9. RF EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of $\S 2.1093$ of this chapter.

Table 1-Limits for Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A / m)	Power density ($\mathrm{mW} / \mathrm{cm}^{2}$)	Averaging time (minutes)
(A) Limits for Occupational/Controlled Exposures				
0.3-3.0	614	1.63	${ }^{*}(100)$	6
3.0-30	18427	4.897	${ }^{*}\left(900 \mathrm{f}^{2}\right)$	6
30-300	61.4	0.163	1.0	6
300-1500	f/300	6
1500-100,000			5	6
(B) Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	${ }^{*}(100)$	30
1.34-30	824\%	2.197	${ }^{*}\left(180 f^{2}\right)$	30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A / m)	Power density (mW/cm²)	Averaging time (minutes)
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000	,	1.0	30

[^0]* $=$ Plane-wave equivalent power density

NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for oocupationalcontrolled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.
NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5
Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms $(\mathrm{V} / \mathrm{m})$	3 Magnetic Field Strength; rms $(\mathrm{A} / \mathrm{m})$	4 Power Density $\left(\mathrm{W} / \mathrm{m}^{2}\right)$	5 Averaging Time (min)
$0.003-1$	280	2.19		6
$1-10$	$280 / f$	$2.19 / f$		6
$10-30$	28	$2.19 / f$		6
$30-300$	28	0.073	2^{*}	6
$300-1500$	$1.585 f^{0.5}$	$0.0042 f^{0.5}$	$f / 150$	6
$1500-15000$	61.4	0.163	10	6
$15000-150000$	61.4	0.163	10	$616000 / f^{1.2}$
$150000-300000$	$0.158 f^{0.5}$	$4.21 \times 10^{-4} f^{0.5}$	$6.67 \times 10^{-5} f$	$616000 / f^{1.2}$

* Power density limit is applicable at frequencies greater than 100 MHz .

Notes: 1. Frequency, f, is in MHz .
2. A power density of $10 \mathrm{~W} / \mathrm{m}^{2}$ is equivalent to $1 \mathrm{~mW} / \mathrm{cm}^{2}$.
3. A magnetic field strength of $1 \mathrm{~A} / \mathrm{m}$ corresponds to 1.257 microtesla $(\mu \mathrm{T})$ or 12.57 milligauss (mG).

CALCULATIONS

Peak EIRP is converted to Power Density using the equation:
$P_{D}=\operatorname{EIRP} /\left(4^{*} \mathrm{Pi}^{*} \mathrm{D}_{\mathrm{s}}{ }^{\wedge} 2\right)$
where:
D_{S} is the separation distance

RESULTS

$\left.$| Peak |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EIRP |
| (dBm) | | Peak |
| :---: |
| EIRP |
| (\mathbf{W}) | | Separation |
| :---: |
| Distance |
| (cm) | | Power |
| :---: |
| Density |
| $\left(\mathbf{W} / \mathbf{m}^{\wedge} \mathbf{2}\right)$ | | IC |
| :---: |
| Limit |
| $\left(\mathbf{W} / \mathbf{m}^{\wedge} \mathbf{2}\right)$ | | Power |
| :---: |
| Density |
| $\left(\mathbf{m W} / \mathbf{c m}^{\wedge} \mathbf{2}\right)$ | | FCC |
| :---: |
| Limit |
| $\left(\mathbf{m W} / \mathbf{c m}^{\wedge} \mathbf{2}\right)$ | \right\rvert\,

[^0]: $\mathrm{f}=$ frequency in MHz

