

FCC PART 15C TEST REPORT

No.I20Z60571-IOT01

for

Client name: Shenzhen Tinno Mobile Technology Corp.

Product name: U318AA

Model name: Smart phone

With

FCC ID: XD6U318AA

Hardware Version: V1.0

Software Version: U318AAV01.14.11

Issued Date: 2020-06-04

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government.

Test Laboratory:

CTTL-Telecommunication Technology Labs, CAICT

No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504

Email: cttl_terminals@caict.ac.cn, website: www.caict.ac.cn

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I20Z60571-IOT01	Rev.0	1st edition	2020-05-25
I20Z60571-IOT01	Rev.1	Update the test end	2020-06-03
		date on page 6, and	
		the information on	
		page 8	
I20Z60571-IOT01	Rev.2	Update the Software	2020-06-04
		Version	

CONTENTS

1.	TEST LABORATORY	5
1.1	INTRODUCTION & ACCREDITATION	5
1.2	2. TESTING LOCATION	5
1.3	3. Testing Environment	6
1.4	PROJECT DATE	6
1.5	5. SIGNATURE	6
2. (CLIENT INFORMATION	7
2.1	APPLICANT INFORMATION	7
2.2	2. MANUFACTURER INFORMATION	7
3. I	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	8
3.1	ABOUT EUT	8
3.2		
3.3	3. INTERNAL IDENTIFICATION OF AE	8
3.4	I. GENERAL DESCRIPTION	10
3.5	5. INTERPRETATION OF THE TEST ENVIRONMENT	10
4. I	REFERENCE DOCUMENTS	10
4.1	DOCUMENTS SUPPLIED BY APPLICANT	10
4.2	2. Reference Documents for testing	10
5. T	TEST RESULTS	11
5.1	. SUMMARY OF TEST RESULTS	11
5.2		
5.3	3. Test Conditions	11
6. T	TEST FACILITIES UTILIZED	12
7. I	MEASUREMENT UNCERTAINTY	13
7.1	. Maximum Output Power	13
7.2	2. PEAK POWER SPECTRAL DENSITY	13
7.3	3. DTS 6-DB SIGNAL BANDWIDTH	13
7.4	BAND EDGES COMPLIANCE	13
7.5	5. Transmitter Spurious Emission	13
7.6	5. AC Power-line Conducted Emission	13
ANN	EX A: DETAILED TEST RESULTS	14
A.1. N	MEASUREMENT METHOD	14
A.2. I	MAXIMUM OUTPUT POWER	15
A.2	2.1. PEAK OUTPUT POWER-CONDUCTED	15
A.3. I	PEAK POWER SPECTRAL DENSITY	17
@^	Page 2 of Ol	=

A.4. DTS 6-DB SIGNAL BANDWIDTH	
A.5. BAND EDGES COMPLIANCE	29
A.5.2 Transmitter Spurious Emission – Radiated	
A.6. TRANSMITTER SPURIOUS EMISSION	39
A.6.1 Transmitter Spurious Emission – Conducted	39
A.6.2 Transmitter Spurious Emission - Radiated	79
A.7. AC POWER-LINE CONDUCTED EMISSION	88
ANNEX B: ACCREDITATION CERTIFICATE	95

1. Test Laboratory

1.1.Introduction & Accreditation

Telecommunication Technology Labs, CAICT is an ISO/IEC 17025:2005 accredited test laboratory under NATIONAL VOLUNTARY LABORATORY ACCREDITATION PROGRAM (NVLAP) with lab code 600118-0, and is also an FCC accredited test laboratory (CN5017), and ISED accredited test laboratory (CN0066). The detail accreditation scope can be found on NVLAP website.

1.2. Testing Location

Location 1:CTTL(Huayuan North Road)

Address: No. 52, Huayuan North Road, Haidian District, Beijing,

P. R. China100191

Location 2:CTTL(Shouxiang)

Address: No. 51 Shouxiang Science Building, Xueyuan Road,

Haidian District, Beijing, P. R. China100191

1.3. Testing Environment

Normal Temperature:

15-35℃

Relative Humidity: 20-75%

1.4. Project date

Testing Start Date: 2020-05-06 Testing End Date: 2020-05-25

1.5. Signature

谢为药

Xie Xiuzhen

(Prepared this test report)

Zheng Wei

(Reviewed this test report)

Hu Xiaoyu

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: Shenzhen Tinno Mobile Technology Corp.

Address: 4/F, H-3 Building,OCT Eastern Industrial Park. NO.1 XiangShan East

Road, Nan Shan District, Shenzhen, P.R.China

City: Shenzhen

Postal Code: /

Country: China

Telephone: 0755-86095550

Fax: /

2.2. Manufacturer Information

Company Name: Shenzhen Tinno Mobile Technology Corp.

Address: 4/F, H-3 Building,OCT Eastern Industrial Park. NO.1 XiangShan East

Road, Nan Shan District, Shenzhen, P.R.China

City: Shenzhen

Postal Code: /

Country: China

Telephone: 0755-86095550

Fax: /

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description Smart phone
Model name U318AA
FCC ID XD6U318AA

With WLAN Function Yes

Frequency Band ISM 2400MHz~2483.5MHz

Type of Modulation DSSS/CCK/OFDM

Number of Channels 11

Antenna Integral Antenna

MAX Conducted Power 27.26dBm Power Supply 3.85V

3.2. Internal Identification of EUT

EUT ID*	SN or IMEI	HW Version	SW Version
EUT4	864862040015552	V1.0	U318AAV01.14.11
EUT2	864862040015453	V1.0	U318AAV01.14.11

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE

AE ID*	Description	SN
AE1	Battery	/
AE2	Charger	/
AE3	Charger	/
AE4	USB Cable	/
AE5	USB Cable	/

AE1

Model LT25H426271B

Manufacturer Shenzhen BYD Lithium Battery Company Limited

Capacitance 2500mAh Nominal voltage 3.85 V

AE2

Model TN-050100U6

Manufacturer Guangdong Beicom Electronics Co.,Ltd

Length of cable /

AE3

Model TN-050100U6

Manufacturer Dong Guan City GangQi Electronic Co.,Ltd.

Length of cable /
AE4

Model P103-BP6130-010/ STN-A108A

Manufacturer /
Length of cable /
AE5

Model P103-BP6130-020/336366

Manufacturer /
Length of cable /

3.4. General Description

The Equipment under Test (EUT) is a model of Smart phone with integrated antenna and inbuilt battery.

It has WLAN function.

It consists of normal options: travel charger, USB cable.

Manual and specifications of the EUT were provided to fulfil the test.

Samples undergoing test were selected by the client.

3.5. Interpretation of the Test Environment

For the test methods, the test environment uncertainty figures correspond to an expansion factor k=2.

Measurement Uncertainty

Parameter	Uncertainty
temperature	0.48°C
humidity	2 %
DC voltages	0.003V

4. Reference Documents

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
	FCC CFR 47, Part 15, Subpart C:	
	15.205 Restricted bands of operation;	
FCC Part15	15.209 Radiated emission limits, general requirements;	2018
	15.247 Operation within the bands 902-928MHz,	
	2400-2483.5 MHz, and 5725-5850 MHz.	
ANSI C63.10	American National Standard of Procedures for Compliance	2013
ANSI C03.10	Testing of Unlicensed Wireless Devices	2013
	Federal Communications Commission Office of	
	Engineering and Technology Laboratory Division	
	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON	
KDB 558074 D01	DIGITAL TRANSMISSION SYSTEM, FREQUENCY	2019
	HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID	
	SYSTEM DEVICES OPERATING UNDER SECTION	
	15.247 OF THE FCC RULES	

5. Test Results

5.1. Summary of Test Results

SUMMARY OF MEASUREMENT RESULTS	Sub-clause of Part15C	Sub-clause of IC	Verdict
Maximum Peak Output Power	15.247 (b)	1	Р
Peak Power Spectral Density	15.247 (e)	1	Р
Occupied 6dB Bandwidth	15.247 (a)	1	Р
Band Edges Compliance	15.247 (d)	1	Р
Transmitter Spurious Emission - Conducted	15.247 (d)	1	Р
Transmitter Spurious Emission - Radiated	15.247, 15.205, 15.209	1	Р
AC Powerline Conducted Emission	15.107, 15.207	1	Р

Please refer to ANNEX A for detail.

Terms used in Verdict column

Р	Pass, The EUT complies with the essential requirements in the standard.		
NP	Not Perform, The test was not performed by CTTL		
NA	Not Applicable, The test was not applicable		
F	Fail, The EUT does not comply with the essential requirements in the		
	standard		

5.2. Statements

The test cases as listed in section 5.1 of this report for the EUT specified in section 3 was performed by CTTL and according to the standards or reference documents listed in section 4.2 The EUT met all requirements of the standards or reference documents, and only the WLAN function was tested in this report.

5.3. Test Conditions

Tnom	Normal Temperature		
T min	Low Temperature		
T max	High Temperature		
V nom	Normal Voltage		

For this report, if the test cases listed above are tested under normal temperature and normal voltage, and also under norm humidity, the specific condition is shown as follows:

Temperature	T nom	26°C
Voltage	V nom	3.85V(By battery)
Humidity	H nom	20-75%

6. <u>Test Facilities Utilized</u>

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Period	Calibration Due date
1	Vector Signal	FSQ40	200089	Rohde &	1 year	2021-05-06
	Analyzer			Schwarz	-	
2	LISN	ESH3-Z5	825562	Rohde &	1 year	2020-10-05
	LIOIN	LOI 10-20	023302	Schwarz	i yeai	2020-10-03
2	Test Receiver	ESCI	100344	Rohde &	1 voor	2021-02-26
3	rest Receiver	ESCI	100344	Schwarz	1 year	2021-02-26
4	Shielding Room	S81	/	ETS-Lindgren	/	/

Radiated emission test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Period	Calibratio n Due date
1	Test Receiver	ESU26	100235	Rohde & Schwarz	1 year	2021-03-05
2	BiLog Antenna	VULB9163	483	Schwarzbeck	1 year	2020-09-17
3	Dual-Ridge Waveguide Horn Antenna	3116	2663	ETS-Lindgren	1 year	2020-05-31
4	EMI Antenna	3117	00139065	ETS-Lindgren	1 year	2020-11-15

7. Measurement Uncertainty

7.1. Maximum Output Power

Measurement Uncertainty: 0.387dB,k=1.96

7.2. Peak Power Spectral Density

Measurement Uncertainty: 0.705dB,k=1.96

7.3. DTS 6-dB Signal Bandwidth

Measurement Uncertainty: 60.80Hz,k=1.96

7.4. Band Edges Compliance

Measurement Uncertainty: 0.62dB,k=1.96

7.5. Transmitter Spurious Emission

Conducted (k=1.96)

Frequency Range	Uncertainty(dB)
30MHz ≤ f ≤ 2GHz	1.22
2GHz ≤ f ≤3.6GHz	1.22
3.6GHz ≤ f ≤8GHz	1.22
8GHz ≤ f ≤12.75GHz	1.51
12.75GHz ≤ f ≤26GHz	1.51
26GHz ≤ f ≤40GHz	1.59

Radiated (k=2)

Frequency Range	Uncertainty(dB)	
9kHz-30MHz	/	
30MHz ≤ f ≤ 1GHz	5.40	
1GHz ≤ f ≤18GHz	4.32	
18GHz ≤ f ≤40GHz	5.26	

7.6. AC Power-line Conducted Emission

Measurement Uncertainty: 3.08dB,k=2

ANNEX A: Detailed Test Results

A.1. Measurement Method

A.1.1. Conducted Measurements

Connect the EUT to the test system as Fig.A.1.1.1 shows.

Set the EUT to the required work mode.

Set the EUT to the required channel.

Set the Vector Signal Analyzer and start measurement.

Record the values. Vector Signal Analyzer

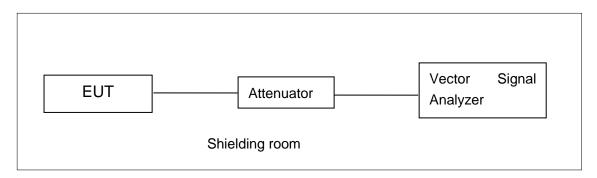


Fig.A.1.1.1: Test Setup Diagram for Conducted Measurements

A.1.2. Radiated Emission Measurements

In the case of radiated emission, the used settings are as follows, Sweep frequency from 30 MHz to 1GHz, RBW = 100 kHz, VBW = 300 kHz; Sweep frequency from 1 GHz to 26GHz, RBW = 1MHz, VBW = 10Hz;

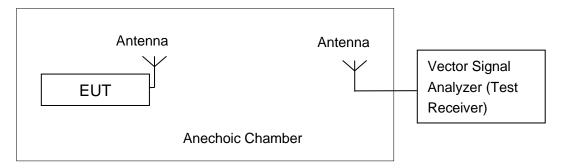


Fig.A.1.2.1: Test Setup Diagram for Radiated Measurements

A.2. Maximum Output Power

Method of Measurement: See ANSI C63.10-2013-clause 11.9.1.2

- a) Set the RBW = 1 MHz.
- b) Set the VBW = 3 MHz.
- c) Set the span \geq [1.5 \times DTS bandwidth].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select the peak detector).

Measurement Limit:

Standard	Limit (dBm)
FCC CRF Part 15.247(b)	< 30

EUT ID: EUT2

A.2.1. Peak Output Power-conducted

Measurement Results:

802.11b/g mode

	Data Rate	Test Result (dBm)			
Mode	(Mbps)	2412MHz (Ch1)	2437MHz (Ch6)	2462MHz (Ch11)	
	1	21.39	/	/	
802.11b	2	22.14	/	/	
802.110	5.5	23.54	/	/	
	11	23.97	23.87	24.43	
	6	26.46	/	/	
	9	27.17	27.22	27.13	
	12	26.03	/	/	
902.11%	18	25.81	/	/	
802.11g	24	26.53	/	/	
	36	26.26	/	1	
	48	25.27	/	1	
	54	25.73	/	1	

The data rate 11Mbps and 9Mbps are selected as worse condition, and the following cases are performed with this condition.

802.11n-HT20 mode

	Data Rate	Test Result (dBm)			
Mode	(Index)	2412MHz	2437MHz	2462MHz	
	(IIIdex)	(Ch1)	(Ch6)	(Ch11)	
	MCS0	26.64	/	/	
	MCS1	26.97	/	/	
	MCS2	27.09	27.26	27.14	
802.11n	MCS3	25.85	/	/	
(20MHz)	MCS4	26.06	/	/	
	MCS5	25.42	/	/	
	MCS6	24.99	/	/	
	MCS7	24.14	/	/	

The data rate MCS2 is selected as worse condition, and the following cases are performed with this condition.

Conclusion: Pass

A.3. Peak Power Spectral Density

Method of Measurement: See ANSI C63.10-2013-clause 11.10.2

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to RBW = 3 kHz.
- d) Set the VBW = 10 kHz.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.

Measurement Limit:

Standard	Limit
FCC CRF Part 15.247(e)	< 8 dBm/3 kHz

Measurement Results:

802.11b/g mode

Mode	Channel	Power Spectral Density (dBm/3 kHz)		Conclusion
	1	Fig.A.3.1	-5.97	Р
802.11b	6	Fig.A.3.2	-6.11	Р
	11	Fig.A.3.3	-6.09	Р
	1	Fig.A.3.4	-9.87	Р
802.11g	6	Fig.A.3.5	-10.16	Р
	11	Fig.A.3.6	-10.45	Р

802.11n-HT20 mode

Mode	Channel	Power Spectral Density (dBm/3 kHz)		Conclusion		
802.11n (HT20)	1	Fig.A.3.7	-8.27	Р		
	6	Fig.A.3.8	-8.60	Р		
	11	Fig.A.3.9	-9.43	Р		

Conclusion: Pass

Test graphs as below:

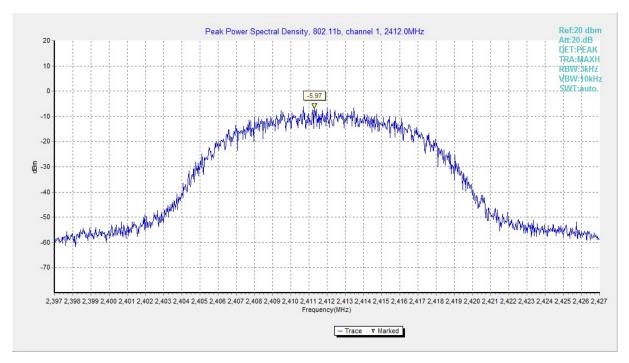


Fig.A.3.1 Power Spectral Density(802.11b,Ch1)

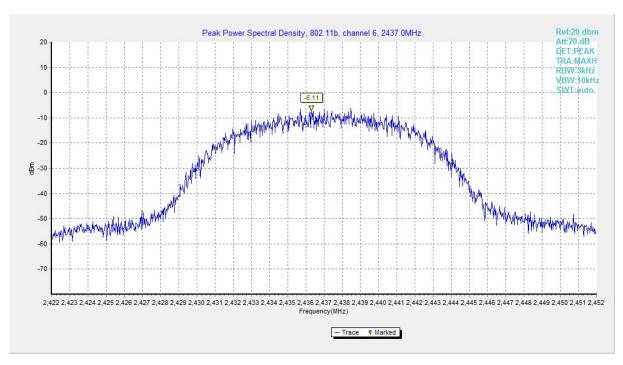


Fig.A.3.2 Power Spectral Density (802.11b, Ch 6)

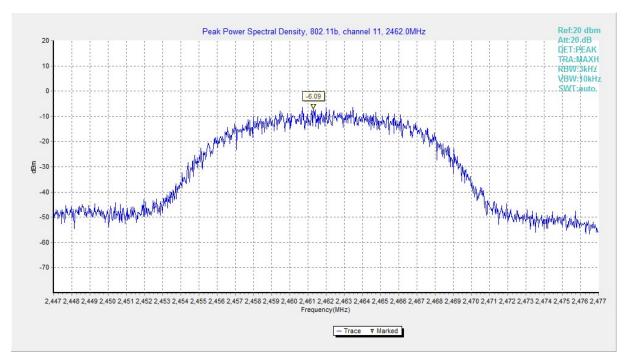


Fig.A.3.3 Power Spectral Density (802.11b, Ch 11)

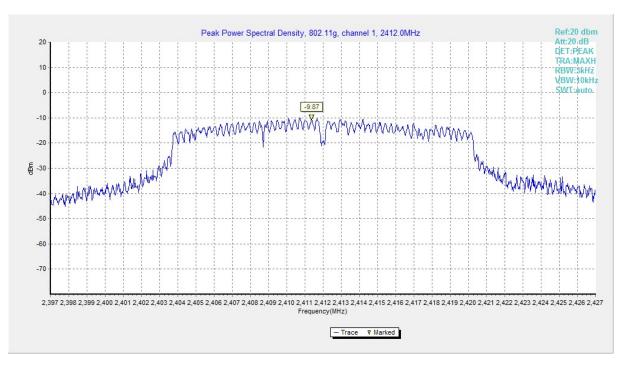


Fig.A.3.4 Power Spectral Density (802.11g, Ch 1)

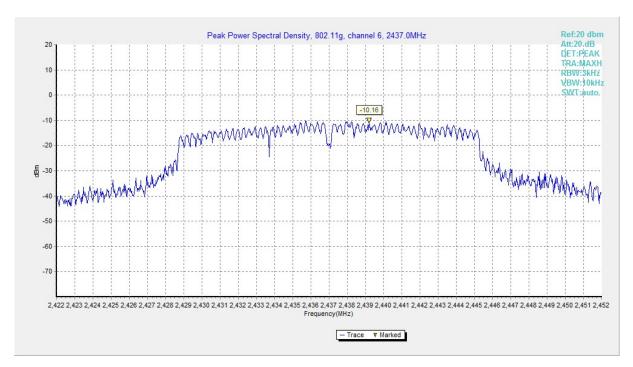


Fig.A.3.5 Power Spectral Density (802.11g, Ch 6)

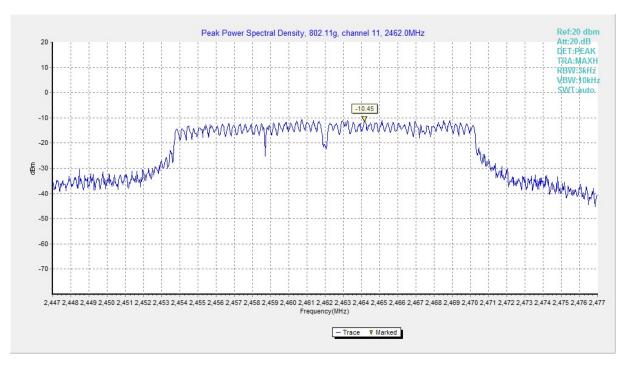


Fig.A.3.6 Power Spectral Density (802.11g, Ch 11)

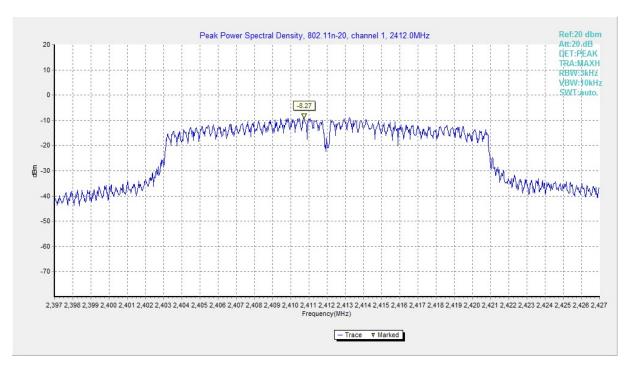


Fig.A.3.7 Power Spectral Density (802.11n-HT20, Ch 1)

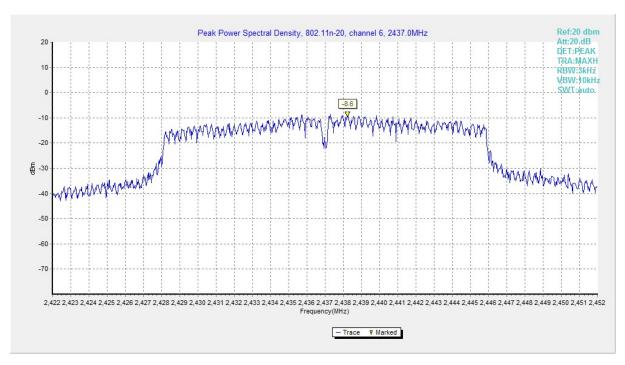


Fig.A.3.8 Power Spectral Density (802.11n-HT20, Ch 6)

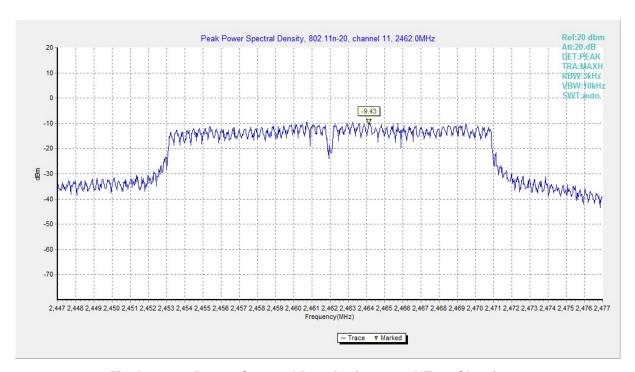


Fig.A.3.9 Power Spectral Density (802.11n-HT20, Ch 11)

A.4. DTS 6-dB Signal Bandwidth

Method of Measurement: See ANSI C63.10-2013 section 11.8.1.

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) = 300 kHz.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Measurement Limit:

Standard	Limit (kHz)
FCC 47 CFR Part 15.247 (a)	≥ 500

EUT ID: EUT2

Measurement Result:

802.11b/g mode

Mode	Channel	Occupied 6dB Bandwidth (kHz)		conclusion
	1	Fig.A.4.1	8600.00	Р
802.11b	6	Fig.A.4.2	8850.00	Р
	11	Fig.A.4.3	9500.00	Р
	1	Fig.A.4.4	16050.00	Р
802.11g	6	Fig.A.4.5	16300.00	Р
	11	Fig.A.4.6	16500.00	Р

802.11n-HT20 mode

Mode	Channel	Occupied 6dB Bandwidth (kHz)		conclusion
000 44 -	1	Fig.A.4.7	16950.00	Р
802.11n	6	Fig.A.4.8	17300.00	Р
(HT20)	11	Fig.A.4.9	17800.00	Р

Conclusion: Pass

Test graphs as below:

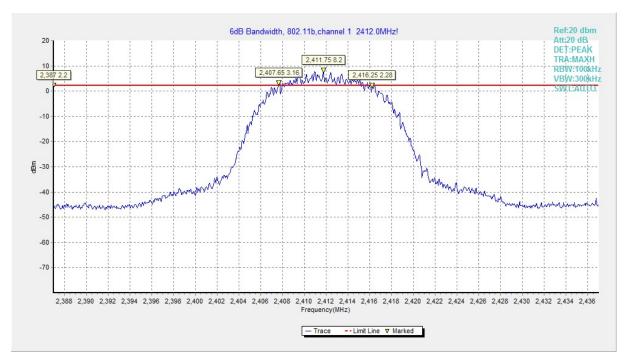


Fig.A.4.1 Occupied 6dB Bandwidth(802.11b,Ch 1)

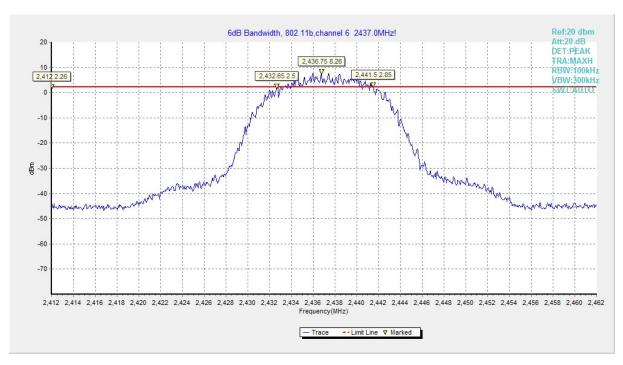


Fig.A.4.2 Occupied 6dB Bandwidth (802.11b, Ch 6)

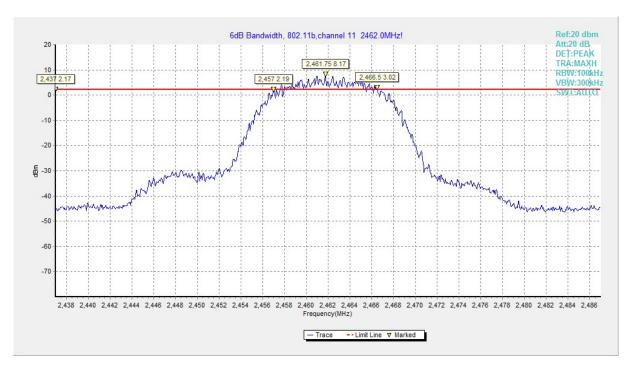


Fig.A.4.3 Occupied 6dB Bandwidth (802.11b, Ch 11)

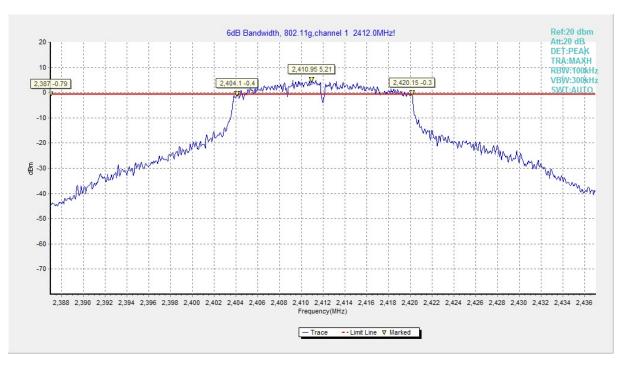


Fig.A.4.4 Occupied 6dB Bandwidth (802.11g, Ch 1)

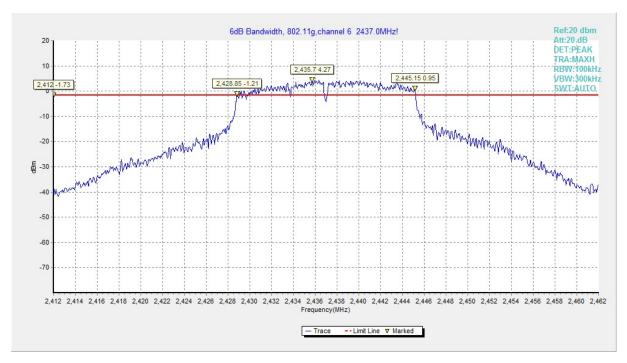


Fig.A.4.5 Occupied 6dB Bandwidth (802.11g, Ch 6)

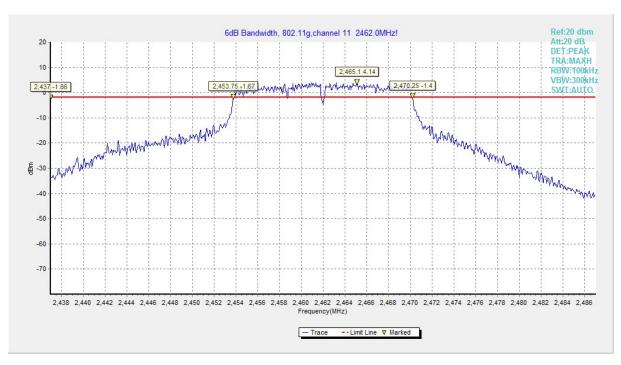


Fig.A.4.6 Occupied 6dB Bandwidth (802.11g, Ch 11)

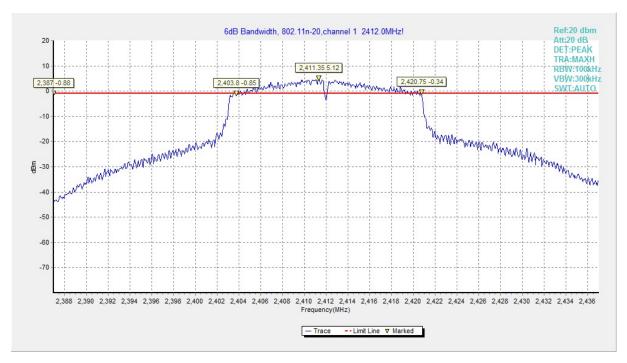


Fig.A.4.7 Occupied 6dB Bandwidth (802.11n-20MHz, Ch 1)

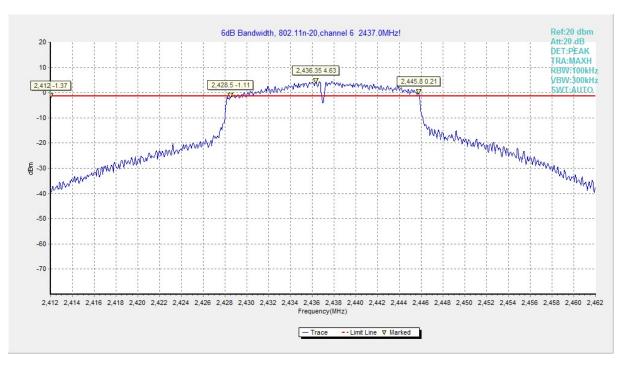


Fig.A.4.8 Occupied 6dB Bandwidth (802.11n-HT20, Ch 6)

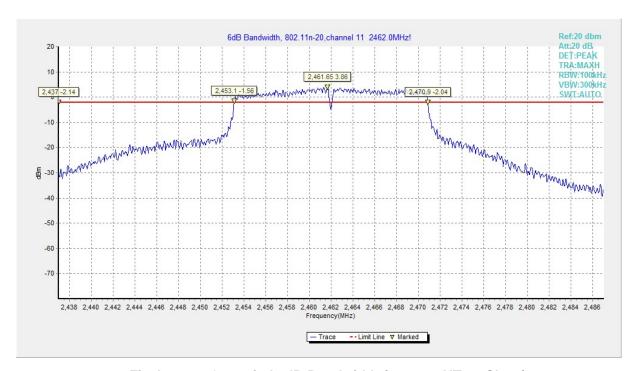


Fig.A.4.9 Occupied 6dB Bandwidth (802.11n-HT20, Ch 11)

A.5. Band Edges Compliance

Method of Measurement: See ANSI C63.10-2013-clause 6.10.4

Connect the spectrum analyzer to the EUT using an appropriate RF cable connected to the EUT output. Configure the spectrum analyzer settings as described below.

a) Set Span = 100MHzb) Sweep Time: coupledc) Set the RBW= 100 kHzc) Set the VBW= 300 kHz

d) Detector: Peake) Trace: Max hold

Measurement Limit:

Standard	Limit (dBc)
FCC 47 CFR Part 15.247 (d)	> 20

EUT ID: EUT2

Measurement Result:

802.11b/g mode

Mode	Channel	Test Results	Conclusion
902 11h	1	Fig.A.5.1.1	Р
802.11b	11	Fig.A.5.1.2	Р
802.11g	1	Fig.A.5.1.3	Р
	11	Fig.A.5.1.4	Р

802.11n-HT20 mode

Mode	Channel	Test Results	Conclusion
802.11n	1	Fig.A.5.1.5	Р
(HT20)	11	Fig.A.5.1.6	Р

Conclusion: Pass
Test graphs as below:

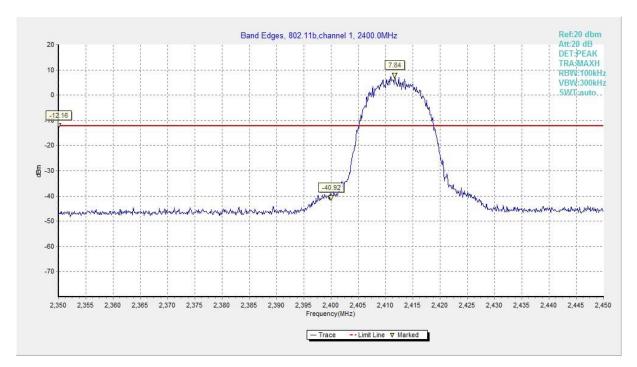


Fig.A.5.1.1 Band Edges (802.11b, Ch 1)

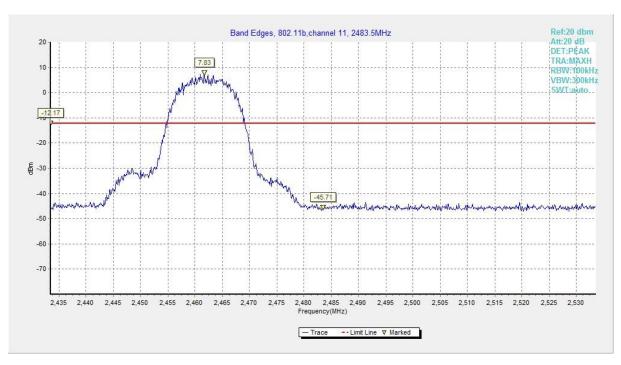


Fig.A.5.1.2 Band Edges (802.11b, Ch 11)

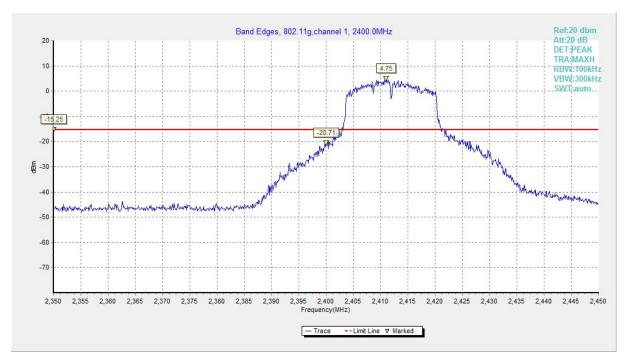


Fig.A.5.1.3 Band Edges (802.11g, Ch 1)

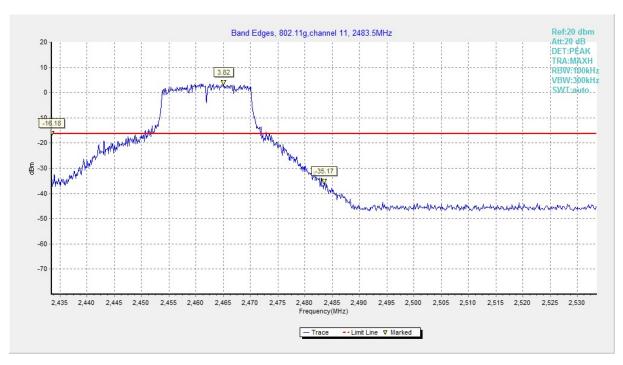


Fig.A.5.1.4 Band Edges (802.11g, Ch 11)

Fig.A.5.1.5 Band Edges (802.11n-HT20, Ch 1)

Fig.A.5.1.6 Band Edges (802.11n-HT20, Ch 11)

A.5.2 Transmitter Spurious Emission – Radiated

Method of Measurement: See ANSI C63.10-2013-clause 6.4 &6.5 & 6.6 Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247, 15.205, 15.209	20dB below peak output power

radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit in restricted band:

Frequency (MHz)	Field strength(µV/m)	Measurement distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30

Frequency of emission	Field strength(uV/m)	Field strength(dBuV/m)
(MHz)		
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

Set up:

Figure 4 shows the typical arrangement of an unlicensed wireless device on a tabletop on a test site. Tabletop devices shall be placed on a nonconducting platform with nominal top surface dimensions 1 m by 1.5 m and the table height shall be 1.5 m.

The EUT and transmitting antenna shall be centered on the turntable.

Test Condition

The EUT shall be tested 1 near top, 1 near middle, and 1 near bottom. Set the unlicensed wireless device to operate in continuous transmit mode. For unlicensed wireless devices unable to be configured for 100% duty cycle even in test mode, configure the system for the maximum duty cycle supported.

When required for unlicensed wireless devices, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage.

Exploratory radiated emissions measurements

Exploratory radiated measurements shall be performed at the measurement distance or at a closer distance than that specified for compliance to determine the emission characteristics of the EUT and, if applicable, the EUT configuration that produces the maximum level of emissions. The frequencies of maximum emission may be determined by manually positioning the antenna close

to the EUT, and then moving the antenna over all sides of the EUT while observing a spectral display. It is advantageous to have prior knowledge of the frequencies of emissions, although this may be determined from such a near-field scan. The near-field scan shall only be used to determine the frequency but not the amplitude of the emissions. Where exploratory measurements are not adequate to determine the worst-case operating modes and are used only to identify the frequencies of the highest emissions, additional preliminary tests can be required. For emissions from the EUT, the maximum level shall be determined by rotating the EUT and its antenna through 0° to 360°. For each mode of operation required to be tested, the frequency spectrum (based on findings from exploratory measurements) shall be monitored. Broadband antennas and a spectrum analyzer or a radio-noise meter with a panoramic display are often useful in this type of test. If either antenna height or EUT azimuth are not fully measured during exploratory testing, then complete testing can be required at the OATS or semi-anechoic chamber when the final full spectrum testing is performed.

Final radiated emissions measurements

The final measurements are using the orientation and equipment arrangement of the EUT based on the measurement results found during the preliminary (exploratory) measurements, the EUT arrangement, appropriate modulation, and modes of operation that produce the emissions that have the highest amplitude relative to the limit shall be selected for the final measurement. For emissions from the EUT, the maximum level shall be determined by rotating the EUT and its antenna through 0° to 360°. Final measurements for the EUT require a measurement antenna height scan of 1 m to 4 m and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations. For each mode of operation required to be tested, the frequency spectrum (based on findings from exploratory measurements) shall be monitored. For each mode selected, record the frequency and amplitude of the highest fundamental emission (if applicable), as well as the frequency and amplitude of the six highest spurious emissions relative to the limit. Emissions more than 20 dB below the limit do not need to be reported. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

The receiver references:

Frequency of emission	RBW/VBW	Sweep Time(s)
(MHz)		
30-1000	100KHz/300KHz	5
1000-4000	1MHz/3MHz	15
4000-18000	1MHz/3MHz	40
18000-26500	1MHz/3MHz	20

EUT ID: EUT4

Measurement Results:

802.11b mode

Mode	Channel	Frequency Range	Test Results	Conclusion
1		2.38GHz ~2.45GHz	Fig.A.5.2.1	Р
802.11b	11	2.45GHz ~2.5GHz	Fig.A.5.2.2	Р

802.11g mode

Mode	Channel	Frequency Range	Test Results	Conclusion
1	2.38GHz ~2.43GHz	Fig.A.5.2.3	Р	
802.11g	11	2.45GHz ~2.5GHz	Fig.A.5.2.4	Р

802.11n-HT20 mode

Mode	Channel	Frequency Range	Test Results	Conclusion
802.11n	1	2.38GHz ~2.45GHz	Fig.A.5.2.5	Р
(HT20)	11	2.45GHz ~2.5GHz	Fig.A.5.2.6	Р

Full Spectrum

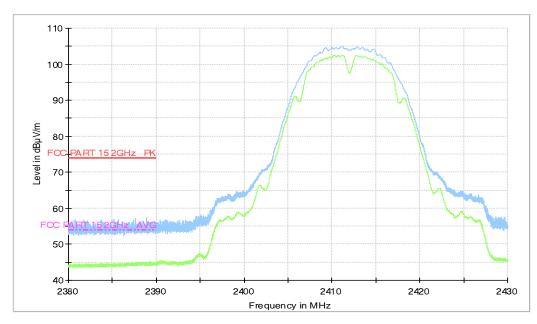


Fig.A.5.2.1 Transmitter Spurious Emission – Radiated Band edge: 802.11b, ch1, 2.38 GHz – 2.45 GHz

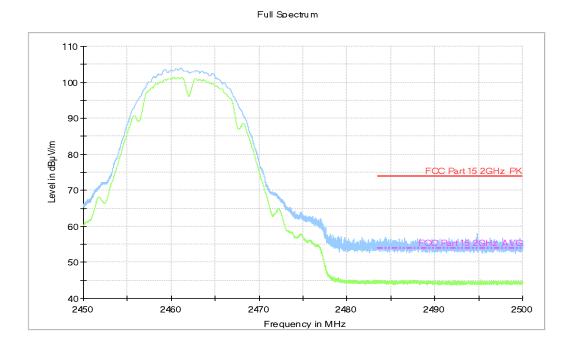


Fig.A.5.2.2Transmitter Spurious Emission - Radiated Band edge: 802.11b, ch11, 2.45 GHz - 2.50GHz

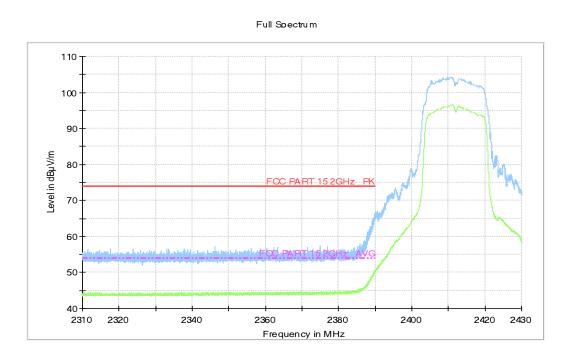


Fig.A.5.2.3 Transmitter Spurious Emission - Radiated Band edge: 802.11g, ch1, 2.38 GHz - 2.45 GHz

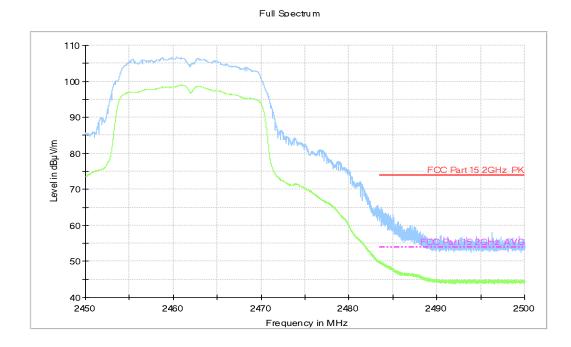


Fig.A.5.2.4Transmitter Spurious Emission - Radiated Band edge: 802.11g, ch11, 2.45 GHz - 2.50GHz

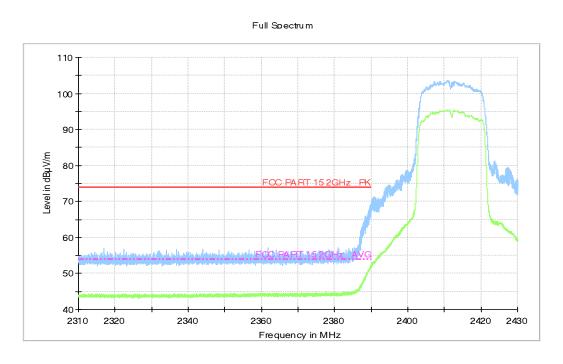


Fig.A.5.2.5Transmitter Spurious Emission - Radiated Band edge: 802.11n-HT20, ch1, 2.38 GHz - 2.45GHz

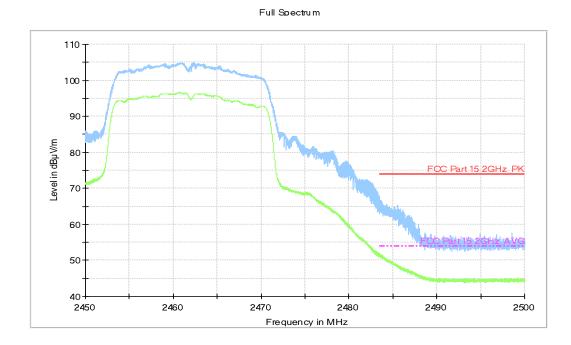


Fig.A.5.2.6 Transmitter Spurious Emission - Radiated Band edge: 802.11n-HT20, ch11, 2.45 GHz - 2.50GHz

A.6. Transmitter Spurious Emission

A.6.1 Transmitter Spurious Emission - Conducted

Method of Measurement: See ANSI C63.10-2013-clause 11.11

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency
- b) Set the span to ≥ 1.5 times the DTS bandwidth
- c) Set the RBW= 100 kHz
- d) Set the VBW= 300 kHz
- e) Detector = Peak
- f) Sweep time = auto couple
- g) Trace mode = max hold
- h) Allow trace to fully stabilize
- i) Use the peak marker function to determine the maximum PSD level

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW = 300 kHz.
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247 (d)	20dB below peak output power in 100 kHz
	bandwidth

EUT ID: EUT2

Measurement Results:

802.11b mode

MODE	Channel	Frequency Range	Test Results	Conclusion
		2.412 GHz	Fig.A.6.1.1	Р
		30 MHz ~ 1 GHz	Fig.A.6.1.2	Р
		1 GHz ~ 2.5 GHz	Fig.A.6.1.3	Р
	1	2.5 GHz ~ 7.5 GHz	Fig.A.6.1.4	Р
	ı	7.5 GHz ~ 10 GHz	Fig.A.6.1.5	Р
		10 GHz ~ 15 GHz	Fig.A.6.1.6	Р
		15 GHz ~ 20 GHz	Fig.A.6.1.7	Р
		20 GHz ~ 26 GHz	Fig.A.6.1.8	Р
		2.437 GHz	Fig.A.6.1.9	Р
		30 MHz ~ 1 GHz	Fig.A.6.1.10	Р
	6	1 GHz ~ 2.5 GHz	Fig.A.6.1.11	Р
802.11b		2.5 GHz ~ 7.5 GHz	Fig.A.6.1.12	Р
002.110		7.5 GHz ~ 10 GHz	Fig.A.6.1.13	Р
		10 GHz ~ 15 GHz	Fig.A.6.1.14	Р
		15 GHz ~ 20 GHz	Fig.A.6.1.15	Р
		20 GHz ~ 26 GHz	Fig.A.6.1.16	Р
		2.462 GHz	Fig.A.6.1.17	Р
		30 MHz ~ 1 GHz	Fig.A.6.1.18	Р
		1 GHz ~ 2.5 GHz	Fig.A.6.1.19	Р
	11	2.5 GHz ~ 7.5 GHz	Fig.A.6.1.20	Р
11	"	7.5 GHz ~ 10 GHz	Fig.A.6.1.21	Р
		10 GHz ~ 15 GHz	Fig.A.6.1.22	Р
		15 GHz ~ 20 GHz	Fig.A.6.1.23	Р
		20 GHz ~ 26 GHz	Fig.A.6.1.24	Р