

TEST REPORT

No. I22N01112-BT

for

Shenzhen Tinno Mobile Technology Corp.

Smart Phone

Model Name: U328AA

with

Hardware Version: V1.0

Software Version: U328AAV01.08.10

FCC ID: XD6U328AA

Issued Date: 2022-07-25

Designation Number: CN1210

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

SAICT, Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen,

Guangdong, P. R. China 518000.

 $Tel: +86(0)755-33322000, \quad Fax: +86(0)755-33322001$

Email: yewu@caict.ac.cn. www.saict.ac.cn

©Copyright. All rights reserved by SAICT.

CONTENTS

CONT	ENTS	2
1. SU	UMMARY OF TEST REPORT	3
1.1.	Test Items	3
1.2.	TEST STANDARDS	3
1.3.	TEST RESULT	3
1.4.	TESTING LOCATION	3
1.5.	Project data	3
1.6.	SIGNATURE	3
2. CI	LIENT INFORMATION	4
2.1.	APPLICANT INFORMATION	4
2.2.	MANUFACTURER INFORMATION	4
3. E(QUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	5
3.1.	ABOUT EUT	
3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	5
3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	5
3.4.	GENERAL DESCRIPTION	6
4. RI	EFERENCE DOCUMENTS	7
4.1.	DOCUMENTS SUPPLIED BY APPLICANT	7
4.2.	REFERENCE DOCUMENTS FOR TESTING	7
5. TI	EST RESULTS	8
5.1.	TESTING ENVIRONMENT	8
5.2.	TEST RESULTS	8
5.3.	STATEMENTS	
6. TH	EST EQUIPMENTS UTILIZED	9
	ABORATORY ENVIRONMENT	
	EASUREMENT UNCERTAINTY	
	X A: DETAILED TEST RESULTS	
	CONFIGURATION	
	Antenna requirement	
	MAXIMUM PEAK OUTPUT POWER	
	BAND EDGES COMPLIANCE	
	CONDUCTED EMISSION	
	RADIATED EMISSION	
	20dB Bandwidth	
	TIME OF OCCUPANCY (DWELL TIME)	
	Number of Hopping Channels	
	CARRIER FREQUENCY SEPARATION	
A 9 /	AC POWER LINE CONDUCTED EMISSION	68

1. Summary of Test Report

1.1. Test Items

Product Name Smart Phone Model Name U328AA

Applicant's name Shenzhen Tinno Mobile Technology Corp.

Manufacturer's Name Shenzhen Tinno Mobile Technology Corp.

1.2. <u>Test Standards</u>

FCC Part15-2019; ANSI C63.10-2013

1.3. Test Result

Pass

Please refer to "5.2.Test Results"

1.4. Testing Location

Address: Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China

1.5. Project data

Testing Start Date: 2022-05-19
Testing End Date: 2022-07-25

1.6. Signature

Lin Zechuang

(Prepared this test report)

An Ran

(Reviewed this test report)

Zhang Bojun

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: Shenzhen Tinno Mobile Technology Corp.

27-001, South Side of Tianlong Mobile Headquarters Building,

Address: Tongfa South Road, Xili Community, Xili Street, Nanshan District,

Shenzhen ,PRC

Contact Person xiaoping.li

E-Mail xiaoping.li@tinno.com

Telephone: 0755-86095550 Fax: 0755-86095551

2.2. Manufacturer Information

Company Name: Shenzhen Tinno Mobile Technology Corp.

27-001, South Side of Tianlong Mobile Headquarters Building,

Address: Tongfa South Road, Xili Community, Xili Street, Nanshan District,

Shenzhen ,PRC

Contact Person xiaoping.li

E-Mail xiaoping.li@tinno.com

Telephone: 0755-86095550 Fax: 0755-86095551

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Product Name Smart Phone Model Name U328AA

Frequency Band 2400MHz~2483.5MHz Equipment type Bluetooth® BR/EDR

Type of Modulation GFSK/π/4 DQPSK/8DPSK

Number of Channels 79

Antenna Type Embedded antenna

Antenna Gain -0.82dBi

Power Supply 3.85V DC by Battery

FCC ID XD6U328AA

Condition of EUT as received No abnormality in appearance

Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of Shenzhen Academy of Information and Communications Technology.

3.2. Internal Identification of EUT used during the test

EUT ID*	IMEI	HW Version	SW Version	Receive Date
UT02aa	866913060002471	V1.0	U328AAV01.08.10	2022-05-18
UT16aa	866913060013221	V1.0	U328AAV01.08.10	2022-06-20

^{*}EUT ID: is used to identify the test sample in the lab internally.

UT02aa is used for conduction test, UT16aa is used for radiation test and AC Power line Conducted Emission test.

3.3. Internal Identification of AE used during the test

AE ID*	Description	AE II
AE1	Battery	1
AE2	Charger	1
AE3	USB Cable	/

AE1-1

Model LT25H426271P

Manufacturer Guangdong Fenghua New Energy Co.,Ltd.

Capacity 2500mAh Nominal Voltage 3.85V

AE1-2

Model LT25H426271W

Manufacturer Ningbo Veken Battery Co., Ltd.

Capacity 2500mAh Nominal Voltage 3.85V

AE2-1

Model TN-050120U9

Manufacturer Chongqing Lianmao Electronics Co., Ltd.

AE2-2

Model TN-050120U8

Manufacturer Guangdong Beicom Electronics Co., Ltd.

AE3-1

Model 336275

Manufacturer SUNTOPS (SHENZHEN) ELECTRONICS CO., LTD

AE3-2

Model T365-011B-1

Manufacturer Shenzhen Yihuaxing Electronics Co. Ltd.

3.4. General Description

The Equipment under Test (EUT) is a model of Smart Phone with integrated antenna and battery. It consists of normal options: Lithium Battery and Charger and USB Cable.

Manual and specifications of the EUT were provided to fulfil the test.

Samples undergoing test were selected by the client.

^{*}AE ID: is used to identify the test sample in the lab internally.

4. Reference Documents

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part 15	FCC CFR 47, Part 15, Subpart C:	2019
	15.205 Restricted bands of operation;	
	15.209 Radiated emission limits, general requirements;	
	15.247 Operation within the bands 902–928MHz,	
	2400–2483.5 MHz, and 5725–5850 MHz	
ANSI C63.10	American National Standard of Procedures for Compliance	2013
	Testing of Unlicensed Wireless Devices	

5. Test Results

5.1. Testing Environment

Normal Temperature: 15~35°C Relative Humidity: 20~75%

5.2. Test Results

No	Test cases	Sub-clause of Part 15C	Verdict
0	Antenna Requirement	15.203	Р
1	Maximum Peak Output Power	15.247 (b)	Р
2	Band Edges Compliance	15.247 (d)	Р
3	Conducted Spurious Emission	15.247 (d)	Р
4	Radiated Spurious Emission	15.247,15.205,15.209	Р
5	Occupied 20dB bandwidth	15.247(a)	1
6	Time of Occupancy(Dwell Time)	15.247(a)	Р
7	Number of Hopping Channel	15.247(a)	Р
8	Carrier Frequency Separation	15.247(a)	Р
9	AC Power line Conducted Emission	15.107,15.207	Р

See ANNEX A for details.

5.3. Statements

SAICT has evaluated the test cases requested by the applicant/manufacturer as listed in section 5.2 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in section 4.2.

Disclaimer:

A. After confirmation with the customer, the sample information provided by the customer may affect the validity of the measurement results in this report, and the impact and consequences arising therefrom shall be borne by the customer.

B. The samples in this report are provided by the customer, and the test results are only applicable to the samples received.

6. Test Equipments Utilized

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due date	Calibration Period
1	Vector Signal Analyzer	FSV40	100903	Rohde & Schwarz	2022-12-29	1 year
2	Power Sensor	U2021XA	MY55430013	Keysight	2022-12-29	1 year
3	Data Acquisiton	U2531A	TW55443507	Keysight	/	/
4	RF Control Unit	JS0806-2	21C8060398	Tonscend	2023-05-08	1 year
5	Wireless Connective Tester	CMW270	100540	Rohde & Schwarz	2022-03-14	1 year
6	Test Receiver	ESCI	100701	Rohde & Schwarz	2023-01-12	1 year
7	LISN	ENV216	102067	Rohde & Schwarz	2023-07-14	1 year

Radiated test system

	Traditation tool by otom					
No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due date	Calibration Period
			Nullibei		Due date	renou
1	Loop Antenna	HLA6120	35779	TESEQ	2025-05-12	3 years
2	BiLog Antenna	3142E	0224831	ETS-Lindgren	2024-05-27	3 years
3	Horn Antenna	3117	00066577	ETS-Lindgren	2025-04-17	3 years
4	Horn Antenna	QSH-SL-18	17013 Q-par	0	2023-01-06	3 years
		-26-S-20		Q-par		
5	Llaws Automas	QSH-SL-8-	17014 Q-par	17014 O por	2022 04 06	2 1/2 272
3	Horn Antenna	26-40-K-20		2023-01-06	3 years	
6	Test Receiver	ESR7	101676	Rohde & Schwarz	2022-11-24	1 year
7	Spectrum 50.440	Dahda 9 Cahwarz	2022 04 42	1 1/225		
'	Analyser	FSV40	101192	Rohde & Schwarz	2023-01-12	1 year
8	Chamber	FACT3-2.0	1285	ETS-Lindgren	2023-05-29	2 years

Test software

No.	Equipment	Manufacturer	Version
1	JS1120-3	Tonscend	3.1
2	EMC32	Rohde & Schwarz	10.50.40

EUT is engineering software provided by the customer to control the transmitting signal.

The EUT was programmed to be in continuously transmitting mode.

Anechoic chamber

Fully anechoic chamber by ETS-Lindgren

7. Laboratory Environment

Semi-anechoic chamber

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	< 4 Ω
Normalised site attenuation (NSA)	<±4 dB, 3 m distance, from 30 to 1000 MHz

Shielded room

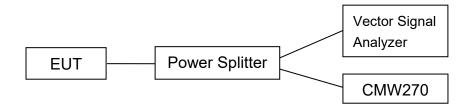
Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	< 4 Ω

Fully-anechoic chamber

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	< 4 Ω
Voltage Standing Wave Ratio (VSWR)	≤ 6 dB, from 1 to 18 GHz, 3 m distance
Uniformity of field strength	Between 0 and 6 dB, from 80 to 6000 MHz

8. Measurement Uncertainty

Test Name	Uncertain	ty (<i>k</i> =2)
1. Maximum Peak Output Power	1.320	dB
2. Band Edges Compliance	1.92dB	
	30MHz≤f<1GHz	1.41dB
2. Transmitter Churique Emission Conducted	1GHz≤f<7GHz	1.92dB
3. Transmitter Spurious Emission - Conducted	7GHz≤f<13GHz	2.31dB
	13GHz≤f≤26GHz	2.61dB
	9kHz≤f<30MHz	1.79dB
4 Transmitter Courieus Emission Dedicted	30MHz≤f<1GHz	4.86dB
4 Transmitter Spurious Emission - Radiated	1GHz≤f<18GHz	4.50dB
	18GHz≤f≤40GHz	2.90dB
5. 20dB Bandwidth	4.56k	Hz
6. Time of Occupancy (Dwell Time) & Number	0.58ms	
of Hopping Channels		
7. Carrier Frequency Separation	4.56kHz	
8. AC Power line Conducted Emission	150kHz≤f≤30MHz	2.62dB

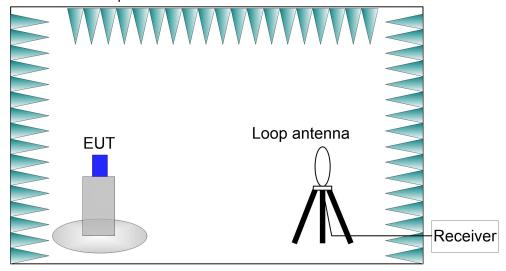

ANNEX A: Detailed Test Results

Test Configuration

The measurement is made according to ANSI C63.10.

1) Conducted Measurements

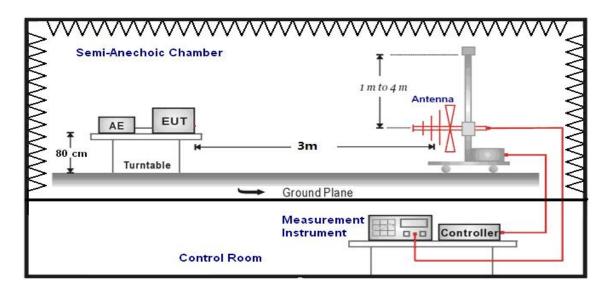
- 1. Connect the EUT to the test system correctly.
- 2. Set the EUT to the required work mode.
- 3. Set the EUT to the required channel.
- 4. Set the EUT hopping mode (hopping on or hopping off).
- 5. Set the spectrum analyzer to start measurement.
- 6. Record the values.



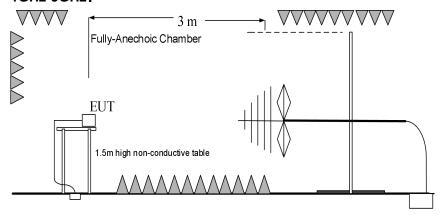
2) Radiated Measurements

Test setup:

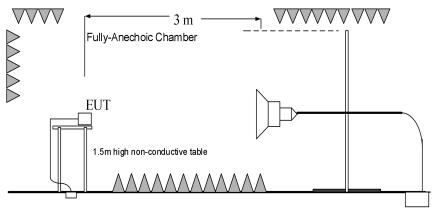
9kHz-30MHz:


The EUT are measured in a semi-anechoic chamber. The EUT is placed on a non-conductive stand of 80cm high, and at a measurement distance of 3m from the receiving antenna. The center of the receiving loop antenna is 1.0 meter above the ground. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT and adjusting the receiver antenna polarization.

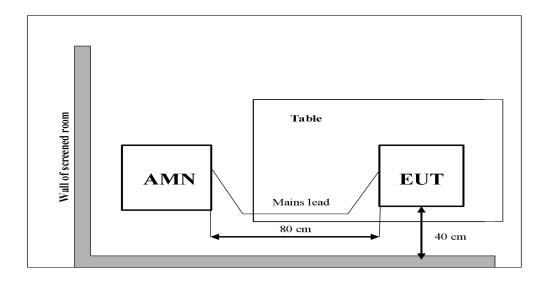
30MHz-1GHz:


The EUT are measured in a semi-anechoic chamber. The EUT is placed on a non-conductive stand of 80cm high, and at a measurement distance of 3m from the receiving antenna. The center of the receiving antenna is 1.0 meter to 4.0 meter above the ground. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT and adjusting the receiver antenna polarization.

Above 1GHz:


EUT was placed on a 1.5 meter high non-conductive table at a 3 meter test distance from the receive antenna. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT and adjusting the receiving antenna polarization.

1GHz-3GHz:



3GHz-40GHz:

3) AC Power line Conducted Emission Measurement

The EUT is working as Bluetooth terminal. A communication link of Bluetooth is set up with a System Simulator (SS). The EUT is commanded to operate at maximum transmitting power.

A.0 Antenna requirement

Measurement Limit:

Standard	Requirement			
	An intentional radiator shall be designed to ensure that no antenna other than that			
	furnished by the responsible party shall be used with the device. The use of a			
	permanently attached antenna or of an antenna that uses a unique coupling to the			
	intentional radiator shall be considered sufficient to comply with the provisions of			
	this section. The manufacturer may design the unit so that a broken antenna can			
	be replaced by the user, but the use of a standard antenna jack or electrical			
FCC CRF Part	connector is prohibited. This requirement does not apply to carrier current devices			
15.203	or to devices operated under the provisions of §15.211, §15.213, §15.217,			
	§15.219, or §15.221. Further, this requirement does not apply to intentional			
	radiators that must be professionally installed, such as perimeter protection			
	systems and some field disturbance sensors, or to other intentional radiators			
	which, in accordance with §15.31(d), must be measured at the installation site.			
	However, the installer shall be responsible for ensuring that the proper antenna is			
	employed so that the limits in this part are not exceeded.			

Conclusion: The Directional gains of antenna used for transmitting is -0.82dBi.

The RF transmitter uses an integrate antenna without connector.

A.1 Maximum Peak Output Power

Method of Measurement: See ANSI C63.10-clause 7.8.5.

A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

Measurement Limit:

Standard	Limit (dBm)
FCC CRF Part 15.247(b)	< 30

Measurement Results:

Mode	Peak Conducted Output Power (dBm)			
Mode	2402MHz (Ch0)	2441MHz (Ch39)	2480MHz (Ch78)	
GFSK	9.92	9.46	9.31	
π/4 DQPSK	9.59	9.06	9.03	
8DPSK	9.56	9.07	9.05	

Conclusion: Pass

A.2 Band Edges Compliance

Method of Measurement: See ANSI C63.10-clause 7.8.6.

Measurement Limit:

Standard	Limit (dB)
FCC 47 CFR Part 15.247 (d)	> 20

Measurement Result:

Mode	Channel	Hopping	Test Results	Conclusion
GFSK	0	OFF	Fig.1	Р
	78	OFF	Fig.2	Р
	0	ON	Fig.3	Р
	78	ON	Fig.4	Р
π/4 DQPSK	0	OFF	Fig.5	Р
	78	OFF	Fig.6	Р
	0	ON	Fig.7	Р
	78	ON	Fig.8	Р
8DPSK	0	OFF	Fig.9	Р
	78	OFF	Fig.10	Р
	0	ON	Fig.11	Р
	78	ON	Fig.12	Р

See below for test graphs.

Conclusion: Pass

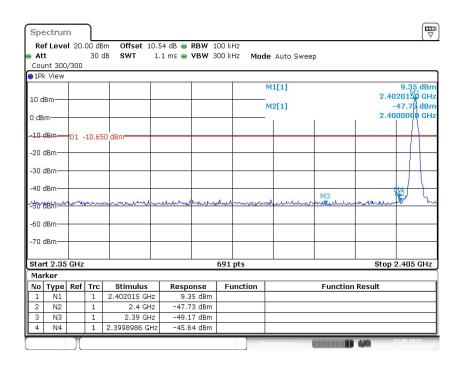


Fig. 1 Band Edges (GFSK, CH0, Hopping OFF)

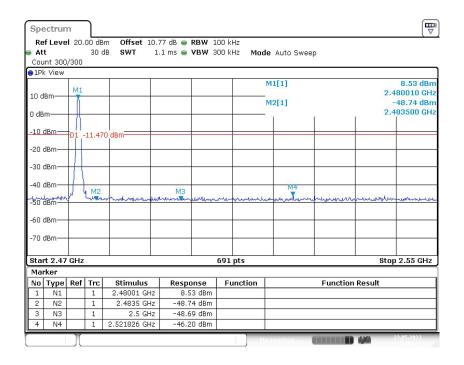


Fig. 2 Band Edges (GFSK, CH78, Hopping OFF)

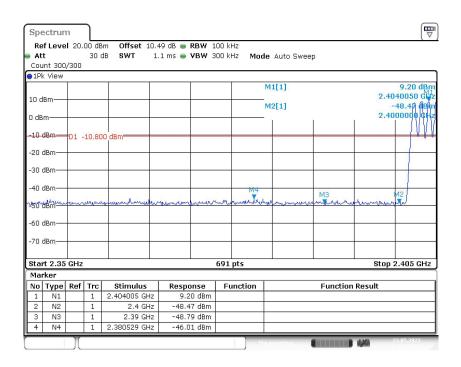


Fig. 3 Band Edges (GFSK, CH0, Hopping ON)

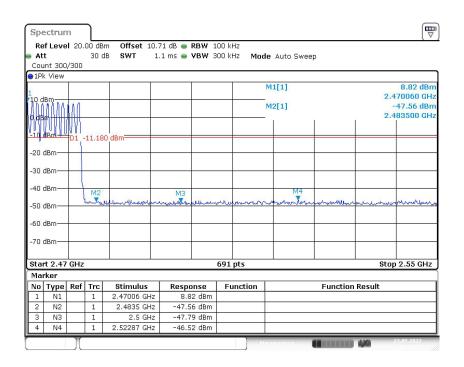


Fig. 4 Band Edges (GFSK, CH78, Hopping ON)

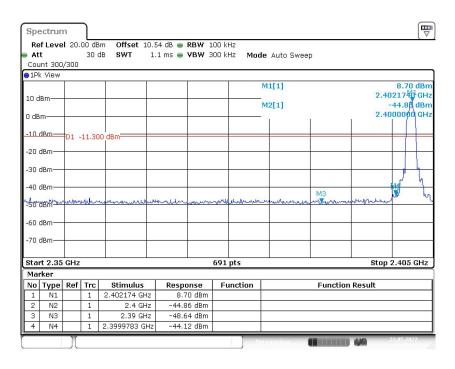


Fig. 5 Band Edges (π/4 DQPSK, CH0, Hopping OFF)

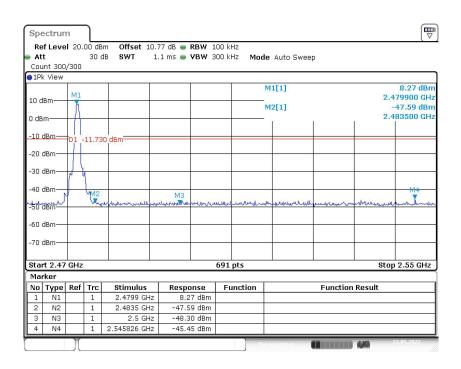


Fig. 6 Band Edges (π/4 DQPSK, CH78, Hopping OFF)

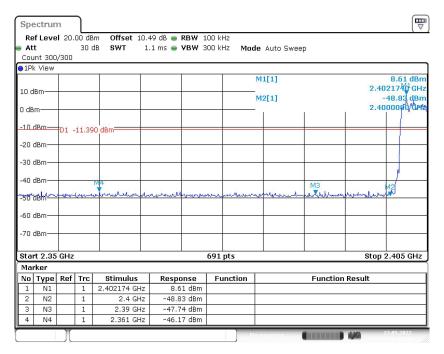


Fig. 7 Band Edges (π/4 DQPSK, CH0, Hopping ON)

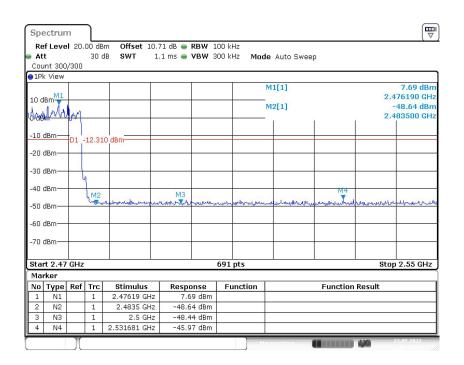


Fig. 8 Band Edges (π/4 DQPSK, CH78, Hopping ON)

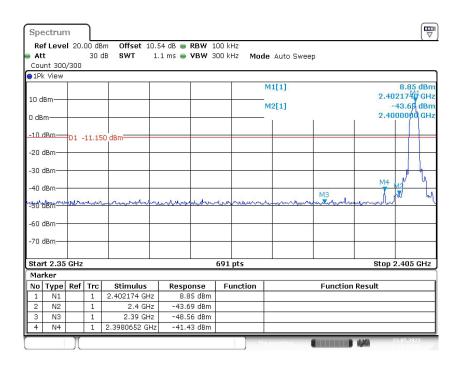


Fig. 9 Band Edges (8DPSK, CH0, Hopping OFF)

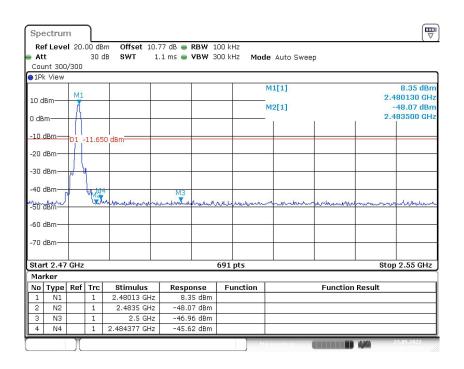


Fig. 10 Band Edges (8DPSK, CH78, Hopping OFF)

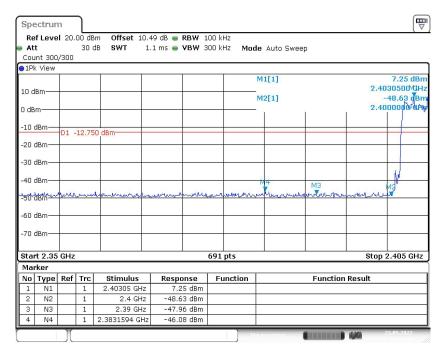


Fig. 11 Band Edges (8DPSK, CH0, Hopping ON)

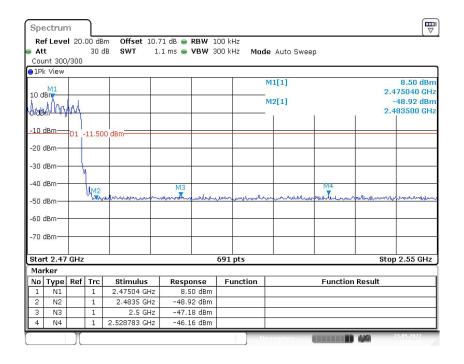


Fig. 12 Band Edges (8DPSK, CH78, Hopping ON)

A.3 Conducted Emission

Method of Measurement: See ANSI C63.10-clause 7.8.8.

Measurement Limit:

Standard	Limit (dBm)	
FCC 47 CFR Part 15.247 (d)	20dBm below peak output power in 100kHz	
	bandwidth	

Measurement Results:

MODE	Channel	Frequency Range	Test Results	Conclusion
		2.402 GHz	Fig.13	Р
	0	30MHz -1GHz	Fig.14	Р
		1GHz-26.5GHz	Fig.15	Р
		2.441 GHz	Fig.16	Р
GFSK	39	30MHz -1GHz	Fig.17	Р
		1GHz-26.5GHz	Fig.18	Р
		2.480 GHz	Fig.19	Р
	78	30MHz -1GHz	Fig.20	Р
		1GHz-26.5GHz	Fig.21	Р
		2.402 GHz	Fig.22	Р
	0	30MHz -1GHz	Fig.23	Р
		1GHz-26.5GHz	Fig.24	Р
_/4	39	2.441 GHz	Fig.25	Р
π/4 DQPSK		30MHz -1GHz	Fig.26	Р
DQPSK		1GHz-26.5GHz	Fig.27	Р
	78	2.480 GHz	Fig.28	Р
		30MHz -1GHz	Fig.29	Р
		1GHz-26.5GHz	Fig.30	Р
		2.402 GHz	Fig.31	Р
	0	30MHz -1GHz	Fig.32	Р
		1GHz-26.5GHz	Fig.33	Р
	39	2.441 GHz	Fig.34	Р
8DPSK		30MHz -1GHz	Fig.35	Р
-		1GHz-26.5GHz	Fig.36	Р
		2.480 GHz	Fig.37	Р
	78	30MHz -1GHz	Fig.38	Р
		1GHz-26.5GHz	Fig.39	Р

See below for test graphs.

Conclusion: Pass

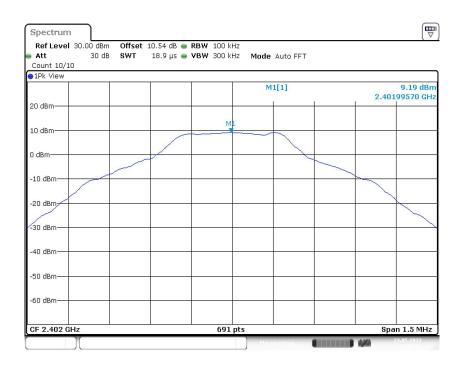


Fig. 13 Conducted Spurious Emission (GFSK, CH0, 2.402GHz)

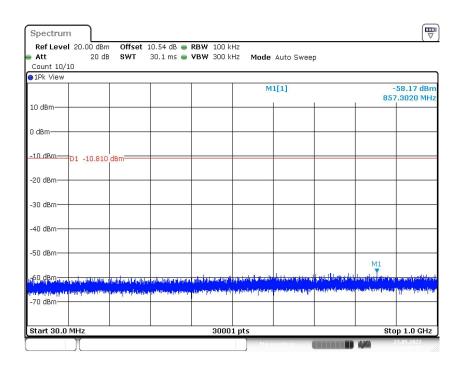


Fig. 14 Conducted Spurious Emission (GFSK, CH0, 30MHz -1GHz)

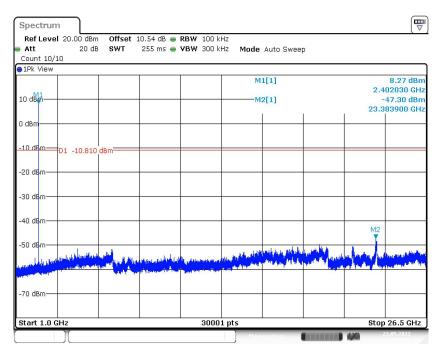


Fig. 15 Conducted Spurious Emission (GFSK, CH0, 1GHz-26.5GHz)

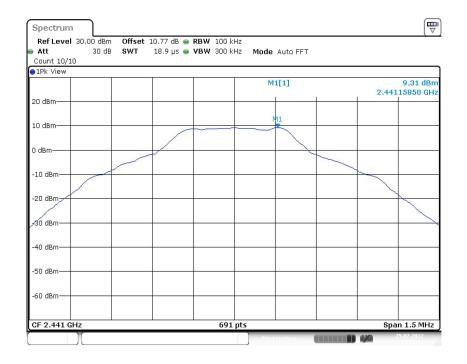


Fig. 16 Conducted Spurious Emission (GFSK, CH39, 2.441GHz)

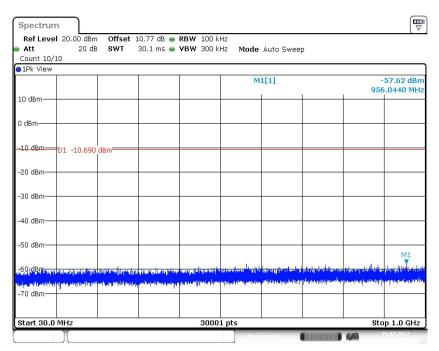


Fig. 17 Conducted Spurious Emission (GFSK, CH39, 30MHz -1GHz)

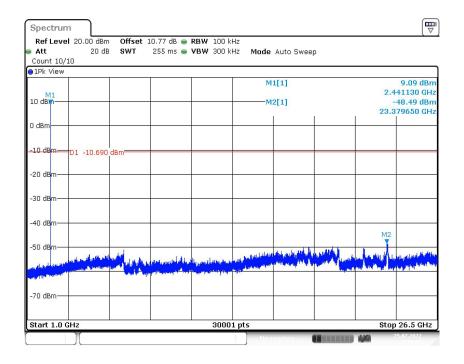


Fig. 18 Conducted Spurious Emission (GFSK, CH39, 1GHz-26.5GHz)

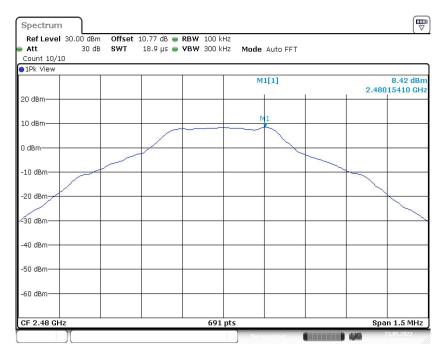


Fig. 19 Conducted Spurious Emission (GFSK, CH78, 2.480GHz)

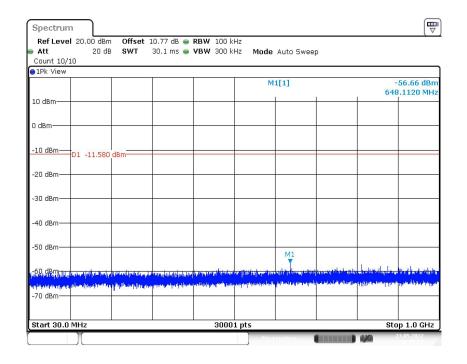


Fig. 20 Conducted Spurious Emission (GFSK, CH78, 30MHz -1GHz)

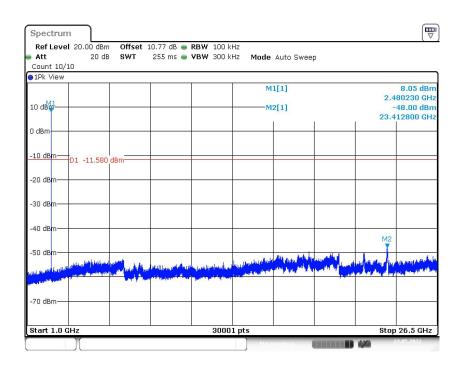


Fig. 21 Conducted Spurious Emission (GFSK, CH78, 1GHz-26.5GHz)

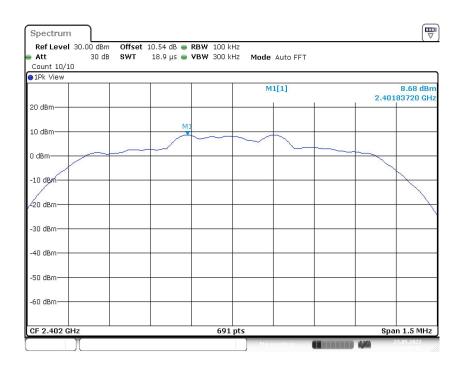


Fig. 22 Conducted Spurious Emission (π/4 DQPSK, CH0, 2.402GHz)