

ANNEX D PROBE CALIBRATION CERTIFICATE

chmid & Partner Engineering AG ughausstrasse 43, 8004 Zurich, S	o f Switzerland	COMPACT COM	Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
ccredited by the Swiss Accreditation the Swiss Accreditation Service is ultilateral Agreement for the reco	n Service (SAS) one of the signatori gnition of calibration	es to the EA	Accreditation No.: SCS 0108
ient CTTL (Auden)		Certificate	No: AM1DV2-1064_Jul19
ALIBRATION CE	ERTIFICAT	Ξ	
bject	AM1DV2 - SN:	1064	
Calibration procedure(s)	QA CAL-24.v4 Calibration proc audio range	edure for AM1D magnetic field p	probes and TMFS in the
alibration date:	July 23, 2019		
his calibration certificate document	ts the traceability to na inties with confidence	ational standards, which realize the physical probability are given on the following pages	units of measurements (SI). and are part of the certificate.
his calibration certificate document he measurements and the uncerta Il calibrations have been conducted alibration Equipment used (M&TE	ts the traceability to na inties with confidence d in the closed laborat critical for calibration)	ational standards, which realize the physical probability are given on the following pages tory facility: environment temperature (22 ± 3	units of measurements (SI). and are part of the certificate. 3)°C and humidity < 70%.
his calibration certificate document he measurements and the uncerta Il calibrations have been conducted alibration Equipment used (M&TE rimary Standards eithley Multimeter Type 2001	ts the traceability to na inties with confidence d in the closed laborat critical for calibration)	ational standards, which realize the physical probability are given on the following pages tory facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 03-Seo-18 (No. 23488)	units of measurements (SI). and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration
his calibration certificate document he measurements and the uncerta Il calibrations have been conducted alibration Equipment used (M&TE rimary Standards eithley Multimeter Type 2001 eference Probe AM1DV2	ts the traceability to na inties with confidence d in the closed laborat critical for calibration) ID # SN: 0810278 SN: 1008	ational standards, which realize the physical probability are given on the following pages tory facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 03-Sep-18 (No. 23488) 20-Dec-18 (No. AM1DV2-1008_Dec18)	units of measurements (SI). and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Sep-19 Dec-19
his calibration certificate document he measurements and the uncerta Il calibrations have been conducted alibration Equipment used (M&TE rimary Standards eithley Multimeter Type 2001 eference Probe AM1DV2 AE4	ts the traceability to na inties with confidence d in the closed laborat critical for calibration) ID # SN: 0810278 SN: 1008 SN: 781	ational standards, which realize the physical probability are given on the following pages tory facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 03-Sep-18 (No. 23488) 20-Dec-18 (No. AM1DV2-1008_Dec18) 09-Jan-19 (No. DAE4-781_Jan19)	units of measurements (SI). and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Sep-19 Dec-19 Jan-20
nis calibration certificate document ne measurements and the uncerta Il calibrations have been conducted alibration Equipment used (M&TE rimary Standards eithley Multimeter Type 2001 eference Probe AM1DV2 AE4 econdary Standards	ts the traceability to na inties with confidence d in the closed laborat critical for calibration) ID # SN: 0810278 SN: 1008 SN: 781	ational standards, which realize the physical probability are given on the following pages tory facility: environment temperature (22 ± : Cal Date (Certificate No.) 03-Sep-18 (No. 23488) 20-Dec-18 (No. AM1DV2-1008_Dec18) 09-Jan-19 (No. DAE4-781_Jan19) Check Date (in house)	units of measurements (SI). and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Sep-19 Dec-19 Jan-20 Scheduled Check
his calibration certificate document he measurements and the uncerta Il calibrations have been conducter alibration Equipment used (M&TE rimary Standards eithley Multimeter Type 2001 teference Probe AM1DV2 IAE4 econdary Standards MCC	ts the traceability to na inties with confidence d in the closed laborat critical for calibration) ID # SN: 0810278 SN: 1008 SN: 781 ID # SN: 1050	ational standards, which realize the physical probability are given on the following pages tory facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 03-Sep-18 (No. 23488) 20-Dec-18 (No. 23488) 20-Dec-18 (No. AM1DV2-1008_Dec18) 09-Jan-19 (No. DAE4-781_Jan19) Check Date (in house) 01-Oct-13 (in house check Oct-17)	units of measurements (SI). and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Sep-19 Dec-19 Jan-20 Scheduled Check Oct-19
his calibration certificate document he measurements and the uncerta Il calibrations have been conducted calibration Equipment used (M&TE trimary Standards ceithley Multimeter Type 2001 Reference Probe AM1DV2 DAE4 cecondary Standards MCC MMI Audio Measuring Instrument	ts the traceability to na inties with confidence d in the closed laborat critical for calibration) ID # SN: 0810278 SN: 1008 SN: 781 ID # SN: 1050 SN: 1062	ational standards, which realize the physical probability are given on the following pages tory facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 03-Sep-18 (No. 23488) 20-Dec-18 (No. AM1DV2-1008_Dec18) 09-Jan-19 (No. DAE4-781_Jan19) Check Date (in house) 01-Oct-13 (in house check Oct-17) 26-Sep-12 (in house check Oct-17)	units of measurements (SI). and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Sep-19 Dec-19 Jan-20 Scheduled Check Oct-19 Oct-19
his calibration certificate document he measurements and the uncerta Il calibrations have been conducted alibration Equipment used (M&TE rimary Standards eithley Multimeter Type 2001 teference Probe AM1DV2 IAE4 econdary Standards MCC MMI Audio Measuring Instrument	ts the traceability to na inties with confidence d in the closed laborat critical for calibration) ID # SN: 0810278 SN: 1008 SN: 781 ID # SN: 1050 SN: 1062 Name	ational standards, which realize the physical probability are given on the following pages tory facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 03-Sep-18 (No. 23488) 20-Dec-18 (No. 23488) 20-Dec-18 (No. AM1DV2-1008_Dec18) 09-Jan-19 (No. DAE4-781_Jan19) Check Date (in house) 01-Oct-13 (in house check Oct-17) 26-Sep-12 (in house check Oct-17)	units of measurements (SI). and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Sep-19 Dec-19 Jan-20 Scheduled Check Oct-19 Oct-19 Oct-19
his calibration certificate document he measurements and the uncerta all calibrations have been conducted calibration Equipment used (M&TE rimary Standards ceithley Multimeter Type 2001 teference Probe AM1DV2 AAE4 secondary Standards MCC MMI Audio Measuring Instrument calibrated by:	ts the traceability to na inties with confidence d in the closed laborat critical for calibration) ID # SN: 0810278 SN: 1008 SN: 781 ID # SN: 1050 SN: 1062 Name Claudio Leubler	ational standards, which realize the physical probability are given on the following pages tory facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 03-Sep-18 (No. 23488) 20-Dec-18 (No. AM1DV2-1008_Dec18) 09-Jan-19 (No. DAE4-781_Jan19) Check Date (in house) 01-Oct-13 (in house check Oct-17) 26-Sep-12 (in house check Oct-17) Function Laboratory Technician	units of measurements (SI). and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Sep-19 Dec-19 Jan-20 Scheduled Check Oct-19 Oct-19 Oct-19
his calibration certificate document ihe measurements and the uncerta all calibrations have been conducted calibration Equipment used (M&TE Primary Standards Ceithley Multimeter Type 2001 Reference Probe AM1DV2 DAE4 Secondary Standards MCC MMI Audio Measuring Instrument Calibrated by:	ts the traceability to na inties with confidence d in the closed laborat critical for calibration) ID # SN: 0810278 SN: 1008 SN: 781 ID # SN: 1050 SN: 1050 SN: 1062 Name Claudio Leubler Katja Pokovic	ational standards, which realize the physical probability are given on the following pages tory facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 03-Sep-18 (No. 23488) 20-Dec-18 (No. 23488) 20-Dec-18 (No. AM1DV2-1008_Dec18) 09-Jan-19 (No. DAE4-781_Jan19) Check Date (in house) 01-Oct-13 (in house check Oct-17) 26-Sep-12 (in house check Oct-17) 26-Sep-12 (in house check Oct-17) Function Laboratory Technician Technical Manager	units of measurements (SI). and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Sep-19 Dec-19 Jan-20 Scheduled Check Oct-19 Oct-19 Oct-19
his calibration certificate document he measurements and the uncerta Il calibrations have been conducted alibration Equipment used (M&TE <u>rimary Standards</u> eithley Multimeter Type 2001 eference Probe AM1DV2 AE4 <u>econdary Standards</u> MCC MMI Audio Measuring Instrument alibrated by: pproved by:	ts the traceability to na inties with confidence d in the closed laborat critical for calibration) ID # SN: 0810278 SN: 008 SN: 781 ID # SN: 1008 SN: 781 ID # SN: 1050 SN: 1062 Name Claudio Leubler Katja Pokovic	ational standards, which realize the physical probability are given on the following pages tory facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 03-Sep-18 (No. 23488) 20-Dec-18 (No. AM1DV2-1008_Dec18) 09-Jan-19 (No. DAE4-781_Jan19) Check Date (in house) 01-Oct-13 (in house check Oct-17) 26-Sep-12 (in house check Oct-17) 26-Sep-12 (in house check Oct-17) Function Laboratory Technician Technical Manager	units of measurements (SI). and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Sep-19 Dec-19 Jan-20 Scheduled Check Oct-19 Oct-19 Oct-19 Signatule

Certificate No: AM1DV2-1064_Jul19

Page 1 of 3

[References

- ANSI-C63.19-2007 American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.
- [2] ANSI-C63.19-2011 American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.
- [3] DASY5 manual, Chapter: Hearing Aid Compatibility (HAC) T-Coil Extension

Description of the AM1D probe

The AM1D Audio Magnetic Field Probe is a fully shielded magnetic field probe for the frequency range from 100 Hz to 20 kHz. The pickup coil is compliant with the dimensional requirements of [1+2]. The probe includes a symmetric low noise amplifier for the signal available at the shielded 3 pin connector at the side. Power is supplied via the same connector (phantom power supply) and monitored via the LED near the connector. The 7 pin connector at the end of the probe does not carry any signals, but determines the angle of the sensor when mounted on the DAE. The probe supports mechanical detection of the surface.

The single sensor in the probe is arranged in a tilt angle allowing measurement of 3 orthogonal field components when rotating the probe by 120° around its axis. It is aligned with the perpendicular component of the field, if the probe axis is tilted nominally 35.3° above the measurement plane, using the connector rotation and sensor angle stated below. The probe is fully RF shielded when operated with the matching signal cable (shielded) and allows measurement of audio magnetic fields in the close vicinity of RF emitting wireless devices according to [1+2] without additional shielding.

Handling of the item

The probe is manufactured from stainless steel. In order to maintain the performance and calibration of the probe, it must not be opened. The probe is designed for operation in air and shall not be exposed to humidity or liquids. For proper operation of the surface detection and emergency stop functions in a DASY system, the probe must be operated with the special probe cup provided (larger diameter).

Methods Applied and Interpretation of Parameters

- Coordinate System: The AM1D probe is mounted in the DASY system for operation with a HAC Test Arch phantom with AMCC Helmholtz calibration coil according to [3], with the tip pointing to "southwest" orientation.
- Functional Test: The functional test preceding calibration includes test of Noise level RF immunity (1kHz AM modulated signal). The shield of the probe cable must be well connected. Frequency response verification from 100 Hz to 10 kHz.
- Connector Rotation: The connector at the end of the probe does not carry any signals and is used for fixation to the DAE only. The probe is operated in the center of the AMCC Helmholtz coil using a 1 kHz magnetic field signal. Its angle is determined from the two minima at nominally +120° and – 120° rotation, so the sensor in the tip of the probe is aligned to the vertical plane in z-direction, corresponding to the field maximum in the AMCC Helmholtz calibration coil.
- Sensor Angle: The sensor tilting in the vertical plane from the ideal vertical direction is determined from the two minima at nominally +120° and -120°. DASY system uses this angle to align the sensor for radial measurements to the x and y axis in the horizontal plane.
- Sensitivity: With the probe sensor aligned to the z-field in the AMCC, the output of the probe is compared to the magnetic field in the AMCC at 1 kHz. The field in the AMCC Helmholtz coil is given by the geometry and the current through the coil, which is monitored on the precision shunt resistor of the coil.

Certificate No: AM1DV2-1064_Jul19

AM1D probe identification and configuration data

Item	AM1DV2 Audio Magnetic 1D Field Probe	
Type No	SP AM1 001 AF	
Serial No	1064	

Overall length	296 mm
Tip diameter	6.0 mm (at the tip)
Sensor offset	3.0 mm (centre of sensor from tip)
Internal Amplifier	40 dB

Manufacturer / Origin Schmid & Partner Engineering AG, Zurich, Switzerland

Calibration data

Connector rotation angle	(in DASY system)	103.0°	+/- 3.6 ° (k=2)
Sensor angle	(in DASY system)	0.63°	+/- 0.5 ° (k=2)
Sensitivity at 1 kHz	(in DASY system)	0.0657 V/(A/m)	+/- 2.2 % (k=2)

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: AM1DV2-1064_Jul19

Page 3 of 3

ANNEX E DAE CALIBRATION CERTIFICATE

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

S

С

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Dient CTTL - BJ (Auden) C			Certificate No: DAE4-1555_Aug18		
ALIBRATION C	ERTIFICATE				
Dbject	DAE4 - SD 000 D04 BN - SN: 1555				
Calibration procedure(s)	QA CAL-06.v29 Calibration proced	lure for the data acquisition elec	tronics (DAE)		
alibration date:	August 20, 2018				
This calibration certificate docum The measurements and the unce All calibrations have been conduc	ents the traceability to natio rtainties with confidence pro	nal standards, which realize the physical un obability are given on the following pages an r facility: environment temperature $(22 \pm 3)^{\circ}$	its of measurements (SI). d are part of the certificate. C and humidity < 70%.		
Calibration Equipment used (M&	FE critical for calibration)				
calibration Equipment used (M&	TE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration		
Calibration Equipment used (M& <u>'rimary Standards</u> <u>'eithley Multimeter Type 2001</u>	ID # SN: 0810278	Cal Date (Certificate No.) 31-Aug-17 (No:21092)	Scheduled Calibration Aug-18		
Calibration Equipment used (M& Primary Standards Ceithley Multimeter Type 2001 Secondary Standards	FE critical for calibration) ID # SN: 0810278 ID #	Cal Date (Certificate No.) 31-Aug-17 (No:21092) Check Date (in house)	Scheduled Calibration Aug-18 Scheduled Check		
Calibration Equipment used (M& <u>Primary Standards</u> Keithley Multimeter Type 2001 <u>Secondary Standards</u> Auto DAE Calibration Unit Calibrator Box V2.1	ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 066 AA 1002	Cal Date (Certificate No.) 31-Aug-17 (No:21092) Check Date (in house) 04-Jan-18 (in house check) 04-Jan-18 (in house check)	Scheduled Calibration Aug-18 Scheduled Check In house check: Jan-19 In house check: Jan-19		
Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	Cal Date (Certificate No.) 31-Aug-17 (No:21092) Check Date (in house) 04-Jan-18 (in house check) 04-Jan-18 (in house check)	Scheduled Calibration Aug-18 Scheduled Check In house check: Jan-19 In house check: Jan-19		
Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	FE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002 Name	Cal Date (Certificate No.) 31-Aug-17 (No:21092) Check Date (in house) 04-Jan-18 (in house check) 04-Jan-18 (in house check)	Scheduled Calibration Aug-18 Scheduled Check In house check: Jan-19 In house check: Jan-19		
Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ID # ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UWS 006 AA 1002 Name Adrian Gehring	Cal Date (Certificate No.) 31-Aug-17 (No:21092) Check Date (in house) 04-Jan-18 (in house check) 04-Jan-18 (in house check) Function Laboratory Technician	Scheduled Calibration Aug-18 Scheduled Check In house check: Jan-19 In house check: Jan-19 Signature		
Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1 Calibrated by: Approved by:	 FE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002 SUMS 006 AA 1002 Adrian Gehring Sven Kühn 	Cal Date (Certificate No.) 31-Aug-17 (No:21092) Check Date (in house) 04-Jan-18 (in house check) 04-Jan-18 (in house check) 04-Jan-18 (in house check) Function Laboratory Technician	Scheduled Calibration Aug-18 Scheduled Check In house check: Jan-19 In house check: Jan-19 Signature		

Certificate No: DAE4-1555_Aug18

Page 1 of 5

No. 119Z62348-SEM02 Page 85 of 135

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

S

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a . result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1555_Aug18

Page 2 of 5

DC Voltage Measurement

A/D - Converter Reso	lution nominal			
High Range:	1LSB =	6.1μV ,	full range =	-100+300 mV
Low Range:	1LSB =	61nV ,	full range =	-1+3mV
DASY measurement	parameters: Aut	o Zero Time: 3	sec; Measuring	time: 3 sec

Calibration Factors	x	Y	Z
High Range	404.540 ± 0.02% (k=2)	404.077 ± 0.02% (k=2)	405.023 ± 0.02% (k=2)
Low Range	3.92909 ± 1.50% (k=2)	3.94558 ± 1.50% (k=2)	3.97891 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	104.0 ° ± 1 °

Certificate No: DAE4-1555_Aug18

Page 3 of 5

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	199994.32	-1.11	-0.00
Channel X	+ Input	20004.21	2.27	0.01
Channel X	- Input	-19994.21	6.72	-0.03
Channel Y	+ Input	199991.01	-4.74	-0.00
Channel Y	+ Input	19999.15	-2.66	-0.01
Channel Y	- Input	-19999.37	1.70	-0.01
Channel Z	+ Input	199997.50	1.46	0.00
Channel Z	+ Input	19998.75	-3.06	-0.02
Channel Z	- Input	-20003.08	-1.96	0.01

Low Range	- A 199	Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	2001.23	-0.12	-0.01
Channel X	+ Input	201.73	0.03	0.02
Channel X	- Input	-197.79	0.32	-0.16
Channel Y	+ Input	2001.22	0.00	0.00
Channel Y	+ Input	201.15	-0.62	-0.31
Channel Y	- Input	-198.47	-0.28	0.14
Channel Z	+ Input	2001.41	0.23	0.01
Channel Z	+ Input	200.99	-0.67	-0.33
Channel Z	- Input	-199.42	-1.11	0.56

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	-10.02	-11.33
	- 200	12.53	10.76
Channel Y	200	10.66	10.40
	- 200	-12.33	-12.29
Channel Z	200	-2.18	-2.52
	- 200	0.20	-0.09

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (µV)
Channel X	200	-	-0.85	-2.68
Channel Y	200	8.65	-	0.04
Channel Z	200	6.10	6.93	-

Certificate No: DAE4-1555_Aug18

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15635	14959
Channel Y	15850	16040
Channel Z	16635	16604

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	0.40	-0.72	1.60	0.48
Channel Y	0.06	-0.99	1.84	0.46
Channel Z	-0.76	-2.17	0.18	0.48

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	0.01	-8	-9

Certificate No: DAE4-1555_Aug18

No. I19Z62348-SEM02 Page 89 of 135

Calibration Laboratory of Schmid & Partner Engineering AG Jeughausstrasse 43, 8004 Zurich, Switzerland						
Accredited by the Swiss Accreditation Service (SAS) Accreditation No.: SCS 0108 The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates						
Client CTTL (Auden)		C	ertificate No: DAE4-1331_Feb19			
CALIBRATION C	ERTIFICATE					
Object	DAE4 - SD 000 D	04 BM - SN: 1331				
Calibration procedure(s)	QA CAL-06.v29 Calibration procedure for the data acquisition electronics (DAE)					
Calibration date:	February 06, 2019	9				
All calibrations have been conduc Calibration Equipment used (M&T	ted in the closed laboratory	papaility: are given on the rollow	ing pages and are part of the certificate. ure (22 ± 3)°C and humidity < 70%.			
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration			
Keitniey Multimeter Type 2001	SN: 0810278	03-Sep-18 (No:23488)	Sep-19			
Secondary Standards	ID #	Check Date (in house)	Scheduled Check			
Auto DAE Calibration UnitSE UWS 053 AA 100107-Jan-19 (in house check)In house check: Jan-20Calibrator Box V2.1SE UMS 006 AA 100207-Jan-19 (in house check)In house check: Jan-20						
Calibrated by:	Name Dominique Steffen	Function Laboratory Techn	Signature			
Approved by:	Sven Kühn	Deputy Manager	5.6			
This calibration certificate shall no	t be reproduced except in f	ull without written approval of th	Issued: February 6, 2019 le laboratory.			

Certificate No: DAE4-1331_Feb19

Page 1 of 5

No. I19Z62348-SEM02 Page 90 of 135

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S wiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

Glossary

DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- *DC Voltage Measurement:* Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - *Channel separation:* Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - *Input resistance:* Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - *Power consumption:* Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1331_Feb19

Page 2 of 5

DC Voltage Measurement

A/D - Converter Reso	lution nominal			
High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV,	full range =	-1+3mV
DASY measurement	parameters: Aut	o Zero Time: 3	sec; Measuring	time: 3 sec

Calibration Factors	х	Y	Z
High Range	405.242 ± 0.02% (k=2)	405.315 ± 0.02% (k=2)	405.081 ± 0.02% (k=2)
Low Range	3.95572 ± 1.50% (k=2)	3.99448 ± 1.50% (k=2)	4.01838 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	197.0 ° ± 1 °
	Light of the second second second

Certificate No: DAE4-1331_Feb19

Page 3 of 5

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	5	Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	199996.03	0.96	0.00
Channel X	+ Input	20003.08	1.84	0.01
Channel X	- Input	-19999.52	2.43	-0.01
Channel Y	+ Input	199998.14	2.99	0.00
Channel Y	+ Input	20001.08	-0.05	-0.00
Channel Y	- Input	-20002.02	-0.04	0.00
Channel Z	+ Input	199996.50	1.66	0.00
Channel Z	+ Input	19999.11	-2.09	-0.01
Channel Z	- Input	-20003.68	-1.62	0.01

Low Range		Reading (μV)	Difference (µV)	Error (%)
Channel X	+ Input	2001.08	0.43	0.02
Channel X	+ Input	200.82	-0.32	-0.16
Channel X	- Input	-198.42	0.17	-0.09
Channel Y	+ Input	2000.70	0.02	0.00
Channel Y	+ Input	200.61	-0.46	-0.23
Channel Y	- Input	-199.76	-1.08	0.54
Channel Z	+ Input	2000.97	0.31	0.02
Channel Z	+ Input	199.83	-1.19	-0.59
Channel Z	- Input	-200.44	-1.65	0.83

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	25.44	23.80
	- 200	-24.57	-26.00
Channel Y	200	4.40	4.15
	- 200	-5.34	-5.32
Channel Z	200	-0.55	-0.75
-	- 200	-1.27	-1.71

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV) Channel Y		Channel Z (µV)
Channel X	200	-	6.56	-0.39
Channel Y	200	8.71	-	7.04
Channel Z	200	7.79	6.66	

Certificate No: DAE4-1331_Feb19

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15607	16065
Channel Y	15909	15986
Channel Z	16038	16066

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

	Average (µV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)	
Channel X	0.45	-0.89	2.06	0.59	
Channel Y	-0.92	-2.20	-0.12	0.36	
Channel Z	0.53	-0.85	2.06	0.51	

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)	
Supply (+ Vcc)	+0.01	+6	+14	
Supply (- Vcc)	-0.01	-8	-9	

ANNEX F THE EVALUATION OF SPOTCHECK AND GOOGLE DUO

F.1 The spot check results

Droho Desition	Dond	Ch	Measurement	ABM1	SNR	т		
Probe Position	Band	Cn.	Position	(aB	(dB)	catogory		
			(x mm, y mm)	A/m)	(UB)	category		
transverse	GSM 850	190	-5.8,12.5	-4.19	42.16	T4		
	WCDMA1900	9400	-2.9,-4.2	-5.41	49.97	T4		
perpendicular	GSM 850	190	3.3,4.6	7.47	42.93	T4		
	WCDMA1900	9400	-0.4,6.2	5.39	51.83	T4		

Table F-1 Test results for 2/3G

Note:

- 1. Bluetooth and WiFi function is turn off and microphone is muted.
- 2. Signal strength measurement scan plots are presented in Annex B.
- 3. The volume is adjusted to maximum level during T-Coil testing.

Table F-2 Test results for LTE

Probe Position	Band	Ch.	Bandwidth	Measurement Position (x mm, y mm)	ABM1 (dB A/m)	SNR (dB)	T category
Transverse	LTE B4	20175	20M	2.5,12.5	-0.44	59.06	T4
Perpendicular	LTE B2	18900	20M	-0.4,6.2	5.47	46.48	T4

Note:

- 1. Bluetooth and WiFi function is turn off and microphone is muted.
- 2. The worse case of each band for signal strength measurement scan plots are presented in Annex B.
- 3. The volume is adjusted to maximum level during T-Coil testing.

Probe Position	Mode	Ch.	Bandwidth	Measurement Position (x mm, y mm)	ABM1 (dB A/m)	SNR (dB)	Category T ?
Transverse	802.11n	6	20M	-5.5, 9.7	-2.01	42.76	T4
Perpendicular	802.11n	6	20M	-0.9, 6.6	5.65	46.57	T4

Table F-3 Test results for WiFi

Note:

1. Bluetooth and WiFi function is turn off and microphone is muted.

2. The worse case of each mode for signal strength measurement scan plots are presented in Annex B.

3. The volume is adjusted to maximum level during T-Coil testing.

F.2 OTT VoIP test system and DUT configuration

F.2.1 Test System Setup for OTT VoIP T-coil Testing

General Note:

Regards the protocols, Google Duo, the highlighting section of the test set up, reference levels used, codec(s) and the fact that an investigation was done to determine the worst-case codec/rate documented in the test results below.

OTT VoIP Application

Google Duo is a pre-installed application on the DUT which allows for VoIP calls in a head-to-ear scenario. Duo uses the OPUS audio codec and supports a bitrate range of 6kbps to 75kbps. All air interfaces capable of a data connection were evaluated with Google Duo. When HAC testing we are using the Google Duo version is 26.0.179825522.alpha.DEV and the bitrate configuration can find at settings \rightarrow Voice call parameters settings \rightarrow Audio codec bitrate(6-75kbps).

Test Procedure and Equipment Setup

The test procedure for OTT testing is identical to the section above, except for how the signal is sent to the DUT, as outlined in the diagram below.

The AMMI is connected to the support device's Mic via Audio Data Line. The support device is connected to the Internet via Wi-Fi and the DUT is connected to the mobile base station via the technology under test. Using the DUT's OTT application, a VoIP call is established with the support device. The test signal is sent from the DASY PC to the AMMI, from the AMMI to the support device, and finally to the DUT. To exercise the license antenna, the DUT was simultaneously connected to an external AP and to a mobile base station.

Device2:

Device3:

©Copyright. All rights reserved by CTTL.

Device4:

Device5: The auxiliary device is pre-installed with a test version of Google duo app, The test version app can control the configurations of audio codec bitrate

Device6: The photo of DUT are presented in the additional document: Appendix to test report No.I19Z62348-SEM01/02 The photos of HAC test

Audio Level Settings

According to KDB 285076 D02, the average speech level of -20dBm0 shall be used for protocols not specifically listed in Table 7.1 of ANSI C63.19-2001.

Determine Input Audio level is based on the Added additional dBFS level readout by Google Duo customize application and three steps need to do.

- 1. Input a gain value to readout the -23dBFS level as reference. (0dBFS = 3.14 dBm0)
- 2. Adjust gain level to readout the dBFS level until it changes to -24dBFS.
- Based on the step 1 and 2, and then calculate the gain value(dB) by interpolation to get the -20dBm0 corresponding gain value.

Codec Bit-rate Investigation

An investigation between the various bit-rate configurations (Low/Mid/High bit rates for Narrowband, Wideband, and EVS) are documented (ABM, SNNR, frequency response) to determine the worst case bit-rate for each voice service type. The tables below compare the varying bit-rate configurations

Air Interface Investigation

Using the worst-case bit-rate and Radio Configuration found in §11.2/11.3/11.4, a limited set of bands/channel/ bandwidths were then tested to confirm that there is no effect to the T-rating when changing the band/channel/bandwidth, it is necessary to report only a set band/channel/bandwidth for each orientation for a voice service/air interface.

F.2.2 Codec Configuration

An investigation was performed for each applicable data mode to determine the audio codec configuration to be used for testing. The 6kbps codec setting was used for the audio codec on the auxiliary VoIP unit for OTT VoIP T-coil testing. See below tables for comparisons between codec data rates on all applicable data modes:

		J	-	
Codec Setting	64kbps	6kbps	Orientation	Channel
ABM1 (dBA/m)	6.75	5.15		
Frequency Response	Pass	Pass	Z(axial)	661
SNR (dB)	55.31	<mark>54.53</mark>		

Table F.2-1 Codec Investigation – OTT over EDGE

Table F.2-2 Codec Investigation – OTT over HSPA

Codec Setting	64kbps	6kbps	Orientation	Channel
ABM1 (dBA/m)	7.31	6.45		
Frequency Response	Pass	Pass	Z(axial)	9400
SNR (dB)	50.19	<mark>49.81</mark>		

Table F.2-3 Codec Investigation – OTT over LTE

Codec Setting	64kbps	6kbps	Orientation	Band/BW	Channel
ABM1 (dBA/m)	7.83	8.12			
Frequency Response	Pass	Pass	Z(axial)	B2/20M	18900
SNR (dB)	50.12	<mark>49.03</mark>			

Table F.2-4 Codec Investigation – OTT over WiFi

		-			
Codec Setting	64kbps	6kbps	Orientation	Band/BW	Channel
ABM1 (dBA/m)	5.29	7.31		2 4011-	
Frequency Response	Pass	Pass	Z(axial)	2.4GHZ	6
SNR (dB)	46.54	<mark>46.13</mark>		002.110	

F.2.3 Radio Configuration for OTT VoIP (LTE)

An investigation was performed to determine the modulation and RB configuration to be used for testing. 20MHz BW, QPSK, 1RB, 50RB offset was used for the testing as the worst-case configuration for the handset. See below table for comparisons between different radio configurations:

Bond	Channel	Bandwidth	Modulation			ABM1	SNR
Dallu	Channel	[MHz]	Modulation	RD SIZE	RD Olisel	[dB(A/m)]	[dB]
LTE B2	18900	20	QPSK	1	0	8.90	50.44
LTE B2	18900	20	QPSK	1	50	8.12	<mark>49.03</mark>
LTE B2	18900	20	QPSK	1	99	7.78	50.74
LTE B2	18900	20	QPSK	50	0	8.55	50.11
LTE B2	18900	20	QPSK	50	25	7.63	49.71
LTE B2	18900	20	QPSK	50	50	8.51	49.57
LTE B2	18900	20	QPSK	100	0	8.39	50.26
LTE B2	18900	20	16QAM	1	50	9.27	50.05
LTE B2	18900	20	64QAM	1	50	9.02	49.49
LTE B2	18900	15	QPSK	1	50	8.13	50.51
LTE B2	18900	10	QPSK	1	50	7.28	49.42
LTE B2	18900	5	QPSK	1	50	9.04	49.86
LTE B2	18900	3	QPSK	1	50	8.82	50.28
LTE B2	18900	1.4	QPSK	1	50	8.91	50.72

An investigation was performed to determine the worst-case LTE band to be used for OTT VoIP testing. LTE Band 2 of FDD were used for the testing as the worst-case configuration for the handset. See below table for comparisons between different LTE bands:

Band	Channel	Bandwidth	Modulation	RB	RB	ABM1	SNR	
	Channel	[MHz]	wooulation	Size	Offset	[dB(A/m)]	[dB]	
LTE B2	21100	20	QPSK	1	50	8.12	49.03	
LTE B4	20175	20	QPSK	1	50	7.48	<mark>48.15</mark>	
LTE B5	20525	10	QPSK	1	50	8,15	49.85	
LTE B12	23095	10	QPSK	1	50	7.72	50.11	
LTE B14	23330	10	QPSK	1	50	8.96	49.57	
LTE B30	27710	10	QPSK	1	50	8.29	49.84	

Table F.2-6 OTT VoIP (LTE) SNR by LTE bands

F.2.4 Radio Configuration for OTT VoIP (WiFi)

An investigation was performed on all applicable data rates and modulations to determine the radio configuration to be used for testing. See below tables for comparisons between different radio configurations in each 802.11 standard:

				-	
Mode	Channel	Modulation	Data Rate [Mbps]	ABM1 [dB(A/m)]	SNR [dB]
802.11b	6	DSSS	1	7.31	46.13
802.11b	6	DSSS	2	6.05	<mark>45.91</mark>
802.11b	6	CCK	5.5	6.29	46.37
802.11b	6	ССК	11	7.17	46.48

Table F.2-7 802.11b SNR by Radio Configuration

Table F.2-8 802.11g SNR by Radio Configuration hannel Modulation Data Rate [Mbns] ABM1 [dB(A/m)]

Mode	Channel	Modulation	Data Rate [Mbps]	ABM1 [dB(A/m)]	SNR [dB]
802.11g	6	BPSK	6	6.47	47.21
802.11g	6	BPSK	9	7.93	47.14
802.11g	6	QPSK	12	7.70	<mark>46.60</mark>
802.11g	6	QPSK	18	6.89	47.35
802.11g	6	16-QAM	24	7.88	47.46
802.11g	6	16-QAM	36	6.99	47.41
802.11g	6	64-QAM	48	6.76	47.86
802.11g	6	64-QAM	54	7.74	46.75

Table F.2-9 802.11n 20MHz BW SNR by Radio Configuration

Mada	Bandwidth	Channel	Modulation	Data Rate	ABM1	SNR
Mode	[MHz]	Channel	wouldtion	[Mbps]	[dB(A/m)]	[dB]
802.11n	20	6	BPSK	6.5	7.67	47.88
802.11n	20	6	QPSK	13	7.71	47.13
802.11n	20	6	QPSK	19.5	7.15	47.16
802.11n	20	6	16-QAM	26	6.74	47.39
802.11n	20	6	16-QAM	39	7.62	47.64
802.11n	20	6	64-QAM	52	6.96	47.85
802.11n	20	6	64-QAM	58.5	6.46	47.17
802.11n	20	6	64-QAM	65	8.07	<mark>47.11</mark>

F.2.5 Test results for OTT VoIP

Table F.2-10 Test results for 2/3G

Probe Position	Band	Ch.	Measurement Position (x mm, y mm)	ABM1 (dB A/m)	SNR (dB)	Category T ?
	EDGE850(2TX)	190	1.2,8.4	-2.31	50.16	T4
	EDGE1900(2TX)	661	0.8,14.6	-1.11	49.98	T4
Transverse	W850	4407	0.2,-3.9	-0.98	52.18	T4
	W1900	9800	0.8, -4.2	-1.45	53.27	T4
	W1700	1637	-4.2,-4.2	-1.08	49.21	T4
	EDGE850(2TX)	190	-0.9,7.1	5.34	52.31	T4
Perpendicular	EDGE1900(2TX)	661	-0.4,6.2	5.15	54.53	T4
	W850	4407	-1.1,5.6	4.31	50.26	T4
	W1900	9800	-0.4,7.1	6.45	49.81	T4
	W1700	1637	-1.2,4.6	6.74	49.10	T4

Note:

1. Bluetooth and WiFi function is turn off and microphone is muted.

2. Signal strength measurement scan plots are presented in Annex B.

3. The volume is adjusted to maximum level during T-Coil testing.

Table F.2-11 Test results for LTE

Probe Position	Band	Ch.	Band width	Measurement Position (x mm, y mm)	ABM1 (dB A/m)	SNR (dB)	Category T ?
Transverse	LTE B4	20175	20	-7.5,-4.2	-6.45	42.76	T4
Perpendicular	LTE B4	20175	20	0,8.3	7.48	48.15	T 4

Note:

1. Bluetooth and WiFi function is turn off and microphone is muted.

2. The worse case of each band for signal strength measurement scan plots are presented in Annex B.

3. The volume is adjusted to maximum level during T-Coil testing.

|--|

Probe Position	Mode	Ch.	Bandwidth	Measurement Position (x mm, y mm)	ABM1 (dB A/m)	SNR (dB)	Category T ?
Transverse	802.11b	6	20M	-5,9.2	-1.07	39.69	T4
	802.11g	6	20M	-4.2,8.7	-2.11	40.47	T4
	802.11n	6	20M	-3.6,9.1	-1.31	40.23	T4
Perpendicular	802.11b	6	20M	-4.2,5	6.05	45.91	T4
	802.11g	6	20M	0.4,4.6	7.70	46.60	T4
	802.11n	6	20M	-2.7,4.1	8.07	47.11	T4

Note:

1. Bluetooth and WiFi function is turn off and microphone is muted.

2. The worse case of each mode for signal strength measurement scan plots are presented in Annex B.

3. The volume is adjusted to maximum level during T-Coil testing.

©Copyright. All rights reserved by CTTL.

F.3 Test plots of spot check

T-Coil GSM 850 Transverse Date: 2020-1-15 Electronics: DAE4 Sn1331 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature:22.5°C Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Probe: AM1DV2 - 1064;

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50/ABM Interpolated

Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 37.15 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm

Cursor: ABM1 = -0.06 dBA/m BWC Factor = 0.16 dB Location: 3.8, 12.9, 3.7 mm

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50/ABM Interpolated

SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 37.15 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 42.16 dB ABM1 comp = -4.19 dBA/m BWC Factor = 0.16 dB Location: -5.8, 12.5, 3.7 mm

No. I19Z62348-SEM02 Page 104 of 135

0 dB = 0.9935 A/m = -0.06 dBA/m

Fig F.3.1 T-Coil GSM 850

T-Coil GSM 850 Perpendicular

Date: 2020-1-15 Electronics: DAE4 Sn1331 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature:22.5°C Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Probe: AM1DV2 - 1064;

T-Coil/General Scans/z (axial) 4.2mm 50 x 50 12.2kbps/ABM Interpolated

Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 37.15 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 7.55 dBA/m BWC Factor = 0.16 dB Location: 3.8, 4.2, 3.7 mm

T-Coil/General Scans/z (axial) 4.2mm 50 x 50 12.2kbps/ABM Interpolated

SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 37.15 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm

Cursor: ABM1/ABM2 = 42.93 dB ABM1 comp = 7.47 dBA/m BWC Factor = 0.16 dB Location: 3.3, 4.6, 3.7 mm

No. I19Z62348-SEM02 Page 106 of 135

0 dB = 2.385 A/m = 7.55 dBA/m

Fig F.3.2 T-Coil GSM 850

T-Coil WCDMA 1900 Transverse Date: 2020-1-15 Electronics: DAE4 Sn1331

Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature:22.5°C Communication System: WCDMA 1900; Frequency: 1880 MHz; Duty Cycle: 1:1 Probe: AM1DV2 - 1064;

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50/ABM Interpolated

Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 37.15 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = -0.29 dBA/m BWC Factor = 0.16 dB Location: 3.3, 12.9, 3.7 mm

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50/ABM Interpolated

SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 37.15 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm

Cursor: ABM1/ABM2 = 49.97 dB ABM1 comp = -5.41 dBA/m BWC Factor = 0.16 dB Location: -2.9, -4.2, 3.7 mm

No. I19Z62348-SEM02 Page 108 of 135

0 dB = 0.9673 A/m = -0.29 dBA/m

Fig F.3.3 T-Coil WCDMA 1900

T-Coil WCDMA 1900 Perpendicular Date: 2020-1-15 Electronics: DAE4 Sn1331 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature:22.5°C Communication System: WCDMA 1900; Frequency: 1880 MHz; Duty Cycle: 1:1 Probe: AM1DV2 - 1064;

T-Coil/General Scans/z (axial) 4.2mm 50 x 50 12.2kbps/ABM Interpolated

Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 37.15 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 7.30 dBA/m BWC Factor = 0.16 dB Location: 3.8, 3.3, 3.7 mm

T-Coil/General Scans/z (axial) 4.2mm 50 x 50 12.2kbps/ABM Interpolated

SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 37.15 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 51.83 dB ABM1 comp = 5.39 dBA/m BWC Factor = 0.16 dB Location: -0.4, 6.2, 3.7 mm

No. I19Z62348-SEM02 Page 110 of 135

0 dB = 2.316 A/m = 7.30 dBA/m

Fig F.3.4 T-Coil WCDMA 1900

T-Coil LTE B4 20M Transverse

Date: 2020-1-15 Electronics: DAE4 Sn1331 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature:22.5°C Communication System: LTE B4; Frequency: 1732.5 MHz; Duty Cycle: 1:1 Probe: AM1DV2 - 1064;

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50 20M/ABM

Interpolated Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 100 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = -0.43 dBA/m BWC Factor = 0.16 dB Location: 2.9, 12.5, 3.7 mm

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50 20M/ABM

Interpolated SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 100 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 59.06 dBABM1 comp = -0.44 dBA/m

BWC Factor = 0.16 dB Location: 2.5, 12.5, 3.7 mm

 $0 \, dB = 0.9519 \, A/m = -0.43 \, dBA/m$

Fig F.3.5 T-Coil LTE B4

T-Coil LTE B2 20M Perpendicular

Date: 2020-1-15 Electronics: DAE4 Sn1331 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature:22.5°C Communication System: LTE B2; Frequency: 1880 MHz; Duty Cycle: 1:1 Probe: AM1DV2 - 1064;

T-Coil/General Scans/z (axial) 4.2mm 50 x 50 20M/ABM Interpolated

Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 100 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm

Cursor: ABM1 = 7.45 dBA/m BWC Factor = 0.16 dB Location: 3.3, 2.9, 3.7 mm

T-Coil/General Scans/z (axial) 4.2mm 50 x 50 20M/ABM Interpolated

SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 100 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm

Cursor: ABM1/ABM2 = 46.48 dB ABM1 comp = 5.47 dBA/m

BWC Factor = 0.16 dB Location: -0.4, 6.2, 3.7 mm

0 dB = 2.358 A/m = 7.45 dBA/m

Fig F.3.6 T-Coil LTE B2

T-Coil WiFi-2.4G 11n Transverse

Date: 2020-1-15 Electronics: DAE4 Sn1331 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature:22.5°C Communication System: WiFi-2.4G; Frequency: 2437 MHz; Duty Cycle: 1:1 Probe: AM1DV2 - 1064;

y (transversal) 4.2mm 50 x 50/ABM Interpolated Signal(x,y,z)

(121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 100 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 1.97 dBA/m BWC Factor = 0.16 dB Location: 3.3, 12.1, 3.7 mm

y (transversal) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 100 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm

Cursor: ABM1/ABM2 = 42.76 dB ABM1 comp = -2.01 dBA/m BWC Factor = 0.16 dB Location: -5.5, 9.7, 3.7 mm

No. I19Z62348-SEM02 Page 116 of 135

Fig F.3.7 T-Coil WiFi-2. 4G

T-Coil WiFi-2.4G 11n Perpendicular

Date: 2020-1-15 Electronics: DAE4 Sn1331 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature:22.5°C Communication System: WiFi-2.4G; Frequency: 2437 MHz; Duty Cycle: 1:1 Probe: AM1DV2 - 1064;

z (axial) 4.2mm 50 x 50/ABM Interpolated Signal(x,y,z) (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 100 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 9.91 dBA/m BWC Factor = 0.16 dB Location: 4.2, 0.8, 3.7 mm

z (axial) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 100 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm

Cursor: ABM1/ABM2 = 46.57 dB ABM1 comp = 5.65 dBA/m BWC Factor = 0.16 dB Location: -0.9, 6.6, 3.7 mm

No. I19Z62348-SEM02 Page 118 of 135

0 dB = 3.130 A/m = 9.91 dBA/m

Fig F.3.8 T-Coil WiFi-2.4G

F.4 Test plots of Google duo

T-Coil WCDMA 1700 Transverse Date: 2020-1-15 Electronics: DAE4 Sn1331 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature:22.5°C Communication System: WCDMA 1700; Frequency: 1732.4 MHz; Duty Cycle: 1:1 Probe: AM1DV2 - 1064;

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50/ABM Interpolated

Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 37.15 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm

Cursor: ABM1 = 4.19 dBA/m BWC Factor = 0.16 dB Location: 3.8, 13.3, 3.7 mm

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50/ABM Interpolated

SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 37.15 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 49.21 dB ABM1 comp = -1.08 dBA/m BWC Factor = 0.16 dB Location: -4.2, -4.2, 3.7 mm

No. I19Z62348-SEM02 Page 120 of 135

0 dB = 1.620 A/m = 4.19 dBA/m

Fig F.4.1 T-Coil WCDMA 1700

T-Coil WCDMA 1700 Perpendicular Date: 2020-1-15 Electronics: DAE4 Sn1331 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature:22.5°C Communication System: WCDMA 1700; Frequency: 1732.4 MHz; Duty Cycle: 1:1 Probe: AM1DV2 - 1064;

T-Coil/General Scans/z (axial) 4.2mm 50 x 50 4.75kbps/ABM Interpolated

Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 37.15 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 8.13 dBA/m BWC Factor = 0.16 dB Location: 2.5, 3.3, 3.7 mm

T-Coil/General Scans/z (axial) 4.2mm 50 x 50 4.75kbps/ABM Interpolated

SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 37.15 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 49.10 dB ABM1 comp = 6.74 dBA/m BWC Factor = 0.16 dB Location: -1.2, 4.6, 3.7 mm

No. I19Z62348-SEM02 Page 122 of 135

0 dB = 2.550 A/m = 8.13 dBA/m

Fig F.4.2 T-Coil WCDMA 1700

T-Coil LTE B4 20M Transverse

Date: 2020-1-15 Electronics: DAE4 Sn1331 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature:22.5°C Communication System: LTE B4; Frequency: 1732.5 MHz; Duty Cycle: 1:1 Probe: AM1DV2 - 1064;

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50 20M/ABM

Interpolated Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 100 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 1.69 dBA/m BWC Factor = 0.16 dB Location: 0.4, 13.7, 3.7 mm

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50 20M/ABM

Interpolated SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 100 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 42.76 dBABM1 comp = -6.45 dBA/m

BWC Factor = 0.16 dB Location: -7.5, -4.2, 3.7 mm

0 dB = 1.215 A/m = 1.69 dBA/m

Fig F.4.3 T-Coil LTE B4

T-Coil LTE B4 10M Perpendicular

Date: 2020-1-15 Electronics: DAE4 Sn1331 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature:22.5°C Communication System: LTE B4; Frequency: 1732.5 MHz; Duty Cycle: 1:1 Probe: AM1DV2 - 1064;

T-Coil/General Scans/z (axial) 4.2mm 50 x 50 20M/ABM Interpolated

Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 100 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm

Cursor: ABM1 = 10.36 dBA/m BWC Factor = 0.16 dB Location: 3.3, 4.2, 3.7 mm

T-Coil/General Scans/z (axial) 4.2mm 50 x 50 20M/ABM Interpolated

SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 100 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm

Cursor: ABM1/ABM2 = 48.15 dB ABM1 comp = 7.48 dBA/m

BWC Factor = 0.16 dB Location: 0, 8.3, 3.7 mm

0 dB = 3.297 A/m = 10.36 dBA/m

Fig F.4.4 T-Coil LTE B4

T-Coil WiFi-2.4G 11b Transverse Date: 2020-1-15 Electronics: DAE4 Sn1331 Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature:22.5°C Communication System: WiFi-2.4G; Frequency: 2437 MHz; Duty Cycle: 1:1 Probe: AM1DV2 - 1064;

y (transversal) 4.2mm 50 x 50/ABM Interpolated Signal(x,y,z)

(121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 100 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 1.19 dBA/m BWC Factor = 0.16 dB Location: 4.6, 10.8, 3.7 mm

y (transversal) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 100 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm

Cursor: ABM1/ABM2 = 39.69 dB ABM1 comp = -1.07 dBA/m BWC Factor = 0.16 dB Location: -5, 9.2, 3.7 mm

No. I19Z62348-SEM02 Page 128 of 135

0 dB = 1.147 A/m = 1.19 dBA/m

Fig F.4.5 T-Coil WiFi-2. 4G

T-Coil WiFi-2.4G 11b Perpendicular

Date: 2020-1-15 Electronics: DAE4 Sn1331 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature:22.5°C Communication System: WiFi-2.4G; Frequency: 2437 MHz; Duty Cycle: 1:1 Probe: AM1DV2 - 1064;

z (axial) 4.2mm 50 x 50/ABM Interpolated Signal(x,y,z) (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 100 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 9.08 dBA/m BWC Factor = 0.16 dB Location: 4.6, 4.2, 3.7 mm

z (axial) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 100 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm

Cursor: ABM1/ABM2 = 45.91 dB ABM1 comp = 6.05 dBA/m BWC Factor = 0.16 dB Location: -4.2, 5, 3.7 mm

No. I19Z62348-SEM02 Page 130 of 135

0 dB = 2.846 A/m = 9.08 dBA/m

Fig F.4.6 T-Coil WiFi-2.4G

F.5 Frequency respond curves of spot check

Figure F.5.1 Frequency Response of GSM 850

©Copyright. All rights reserved by CTTL.

General Scans/z (axial) wideband at best S/N 20M/ABM Freq Resp(x,y,z,f) Loc: 0, 4.2, 3.7 mm Diff: 1.01dB

Figure F.5.4 Frequency Response of WiFi 2.4G

Figure F.6.1 Frequency Response of WCDMA 1700

Figure F.6.2 Frequency Response of LTE B4

General Scans/z (axial) wideband at best S/N 10M/ABM Freq Resp(x,y,z,f) Loc: 0, 4.2, 3.7 mm Diff: 1.97dB

Figure F.6.3 Frequency Response of WiFi 2.4G

The photos of HAC test are presented in the additional document:

Appendix to test report no. I19Z62348-SEM01/02

The photos of HAC test