

# **TEST REPORT**

# No. I22N01112-BLE

for

Shenzhen Tinno Mobile Technology Corp.

**Smart Phone** 

Model Name: U328AA

with

# Hardware Version: V1.0

# Software Version: U328AAV01.08.10

# FCC ID: XD6U328AA

# Issued Date: 2022-07-25

### Designation Number: CN1210

### Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

### Test Laboratory:

SAICT, Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518000.

Tel:+86(0)755-33322000, Fax:+86(0)755-33322001

Email: yewu@caict.ac.cn. www.saict.ac.cn

©Copyright. All rights reserved by SAICT.



# **CONTENTS**

| CON | ITENTS                                                  | . 2 |
|-----|---------------------------------------------------------|-----|
| 1.  | SUMMARY OF TEST REPORT                                  | 3   |
| 1.1 | . Test Items                                            | .3  |
| 1.2 | 2. Test Standards                                       | . 3 |
| 1.3 | 3. Test Result                                          | 3   |
| 1.4 | I. TESTING LOCATION                                     | 3   |
| 1.5 | 5. Project data                                         | 3   |
| 1.6 | 5. SIGNATURE                                            | 3   |
| 2.  | CLIENT INFORMATION                                      | .4  |
| 2.1 | . Applicant Information                                 | . 4 |
| 2.2 | 2. MANUFACTURER INFORMATION                             | . 4 |
| 3.  | EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE) | 5   |
| 3.1 | ABOUT EUT                                               | 5   |
| 3.2 | 2. INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST  | . 5 |
| 3.3 | . INTERNAL IDENTIFICATION OF AE USED DURING THE TEST    | 5   |
| 3.4 | I. GENERAL DESCRIPTION                                  | .6  |
| 4.  | REFERENCE DOCUMENTS                                     | .7  |
| 4.1 | DOCUMENTS SUPPLIED BY APPLICANT                         | . 7 |
| 4.2 | 2. Reference Documents for testing                      | 7   |
| 5.  | TEST RESULTS                                            | 8   |
| 5.1 | . Testing Environment                                   | .8  |
| 5.2 | 2. Test Results                                         | 8   |
| 5.3 | 3. Statements                                           | . 8 |
| 6.  | TEST EQUIPMENTS UTILIZED                                | .9  |
| 7.  | LABORATORY ENVIRONMENT                                  | 10  |
| 8.  | MEASUREMENT UNCERTAINTY                                 | 11  |
| ANN | EX A: DETAILED TEST RESULTS                             | 12  |
| TE  | ST CONFIGURATION                                        | 12  |
| А.  | 0 ANTENNA REQUIREMENT                                   | 15  |
| A.  | 1 Maximum Peak Output Power                             | 16  |
| A.2 | 2 PEAK POWER SPECTRAL DENSITY                           | 17  |
| Α.  | 3 6DB BANDWIDTH                                         | 21  |
| А.  | 4 BAND EDGES COMPLIANCE                                 | 25  |
| A.: | 5 Transmitter Spurious Emission - Conducted             | 28  |
| А.  | 6 TRANSMITTER SPURIOUS EMISSION - RADIATED              | 38  |
| Α.  | 7 AC POWER LINE CONDUCTED EMISSION                      | 49  |



### 1. Summary of Test Report

### 1.1. Test Items

| Product Name        | Smart Phone                            |
|---------------------|----------------------------------------|
| Model Name          | U328AA                                 |
| Applicant's name    | Shenzhen Tinno Mobile Technology Corp. |
| Manufacturer's Name | Shenzhen Tinno Mobile Technology Corp. |

### 1.2. Test Standards

FCC Part15-2019; ANSI C63.10-2013

### 1.3. Test Result

### Pass

Please refer to "5.2. Test Results"

### 1.4. Testing Location

Address: Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China

### 1.5. Project data

| Testing Start Date: | 2022-05-19 |
|---------------------|------------|
| Testing End Date:   | 2022-07-25 |

### 1.6. Signature

Lin Zechuang (Prepared this test report)

An Ran (Reviewed this test report)

Zhang Bojun (Approved this test report)



# 2. Client Information

### 2.1. Applicant Information

| Company Name:  | Shenzhen Tinno Mobile Technology Corp.                            |
|----------------|-------------------------------------------------------------------|
|                | 27-001, South Side of Tianlong Mobile Headquarters Building,      |
| Address:       | Tongfa South Road, Xili Community, Xili Street, Nanshan District, |
|                | Shenzhen ,PRC                                                     |
| Contact Person | xiaoping.li                                                       |
| E-Mail         | xiaoping.li@tinno.com                                             |
| Telephone:     | 0755-86095550                                                     |
| Fax:           | 0755-86095551                                                     |

### 2.2. Manufacturer Information

| Company Name:  | Shenzhen Tinno Mobile Technology Corp.                            |
|----------------|-------------------------------------------------------------------|
|                | 27-001, South Side of Tianlong Mobile Headquarters Building,      |
| Address:       | Tongfa South Road, Xili Community, Xili Street, Nanshan District, |
|                | Shenzhen ,PRC                                                     |
| Contact Person | xiaoping.li                                                       |
| E-Mail         | xiaoping.li@tinno.com                                             |
| Telephone:     | 0755-86095550                                                     |
| Fax:           | 0755-86095551                                                     |
|                |                                                                   |



# 3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

| 3.1. About EUT |
|----------------|
|----------------|

| Product Name                 | Smart Phone                       |
|------------------------------|-----------------------------------|
| Model Name                   | U328AA                            |
| Frequency Range              | 2400MHz~2483.5MHz                 |
| Equipment type               | Bluetooth <sup>®</sup> Low Energy |
| Type of Modulation           | GFSK                              |
| PHY                          | LE 1M/2M                          |
| Number of Channels           | 40                                |
| Antenna Type                 | Embedded antenna                  |
| Antenna Gain                 | -0.82dBi                          |
| Power Supply                 | 3.85V DC by Battery               |
| FCC ID                       | XD6U328AA                         |
| Condition of EUT as received | No abnormality in appearance      |

Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of Shenzhen Academy of Information and Communications Technology.

### 3.2. Internal Identification of EUT used during the test

| EUT ID* | IMEI            | <b>HW Version</b> | SW Version      | <b>Receive Date</b> |
|---------|-----------------|-------------------|-----------------|---------------------|
| UT02aa  | 866913060002471 | V1.0              | U328AAV01.08.10 | 2022-05-18          |
| UT16aa  | 866913060013221 | V1.0              | U328AAV01.08.10 | 2022-06-20          |

\*EUT ID: is used to identify the test sample in the lab internally.

UT02aa is used for conduction test, UT16aa is used for radiation test and AC Power line Conducted Emission test.

### 3.3. Internal Identification of AE used during the test

| AE ID* | Description | AE ID* |
|--------|-------------|--------|
| AE1    | Battery     | /      |
| AE2    | Charger     | /      |
| AE3    | USB Cable   | /      |

AE1-1

| Model           | LT25H426271P                          |
|-----------------|---------------------------------------|
| Manufacturer    | Guangdong Fenghua New Energy Co.,Ltd. |
| Capacity        | 2500mAh                               |
| Nominal Voltage | 3.85V                                 |
| AE1-2           |                                       |
| Model           | LT25H426271W                          |
| Manufacturer    | Ningbo Veken Battery Co., Ltd.        |
| Capacity        | 2500mAh                               |
|                 |                                       |



| Nominal Voltage<br>AE2-1 | 3.85V                                   |
|--------------------------|-----------------------------------------|
| Model                    | TN-050120U9                             |
| Manufacturer             | Chongqing Lianmao Electronics Co., Ltd. |
| AE2-2                    |                                         |
| Model                    | TN-050120U8                             |
| Manufacturer             | Guangdong Beicom Electronics Co., Ltd.  |
| AE3-1                    |                                         |
| Model                    | 336275                                  |
| Manufacturer             | SUNTOPS (SHENZHEN) ELECTRONICS CO., LTD |
| AE3-2                    |                                         |
| Model                    | T365-011B-1                             |
| Manufacturer             | Shenzhen Yihuaxing Electronics Co. Ltd. |

\*AE ID: is used to identify the test sample in the lab internally.

### 3.4. General Description

The Equipment under Test (EUT) is a model of Smart Phone with integrated antenna and battery. It consists of normal options: Lithium Battery, Charger and USB Cable. Manual and specifications of the EUT were provided to fulfil the test. Samples undergoing test were selected by the client.



### 4. <u>Reference Documents</u>

### 4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

### 4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

| Reference   | Title                                                   | Version |
|-------------|---------------------------------------------------------|---------|
| FCC Part 15 | FCC CFR 47, Part 15, Subpart C:                         | 2019    |
|             | 15.205 Restricted bands of operation;                   |         |
|             | 15.209 Radiated emission limits, general requirements;  |         |
|             | 15.247 Operation within the bands 902–928MHz,           |         |
|             | 2400–2483.5 MHz, and 5725–5850 MHz                      |         |
| ANSI C63.10 | American National Standard of Procedures for Compliance | 2013    |
|             | Testing of Unlicensed Wireless Devices                  |         |



### 5. Test Results

### 5.1. Testing Environment

| Normal Temperature: | 15~35°C |
|---------------------|---------|
| Relative Humidity:  | 20~75%  |

### 5.2. Test Results

| No | Test cases                                | Sub-clause of Part 15C | Verdict |
|----|-------------------------------------------|------------------------|---------|
| 0  | Antenna Requirement                       | 15.203                 | Р       |
| 1  | Maximum Peak Output Power                 | 15.247 (b)             | Р       |
| 2  | Peak Power Spectral Density               | 15.247 (e)             | Р       |
| 3  | 6dB Bandwidth                             | 15.247 (a)             | Р       |
| 4  | Band Edges Compliance                     | 15.247 (d)             | Р       |
| 5  | Transmitter Spurious Emission - Conducted | 15.247 (d)             | Р       |
| 6  | Transmitter Spurious Emission - Radiated  | 15.247, 15.205, 15.209 | Р       |
| 7  | AC Power line Conducted Emission          | 15.107, 15.207         | Р       |

See **ANNEX A** for details.

### 5.3. <u>Statements</u>

SAICT has evaluated the test cases requested by the applicant/manufacturer as listed in section 5.2 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in section 4.2.

Disclaimer:

A. After confirmation with the customer, the sample information provided by the customer may affect the validity of the measurement results in this report, and the impact and consequences arising therefrom shall be borne by the customer.

B. The samples in this report are provided by the customer, and the test results are only applicable to the samples received.



# 6. Test Equipments Utilized

### Conducted test system

| No. | Equipment                 | Model    | Serial<br>Number | Manufacturer    | Calibration<br>Due date | Calibration<br>Period |
|-----|---------------------------|----------|------------------|-----------------|-------------------------|-----------------------|
| 1   | Vector Signal<br>Analyzer | FSV40    | 100903           | Rohde & Schwarz | 2022-12-29              | 1 year                |
| 2   | Power Sensor              | U2021XA  | MY55430013       | Keysight        | 2022-12-29              | 1 year                |
| 3   | Data Acquisiton           | U2531A   | TW55443507       | Keysight        | /                       | /                     |
| 4   | RF Control Unit           | JS0806-2 | 21C8060398       | Tonscend        | 2023-05-08              | 1 year                |
| 5   | Test Receiver             | ESCI     | 100701           | Rohde & Schwarz | 2023-01-12              | 1 year                |
| 6   | LISN                      | ENV216   | 102067           | Rohde & Schwarz | 2023-07-14              | 1 year                |

### Radiated test system

| No. | Equipment            | Model                   | Serial<br>Number | Manufacturer    | Calibration<br>Due date | Calibration<br>Period |
|-----|----------------------|-------------------------|------------------|-----------------|-------------------------|-----------------------|
| 1   | Loop Antenna         | HLA6120                 | 35779            | TESEQ           | 2025-05-12              | 3 years               |
| 2   | BiLog Antenna        | 3142E                   | 0224831          | ETS-Lindgren    | 2024-05-27              | 3 years               |
| 3   | Horn Antenna         | 3117                    | 00066577         | ETS-Lindgren    | 2025-04-17              | 3 years               |
| 4   | Horn Antenna         | QSH-SL-18<br>-26-S-20   | 17013            | Q-par           | 2023-01-06              | 3 years               |
| 5   | Horn Antenna         | QSH-SL-8-<br>26-40-K-20 | 17014            | Q-par           | 2023-01-06              | 3 years               |
| 6   | Test Receiver        | ESR7                    | 101676           | Rohde & Schwarz | 2022-11-24              | 1 year                |
| 7   | Spectrum<br>Analyser | FSV40                   | 101192           | Rohde & Schwarz | 2023-01-12              | 1 year                |
| 8   | Chamber              | FACT3-2.0               | 1285             | ETS-Lindgren    | 2023-05-29              | 2 years               |

### Test software

| No. | Equipment      | Manufacturer    | Version  |
|-----|----------------|-----------------|----------|
| 1   | RF Test System | Tonscend        | 3.1      |
| 2   | EMC32          | Rohde & Schwarz | 10.50.40 |

EUT is engineering software provided by the customer to control the transmitting signal. The EUT was programmed to be in continuously transmitting mode.

### Anechoic chamber

Fully anechoic chamber by ETS-Lindgren



# 7. Laboratory Environment

### Semi-anechoic chamber

| Temperature                       | Min. = 15 °C, Max. = 35 °C                      |
|-----------------------------------|-------------------------------------------------|
| Relative humidity                 | Min. = 20 %, Max. = 75 %                        |
| Shielding effectiveness           | 0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB       |
| Electrical insulation             | > 2MΩ                                           |
| Ground system resistance          | < 4 Ω                                           |
| Normalised site attenuation (NSA) | < $\pm$ 4 dB, 3 m distance, from 30 to 1000 MHz |

#### Shielded room

| Temperature              | Min. = 15 °C, Max. = 35 °C                |
|--------------------------|-------------------------------------------|
| Relative humidity        | Min. = 20 %, Max. = 75 %                  |
| Shielding effectiveness  | 0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB |
| Electrical insulation    | > 2MΩ                                     |
| Ground system resistance | < 4 Ω                                     |

### Fully-anechoic chamber

| Temperature                           | Min. = 15 °C, Max. = 35 °C                  |
|---------------------------------------|---------------------------------------------|
| Relative humidity                     | Min. = 20 %, Max. = 75 %                    |
| Shielding effectiveness               | 0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB   |
| Electrical insulation                 | > 2MΩ                                       |
| Ground system resistance              | < 4 Ω                                       |
| Voltage Standing Wave Ratio<br>(VSWR) | $\leq$ 6 dB, from 1 to 18 GHz, 3 m distance |
| Uniformity of field strength          | Between 0 and 6 dB, from 80 to 6000 MHz     |



# 8. <u>Measurement Uncertainty</u>

| Test Name                                    | Uncertainty ( <i>k</i> =2) |        |
|----------------------------------------------|----------------------------|--------|
| 1. Maximum Peak Output Power                 | 1.32                       | dB     |
| 2. Peak Power Spectral Density               | 2.32                       | dB     |
| 3. 6dB Bandwidth                             | 4.56                       | (Hz    |
| 4. Band Edges Compliance                     | 1.92                       | dB     |
|                                              | 30MHz≤f<1GHz               | 1.41dB |
| E Transmitter Spurious Emission Conducted    | 1GHz≤f<7GHz                | 1.92dB |
| 5. Transmitter Spurious Emission - Conducted | 7GHz≤f<13GHz               | 2.31dB |
|                                              | 13GHz≤f≤26GHz              | 2.61dB |
|                                              | 9kHz≤f<30MHz               | 1.79dB |
| C. Transmitter Courieurs Emissien - Dedicted | 30MHz≤f<1GHz               | 4.86dB |
| 6. Transmitter Spurious Emission - Radiated  | 1GHz≤f<18GHz               | 4.50dB |
|                                              | 18GHz≤f≤40GHz              | 2.90dB |
| 7. AC Power line Conducted Emission          | 150kHz≤f≤30MHz             | 2.62dB |



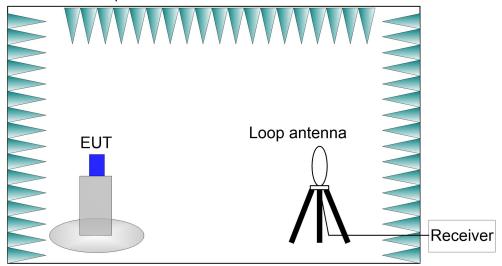
# **ANNEX A: Detailed Test Results**

### **Test Configuration**

### The measurement is made according to ANSI C63.10.

#### 1) Conducted Measurements

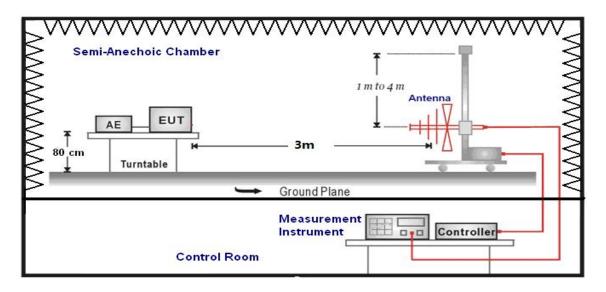
- 1. Connect the EUT to the test system correctly.
- 2. Set the EUT to the required work mode.
- 3. Set the EUT to the required channel.
- 4. Set the spectrum analyzer to start measurement.
- 5. Record the values.




#### 2) Radiated Measurements

#### Test setup:

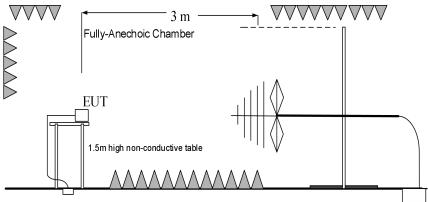
#### 9kHz-30MHz:


The EUT are measured in a semi-anechoic chamber. The EUT is placed on a non-conductive stand of 80cm high, and at a measurement distance of 3m from the receiving antenna. The center of the receiving loop antenna is 1.0 meter above the ground. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT and adjusting the receiver antenna polarization.



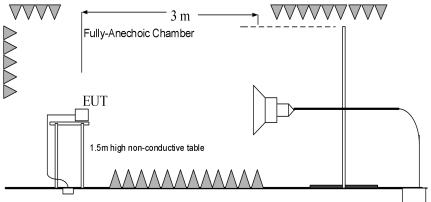


#### 30MHz-1GHz:


The EUT are measured in a semi-anechoic chamber. The EUT is placed on a non-conductive stand of 80cm high, and at a measurement distance of 3m from the receiving antenna. The center of the receiving antenna is 1.0 meter to 4.0 meter above the ground. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT and adjusting the receiver antenna polarization.

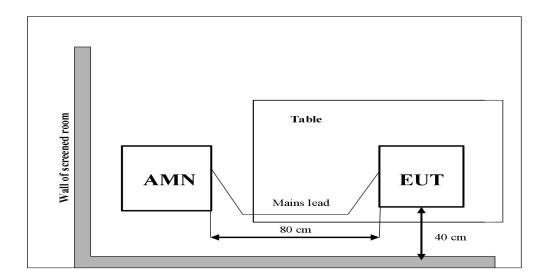


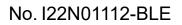
### Above 1GHz:


EUT was placed on a 1.5 meter high non-conductive table at a 3 meter test distance from the receive antenna. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT and adjusting the receiving antenna polarization.

### 1GHz-3GHz:







### 3GHz-40GHz:



### 3) AC Power line Conducted Emission Measurement

For Bluetooth LE, the EUT is working under test mode. The EUT is commanded to operate at maximum transmitting power.







### A.0 Antenna requirement

#### Measurement Limit:

| Standard     | Requirement                                                                          |
|--------------|--------------------------------------------------------------------------------------|
|              | An intentional radiator shall be designed to ensure that no antenna other than that  |
|              | furnished by the responsible party shall be used with the device. The use of a       |
|              | permanently attached antenna or of an antenna that uses a unique coupling to the     |
|              | intentional radiator shall be considered sufficient to comply with the provisions of |
|              | this section. The manufacturer may design the unit so that a broken antenna can      |
|              | be replaced by the user, but the use of a standard antenna jack or electrical        |
| FCC CRF Part | connector is prohibited. This requirement does not apply to carrier current devices  |
| 15.203       | or to devices operated under the provisions of §15.211, §15.213, §15.217,            |
|              | §15.219, or §15.221. Further, this requirement does not apply to intentional         |
|              | radiators that must be professionally installed, such as perimeter protection        |
|              | systems and some field disturbance sensors, or to other intentional radiators        |
|              | which, in accordance with §15.31(d), must be measured at the installation site.      |
|              | However, the installer shall be responsible for ensuring that the proper antenna is  |
|              | employed so that the limits in this part are not exceeded.                           |

Conclusion: The Directional gains of antenna used for transmitting is -0.82dBi. The RF transmitter uses an integrate antenna without connector.



# A.1 Maximum Peak Output Power

### Method of Measurement: See ANSI C63.10-clause 11.9.1.3

The maximum peak conducted output power may be measured using a broadband peak RF power meter.

#### Measurement Limit:

| Standard                  | Limit (dBm) |
|---------------------------|-------------|
| FCC 47 CRF Part 15.247(b) | < 30        |

#### Measurement Results:

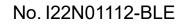
| Mode  | Frequency (MHz) | RF output power (dBm) | Conclusion |
|-------|-----------------|-----------------------|------------|
|       | 2402(CH0)       | -3.44                 | Р          |
| LE 1M | 2440(CH19)      | -2.50                 | Р          |
|       | 2480(CH39)      | -3.69                 | Р          |
|       | 2402(CH0)       | -3.56                 | Р          |
| LE 2M | 2440(CH19)      | -2.59                 | Р          |
|       | 2480(CH39)      | -3.73                 | Р          |

Conclusion: Pass

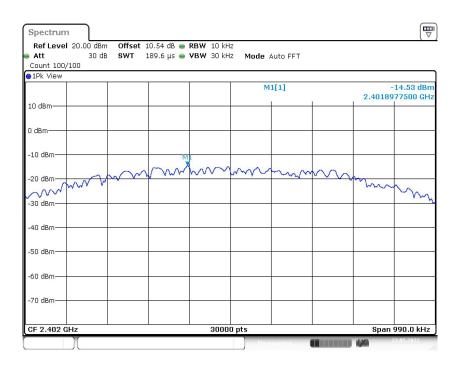


### A.2 Peak Power Spectral Density

### Method of Measurement: See ANSI C63.10-clause 11.10.2


#### **Measurement Limit:**

| Standard                  | Limit (dBm/3 kHz) |
|---------------------------|-------------------|
| FCC 47 CRF Part 15.247(e) | < 8 dBm/3 kHz     |


#### **Measurement Results:**

| Mode  | Frequency (MHz) | •     | Peak Power Spectral Density<br>(dBm/10 kHz) |   |
|-------|-----------------|-------|---------------------------------------------|---|
|       | 2402(CH0)       | Fig.1 | -14.53                                      | Р |
| LE 1M | 2440(CH19)      | Fig.2 | -13.54                                      | Р |
|       | 2480(CH39)      | Fig.3 | -14.71                                      | Р |
|       | 2402(CH0)       | Fig.4 | -17.80                                      | Р |
| LE 2M | 2440(CH19)      | Fig.5 | -16.66                                      | Р |
|       | 2480(CH39)      | Fig.6 | -17.93                                      | Р |

See below for test graphs. Conclusion: PASS









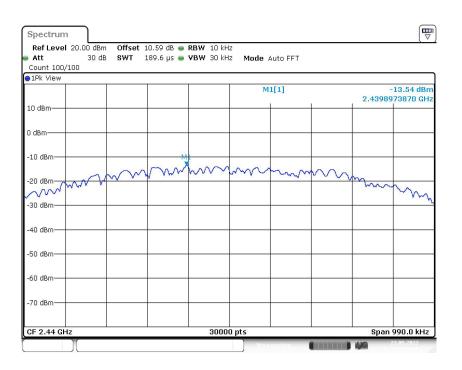
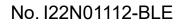
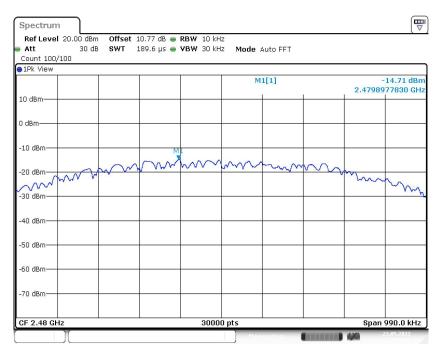
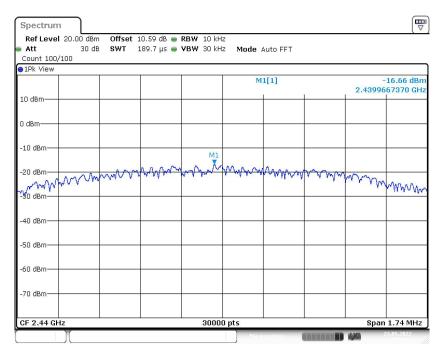






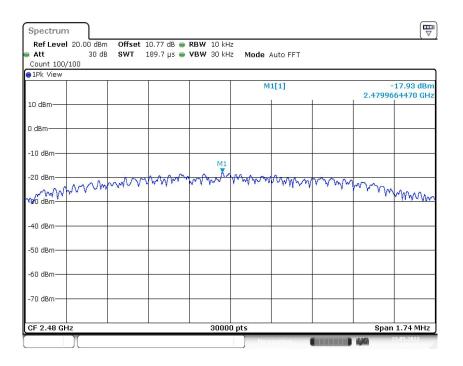
Fig.2 Power Spectral Density (CH19), LE 1M



















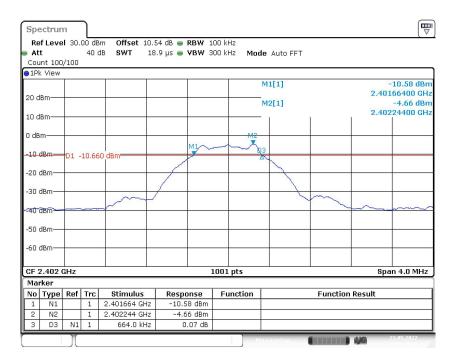





### A.3 6dB Bandwidth

### Method of Measurement: See ANSI C63.10-clause 11.8.2

#### Measurement Limit:


| Standard                   | Limit (MHz) |
|----------------------------|-------------|
| FCC 47 CFR Part 15.247 (a) | ≥ 0.5       |

#### Measurement Result:

| Mode  | Frequency (MHz) | Test Resu | Test Results (MHz) |   |  |  |
|-------|-----------------|-----------|--------------------|---|--|--|
|       | 2402(CH0)       | Fig.7     | 0.66               | Р |  |  |
| LE 1M | 2440(CH19)      | Fig.8     | 0.66               | Р |  |  |
|       | 2480(CH39)      | Fig.9     | 0.66               | Р |  |  |
|       | 2402(CH0)       | Fig.10    | 1.16               | Р |  |  |
| LE 2M | 2440(CH19)      | Fig.11    | 1.16               | Р |  |  |
|       | 2480(CH39)      | Fig.12    | 1.16               | Р |  |  |

See below for test graphs. Conclusion: PASS







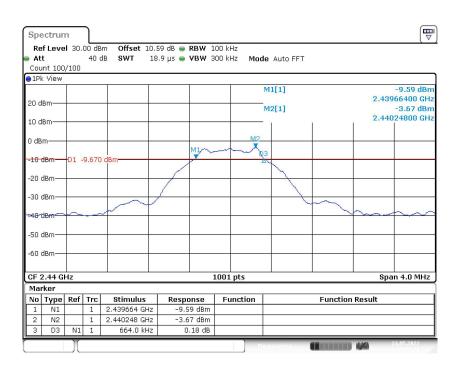
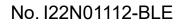



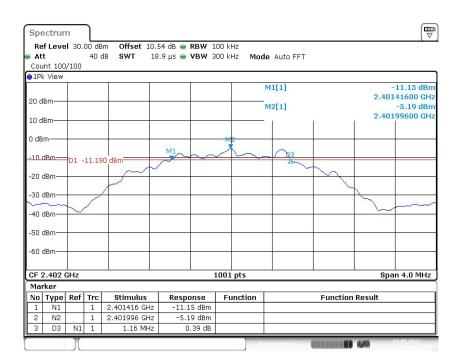
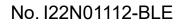

Fig.8 6dB Bandwidth (CH19), LE 1M

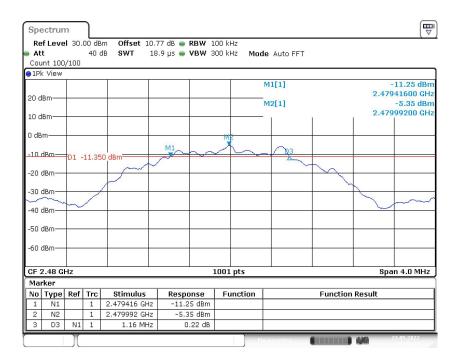




| Spectr   | um     |      | ſ     |              |           |              |            |            |          |        |                        |
|----------|--------|------|-------|--------------|-----------|--------------|------------|------------|----------|--------|------------------------|
| Ref Le   | evel 3 | 30.0 |       |              | ).77 dB 😑 |              |            |            |          |        |                        |
| Att      |        |      | 40 c  | iB SWT 1     | L8.9 μs 👄 | <b>VBW</b> 3 | 00 kHz Mod | e Auto FFT |          |        |                        |
| Count    |        | 00   |       |              |           |              |            |            |          |        |                        |
| ●1Pk Vie | BW     |      |       |              |           | . <u> </u>   |            |            |          |        |                        |
|          |        |      |       |              |           |              |            | M1[1]      |          |        | 10.68 dBm<br>66400 GHz |
| 20 dBm-  |        |      |       |              |           |              |            | M2[1]      |          |        | -4.87 dBm              |
|          |        |      |       |              |           |              |            | 12[1]      |          |        | 24400 GHz              |
| 10 dBm-  |        |      |       |              |           |              |            | 1          | Ĩ        |        |                        |
| 0 dBm—   |        |      |       |              |           |              |            |            |          |        |                        |
| o ubiii- |        |      |       |              |           | 5.4.4        |            |            |          |        |                        |
| -10 dBm  | _      | 1.0  | 10.07 | 0 dBm        |           | M1~          | - A        | 3          |          |        |                        |
|          | D.     | 1 -  | 10.01 | U UBIII      | /         | -            | 2          |            |          |        |                        |
| -20 dBm  |        |      |       |              |           |              |            | 1          |          |        |                        |
|          |        |      |       |              | 1         |              |            |            |          |        |                        |
| -30 dBm  |        |      |       | ~            | 1         |              |            | 1          |          |        |                        |
| -        | -      |      | ~     |              |           |              |            |            |          |        |                        |
| -40 dBm  |        |      |       |              |           |              |            |            |          |        |                        |
| -50 dBm  |        |      |       |              |           |              |            |            |          |        |                        |
| 00 0011  |        |      |       |              |           |              |            |            |          |        |                        |
| -60 dBm  |        |      |       |              |           |              |            |            |          |        |                        |
|          |        |      |       |              |           |              |            |            |          |        |                        |
| CF 2.48  | 3 GHz  |      |       |              |           | L            | 1001 pts   |            |          | Sna    | n 4.0 MHz              |
| Marker   |        | _    |       |              |           |              |            |            |          | 590    |                        |
| No Ty    |        | of   | Trc   | Stimulus     | Respo     | nse          | Function   |            | Function | Result |                        |
|          | 11     | -    | 1     | 2.479664 GHz |           | 58 dBm       | ranetion   |            | ranction | Robuit |                        |
|          | 12     |      | 1     | 2.480244 GHz |           | 37 dBm       |            |            |          |        |                        |
|          |        | V1   | 1     | 660.0 kHz    |           | .03 dB       |            |            |          |        |                        |
|          | -      | 1    |       |              |           |              |            |            | A        |        | 2 05 2022              |
|          |        | Л    |       |              |           |              | l Me       |            |          | 4/4    |                        |





Fig.10 6dB Bandwidth (CH0), LE 2M





| Spe   | ectrun         | n            | ٦     |             |           |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |            |
|-------|----------------|--------------|-------|-------------|-----------|--------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|------------|
|       | f Leve         | <b>I</b> 30. |       |             | D.59 dB 😑 |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |            |
| At    |                | 400          | 40 0  | ib SWT      | 18.9 µs 👄 | <b>VBW</b> 3 | 00 kHz   | Mode Auto FFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |        |            |
|       | nt 100<br>View | /100         |       |             |           |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |            |
| 0 TPk | ( VIEW         |              |       |             |           |              |          | M1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |        | 10.17 dBm  |
|       |                |              |       |             |           | ĺ            |          | WILLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |        | 41600 GHz  |
| 20 d  | Bm—            |              |       |             |           |              |          | M2[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 2.103  | -4.20 dBm  |
| 10.1  |                |              |       |             |           | ĺ            |          | to be a set of the set |          | 2,439  | 99200 GHz  |
| 10 d  | Bm—            |              |       |             |           | ĺ            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        |        | ĺ          |
| 0 dB  | m              |              |       |             |           |              | M2       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |            |
| 0 00  |                |              |       |             | M1 _      |              | X        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |        |            |
| -10 ( | dBm            | D1 -         | 10.20 | IO dBm      |           | $\sim$       | 10       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |            |
|       |                |              |       |             |           | ĺ            |          | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        |        |            |
| -20 0 | dBm—           |              |       |             |           |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        |        |            |
|       | JD             |              |       |             |           | Í            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~        | 1      |            |
| -30 0 |                |              | 1     |             |           |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        | ~~~        |
| -40 0 | dBm—           | $\sim$       |       |             |           | <u> </u>     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |            |
|       |                |              |       |             |           | Í            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |            |
| -50 c | dBm            |              |       |             |           |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |            |
|       |                |              |       |             |           | ĺ            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |            |
| -60 ( | dBm—           |              |       |             |           |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |            |
|       |                |              |       |             |           | l I          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |            |
| CF 2  | 2.44 GI        | Ηz           |       |             |           | 1            | 1001 pts | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | Spa    | n 4.0 MHz  |
| Mar   | ker            |              |       |             |           |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |            |
| No    | Туре           | Ref          | Trc   | Stimulus    | Respo     | onse         | Functio  | on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Function | Result |            |
| 1     | N1             |              | 1     | 2.439416 GH |           | .7 dBm       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |            |
| 2     | N2             |              | 1     | 2.439992 GH |           | 0 dBm        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |            |
| 3     | D3             | N1           | 1     | 1.16 MH     | z O       | .46 dB       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |            |
| _     | 1              |              |       |             |           |              |          | Measuring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 120    | 23.05.2022 |



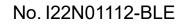






### A.4 Band Edges Compliance

### Method of Measurement: See ANSI C63.10-clause 11.13.3.2


#### Measurement Limit:

| Standard                   | Limit (dB) |
|----------------------------|------------|
| FCC 47 CFR Part 15.247 (d) | > 20       |

#### Measurement Result:

| Mode  | Frequency (MHz) | Test Resi | Conclusion |   |
|-------|-----------------|-----------|------------|---|
| LE 1M | 2402(CH0)       | Fig.13    | 41.06      | Р |
|       | 2480(CH39)      | Fig.14    | 41.29      | Р |
| LE 2M | 2402(CH0)       | Fig.15    | 31.77      | Р |
|       | 2480(CH39)      | Fig.16    | 40.78      | Р |

See below for test graphs. Conclusion: PASS





| Spe                      | ectrun                        | n      | ٦             |                         |     |                                          |          |                |                   |                                          |
|--------------------------|-------------------------------|--------|---------------|-------------------------|-----|------------------------------------------|----------|----------------|-------------------|------------------------------------------|
| At                       | <b>f Leve</b><br>t<br>int 300 |        | 00 dB<br>30 d |                         |     | <ul> <li>RBW 1</li> <li>VBW 3</li> </ul> |          | de Auto Sv     | weep              | ,<br>,                                   |
|                          | ( View                        | /300   |               |                         |     |                                          |          |                |                   |                                          |
| 10 d                     |                               |        |               |                         |     |                                          |          | M1[1]<br>M2[1] |                   | -4.63 dBm<br>2.4022540 GHz<br>-48.34 dBm |
| 0 dB                     |                               |        |               |                         |     |                                          |          | -              |                   | 2.400000,000,00 GHz                      |
| -20                      |                               | -D1 -  | 24 63         | 0 dBm                   |     |                                          |          |                |                   |                                          |
|                          | dBm—                          | D1     | 24.03         |                         |     |                                          |          |                |                   |                                          |
| -40<br>- <del>5</del> 01 |                               | hourse | Lorth         | allentrenered           | nur | mun                                      | heren    | mlum           | M3<br>www.www.www | mannan M2                                |
| -60                      | dBm                           |        |               |                         |     |                                          |          |                |                   |                                          |
| -70                      | dBm                           |        |               |                         |     |                                          |          |                |                   |                                          |
|                          | t 2.35                        | GHz    |               |                         |     |                                          | 691 pts  |                |                   | Stop 2.405 GHz                           |
|                          | rker                          | - 6    | _             |                         |     |                                          |          |                |                   |                                          |
| No<br>1                  | Type<br>N1                    | Ref    | Trc<br>1      | 2.402254 GH             |     | -4.63 dBm                                | Function | -              | Function          | Result                                   |
| 2                        | N2                            |        | 1             | 2.402234 GH             |     | 48.34 dBm                                |          |                |                   |                                          |
| 3                        | N3<br>N4                      |        | 1             | 2.39 GH<br>2.3836377 Gi | z - | 48.28 dBm<br>45.69 dBm                   |          |                |                   |                                          |
| _                        |                               | ][     |               |                         |     |                                          |          | leasuring      |                   | 23.05.2022                               |



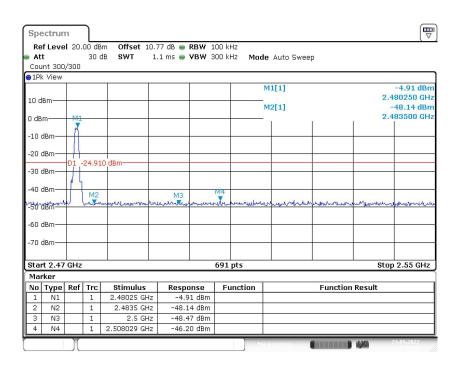
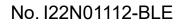




Fig.14 Band Edges (CH39), LE 1M





| Spe    | ectrur                        | n    | ٦             |                          |                               |      |          |            |          |                            |
|--------|-------------------------------|------|---------------|--------------------------|-------------------------------|------|----------|------------|----------|----------------------------|
| At     | <b>f Leve</b><br>t<br>int 300 |      | 00 dB<br>30 ( |                          | ).54 dB 😑 RBW<br>1.1 ms 😑 VBW |      |          | le Auto Sv | veep     | X                          |
| D 1P   | View                          |      |               |                          |                               |      |          |            |          |                            |
| 10 d   | Bm                            |      |               |                          |                               |      |          | M1[1]      |          | -5.08 dBr<br>2.4020150 GH  |
| 0 dB   | m                             |      |               |                          |                               |      |          | M2[1]      |          | -36.02 dBr<br>2.4000009 GH |
| -10    | dBm                           |      |               |                          |                               |      |          |            |          | - M                        |
| -20    | dBm                           | -01  | .25.09        | 10 dBm                   |                               |      |          |            |          |                            |
| -30    | dBm                           | 01   | -20,00        |                          |                               |      |          |            |          |                            |
| -40 ·  |                               | here | James         | mound                    | mumm                          | how  | miner    | 1 maria    | M3       | munun                      |
|        | dBm                           |      |               |                          |                               |      |          |            |          |                            |
| -70    | dBm—                          |      |               |                          |                               |      |          |            |          |                            |
| Sta    | t 2.35                        | GHz  |               |                          |                               | 691  | pts      |            |          | Stop 2.405 GHz             |
| Mai    |                               |      |               |                          |                               |      |          |            |          |                            |
|        | Туре                          | Ref  |               | Stimulus                 | Response                      | _    | unction  |            | Functior | n Result                   |
| 1      | N1<br>N2                      |      | 1             | 2.402015 GH:<br>2.4 GH;  |                               | 1000 |          |            |          |                            |
| 3<br>4 | N3<br>N4                      |      | 1             | 2.39 GH:<br>2.3999783 GH |                               |      |          |            |          |                            |
|        |                               | )[   |               |                          |                               |      | <u>н</u> | easuring   |          | 23.05.2022                 |



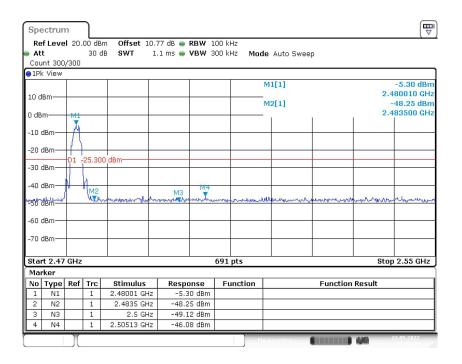
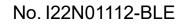


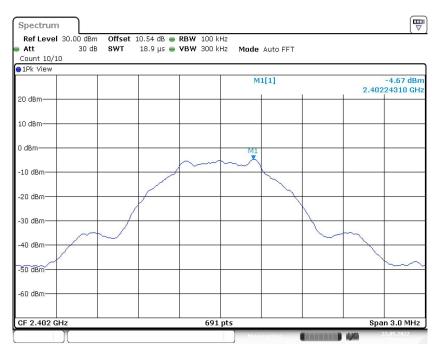

Fig.16 Band Edges (CH39), LE 2M



### A.5 Transmitter Spurious Emission - Conducted


### Method of Measurement: See ANSI C63.10-clause 11.11.2&11.11.3

#### Measurement Limit:


|            | Standard                   |              |       | Limit (dBm                                            | )          |  |
|------------|----------------------------|--------------|-------|-------------------------------------------------------|------------|--|
| FCC 4      | FCC 47 CFR Part 15.247 (d) |              |       | 20dBm below peak output power in 100 kHz<br>bandwidth |            |  |
| Measuremen | t Results:                 |              |       |                                                       |            |  |
| Mode       | Channel                    | Frequency    | Range | Test Results                                          | Conclusion |  |
|            |                            | 2.402 0      | GHz   | Fig.17                                                | Р          |  |
|            | 0                          | 30MHz -      | 1GHz  | Fig.18                                                | Р          |  |
|            |                            | 1GHz-26      | .5GHz | Fig.19                                                | Р          |  |
|            |                            | 2.440 0      | GHz   | Fig.20                                                | Р          |  |
| LE 1M      | 19                         | 30MHz -1GHz  |       | Fig.21                                                | Р          |  |
|            |                            | 1GHz-26.5GHz |       | Fig.22                                                | Р          |  |
|            | 39                         | 2.480 GHz    |       | Fig.23                                                | Р          |  |
|            |                            | 30MHz -1GHz  |       | Fig.24                                                | Р          |  |
|            |                            | 1GHz-26.5GHz |       | Fig.25                                                | Р          |  |
|            |                            | 2.402 0      | GHz   | Fig.26                                                | Р          |  |
|            | 0                          | 30MHz -      | 1GHz  | Fig.27                                                | Р          |  |
|            |                            | 1GHz-26      | .5GHz | Fig.28                                                | Р          |  |
|            |                            | 2.440 (      | GHz   | Fig.29                                                | Р          |  |
| LE 2M      | 19                         | 30MHz -      | 1GHz  | Fig.30                                                | Р          |  |
|            |                            | 1GHz-26      | .5GHz | Fig.31                                                | Р          |  |
|            |                            | 2.480 0      | GHz   | Fig.32                                                | Р          |  |
|            | 39                         | 30MHz -      | 1GHz  | Fig.33 <b>P</b>                                       |            |  |
|            |                            | 1GHz-26      | .5GHz | Fig.34                                                | Р          |  |

### See below for test graphs.

Conclusion: Pass









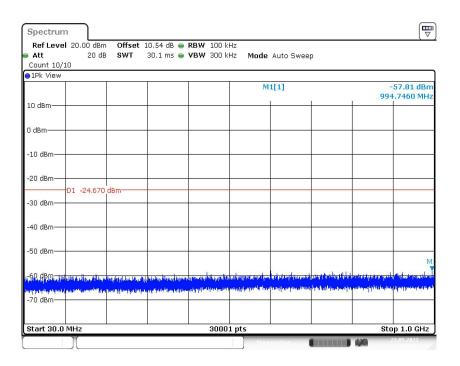
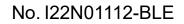
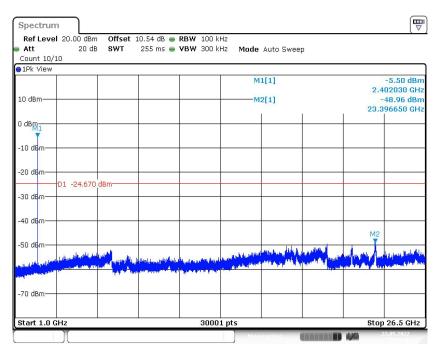
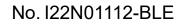





Fig.18 Conducted Spurious Emission (CH0, 30MHz -1GHz), LE 1M


















| Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                  |                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------|---------------------------|
| Ref Level 20.00 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                | ) dB 😑 <b>RBW</b> 100 k<br>.ms 😑 <b>VBW</b> 300 k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |                                                  |                           |
| Count 10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ub <b>3</b> WI 30.1                                                                                            | IIIS 🖶 ¥ 🖬 😽 300 k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hz Mode Auto Swee                               | ih                                               |                           |
| ●1Pk View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                  |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1[1]                                           | 6                                                | -58.10 dBm<br>61.1090 MHz |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                  |                           |
| 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                  |                           |
| -10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                  |                           |
| -20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                  |                           |
| -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 dBm                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                  |                           |
| -40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                  |                           |
| -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                  |                           |
| -SALEBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | international and a state of the                                                                               | u dant mela esta la tra constata e à stano a tel d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1                                              | line in first with the state of the state of the | a alternate windshipter   |
| and the state of t | And a second | and produced in the state of th | anna ghana bala ai bar gli gana agair (1,5-17). | a dharaan fa dar ya furfaa maa ah ya ah dhar     | ng nang Kabupatén di      |
| -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                  |                           |
| Start 30.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 pts                                           | 5                                                | top 1.0 GHz               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Measuring                                       | 4/4                                              | 23.05.2022                |



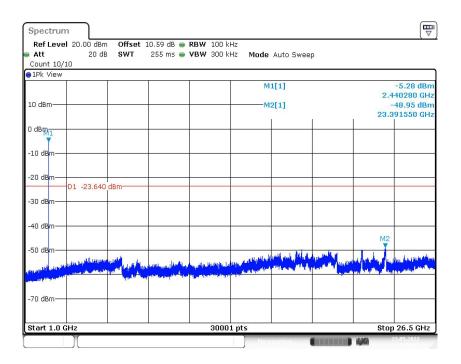
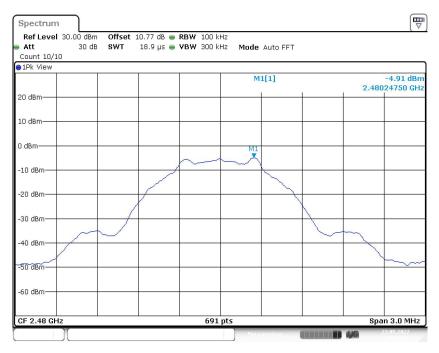
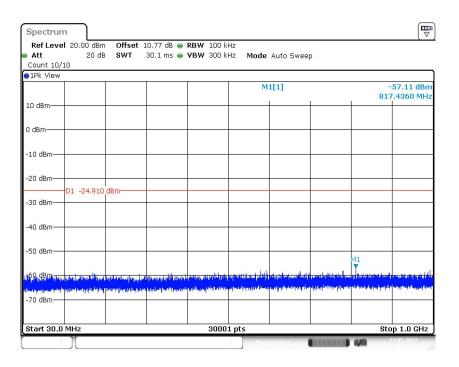





Fig.22 Conducted Spurious Emission (CH19, 1GHz-26.5GHz), LE 1M









