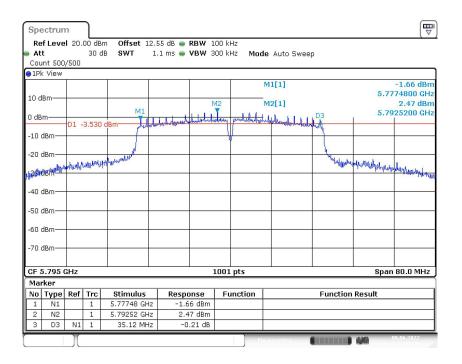
See below for test graphs. Conclusion: PASS

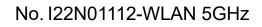




Fig. 27 Occupied 6dB Bandwidth (802.11a, 5745MHz)



Spe	ectrur	n	٦							
Re	f Leve	1 20.	00 dB	m Offset 12	.69 dB 😑 RBW	100 kHz				
🗧 At	-		30 c	B SWT	1 ms 👄 VBW 🗄	300 kHz 🛛 Mod	le Auto Swee	p		
-	int 434	/500								
● 1P	k View									
							M1[1]			0.52 dBm
10 c	Bm					M2			5.77	74400 GHz
10.0				м	1	Y	M2[1]			4.95 dBm
n de	m	01	-1.050		in Another Anolow	alorez realizada	seperalmetrong		5.78	62400 GHz
		01 -	-1.030		and and Dates	V	an manadonila	4		
-10	dBm—			1		2				
				300				Mr.		
-20	dBm—		h	In as Black				WAAA	1	
1	work	WINN	man "	Marthanter				Manuthan	muruhanna	Managen
Aber of	apm—									1. Molloold
	dBm—									
-40	ubiii—									
-50	dBm—									
-60	dBm									
-70	dBm—									
CF	5.785	GHz				1001 pts			Span	40.0 MHz
Mai	rker					•				
No	Type	Ref	Trc	Stimulus	Response	Function		Function	Result	
1	N1		1	5.77744 GHz						
2	N2		1	5.78624 GHz	4.95 dBm					
3	D3	N1	1	15.12 MHz	-0.45 dB					
_									4.34%	19.06.2022
		Л				I M	easuring			





Spectrum	Ì							
Ref Level 20.0 Att Count 500/500	0 dBm 30 dB		.42 dB 👄 RBW 3 1.1 ms 👄 VBW 3		le Auto Sweep			
●1Pk View								
10 dBm					M1[1]		5.73	-2.04 dBm 74800 GHz
0 dBm	.720 c	M1	phyliphyliphyliphyliphyl	-	M2[1]	D3	5.75	2.28 dBm 25200 GHz
-10 dBm				u u				
-20 dBm	hippun	haddar fallande				Jore - fullow	Hill Munpulator	Wildy on lotter
-40 dBm								
-50 dBm								
-70 dBm								
CF 5.755 GHz				1001 pts			Span	80.0 MHz
Marker								
No Type Ref	Trc	Stimulus	Response -2.04 dBm	Function		Function	Result	
1 N1 2 N2 3 D3 N1	1 1	5.73748 GHz 5.75252 GHz 35.04 MHz	2.28 dBm					
T) M	easuring		440	19.06.2022

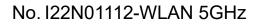
Spe	ectrur	n	٦								
	f Leve	1 20.			2.59 dB 😑						
e At	-		30 c	B SWT	1.6 ms 😑	VBW 3	00 kHz Mod	e Auto Swee	ep		
	int 500	/500									
●1P	k View										
								M1[1]			-5.51 dBm
10 c	IBm									5.7	37400 GHz
10.0	.5.11						M2	M2[1]			-0.90 dBm
0 dB	m			MI					1 200	5.7	78840 GHz
				VILL	and i	III. U	All public little	UN dim	D3		
-10	dBm	-D1 -	6.900	dBm <u>LUL</u>	bet the former	Philane a		We and hilly	Alle		
	di Di Titi										
-20	dBm										
									5		
-30	dBm			the start					M _{un}		
LUNA	phyronethe	Vigation W	a form	North Made					. Onthe base	-then all a way of	webs with a ulas
	dBm—										0.1
-50	dBm—										
-60	dBm										
-70	dBm—	<u> </u>									
0.5											
	5.775	JHZ				1	.001 pts			span i	160.0 MHz
	rker										
No	Туре	Ref	Trc	Stimulus	Respo		Function		Function	Result	
1	N1		1	5.7374 GH	z -5.5	1 dBm					
2	N2		1	5.77884 GH	z -0.9	0 dBm					
3	D3	N1	1	75.2 MH	z 0	.66 dB					
_					_					4.342	12.06.2022
		Л					L MI			aya .	

Fig. 32 Occupied 6dB Bandwidth (802.11ac-VHT80, 5775MHz)

A.6. 99% Occupied Bandwidth (conducted)

Measurement of method: See KDB 789033 D02 v02r01, Section D.

Measurement Limit:


Standard	Limit (MHz)
FCC 47 CFR Part 15.403	/

The measurement is made according to KDB 789033

Measurement Result:


Mode	Channel	99% Oc	cupied	Conclusion
mode	onannei	Bandwid	dth(MHz)	Conclusion
	5180MHz(Ch36)	Fig.33	19.34	1
	5200MHz(Ch40)	Fig.34	19.54	1
	5240MHz(Ch48)	Fig.35	19.50	1
	5260MHz(Ch52)	Fig.36	18.66	1
	5280MHz(Ch56)	Fig.37	21.58	1
802.11a	5320MHz(Ch64)	Fig.38	19.54	1
602.11a	5500MHz(Ch100)	Fig.39	21.18	1
	5580MHz(Ch116)	Fig.40	18.30	1
	5700MHz(Ch140)	Fig.41	18.42	1
	5745MHz(Ch149)	Fig.42	18.50	1
	5785MHz(Ch157)	Fig.43	18.70	1
	5825MHz(Ch165)	Fig.44	18.46	1
	5190MHz(Ch38)	Fig.45	39.00	1
	5230MHz(Ch46)	Fig.46	38.76	1
	5270MHz(Ch54)	Fig.47	38.92	1
	5310MHz(Ch62)	Fig.48	38.84	1
802.11n-HT40	5510MHz(Ch102)	Fig.49	38.04	1
	5550MHz(Ch110)	Fig.50	38.28	1
	5670MHz(Ch134)	Fig.51	38.68	1
	5755MHz(Ch151)	Fig.52	38.36	1
	5795MHz(Ch159)	Fig.53	38.12	1
	5210MHz(Ch42)	Fig.54	76.88	1
	5290MHz(Ch58)	Fig.55	76.72	1
802.11ac-VHT80	5530MHz(Ch106)	Fig.56	76.56	1
	5610MHz(Ch122)	Fig.57	76.40	1
	5775MHz(Ch155)	Fig.58	76.08	1

See below for test graphs. Conclusion: PASS

Spe	ectrun	n	٦							
🛛 At	f Leve t int 500		00 dB 30 d		.10 dB 👄 RBW 1 ms 👄 VBW		le Auto Sweep)		,
1Pl	< View									
10 d	Bm				environment and	M1	M1[1] Occ BW	(12.02 dBm 17980 GHz 59341 MHz
0 dB	m			TLAN				UT2		
-10 1/10 -20	dBm Jul Julyul dBm	potellari	dy Het	T 1 pr				W Harrison	Here ward for	howself
-30	dBm									
-40	dBm—									
-50	dBm—									
-60	dBm									
-70	dBm									
CF (5.18 G	Ηz				1001 pts			Span	40.0 MHz
Mai	rker									
	Туре	Ref	Trc	Stimulus	Response	Function		Function	Result	
1	N1 1T		1	5.1818 GHz 5.1898 GHz		Occ Bw			19.3406	59341 MHz
3	2T		1	5.1704 GHz		200 011			2010100	
	1) M	easuring		4/4	1.06.2022

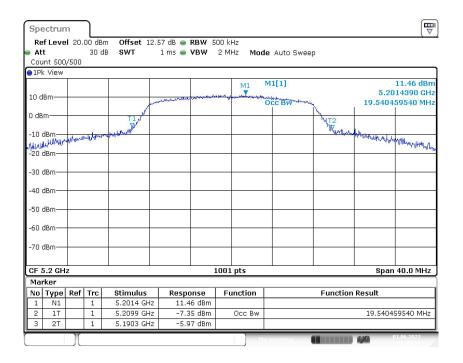
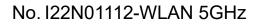
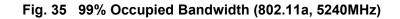




Fig. 34 99% Occupied Bandwidth (802.11a, 5200MHz)

Spe	ectrun	n	٦							
🖷 Att	f Leve t nt 500		00 dB 30 d		14 dB 👄 RBW 5 1 ms 👄 VBW		le Auto Sweej	2		
●1Pk	: View									
10 di	Bm				har many many many and a second	M1	M1[1] Occ BW	2		11.48 dBm 23180 GHz 99500 MHz
0 dBr				T100				WIT2		
-10 c Myull -20 c	dBm AAYVVV dBm—	ywythię	helvith	attender the and the second				ampu	handrendreten	with Holmund
-30 c	dBm									
-40 c	dBm									
-50 c	dBm									
-60 c	dBm									
-70 c	dBm—									
CF 5	5.24 G	Hz				1001 pts			Span	40.0 MHz
Mar	ker									
	Туре	Ref	-	Stimulus	Response	Function		Function	Result	
1 2	N1 1T		1	5.242318 GHz 5.24995 GHz	11.48 dBm -9.03 dBm	Occ Bw			19.5004	99500 MHz
3	2T		1	5.2304496 GHz	-5.39 dBm					
						E N	easuring		4/4	01.06.2022

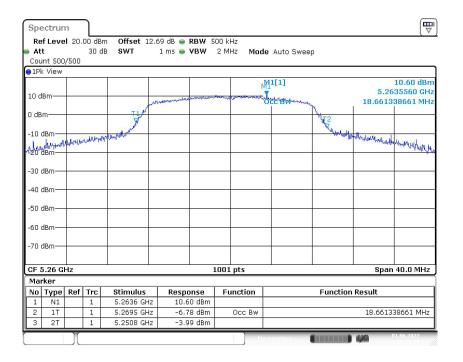
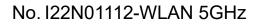



Fig. 36 99% Occupied Bandwidth (802.11a, 5260MHz)

Spe	ectrur	n	٦							
Re	fLeve	20.	00 dB	m Offset 12.	21 dB 😑 RBW 5	00 kHz				
🗎 At	t		30 0	iB SWT	1 ms 👄 VBW	2 MHz Mod	le Auto Swee	эp		
Cou	int 500	/500								
● 1 PI	< View									
						M1	M1[1]			10.32 dBm
10 d	B m				10 I				5.28	18780 GHz
10.0	DIII				and marken bern and ment	the stranger with the second	OCC Browner		21.5784	21578 MHz
0 dB	m			J.				Nu.		
0 00				T1 who				¹ μ, Τ2		
-10	dBm—		ft ode	and the bellevier				hunder	all post of the	ununulunur
MALAN	dBm-	Munut	Any street						- when we	untrentletimer
-20	dBm-							-		
-30	dBm									
-40	dBm—									
-50	dBm—									
-60	dBm									
70										
-70	ивт—									
CF 3	5.28 G	Ηz			1	1001 pts			Span	40.0 MHz
Mai	rker									
No	Type	Ref	Trc	Stimulus	Response	Function		Function	Result	1
1	N1		1	5.281878 GHz	10.32 dBm		ĺ			
2	1T		1	5.2912288 GHz	-8.39 dBm	Occ Bw			21.5784	21578 MHz
3	2T		1	5.2696503 GHz	-9.59 dBm					
								4		0.05.2022
						M				

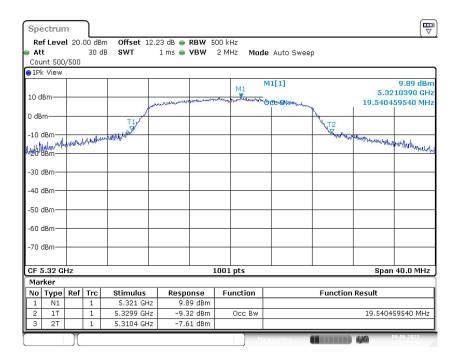
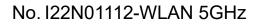



Fig. 38 99% Occupied Bandwidth (802.11a, 5320MHz)

Spec	trun	n	٦								
Ref I Att Count			00 dB 30 c		2.44 dB 👄 I 1 ms 👄 '			e Auto Swee	p		
●1Pk \	View										
10 dBr	m				- Marthally war			M1[1]	224		11.01 dBm 90010 GHz 21179 MHz
0 dBm				T1 M					T2		
-10 dB ሒሙ -20 dB	8m- 1001-10 8m	Manahrau	ratin fuller	Harris Martin					MARKEN.	allow all the Annual	whenterwood
-30 dB	3m										
-40 dB	3m										
-50 dB	3m—										
-60 dB	3m										
-70 dB	3m										
CF 5.	5 GH:	z				1	001 pts			Span	40.0 MHz
Mark	er										
No T	vpe N1	Ref	Trc 1	Stimulus 5.499 GH	Respo	nse 1 dBm	Function		Function	Result	
2	1T 2T		1 1	5.5109 GH	z -8.2	4 dBm 7 dBm	Occ Bw			21.1788	21179 MHz
	- 1)(-	5, 1097 (31)		aoni	M	easuring		4/4	09.06.2022

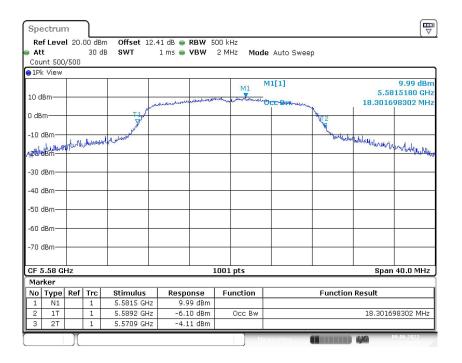
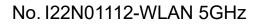



Fig. 40 99% Occupied Bandwidth (802.11a, 5580MHz)

Spe	ctrun	n	٦							
Att	Leve		00 dB 30 d		2.48 dB 👄 RBW 9 1 ms 👄 VBW		le Auto Sweep	I		
●1Pk	View									
10 dB	lm				M1	mayunial	M1[1]			10.01 dBm 971630 GHz
0 dBm	n			TIM	-man have been and	4700 440	OOC Bullin may	भूट	18.4215	78422 MHz
-10 di	Bm		1.6	1. mil broket				Y .	ADRIE	
apola	BALLOW	undfill	Mannes	down Hideburg					Whiteweight	When for all lingthing
-30 di										
-40 di	Bm—									
-50 di	Bm—									
-60 di	Bm—									
-70 di	Bm									
CF 5.	.7 GH	z				1001 pts			Spar	40.0 MHz
Mark										
No 1		Ref		Stimulus	Response	Function		Function	Result	
1	N1 1T		1	5.6972 GHz 5.7092 GHz		Occ Bw			18.4215	78422 MHz
3	2T		1	5.6907 GHz	-6.05 dBm					
	1					M	easuring		4/0	09.06.2022

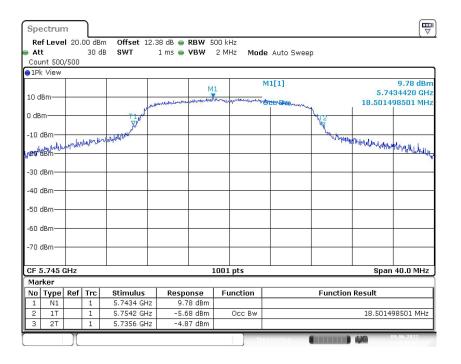
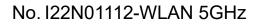
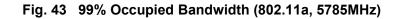




Fig. 42 99% Occupied Bandwidth (802.11a, 5745MHz)

Spe	ctrun	n	٦								
Ati	f Leve t nt 500		00 dB 30 c		2.69 dB 👄 RE 1 ms 👄 VE			e Auto Swe	зер		X
●1Pk	View										
10 di	Bm				and the second second	M1		M1[1] Oct:Bwww.			10.10 dBm 333620 GHz
0 dB				Tlas	and the second s			OCC By	T2		98701 MHz
-10 c	iBm— ^{III} IBM	Philipper por	nlymad	approximit and the					the year during a	and an and the	multimation
											- White the
-30 c											
-40 c -50 c											
-60 c											
-70 c	lBm—										
CF 5	.785 (GHz				10	01 pts			Spar	40.0 MHz
Mar	ker										
No 1	Type N1	Ref	Trc 1	Stimulus 5.7834 GHz	Respons		Function		Function	Result	
2	1T 2T		1 1	5.7943 GHz 5.7756 GHz	-4.16	dBm	Occ Bw			18.7012	98701 MHz
			-	2			<u>М</u>	easuring		4/4	09.06.2022

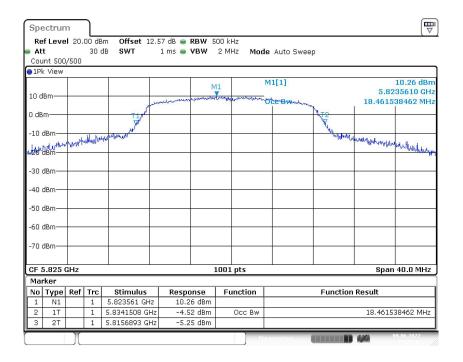
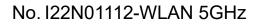



Fig. 44 99% Occupied Bandwidth (802.11a, 5825MHz)

Spee	ctrun	n	٦								
🗎 Att	Leve		00 dB 30 d		2.35 dB 👄 🛛 1 ms 👄 V		–	Auto Sweep			
●1Pk	View										
10 dB						M	1	M1[1]		5.18	10.92 dBm 72830 GHz
				f me	a hur and a		A CONTRACT	Occ Bw	m l	39.0009	99001 MHz
0 dBrr				T T					V2 V		
-10 di -10 di -20 di	Bm _Խ կսելուտ Bm	Indur	white	nutradu.					What what	- White the state of the state	4 contraction
-30 di	Bm—										
-40 di	Bm—										
-50 di	Bm—										
-60 di	Bm—										
-70 di	Bm										
CF 5.	.19 Gł	lz				1	.001 pts			Span	80.0 MHz
Mark	ker										
	Туре	Ref		Stimulus	Respo		Function		Function	Result	
1	N1 1T		1	5.187283 GH: 5.20958 GH:		2 dBm 7 dBm	One Duy			20,0000	00001 MU-
2	2T		1	5.20958 GH		7 dBm 9 dBm	Occ Bw			39.0009	99001 MHz
<u> </u>							M	easuring		4/4	19.06.2022

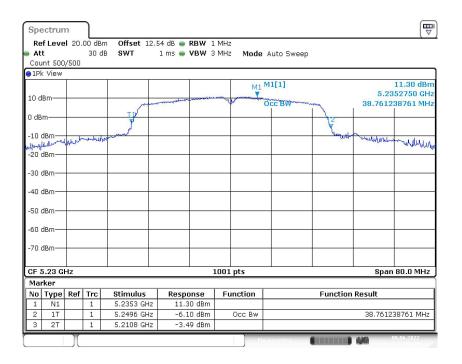


Fig. 46 99% Occupied Bandwidth (802.11n-HT40, 5230MHz)