

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	48.8 Ω - 6.5 jΩ	
Return Loss	- 23.6 dB	

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	48.0 Ω - 4.6 jΩ
Return Loss	- 25.7 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	47.2 Ω - 3.5 jΩ	
Return Loss	- 26.7 dB	

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	49.8 Ω - 3.6 jΩ
Return Loss	- 28.8 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	$54.4 \Omega + 0.4 j\Omega$
Return Loss	- 27.5 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	52.1 Ω - 1.3 jΩ	
Return Loss	- 32.3 dB	

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	51.2 Ω - 3.1 jΩ	
Return Loss	- 29.6 dB	

Certificate No: D5GHzV2-1060_Jul20

Page 11 of 23

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	48.4 Ω - 5.5 jΩ
Return Loss	- 24.6 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	47.2 Ω - 3.2 jΩ	
Return Loss	- 27.1 dB	

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	47.0 Ω - 2.0 jΩ
Return Loss	- 28.5 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	50.6 Ω - 2.4 jΩ	
Return Loss	- 32.3 dB	

Certificate No: D5GHzV2-1060_Jul20

Page 12 of 23

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	$54.5~\Omega + 0.4~\mathrm{j}\Omega$	
Return Loss	- 27.3 dB	

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	52.5 Ω - 0.8 jΩ	
Return Loss	- 32.0 dB	

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	52.1 Ω - 2.4 jΩ
Return Loss	- 30.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.200 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D5GHzV2-1060_Jul20

Page 13 of 23

DASY5 Validation Report for Head TSL

Date: 20.07.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.47$ S/m; $\epsilon_r = 35.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5250 MHz; $\sigma = 4.52$ S/m; $\epsilon_r = 35.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 4.57$ S/m; $\epsilon_r = 35.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 4.77$ S/m; $\epsilon_r = 35$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.88$ S/m; $\epsilon_r = 34.9$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.03$ S/m; $\epsilon_r = 34.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.09$ S/m; $\epsilon_r = 34.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.8, 5.8, 5.8) @ 5200 MHz, ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.49, 5.49, 5.49) @ 5300 MHz, ConvF(5.25, 5.25, 5.25) @ 5500 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 77.61 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 28.4 W/kg

SAR(1 g) = 7.94 W/kg; SAR(10 g) = 2.26 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 68.7%

Maximum value of SAR (measured) = 18.2 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 79.07 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 28.2 W/kg

SAR(1 g) = 8.08 W/kg; SAR(10 g) = 2.30 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 69.5%

Maximum value of SAR (measured) = 18.4 W/kg

Certificate No: D5GHzV2-1060_Jul20

Page 14 of 23

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 78.56 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 29.6 W/kg

SAR(1 g) = 8.22 W/kg; SAR(10 g) = 2.33 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 68.3%

Maximum value of SAR (measured) = 19.0 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 78.44 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 33.9 W/kg

SAR(1 g) = 8.66 W/kg; SAR(10 g) = 2.42 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 65.9%

Maximum value of SAR (measured) = 20.7 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 78.89 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 31.6 W/kg

SAR(1 g) = 8.37 W/kg; SAR(10 g) = 2.37 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 66.8%

Maximum value of SAR (measured) = 20.2 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 75.69 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 32.1 W/kg

SAR(1 g) = 8.09 W/kg; SAR(10 g) = 2.29 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 65%

Maximum value of SAR (measured) = 19.9 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

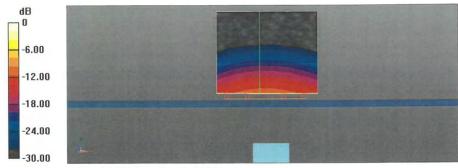
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 75.77 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 32.8 W/kg

SAR(1 g) = 8.16 W/kg; SAR(10 g) = 2.28 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

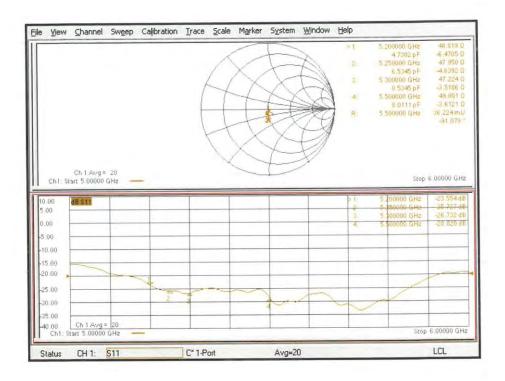

Ratio of SAR at M2 to SAR at M1 = 64.8%

Maximum value of SAR (measured) = 20.1 W/kg

Certificate No: D5GHzV2-1060_Jul20

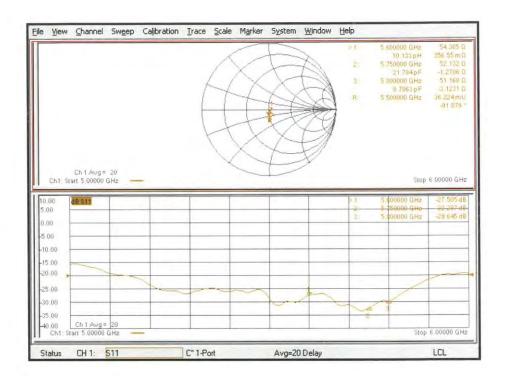
Page 15 of 23

0 dB = 20.7 W/kg = 13.16 dBW/kg


Certificate No: D5GHzV2-1060_Jul20

Page 16 of 23

Impedance Measurement Plot for Head TSL (5200, 5250, 5300, 5500 MHz)


Certificate No: D5GHzV2-1060_Jul20

Page 17 of 23

Impedance Measurement Plot for Head TSL (5600, 5750, 5800 MHz)

Certificate No: D5GHzV2-1060_Jul20

Page 18 of 23

DASY5 Validation Report for Body TSL

Date: 27.07.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5500 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f=5200 MHz; $\sigma=5.46$ S/m; $\epsilon_r=47.8;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5250 MHz; $\sigma=5.53$ S/m; $\epsilon_r=47.7;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5300 MHz; $\sigma=5.6$ S/m; $\epsilon_r=47.6;$ $\rho=1000$ kg/m 3 ,

Medium parameters used: f=5300 MHz; $\sigma=5.6$ S/m; $\epsilon_r=47.6;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5500 MHz; $\sigma=5.87$ S/m; $\epsilon_r=47.2;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5600 MHz; $\sigma=6.01$ S/m; $\epsilon_r=47;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5600 MHz; $\sigma=6.02$ S/m; $\epsilon_r=46.8;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5750 MHz; $\sigma=6.22$ S/m; $\epsilon_r=46.8;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5800 MHz; $\sigma=6.29$ S/m; $\epsilon_r=46.7;$ $\rho=1000$ kg/m 3

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.29, 5.29, 5.29) @ 5200 MHz, ConvF(5.26, 5.26, 5.26) @ 5250 MHz, ConvF(5.23, 5.23, 5.23) @ 5300 MHz, ConvF(4.84, 4.84, 4.84) @ 5500 MHz, ConvF(4.79, 4.79, 4.79) @ 5600 MHz, ConvF(4.66, 4.66, 4.66) @ 5750 MHz, ConvF(4.62, 4.62, 4.62) @ 5800 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.58 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 27.8 W/kg

SAR(1 g) = 7.3 W/kg; SAR(10 g) = 2.04 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 67.4%

Maximum value of SAR (measured) = 17.0 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.59 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 29.0 W/kg

SAR(1 g) = 7.45 W/kg; SAR(10 g) = 2.09 W/kg

Smallest distance from peaks to all points 3 dB below = 6.9 mm

Ratio of SAR at M2 to SAR at M1 = 66.5%

Maximum value of SAR (measured) = 17.4 W/kg

Certificate No: D5GHzV2-1060_Jul20

Page 19 of 23

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.12 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 29.1 W/kg

SAR(1 g) = 7.36 W/kg; SAR(10 g) = 2.06 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 66.1%

Maximum value of SAR (measured) = 17.3 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 68.41 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 33.0 W/kg

SAR(1 g) = 7.86 W/kg; SAR(10 g) = 2.17 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 64.2%

Maximum value of SAR (measured) = 19.0 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.25 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 33.2 W/kg

SAR(1 g) = 7.72 W/kg; SAR(10 g) = 2.15 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 63.4%

Maximum value of SAR (measured) = 18.7 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.67 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 34.2 W/kg

SAR(1 g) = 7.61 W/kg; SAR(10 g) = 2.11 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 62%

Maximum value of SAR (measured) = 18.7 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

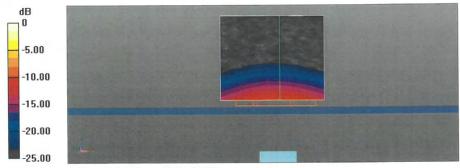
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.55 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 32.7 W/kg

SAR(1 g) = 7.42 W/kg; SAR(10 g) = 2.04 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

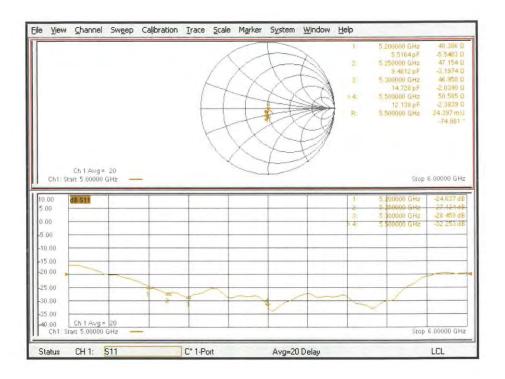

Ratio of SAR at M2 to SAR at M1 = 62.5%

Maximum value of SAR (measured) = 18.2 W/kg

Certificate No: D5GHzV2-1060_Jul20

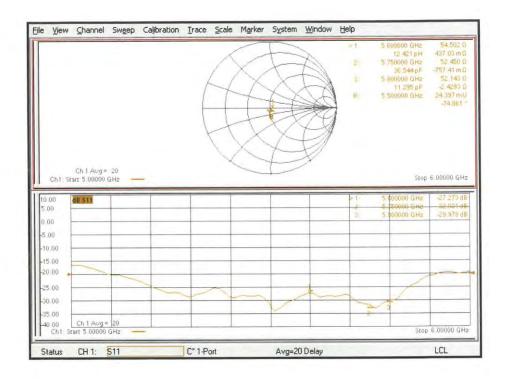
Page 20 of 23

0 dB = 19.0 W/kg = 12.79 dBW/kg


Certificate No: D5GHzV2-1060_Jul20

Page 21 of 23

Impedance Measurement Plot for Body TSL (5200, 5250, 5300, 5500 MHz)


Certificate No: D5GHzV2-1060_Jul20

Page 22 of 23

Impedance Measurement Plot for Body TSL (5600, 5750, 5800 MHz)

Certificate No: D5GHzV2-1060_Jul20

Page 23 of 23

ANNEX I SPOT CHECK

I.1 Tissue and Verification

Table I.1-1: Dielectric Performance of Head Tissue Simulating Liquid

Measurement Date (yyyy-mm-dd)	Туре	Frequency	Permittivity ε	Drift (%)	Conductivity σ (S/m)	Drift (%)
2022-2-25	Head	2450MHz	41.73	6.45%	1.959	8.83%
2022-2-25	Head	5600MHz	34.99	-1.52%	5.263	3.81%

Table I.1-2: System Validation of Head

Measurement		Target val	ue (W/kg)	Measured	value(W/kg)	Devi	ation
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average
2022-2-25	2450MHz	24.9	53.3	25.9	55.2	4.10%	3.56%
2022-2-25	5600MHz	23.7	83.8	24.9	89.4	5.06%	6.68%

I.2 Measurement results

Frequency Band	Channel Number	Frequency (MHz)	Test setup	EUT Measured Power (dBm)	Tune up (dBm)	Measured SAR 10g (W/kg)	Calculated SAR 10g (W/kg)	Measured SAR 1g (W/kg)	Calculated SAR 1g (W/kg)	Power Drift
LTE Band30	27710	2310	1RB-middle Rear 15mm	22.30	23.50	0.342	0.45	0.644	0.85	0.12
WLAN	118	5590	11n-40M	14.10	15.00	0.12	0.15	0.441	0.54	0.08

I.3 Reported SAR Comparison

Table: Highest Reported SAR (1g)

Exposure	Tachnalagy Dand	Highest Reported SAR	Reported SAR
Configuration	Technology Band	1g(W/kg)	spot check
	UMTS FDD 2	0.37	\
	UMTS FDD 4	0.44	\
	UMTS FDD 5	0.35	1
	LTE Band 2	0.42	1
Head	LTE Band 4	0.33	\
(Separation Distance	LTE Band 5	0.38	\
0mm)	LTE Band 12	0.35	\
	LTE Band 14	0.28	\
	LTE Band 30	0.26	\
	WLAN 2.4 GHz	0.63	\
	WLAN 5 GHz	0.76	0.54
	UMTS FDD 2	0.91	\
	UMTS FDD 4	1.16	\
	UMTS FDD 5	0.65	\
Hotspot	LTE Band 2	1.25	1
(Separation Distance	LTE Band 4	1.15	1
10mm)	LTE Band 5	0.69	1
	LTE Band 12	0.46	1
	LTE Band 14	0.50	1
	LTE Band 30	1.08	1

	WLAN 2.4 GHz	0.44	1
	WLAN 5 GHz	0.44	\
	UMTS FDD 2	1.10	1
Body-worn	UMTS FDD 4	0.48	1
(Separation Distance	LTE Band 2	0.87	1
15mm)	LTE Band 4	0.52	1
	LTE Band 30	1.31	0.85

I.4 List of Main Instruments

Table I.4-1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	N5239A	MY55491241	May 31, 2021	One year	
02	Power meter	NRP2	106277	Sontombor 22 2021	One year	
03	Power sensor	NRP8S	104291	September 23, 2021	One year	
04	Signal Generator	E4438C	MY49070393	May 14, 2021	One Year	
05	Amplifier	60S1G4	0331848	No Calibration	Requested	
06	BTS	CMW500	166370	June 25, 2021	One year	
07	E-field Probe	SPEAG EX3DV4	7517	January 19,2022	One year	
80	DAE	SPEAG DAE4	1525	September 1, 2021	One year	
09	Dipole Validation Kit	SPEAG D2450V2	853	July 26,2021	One year	
10	Dipole Validation Kit	SPEAG D5GHzV2	1060	June 22,2021	One year	

I.5 Graph Results

LTE Band30 Body

Date/Time: 2/25/2022 Electronics: DAE4 Sn1525 Medium: H700-6000M

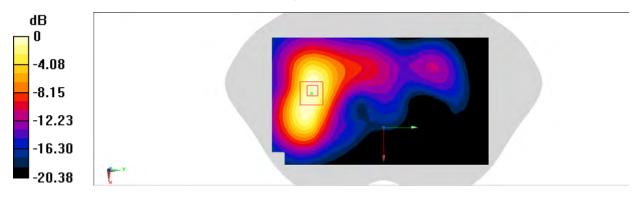
Medium parameters used: f = 2310 MHz; $\sigma = 1.84$ S/m; $\varepsilon_r = 42.115$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: UID 0, LTE Band30 (0) Frequency: 2310 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7517 ConvF(7.44, 7.44, 7.44); Calibrated: 1/19/2022

Area Scan (101x171x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.01 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.911 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 1.21 W/kg

SAR(1 g) = 0.644 W/kg; SAR(10 g) = 0.342 W/kg

Maximum value of SAR (measured) = 0.997 W/kg

0 dB = 1.01 W/kg = 0.04 dBW/kg

WIFI5G Head

Date/Time: 2/25/2022 Electronics: DAE4 Sn1525 Medium: H700-6000M

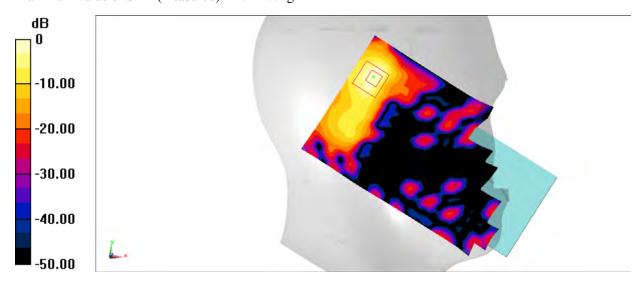
Medium parameters used: f = 5590 MHz; $\sigma = 5.249$ S/m; $\varepsilon_r = 35.019$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: UID 0, WLan 11a (0) Frequency: 5590 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7517 ConvF(4.7, 4.7, 4.7); Calibrated: 1/19/2022

Area Scan (111x201x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.19 W/kg


Zoom Scan (9x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 3.830 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 2.05 W/kg

SAR(1 g) = 0.441 W/kg; SAR(10 g) = 0.123 W/kg

Maximum value of SAR (measured) = 1.14 W/kg

0 dB = 1.19 W/kg = 0.76 dBW/kg

I.6 System Verification Results

SystemPerformanceCheck-D2450_853

Date/Time: 2/25/2022 Electronics: DAE4 Sn1525 Medium: H700-6000M

Medium parameters used: f = 2450 MHz; $\sigma = 1.959$ S/m; $\varepsilon_r = 41.731$; $\rho = 1000$ kg/m³

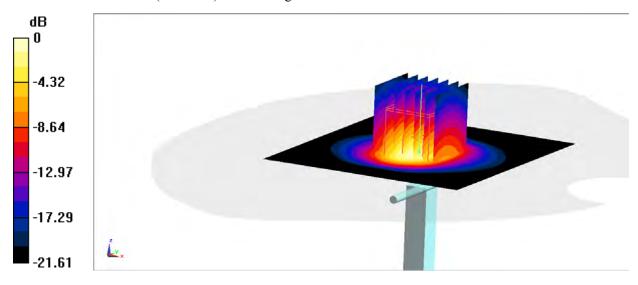
Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: UID 0, CW (0) Frequency: 2450 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7517 ConvF(7.16, 7.16, 7.16); Calibrated: 1/19/2022

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Area Scan (81x91x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 21.6 W/kg

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 104.3 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 27.4 W/kg

SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.48 W/kg

Maximum value of SAR (measured) = 20.4 W/kg

0 dB = 21.6 W/kg = 13.34 dBW/kg

SystemPerformanceCheck-D5GHz-graded

Date/Time: 2/25/2022 Electronics: DAE4 Sn1525 Medium: H700-6000M

Medium parameters used: f = 5600 MHz; $\sigma = 5.263$ S/m; $\varepsilon_r = 34.986$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

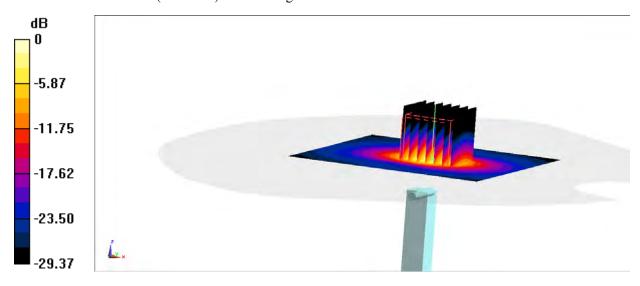
Communication System: UID 0, CW (0) Frequency: 5600 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7517 ConvF(4.7, 4.7, 4.7); Calibrated: 1/19/2022

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5600 MHz/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 23.4 W/kg

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5600 MHz/Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=1.4mm

Reference Value = 66.85 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 40.0 W/kg

SAR(1 g) = 8.94 W/kg; SAR(10 g) = 2.49 W/kg

Maximum value of SAR (measured) = 23.0 W/kg

0 dB = 23.4 W/kg = 13.69 dBW/kg

1.7 PROBE CALIBRATION CERTIFICATE

EX3DV4 7517

Client

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Certificate No: Z21-60558

CTTL **CALIBRATION CERTIFICATE**

Object EX3DV4 - SN: 7517

Calibration Procedure(s) FF-Z11-004-02

Calibration Procedures for Dosimetric E-field Probes

Calibration date: January 19, 2022

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3617 SN 1555	10-Feb-20(CTTL, No.J20X00526) 27-Jan-21(SPEAG, No.EX3-3617_Jan21)	Jun-22 Jun-22 Jun-22 Feb-22 Feb-22 Jan-22
101548 18N50W-10dB 18N50W-20dB SN 3617	15-Jun-21(CTTL, No.J21X04466) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 27-Jan-21(SPEAG, No.EX3-3617_Jan21)	Jun-22 Feb-22 Feb-22
18N50W-10dB 18N50W-20dB SN 3617	10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 27-Jan-21(SPEAG, No.EX3-3617_Jan21)	Feb-22 Feb-22
18N50W-20dB SN 3617	10-Feb-20(CTTL, No.J20X00526) 27-Jan-21(SPEAG, No.EX3-3617_Jan21)	Feb-22
SN 3617	27-Jan-21(SPEAG, No.EX3-3617_Jan21)	
		Jan-22
SN 1555	20 1 24/20512 11 5151 1555 1 24/21	
	20-Aug-21(SPEAG, No.DAE4-1555_Aug21/2)	Aug-22
ID#	Cal Date(Calibrated by, Certificate No.) Scheo	duled Calibration
6201052605	16-Jun-21(CTTL, No.J21X04467)	Jun-22
MY46110673	14-Jan-22 (CTTL, No.J22X00406)	Jan -23
9	Function Sig	nature
ongying	SAR Test Engineer	STORE STORES
lao	SAR Test Engineer	13/2
ianyuan	SAR Project Leader	
N e	MY46110673 ongying lao anyuan	MY46110673 14-Jan-22 (CTTL, No.J22X00406) Function Sig ongying SAR Test Engineer SAR Test Engineer

Certificate No: Z21-60558

Page 1 of 10

No.122Z60274-SEM01

CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

θ=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEĆ 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
 data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NQRMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No:Z21-60558

Page 2 of 10

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7517

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
$Norm(\mu V/(V/m)^2)^A$	0.49	0.51	0.55	±10.0%
DCP(mV) ^B	101.9	101.5	100.9	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0	cw	Х	0.0	0.0	1.0	0.00	168.0	±3.0%
		Υ	0.0	0.0	1.0		172.3	
		Z	0.0	0.0	1.0		178.0	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No:Z21-60558

Page 3 of 10

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 4 and Page 5).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7517

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.70	9.70	9.70	0.15	1.32	±12.1%
900	41.5	0.97	9.30	9.30	9.30	0.21	1.19	±12.1%
1450	40.5	1.20	8.40	8.40	8.40	0.18	1.06	±12.1%
1640	40.3	1.29	8.20	8.20	8.20	0.30	0.90	±12.1%
1750	40.1	1.37	8.10	8.10	8.10	0.25	0.93	±12.1%
1900	40.0	1.40	7.74	7.74	7.74	0.30	0.90	±12.1%
2100	39.8	1.49	7.64	7.64	7.64	0.24	1.09	±12.1%
2300	39.5	1.67	7.44	7.44	7.44	0.64	0.68	±12.1%
2450	39.2	1.80	7.16	7.16	7.16	0.43	0.91	±12.1%
2600	39.0	1.96	6.97	6.97	6.97	0.57	0.77	±12.1%
3300	38.2	2.71	6.85	6.85	6.85	0.45	0.92	±13.3%
3500	37.9	2.91	6.60	6.60	6.60	0.40	1.03	±13.3%
3700	37.7	3.12	6.34	6.34	6.34	0.41	1.03	±13.3%
3900	37.5	3.32	6.25	6.25	6.25	0.35	1.35	±13.3%
4100	37.2	3.53	6.34	6.34	6.34	0.40	1.15	±13.3%
4200	37.1	3.63	6.26	6.26	6.26	0.35	1.35	±13.3%
4400	36.9	3.84	6.15	6.15	6.15	0.35	1.35	±13.3%
4600	36.7	4.04	6.05	6.05	6.05	0.50	1.13	±13.3%
4800	36.4	4.25	6.01	6.01	6.01	0.50	1.13	±13.3%
4950	36.3	4.40	5.74	5.74	5.74	0.45	1.25	±13.3%
5250	35.9	4.71	5.30	5.30	5.30	0.50	1.25	±13.3%
5600	35.5	5.07	4.70	4.70	4.70	0.55	1.20	±13.3%
5750	35.4	5.22	4.75	4.75	4.75	0.55	1.20	±13.3%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No:Z21-60558

Page 4 of 10

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7517

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	9.65	9.65	9.65	0.40	0.85	±12.1%
900	55.0	1.05	9.20	9.20	9.20	0.24	1.18	±12.1%
1450	54.0	1.30	8.20	8.20	8.20	0.14	1.34	±12.1%
1640	53.8	1.40	8.05	8.05	8.05	0.25	1.08	±12.1%
1750	53.4	1.49	7.85	7.85	7.85	0.32	0.98	±12.1%
1900	53.3	1.52	7.58	7.58	7.58	0.24	1.13	±12.1%
2100	53.2	1.62	7.47	7.47	7.47	0.25	1.19	±12.1%
2300	52.9	1.81	7.35	7.35	7.35	0.44	0.93	±12.1%
2450	52.7	1.95	7.21	7.21	7.21	0.50	0.84	±12.1%
2600	52.5	2.16	7.02	7.02	7.02	0.68	0.70	±12.1%
3300	51.6	3.08	6.25	6.25	6.25	0.43	1.11	±13.3%
3500	51.3	3.31	6.06	6.06	6.06	0.40	1.25	±13.3%
3700	51.0	3.55	5.99	5.99	5.99	0.40	1.25	±13.3%
3900	51.2	3.78	5.95	5.95	5.95	0.40	1.30	±13.3%
4100	50.5	4.01	5.90	5.90	5.90	0.40	1.30	±13.3%
4200	50.4	4.13	5.80	5.80	5.80	0.45	1.30	±13.3%
4400	50.1	4.37	5.70	5.70	5.70	0.45	1.30	±13.3%
4600	49.8	4.60	5.58	5.58	5.58	0.50	1.25	±13.3%
4800	49.6	4.83	5.41	5.41	5.41	0.50	1.45	±13.3%
4950	49.4	5.01	5.12	5.12	5.12	0.50	1.55	±13.3%
5250	48.9	5.36	4.70	4.70	4.70	0.50	1.55	±13.3%
5600	48.5	5.77	4.10	4.10	4.10	0.55	1.50	±13.3%
5750	48.3	5.94	4.15	4.15	4.15	0.50	1.60	±13.3%

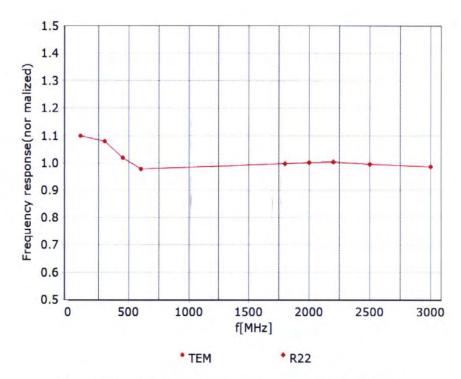
^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No:Z21-60558

Page 5 of 10

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

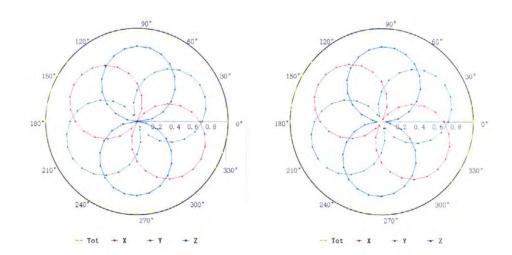


Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No:Z21-60558

Page 6 of 10



Receiving Pattern (Φ), θ=0°

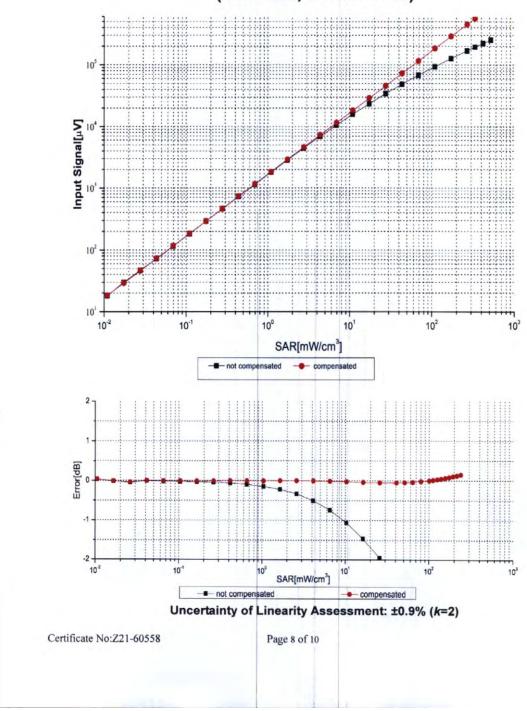
f=600 MHz, TEM

f=1800 MHz, R22

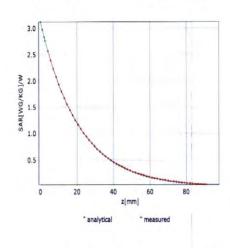
Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2)

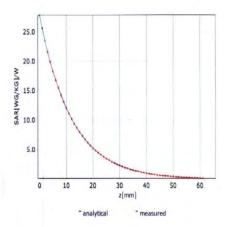
Certificate No:Z21-60558

Page 7 of 10

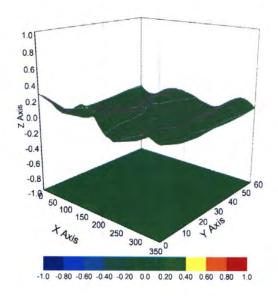


Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)





Conversion Factor Assessment


f=750 MHz,WGLS R9(H_convF)

f=1750 MHz,WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)

Certificate No:Z21-60558

Page 9 of 10

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7517

Other Probe Parameters

Sensor Arrangement	Triangular		
Connector Angle (°)	15.7		
Mechanical Surface Detection Mode	enabled		
Optical Surface Detection Mode	disable		
Probe Overall Length	337mm		
Probe Body Diameter	10mm		
Tip Length	9mm		
Tip Diameter	2.5mm		
Probe Tip to Sensor X Calibration Point	1mm		
Probe Tip to Sensor Y Calibration Point	1mm		
Probe Tip to Sensor Z Calibration Point	1mm		
Recommended Measurement Distance from Surface	1.4mm		

Certificate No:Z21-60558

Page 10 of 10

ANNEX J Accreditation Certificate

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2017

NVLAP LAB CODE: 600118-0

Telecommunication Technology Labs, CAICT

Beijing China

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

Electromagnetic Compatibility & Telecommunications

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).

2021-09-29 through 2022-09-30

Effective Dates

For the National Voluntary Laboratory Accreditation Program