

MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358

Web: www.mrt-cert.com

Report No.:2304RSU033-U1 Report Version: V02 Issue Date: 2023-08-09

RF MEASUREMENT REPORT

FCC ID: XCO-SR1020

Applicant: Hansong(Nanjing) Technology Ltd.

Product: UWB Module

Model No.: SR1020

FCC Classification: Ultra Wideband Transmitter

FCC Rule Part(s): Part 15 Subpart F (Section 15.519)

Received Date: 2023-04-23

Test Date: 2023-05-22 ~ 2023-06-06

Approved By:

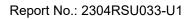
Reviewed By:

Kevin Guo

Robin Wu

Robin Wu

Robin Wu


Reviewed By:

The test results relate only to the samples tested.

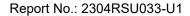
This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Template Version:0.0 1 of 35

Revision History

Report No.	Version	Description	Issue Date	Note
2304RSU033-U1	V01	Initial Report	2023-07-25	Invalid
2304RSU033-U1	V02	Add product info	2023-08-09	Valid



CONTENTS

Des	cription		Page
1.	Gener	ral Information	5
	1.1.	Applicant	5
	1.2.	Manufacturer	5
	1.3.	Testing Facility	5
	1.4.	Product Information	6
	1.5.	Radio Specification under Test	6
2.	Test C	Configuration	7
	2.1.	Test System Connection Diagram	7
	2.2.	Applied Standards	7
	2.3.	Test Environment Condition	7
3.	Meası	uring Instrument	8
4.	Anten	ına Requirements	9
5.	Meası	urement Uncertainty	10
	5.1.	Decision Rules	10
	5.2.	Measurement Uncertainty	10
6.	Test R	Result	11
	6.1.	Summary	11
	6.2.	UWB Bandwidth & 99% Bandwidth Measurement	12
	6.2.1.	Test Limit	12
	6.2.2.	Test Procedure	12
	6.2.3.	Test Setting	13
	6.2.4.	Test Setup	14
	6.2.5.	Test Result	14
	6.3.	Average Transmit Power and Peak Power Density	15
	6.3.1.	Test Limit	15
	6.3.2.	Test Procedure	15
	6.3.3.	Test Setting	15
	6.3.4.	Test Setup	16
	6.3.5.	Test Result	16
	6.4.	Radiated Spurious Emission Measurement	17
	6.4.1.	Test Limit	17
	6.4.2.	Test Procedure	18
	6.4.3.	Test Setting	18
	6.4.4.	Test Setup	19
	6.4.5.	Test Result	21

6.5.	Radiated Spurious Emission in GPS Band Measurement	22
6.5.1	. Test Limit	22
6.5.2	. Test Procedure	22
6.5.3	. Test Setting	23
6.5.4	. Test Setup	24
6.5.5	. Test Result	24
6.6.	AC Conducted Emissions Measurement	25
6.6.1	. Test Limit	25
6.6.2	. Test Setup	25
6.6.3	. Test Result	25
Appendix	A - Test Result	26
A.1	UWB Bandwidth & 99% Bandwidth Test Result	26
A.2	Average Transmit Power and Peak Power Density Test Result	28
A.3	Radiated Spurious Emission Test Result	30
A.4	Radiated Spurious Emission in GPS Band Test Result	33
Appendix	B - Test Setup Photograph	34
Appendix	C - EUT Photograph	35

1. General Information

1.1. Applicant

Hansong(Nanjing) Technology Ltd.

8th Kangping Road, Jiangning Economy and Technology Development Zone, Nanjing, 211100, China

1.2. Manufacturer

Hansong(Nanjing) Technology Ltd.

8th Kangping Road, Jiangning Economy and Technology Development Zone, Nanjing, 211100, China

1.3. Testing Facility

\boxtimes	Test Site – MRT Suzhou Laboratory					
	Laboratory Location (Suzhou – Wuzhong)					
	D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China					
	Laboratory Location (Suzhou – SIP)					
	4b Building, Liand	o U Valley, No.200	Xingpu Rd., Shengpu	ı Town, Suzhou Indu	strial Park, China	
	Laboratory Accre	editations				
	A2LA: 3628.01		CNAS	5: L10551		
	FCC: CN1166		ISED:	CN0001		
	VCCI	□R-20025	□G-20034	□C-20020	□T-20020	
	VCCI:	□R-20141	□G-20134	□C-20103	□T-20104	
	Test Site - MRT S	Shenzhen Laborat	tory			
	Laboratory Locat	tion (Shenzhen)				
	1G, Building A, Ju	nxiangda Building,	Zhongshanyuan Roa	d West, Nanshan Di	strict, Shenzhen, China	
	Laboratory Accre	editations				
	A2LA: 3628.02		CNAS	: L10551		
	FCC: CN1284		ISED:	CN0105		
	Test Site – MRT Taiwan Laboratory					
	Laboratory Location (Taiwan)					
	No. 38, Fuxing 2 nd Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)					
	Laboratory Accreditations					
	TAF: L3261-19072	 25				
	FCC: 291082, TW	3261	ISED:	TW3261		

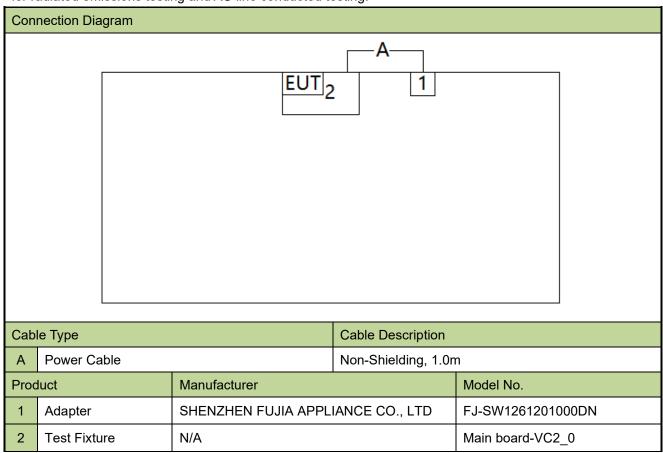
1.4. Product Information

Product Name	UWB Module	
Model No.	SR1020	
UWB Specification	7270MHz	
Sample No.	20230420Sample#03	
Power Type	DC Source	

Notes:

- 1. The information of EUT was provided by the manufacturer, and the accuracy of the information shall be the responsibility of the manufacturer.
- 2. The UWB module will be used into the indoor device, declared by the applicant.

1.5. Radio Specification under Test


Operation Frequency	7270MHz
Channel Number	1
Type of modulation	2BPPM
Antenna Type	Monopole Antenna
Antenna Gain	1.8dBi

2. Test Configuration

2.1. Test System Connection Diagram

The device was tested per the guidance ANSI C63.10: 2013 was used to reference the appropriate EUT setup for radiated emissions testing and AC line conducted testing.

2.2. Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15.519
- 393764 D01 UWB FAQ v02r01
- ANSI C63.10-2013

2.3. Test Environment Condition

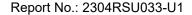
Ambient Temperature	15 ~ 35°C	
Relative Humidity	20 ~ 75%RH	

3. Measuring Instrument

Instrument	Manufacturer	Model No.	Asset No.	Cali. Interval	Cali. Due Date	Test Site
EMI Test Receiver	R&S	ESR3	MRTSUE06185	1 year	2023-12-28	SIP-AC1
Anechoic Chamber	RIKEN	SIP-AC1	MRTSUE06554	1 year	2023-12-22	SIP-AC1
Thermohygrometer	testo	608-H1	MRTSUE06616	1 year	2023-11-01	SIP-AC1
Thermohygrometer	testo	608-H1	MRTSUE06620	1 year	2023-11-27	SIP-AC1
TRILOG Antenna	Schwarzbeck	VULB 9168	MRTSUE06645	1 year	2023-07-30	SIP-AC1
Signal Analyzer	Keysight	N9010B	MRTSUE06559	1 year	2023-11-05	SIP-AC2
Horn Antenna	Schwarzbeck	BBHA 9170	MRTSUE06598	1 year	2023-11-05	SIP-AC2
Preamplifier	EMCI	EMC051845SE	MRTSUE06601	1 year	2023-11-22	SIP-AC2
Preamplifier	EMCI	EMC184045SE	MRTSUE06602	1 year	2023-10-10	SIP-AC2
Thermohygrometer	testo	608-H1	MRTSUE06623	1 year	2023-11-27	SIP-AC2
Thermohygrometer	testo	608-H1	MRTSUE06624	1 year	2023-11-27	SIP-AC2
TRILOG Antenna	Schwarzbeck	VULB 9168	MRTSUE06647	1 year	2023-07-13	SIP-AC2
Horn Antenna	Schwarzbeck	BBHA 9120D	MRTSUE06648	1 year	2023-10-22	SIP-AC2
Anechoic Chamber	RIKEN	SIP-AC2	MRTSUE06781	1 year	2023-12-22	SIP-AC2
Signal Analyzer	Keysight	N9010B	MRTSUE06603	1 year	2023-10-25	SIP-AC3
Horn Antenna	R&S	HF907	MRTSUE06611	1 year	2023-07-30	SIP-AC3
EMI Test Receiver	R&S	ESR3	MRTSUE06613	1 year	2024-05-23	SIP-AC3
Thermohygrometer	testo	608-H1	MRTSUE06619	1 year	2023-11-01	SIP-AC3
Thermohygrometer	testo	608-H1	MRTSUE06622	1 year	2023-11-27	SIP-AC3
Preamplifier	EMCI	EMC012645SE	MRTSUE06642	1 year	2024-01-12	SIP-AC3
TRILOG Antenna	Schwarzbeck	VULB 9168	MRTSUE06646	1 year	2023-08-16	SIP-AC3
Anechoic Chamber	RIKEN	SIP-AC3	MRTSUE06782	1 year	2023-12-22	SIP-AC3
Loop Antenna	Schwarzbeck	FMZB 1519 B	MRTSUE06937	1 year	2024-02-26	SIP-AC3

Software	Version	Function
EMI V3	V 3.0.0	EMI Test Software
Controller_MF 7802BS	1.02	RE Antenna & Turntable

4. Antenna Requirements


Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna of the device is **permanently attached**.
- There are no provisions for connection to an external antenna.

Conclusion:

The unit complies with the requirement of §15.203.

5. Measurement Uncertainty

5.1. Decision Rules

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4: 2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

5.2. Measurement Uncertainty

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Radiated Disturbance

Measurement Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

Coaxial: 9kHz~30MHz: 2.59dB
Coplanar: 9kHz~30MHz: 2.60dB
Horizontal: 30MHz~200MHz: 3.85dB

200MHz~1GHz: 4.36dB 1GHz~40GHz: 4.98dB 30MHz~200MHz: 4.06dB

200MHz~1GHz: 5.28dB 1GHz~40GHz: 4.91dB

Spurious Emissions, Conducted

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

2.3dB

Vertical:

Output Power

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

1.5dB

Power Spectrum Density

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

2.3dB

Occupied Bandwidth

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

3.2%

6. Test Result

6.1. Summary

FCC Section(s)	Test Description	Test Condition	Test Result
15.519(b)	LIM/P Pandwidth 9 009/ Occupied Pandwidth		Pass
2.1049	UWB Bandwidth & 99% Occupied Bandwidth		Fd55
15.519(c)	Average Transmit Power & Peak Power Density		Pass
15.519(e)	Average Transmit Fower & Feak Fower Density	Radiated	
15.519(c)	Radiated Spurious Emissions		
12.209	Radiated Spurious Emissions		Pass
15.519 (d)	Radiated Spurious Emissions		Pass
15.207	AC Conducted Emissions	Line Conducted	N/A
13.207	150kHz - 30MHz		IN/A

Notes:

- 1. For radiated emission test, every axis (X, Y, Z) was also verified and showed the worst axis in the test setup photos. The test results shown in the following sections represent the worst-case emissions.
- 2. N/A" means that this item is not applicable, and the detail information refer to relevant section.

6.2. UWB Bandwidth & 99% Bandwidth Measurement

6.2.1. Test Limit

 $\S15.503$ (a) UWB bandwidth. For the purpose of this subpart, the UWB bandwidth is the frequency band bounded by the points that are 10 dB below the highest radiated emission, as based on the complete transmission system including the antenna. The upper boundary is designated f_H and the lower boundary is designated f_L . The frequency at which the highest radiated emission occurs is designated f_M .

§15.503 (b) Center frequency. The center frequency, f_C , equals $(f_H + f_L)/2$.

§15.503 (c) Fractional bandwidth. The fractional bandwidth equals $2(f_H-f_L)/(f_H+f_L)$.

§15.503 (d) Ultra-wideband (UWB) transmitter. An intentional radiator that, at any point in time, has a fractional bandwidth equal to or greater than 0.20 or has a UWB bandwidth equal to or greater than 500 MHz, regardless of the fractional bandwidth.

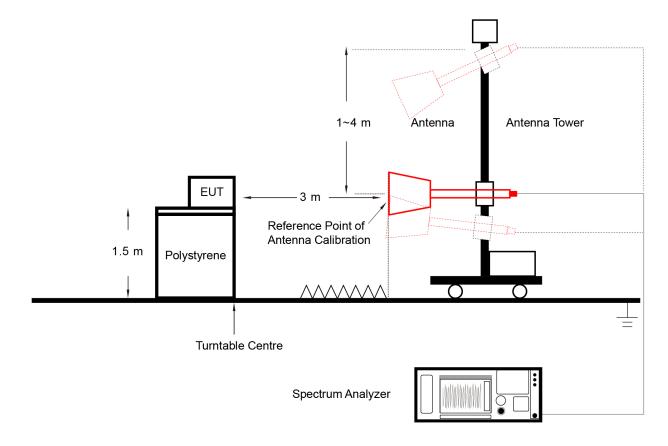
§15.519 (b) The UWB bandwidth of a device operating under the provisions of this section must be contained between 3100 MHz and 10,600 MHz.

6.2.2. Test Procedure

ANSI C63.10 - 2013 - Section 10.1 & 6.9.3

6.2.3. Test Setting

The frequency at which the maximum power level is measured with the peak detector is designated f_M . The peak power measurements shall be made using a spectrum analyzer or EMI receiver with a 1 MHz resolution bandwidth and a video bandwidth of 1 MHz or greater. The instrument shall be set to peak detection using the maximum-hold trace mode. The outermost 1 MHz segments above and below f_M , where the peak power falls by 10 dB relative to the level at f_M , are designated as f_H and f_L , respectively:


- a) For the lowest frequency bound f_L , the emission is searched from a frequency lower than f_M that has, by inspection, a peak power much lower than 10 dB less than the power at f_M and increased toward f_M until the peak power indicates 10 dB less than the power at f_M . The frequency of that segment is recorded.
- b) This process is repeated for the highest frequency bound f_H , beginning at a frequency higher than f_M that has, by inspection, a peak power much lower than 10 dB below the power at f_M . The frequency of that segment is recorded.
- c) The two recorded frequencies represent the highest f_H and lowest f_L bounds of the UWB transmission, and the -10 dB bandwidth (B 10) is defined as $(f_H f_L)$. The center frequency (fc) is mathematically determined from $(f_H f_L) / 2$.
- d) The fractional bandwidth is defined as $2(f_H f_L) / (f_H + f_L)$.
- e) Determine whether the -10 dB bandwidth ($f_H f_L$) is ≥ 500 MHz, or whether the fractional bandwidth $2(f_H f_L)$ / ($f_H + f_L$) is ≥ 0.2 .

99% Bandwidth

- 1. Span = 1.5 times to 5 times the OBW
- 2. Set RBW = 1% to 5% the OBW
- 3. VBW = approximately three times RBW
- 4. Detector = Peak
- 5. Trace mode = Max hold
- 6. Sweep = Auto couple
- 7. Allow the trace to stabilize
- 8. Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.

6.2.4. Test Setup

6.2.5. Test Result

Refer to Appendix A.1.

6.3. Average Transmit Power and Peak Power Density

6.3.1. Test Limit

§15.519 (c) The radiated emissions above 960 MHz from a device operating under the provisions of this section shall not exceed the following average limits when measured using a resolution bandwidth of 1 MHz:

Assigned frequency band	EIRP in dBm
(MHz)	
3100 – 10600	-41.3

§15.519 (e) There is a limit on the peak level of the emissions contained within a 50 MHz bandwidth centered on the frequency at which the highest radiated emission occurs, f_M. That limit is 0 dBm EIRP.

6.3.2. Test Procedure

ANSI C63.10 - 2013 - Section 10.3

6.3.3. Test Setting

The radiated emission of 6~9GHz frequency band are performed at 3 meters test distance.

Peak Power within 50 MHz bandwidth

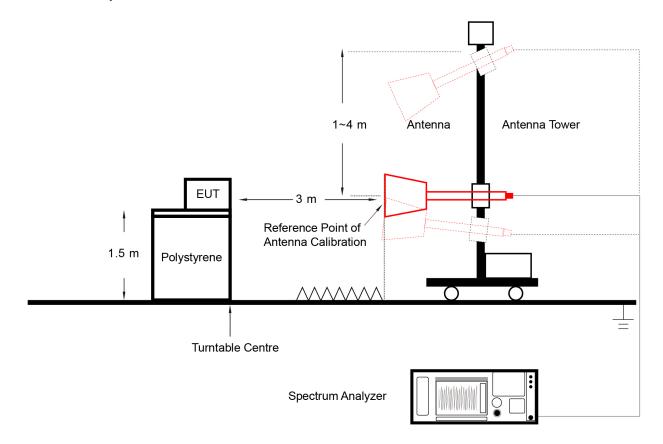
Peak EIRP power is measured using RBW of 40MHz.

The peak detector of the instrument is selected and the maximum hold feature activated.

It is acceptable to employ an RBW of less than 50 MHz (but no less than 1 MHz) when performing the required peak power measurements. When this approach is employed, the peak emissions EIRP limit (0 dBm / 50 MHz) is converted to a limit commensurate with the RBW by employing a [20 log (RBW/50 MHz)] relationship.

For example, the peak power limit could be expressed in a 40 MHz bandwidth as follows in Equation:

EIRP40MHz = EIRP50MHz + 20log(40MHz/50MHz) = 0dBm + (-1.94dB) = -1.94dBm.


Maximum Average Emissions

The following procedure shall be used for evaluating rms-average power spectral density:

- a) Set the RBW to 1 MHz
- b) Set the VBW to 3 MHz
- c) Set the frequency span to examine the spectrum across a convenient frequency segment
- d) Select the power averaging (rms) detector
- e) Set the sweep time so that there is no more than a 1 ms integration period over each measurement bin

6.3.4. Test Setup

6.3.5. Test Result

Refer to Appendix A.2.

6.4. Radiated Spurious Emission Measurement

6.4.1. Test Limit

§15.519 (c) The radiated emissions at or below 960 MHz from a device operating under the provisions of this section shall not exceed the emission levels in § 15.209.

3 10.200.					
FCC Part 15 Subpart C Paragraph 15.209					
Frequency	Field Strength	Measured Distance			
[MHz]	[uV/m]	[Meters]			
0.009 - 0.490	2400/F (kHz)	300			
0.490 – 1.705	24000/F (kHz)	30			
1.705 – 30	30	30			
30 – 88	100	3			
88 – 216	150	3			
216 – 960	200	3			
Above 960	500	3			

§15.519 (c) The radiated emissions above 960 MHz from a device operating under the provisions of this section shall not exceed the following average limits when measured using a resolution bandwidth of 1 MHz.

Frequency	RBW	EIRP of spurious		
[MHz]	[kHz]	[dBm]		
960 – 1610	1000	-75.3		
1610 – 1990	1000	-63.3		
1990 – 3100	1000	-61.3		
3100 – 10600	1000	-41.3		
Above 10600	1000	-61.3		

6.4.2. Test Procedure

ANSI C63.10 - 2013 - Section 6.5 & 10.2 & 10.3

6.4.3. Test Setting

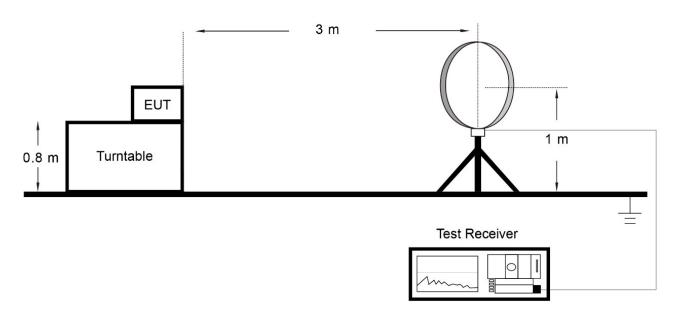
Measurement of harmonic and spurious emissions above 1GHz

Peak Field Strength Measurements

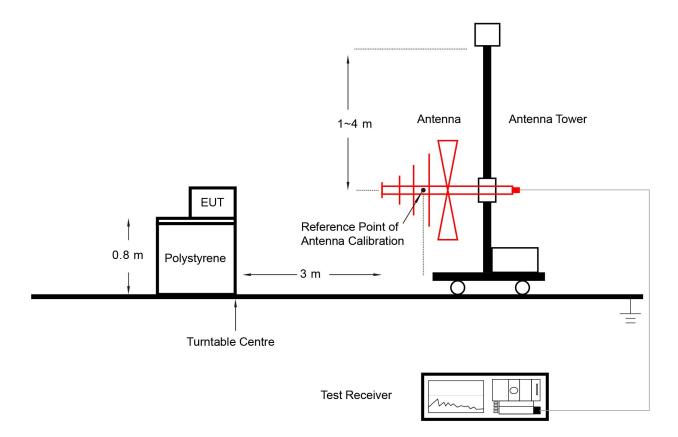
- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = $1MHz(100 \sim 120 \text{ kHz for below 1GHz})$
- 3. VBW = 3 * RBW
- 4. Detector = Peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Average Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = Average
- 5. Sweep points = 2 * Span / RBW
- 6. Sweep time = Sweep points * 1ms
- 7. Trace mode = average
- 8. Trace was allowed to stabilize

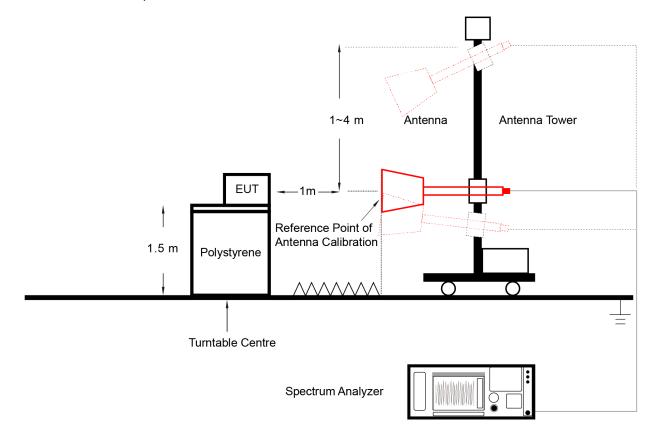

Quasi-Peak Measurements below 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = $100 \sim 120 \text{ kHz}$
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

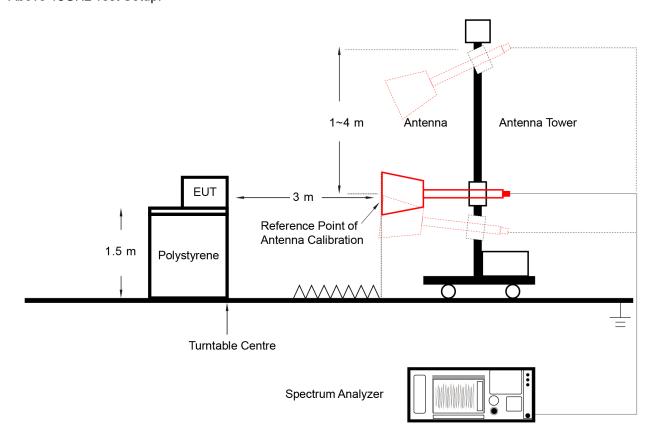


6.4.4. Test Setup

Below 30MHz Test Setup



Above 30MHz Test Setup:



Above 1GHz Test Setup:

Above 18GHz Test Setup:

6.4.5. Test Result

Refer to Appendix A.3.

6.5. Radiated Spurious Emission in GPS Band Measurement

6.5.1. Test Limit

§15.519 (d) In addition to the radiated emission limits specified in the table in paragraph (c) of this section, UWB transmitters operating under the provisions of this section shall not exceed the following average limits when measured using a resolution bandwidth of no less than 1 kHz.

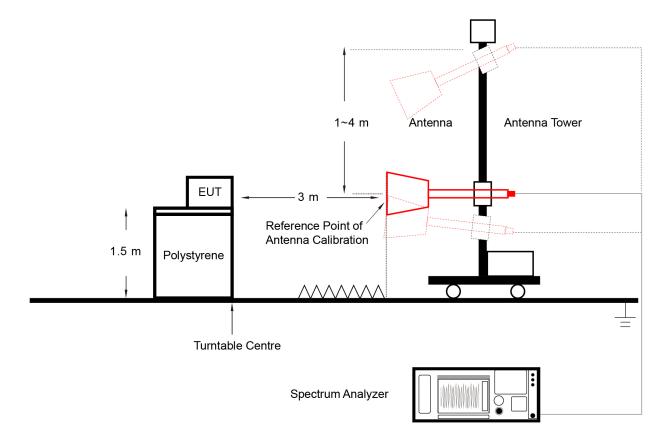
Frequency	RBW	EIRP of spurious
[MHz]	[kHz]	[dBm]
1164 – 1240	≥ 1	-85.3
1559 – 1610	≥ 1	-85.3

6.5.2. Test Procedure

ANSI C63.10 - 2013 - Section 10.3

6.5.3. Test Setting

Peak Field Strength Measurements


- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1kHz
- 3. VBW = 3kHz
- 4. Detector = Peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Average Field Strength Measurements

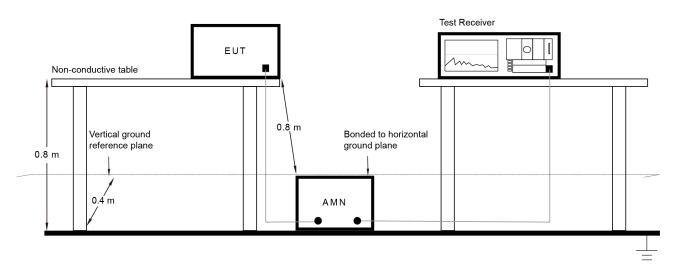
- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1kHz
- 3. VBW = 3kHz
- 4. Detector = Average
- 5. Sweep points = 2 * Span / RBW
- 6. Sweep time = Sweep points * 1ms
- 7. Trace mode = Average
- 8. Trace was allowed to stabilize

6.5.4. Test Setup

6.5.5. Test Result

Refer to Appendix A.4.

6.6. AC Conducted Emissions Measurement


6.6.1. Test Limit

FCC Part 15.207 Limits				
Frequency	QP	AV		
(MHz)	(dBuV)	(dBuV)		
0.15 - 0.50	66 - 56	56 - 46		
0.50 - 5.0	56	46		
5.0 - 30	60	50		

Note 1: The lower limit shall apply at the transition frequencies.

Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

6.6.2. Test Setup

6.6.3. Test Result

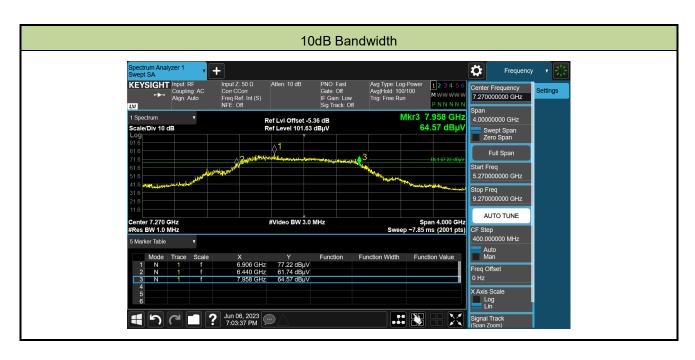
The device, UWB modular, is powered by DC power supply and will only be integrated into other devices. So this item is not applicable.

Appendix A - Test Result

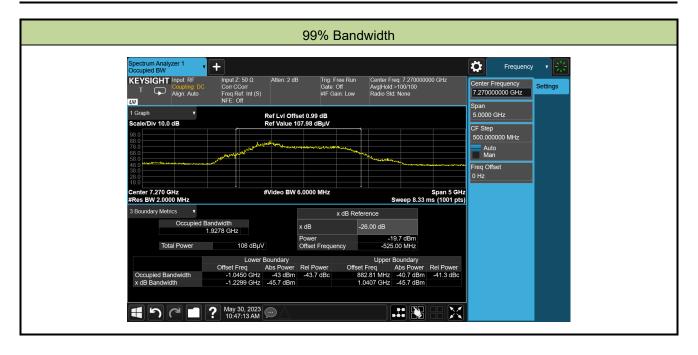
A.1 UWB Bandwidth & 99% Bandwidth Test Result

Test Site	SIP-AC2	Test Engineer	Arvin Ding
Test Date	2023-05-30 ~ 2023-06-06		

Frequency	equency F _L Limit F _H		Limit	Result	
(MHz)	(MHz)	(MHz) (MHz)		(MHz)	
7270	6440	≥ 3100	7958	≤10600	Pass


Frequency (MHz)	F _C (MHz)	10dB Bandwidth (MHz)	Limit (MHz)	Result
7270	7199	1518	≥ 500	Pass

Notes:


1. 10dB Bandwidth = $F_H - F_L = 7958 - 6440 = 1518 MHz$

2. $F_C = (F_H + F_L) / 2 = 7199 \text{ MHz}$

Frequency	99% Bandwidth		
(MHz)	(MHz)		
7270	1927.8		

A.2 Average Transmit Power and Peak Power Density Test Result

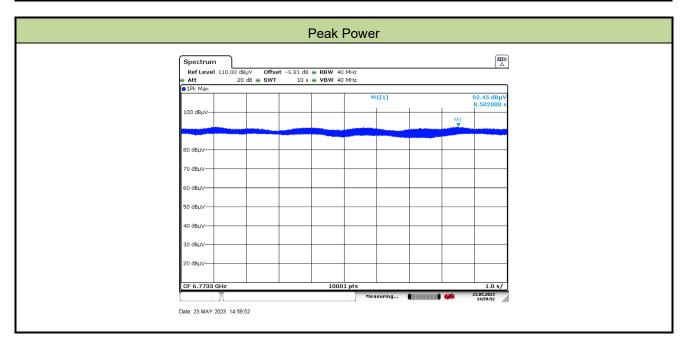
Test Site	SIP-AC2	Test Engineer	Arvin Ding
Test Date	2023-05-23		

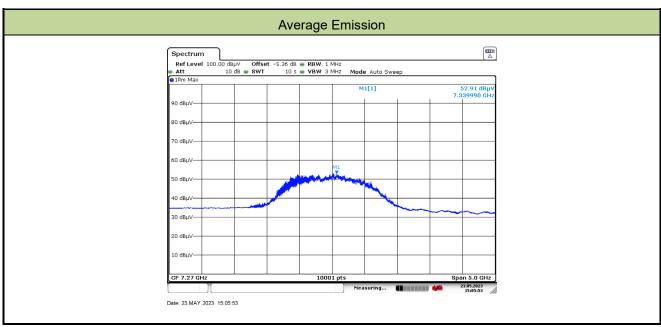
Test Result of Peak Power Density

Frequency (MHz)	Peak Power	Peak Power (dBm/40MHz)	Limit (dBm/40MHz)	Conversion Factor(dB)	Margin (dB)	Result
7270	92.45	-2.75	-1.94	-1.94	0.81	Pass

Note: Conversion Factor (dB) = 20 * Log (40MHz / 50MHz) = -1.94

Limit (dBm/40MHz) = Limit (dBm/50MHz) + Conversion Factor (dB) = 0 dBm/50MHz - 1.94 dB = -1.94 dBm/40MHz

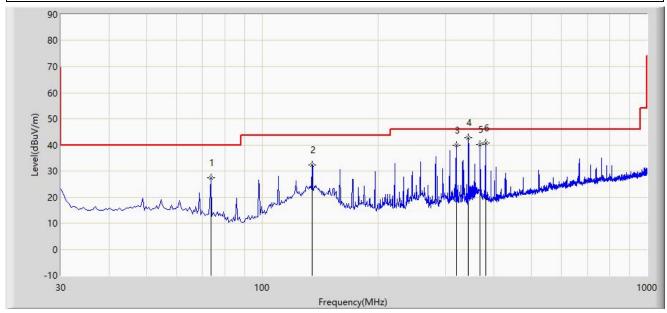

Peak Power (dBm/40MHz) = Peak Power (dB μ V/m) – 95.2


Test Result of Average Transmit Power

Frequency	Average Power	Average Power	Limit	Margin	Result
(MHz)	(dBµV/m)	(dBm/MHz)	(dBm/MHz)	(dB)	
7270	52.91	-42.29	-41.3	0.99	Pass

Note: Average Power(dBm/40MHz) = Average Power (dB μ V/m) – 95.2

A.3 Radiated Spurious Emission Test Result


Test Site	SIP-AC1 & SIP-AC2 & SIP-AC3	Test Engineer	Arvin Ding
Test Date	2023-05-22 ~ 2023-05-30		

Frequency	Measure Level	Limit	Margin	Detector	Polarity	Verdict
Range	(dBm)	(dBm)	(dB)			
(MHz)						
000 4040	-85.327	-75.3	10.027	Average	Horizontal	Pass
960 ~ 1610	-79.753	-75.3	4.453	Average	Vertical	Pass
1010 1000	-83.474	-63.3	20.174	Average	Horizontal	Pass
1610 ~ 1990	-78.142	-63.3	14.842	Average	Vertical	Pass
4000 0400	-82.538	-61.3	21.238	Average	Horizontal	Pass
1990 ~ 3100	-77.597	-61.3	16.297	Average	Vertical	Pass
2400 40000	-80.991	-41.3	39.691	Average	Horizontal	Pass
3100 - 10600	-78.486	-41.3	37.186	Average	Vertical	Pass
Al 40000	-68.841	-61.3	7.541	Average	Horizontal	Pass
Above 10600	-66.697	-61.3	5.397	Average	Vertical	Pass

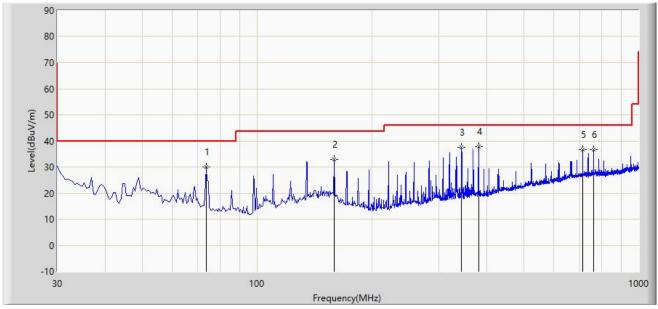
The Result of Radiated Emission below 1GHz:

Site: SIP-AC1	Test Date: 2023-05-26		
Limit: FCC_Part15.209_RSE(3m)	Engineer: Barry Wu		
Probe: VULB 9168_00998_25-2000MHz	Polarity: Horizontal		
EUT: UWB Module	Power: AC 120V/60Hz		
Test Mode: Transmit by UWB at channel 7270MHz			

No	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
		(MHz)	Level	Level	(dB)	(dBµV/m)	(dB/m)	
			(dBµV/m)	(dBµV)				
1		73.650	27.347	12.303	-12.653	40.000	15.044	PK
2		134.760	32.271	15.264	-11.229	43.500	17.008	PK
3		319.545	39.838	20.854	-6.162	46.000	18.984	PK
4	*	343.795	42.661	23.305	-3.339	46.000	19.356	PK
5		368.530	40.186	20.170	-5.814	46.000	20.016	PK
6		380.655	40.751	20.393	-5.249	46.000	20.358	PK

Note 1: " * ", means this data is the worst emission level.

Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).


Note 3: Factor (dB/m) = Cable Loss (dB) + Antenna Factor (dB/m).

Note 4: Quasi-Peak measurement was not performed when peak measure level was lower than the quasi-peak limit.

Note 5: The amplitude of radiated emissions (frequency range from 9kHz to 30MHz and 18GHz to 40GHz) is that proximity to ambient noise, which also are attenuated more than 20 dB below the permissible value. Therefore, the data is not presented in the report.

Site: SIP-AC1	Test Date: 2023-05-26		
Limit: FCC_Part15.209_RSE(3m)	Engineer: Barry Wu		
Probe: VULB 9168_00998_25-2000MHz	Polarity: Vertical		
EUT: UWB Module	Power: AC 120V/60Hz		
Test Mode: Transmit by UWB at channel 7270MHz			

No	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
		(MHz)	Level	Level	(dB)	(dBµV/m)	(dB/m)	
			(dBµV/m)	(dBµV)				
1		73.650	29.953	14.909	-10.047	40.000	15.044	PK
2		159.495	33.011	14.936	-10.489	43.500	18.075	PK
3		343.795	37.490	18.134	-8.510	46.000	19.356	PK
4	*	380.655	37.731	17.373	-8.269	46.000	20.358	PK
5		712.880	36.578	9.655	-9.422	46.000	26.923	PK
6		761.865	36.733	8.424	-9.267	46.000	28.310	PK

Note 1: " * ", means this data is the worst emission level.

Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).

Note 3: Factor (dB/m) = Cable Loss (dB) + Antenna Factor (dB/m).

Note 4: Quasi-Peak measurement was not performed when peak measure level was lower than the quasi-peak limit.

Note 5: The amplitude of radiated emissions (frequency range from 9kHz to 30MHz and 18GHz to 40GHz) is that proximity to ambient noise, which also are attenuated more than 20 dB below the permissible value. Therefore, the data is not presented in the report.

A.4 Radiated Spurious Emission in GPS Band Test Result

Test Site	SIP-AC1 & SIP-AC2 & SIP-AC3	Test Engineer	Arvin Ding	
Test Date	2023-05-22 ~ 2023-05-23			

Frequency Range (MHz)	Measure Level	Limit	Margin	Detector	Polarity	Verdict
	(dBm)	(dBm)	(dB)			
4404 4040	-94.307	-85.3	9.007	Average	Horizontal	Pass
1164 ~ 1240	-93.798	-85.3	8.498	Average	Vertical	Pass
4550 4040	-100.587	-85.3	15.287	Average	Horizontal	Pass
1559 ~ 1610	-95.079	-85.3	9.779	Average	Vertical	Pass

Appendix B - Test Setup Photograph

Refer to "2304RSU033-UT" file.

Appendix C - EUT Photograph

Refer to "2304RSU033-UE" file.

_____ The End _____