FCC 47 CFR PART 15 SUBPART C TEST REPORT

For

Product Name: SOUND BASE SYSTEM

Brand Name: IGO Audio

Model No.: SB-300 FCC ID: XCO-SB300BT IC ID: 7756A-SB300BT Test Report Number: C131106R01-RPB

Issued for

Hansong (Nanjing) Technology Ltd.

8th Kangping Road, Jiangning Economy & Technology Development Zone, Nanjing, China

Issued by

Compliance Certification Services Inc.

Kun shan Laboratory

No.10 Weiye Rd., Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China

TEL: 86-512-57355888

FAX: 86-512-57370818

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by A2LA or any government agencies. The test results in the report only apply to the tested sample.

Date of Issue :December 2, 2013

IC ID: 7756A-SB300BT

TABLE OF CONTENTS

1	TES	ST RESULT CERTIFICATION	4
2	EU ⁻	T DESCRIPTION	5
3		ST METHODOLOGY	
•	3.1		
	3.2		
	3.3		
	3.4		
	3.5	FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS	8
4	INS	TRUMENT CALIBRATION	9
5		CILITIES AND ACCREDITATIONS	
•	5.1	FACILTIES	
	5.2	EQUIPMENT	
	5.3		
	5.4	TABLE OF ACCREDITATIONS	
	5.5	LIST OF MEASURING EQUIPMENT	
	5.6	SETUP CONFIGURATION	12
	5.7	SUPPORT EQUIPMENT	12
6	FC	C PART 15.247 REQUIREMENTS	13
	6.1	PEAK POWER	13
	6.2	PEAK POWER SPECTRAL DENSITY	18
	6.3	HOPPING CHANNEL BANDWIDTH	19
	6.4	HOPPING CHANNEL SEPARATION	
	6.5	NUMBER OF HOPPING FREQUENCY	
	6.6	TIME OF OCCUPANCY (DWELL TIME)	
	6.7	SPURIOUS EMISSION	
	6.8	RADIATED BAND EDGE AND SPURIOUS EMISSION MEASUREMENT	
	6.9	POWERLINE CONDUCTED EMISSIONS	57

SUMMARY OF TEST RESULT

Report Section	FCC Rule	IC Rule	Description	Limit	Result
3.1	15.247(a)(1)	RSS-210 A8.4(2)	Number of Channels	≥ 15Channels	Pass
3.2	15.247(a)(1)	RSS-210 A8.1(b)	Hopping Channel Separation	≥2/3 of 20dB BW	Pass
3.3	15.247(a)(1)	RSS-210 A8.1(d)	Dwell Time of Each Channel	≤0.4sec in 31.6sec period	Pass
3.4	15.247(a)(1)	RSS-210 A8.1(a)	20dB Bandwidth	NA	Pass
3.5		RSS-Gen 4.6.1	99% Bandwidth	-	Pass
3.2	15.247(d)	RSS-210 A8.5	Peak Output Power	≤ 1W for 1Mbps ≤125mW for 2,3Mbps	Pass
3.4	15.247(d)	RSS-210 A8.5	Conducted Band Edges and Spurious Emission	≤ 20dBc	Pass
3.5	15.247(d)	RSS-210 A8.5	Radiated Band Edges and Spurious Emission	15.209(a) &15.247(d)	Pass
3.6	15.207	RSS-210 Gen 7.2.4	AC Conducted Emission	15.207(a)	Pass
3.7	15.203 &15.247(b)	RSS-210 A8.4	Antenna Requirement	N/A	Pass

1 TEST RESULT CERTIFICATION

Product Name:	SOUND BASE SYSTEM
Trade Name:	IGO Audio
Model Name.:	SB-300
Series Model:	N/A
Applicant Discrepancy:	Initial
Device Category:	Mobile Device
Date of Test:	November 18, 2013
Applicant:	Hansong (Nanjing) Technology Ltd. 8th Kangping Road, Jiangning Economy & Technology Development Zone, Nanjing, China
Manufacturer:	Formosa Prosonic Industries Berhad No. 2, Jalan 1 Bandar Sultan Suleiman, Taiwanese Industrial Park, 42000, Port Klang Selangor D.E., Malaysia
Application Type:	Certification

APPLICABLE STANDARDS					
STANDARD	TEST RESULT				
FCC 47 CFR Part 15 Subpart C	No non-compliance noted				
Canada RSS-210 Issue 8	No non-compliance noted				
Canada RSS-Gen Issue 3	No non-compliance noted				

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4:2009 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.207, 15.209, 15.247.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by:

Jeff fang

Tested by:

Jeff.Fang RF Manager

Compliance Certification Services Inc.

Blent.Wang Test Engineer

Compliance Certification Services Inc.

Blent Wang

2 EUT DESCRIPTION

Product Name:	SOUND BASE SYSTEM
Trade Name:	IGO Audio
Model Name.:	SB-300
Model Discrepancy:	N/A
Power Rating :	Power supply: INPUT: 100-240V 50-60Hz Rated power: 138W
Frequency Range :	Bluetooth:2402 ~ 2480 MHz
Transmit Power :	8.49dBm(7.06mW)
Modulation Technique :	FHSS
Transmit Data Rate :	GFSK(1 Mbps),π/4-DQPSK(2 Mbps),8-DPSK(3 Mbps)
Number of Channels :	79 Channels
Antenna Specification :	PCB Antenna

Remark:

- 1. This submittal(s) (test report) is intended for <u>FCC ID: XCO-SB300BT</u> filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.
- 2. This submittal(s) (test report) is intended for $\underline{\textit{IC}: 7756A-SB300BT}$ filing to comply with Canada RSS-210 Issue 8 and Canada RSS-Gen Issue 3 Rules.

3 TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, 15.207, 15.209, 15.247, RSS-210 and RSS-Gen.

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EXERCISEEUT

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4.

3.4 TEST Mode

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel	Antenna	
Peak Output	GFSK	1 Mbps	0/39/78	1	
Power	8DPSK	3 Mbps	0/00/10	·	
Hopping Channel Bandwidth	GFSK	1 Mbps	0/39/78	1	
Propping Charmer Bandwidth	8DPSK	3 Mbps	0/00/10	'	
Hopping Channel Separation	GFSK	1 Mbps	38-39	1	
Tropping Chaimer Coparation	8DPSK	3 Mbps	00 00	'	
Number of Hopping Frequency	GFSK	1 Mbps	0-78	1	
requested in topping inequality	8DPSK	3 Mbps	0 7 0	•	
Dwell Time	DH1/DH3/DH5	1 Mbps	39	1	
Differ Filling	3DH1/3DH3/3DH5 3 Mbps	- CC	1		
Spurious Emission	GFSK	1 Mbps	0/39/78	1	
Spanious Zimission	8DPSK	3 Mbps	0/00/10	•	
Band Edge Emissions	GFSK	1 Mbps	0/78	1	
Dana Lago Liniosiono	8DPSK	3 Mbps	0/10	•	
Radiated Emissions Below 1GHz	GFSK	1 Mbps	78	1	
Radiated Emissions Above 1GHz	GFSK	1 Mbps	0/39/78	1	
Tradition 2sciolis / 18676 Tel 12	8DPSK	3 Mbps	0,00,10	' 	
AC Power Conducted Emissions	CTX	-	-	-	

Remark: For radiated test cases below 1 GHz, the worst mode data rate channel 78 of 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests.

3.5 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.0900 - 0.1100	16.420 - 16.423	399.9 - 410.0	4.50 - 5.15
0.4950 - 0.505 ⁽¹⁾	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960.0 - 1240	7.25 - 7.75
4.1250 - 4.1280	25.50 - 25.67	1300 - 1427	8.025 - 8.500
4.17725 - 4.17775	37.50 - 38.25	1435.0 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73.0 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.2150 - 6.2180	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108.00 - 121.94	1718.8 - 1722.2	13.25 - 13.40
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.50
8.2910 - 8.2940	149.90 - 150.05	2310 - 2390	15.35 - 16.20
8.3620 - 8.3660	156.52475 - 156.52525	2483.5 - 2500.0	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.1700	3260 - 3267	23.6 - 24.0
12.2900 - 12.2930	167.72 - 173.20	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345 - 3358	36.43 - 36.5 ⁽²⁾
12.57675 - 12.57725	322.0 - 335.4	3600 - 4400	
13.3600 - 13.4100			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

² Above 38.6

4 INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.facilities and accreditations

5 FACILITIES AND ACCREDITATIONS

5.1 FACILTIES

All measurement facilities used to collect the measurement data are located at CCS China Kunshan Lab at 10#Weiye Rd, Innovation Park Eco. & Tec. Development Zone Kunshan city JiangSu, (215300), CHINA.

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 LABORATORY ACCREDITATIONS AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by American Association for Laboratory Accreditation Program for the specific scope accreditation under Lab Code: 200581-0 to perform Electromagnetic Interference tests according to FCC Part 15 and CISPR 22 requirements. In addition, the test facilities are listed with Industry Canada, Certification and Engineering Bureau, IC5743 for 10m chamber 10m, IC5743 for 10m chamber 3m.

5.4 TABLE OF ACCREDITATIONS

Our laboratories are accredited and approved by the following accreditation body according to ISO/IEC 17025.

Taiwan TAF USA A2LA

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

Canada Industry Canada Japan VCCI

Taiwan BSMI FCC

Copies of granted accreditation certificates are available for downloading from our web site, http:///www.ccsrf.com

5.5 LIST OF MEASURING EQUIPMENT

Conducted Emissions Test Site					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	RS	FSU26	200789	2014-6-30	
Bluttooth Tester	RS	CBT	100189	N.C.R	
OSCILLOSCOPE	Agilent	DSO6104A	MY44002585	2014-3-14	
Peak and Avg Power Sensor	Agilent	E9327A	US40441788	2014-3-14	
EPM-P Series Power Meter	Agilent	E4416A	GB41292714	2014-3-14	
Power SPLITTER	Mini-Circuits	ZN2PD-9G	SF078500430	N.C.R	
DC POWER SUPPLY	AGILENT	E3632A	MY50340053	2014-3-14	
Temp. / Humidity Chamber	TERCHY	MHK-120AK	X30109	2014-1-24	
Test Software	EZ-EMC				

977 Chamber						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
Spectrum Analyzer	Agilent	E4446A	MY44020154	2014-4-16		
Pre-Amplfier	MITEQ	JS41-00101800-32-10P	1675713	2014-10-7		
Pre-Amplfier	MITEQ	NSP400-NF	870731	2014-4-26		
Bilog Antenna	Sunol Sciences	JB1	A062604	2014-5-2		
Horn-antenna	SCHWARZBECK	BBHA9120D	D:267	2014-4-28		
Turn Table	СТ	CT123	4165	N.C.R		
Antenna Tower	СТ	CTERG23	3256	N.C.R		
Controller	СТ	CT100	95637	N.C.R		
Test Software	EZ-EMC					

Conducted Emission							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
EMI TEST RECEIVER	R&S	ESCI3	100781	2014-3-14			
V (V-LISN)	Schwarzbeck	NNLK 8129	8129-143	2014-3-14			
LISN (EUT)	FCC	FCC-LISN-50/250-50-2-02	SN:05012	2014-3-14			
TRANSIENT LIMITER	SCHAFFNER	CFL9206	1710	2014-3-14			
Test Software EZ-EMC							

Remark: Each piece of equipment is scheduled for calibration once a year.

5.6 SETUP CONFIGURATION

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

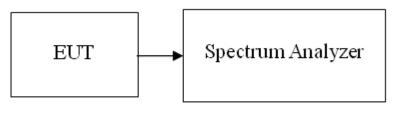
5.7 SUPPORT EQUIPMENT

No.	Device Type	Brand	Model	Series No.	FCC ID
1.	Notebook	DELL	E5430	CN8YYW1	N/A

Remark:

- 1.All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2.Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

6 FCC PART 15.247 REQUIREMENTS 6.1 PEAK POWER


Limit

The maximum peak output power of the intentional radiator shall not exceed the following:

- According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
- 2. According to §15.247(b)(3), for systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 Watt.
- 3. According to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

Test Procedure

The transmitter output is connected to the spectrum analyzer. Set the RBW = 3MHz, VBW = 3MHz, Detector = Peak, Trace mode = max hold, Sweep = auto couple. Record the max reading.

Repeat the above procedure until the measurements for all frequencies are completed.

Test Results

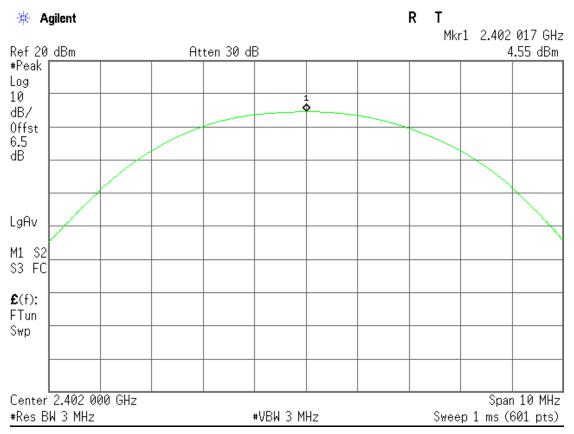
No non-compliance noted

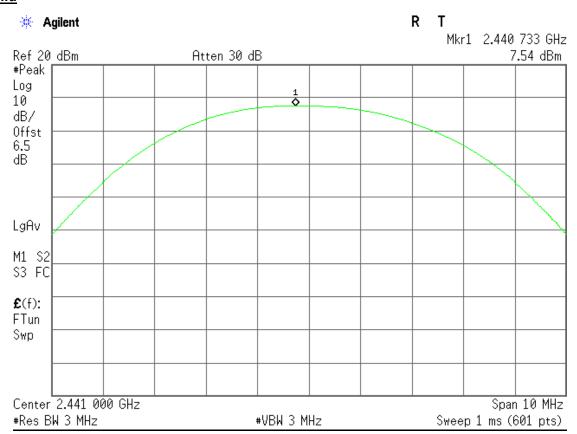
Test RESULTS

1M GFSK Modulation mode

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (mW)	Limit (mW)	Result
Low	2402	4.55	2.85		PASS
Mid	2441	7.54	5.68	125	PASS
High	2480	8.49	7.06		PASS

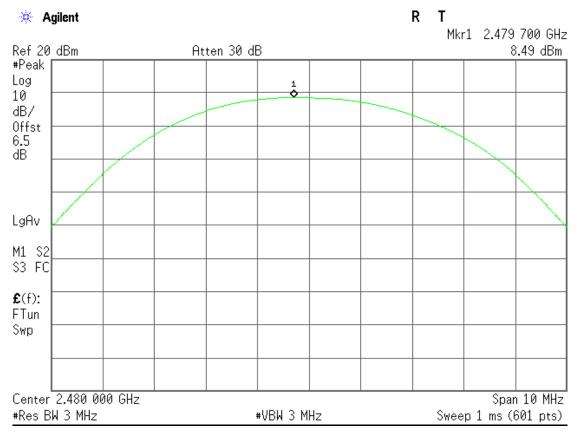
3M 8-DPSK Modulation mode

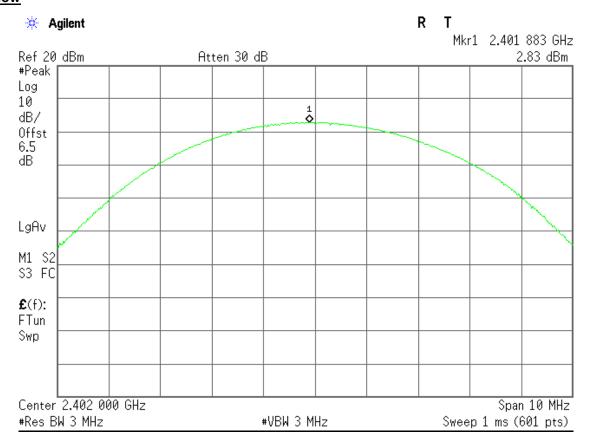

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (mW)	Limit (mW)	Result
Low	2402	2.83	1.92		PASS
Mid	2441	6.74	4.72	125	PASS
High	2480	7.54	5.68		PASS


Date of Issue :December 2, 2013 IC ID: 7756A-SB300BT

Test Data 1M

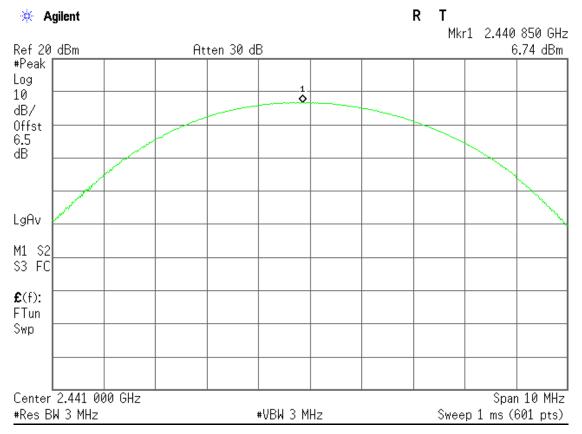
Ch low

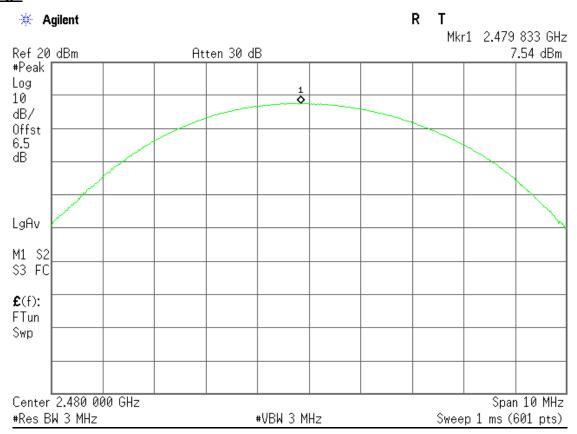

CH Mid


Date of Issue :December 2, 2013 IC ID: 7756A-SB300BT

CH High

Test Data 3M

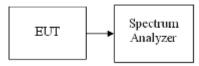

Ch low



Date of Issue :December 2, 2013 IC ID: 7756A-SB300BT

Ch mid

Ch High



6.2 PEAK POWER SPECTRAL DENSITY

Limit

- 1. For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.
- 2. The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

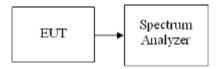
Test Configuration

Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 300kHz, Sweep=100s
- 4. Record the max. reading.
- 5. Repeat the above procedure until the measurements for all frequencies are completed.

Test Results

NA (this test item is not required for FHSS modulation technical)



6.3 HOPPING CHANNEL BANDWIDTH

Limit

According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Configuration

Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = 30kHz, VBW = 100kHz, Span = 2MHz, Sweep = auto.
- 4. Max hold, mark 2 peaks of hopping channel and record the 2 peaks frequency.

Test Results of Bandwidth

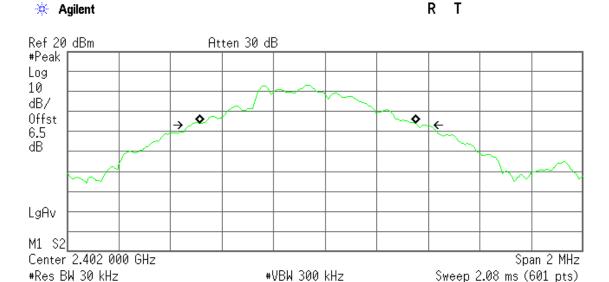
No non-compliance noted

Operation Mode:	1 Mbps	Test Date:	November 12, 2013
Temperature:	24°C	Tested by:	Blent.Wang

Channel	Frequency (MHz)	Bandwidth (B) (MHz)	99% Occupied Bandwidth (MHz)
00	2402	0.903	0.835
39	2441	0.874	0.831
78	2480	0.873	0.832

Operation Mode:	3 Mbps	Test Date:	November 12, 2013
Temperature:	24°C	Tested by:	Blent.Wang

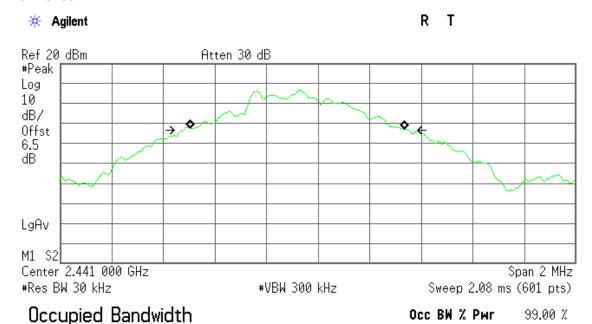
Channel	Frequency (MHz)	Bandwidth (B) (MHz)	99% Occupied Bandwidth (MHz)
00	2402	1.195	1.134
39	2441	1.214	1.136
78	2480	1.210	1.135


Compliance Certification Services Inc.

Report No: C131106R01-RPB FCC ID: XCO-SB300BT Date of Issue :December 2, 2013

IC ID: 7756A-SB300BT

Test Plot


1M Channel 00

Occupied Bandwidth 835.3815 kHz Occ BW % Pwr 99.00 % x dB -20.00 dB

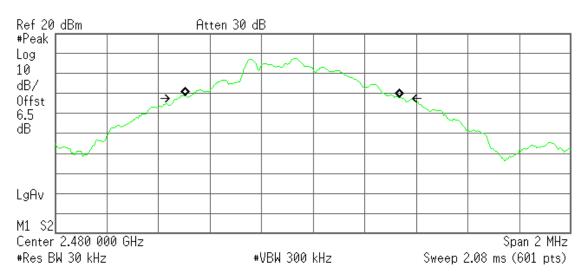
Transmit Freq Error -68.014 kHz x dB Bandwidth 903.478 kHz

1M Channel 39

Transmit Freq Error -81.191 kHz x dB Bandwidth 873.541 kHz

831.2577 kHz

x dB -20.00 dB


Date of Issue :December 2, 2013

IC ID: 7756A-SB300BT

1M Channel 78

R T

Occupied Bandwidth 832,4644 kHz

Occ BW % Pwr 99.00 % x dB -20.00 dB

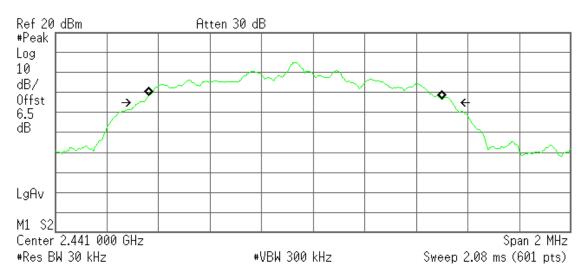
Transmit Freq Error -82.251 kHz x dB Bandwidth 872.846 kHz

3M Channel 00

R Т

Occupied Bandwidth 1.1338 MHz Occ BW % Pwr 99.00 % x dB -20.00 dB

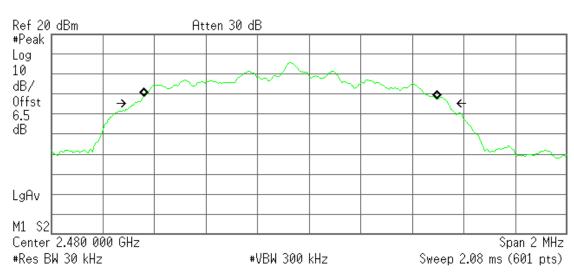
-57.984 kHz Transmit Freq Error x dB Bandwidth 1.195 MHz


IC ID: 7756A-SB300BT

Date of Issue :December 2, 2013

3M Channel 39

R T


Occupied Bandwidth 1.1360 MHz Occ BW % Pwr 99.00 % x dB -20.00 dB

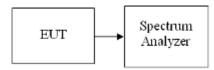
Transmit Freq Error -69.418 kHz x dB Bandwidth 1.214 MHz

3M Channel 78

R Т

Occupied Bandwidth 1.1350 MHz Occ BW % Pwr 99.00 % x dB -20.00 dB

-71.175 kHz Transmit Freq Error x dB Bandwidth 1.210 MHz



6.4 HOPPING CHANNEL SEPARATION

LIMIT

According to §15.247(a)(1)Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

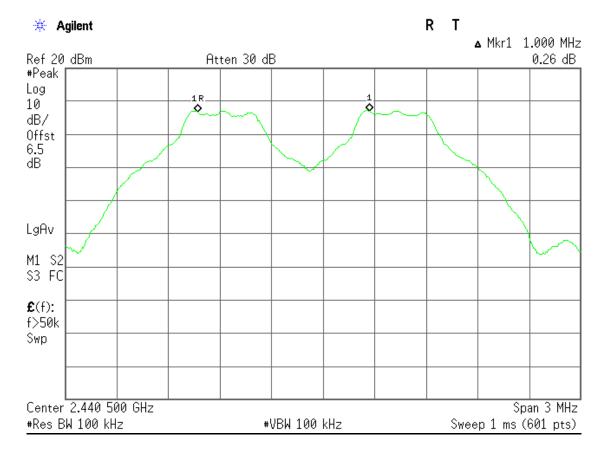
Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = middle of hopping channel.
- 4. Set the spectrum analyzer as RBW = 30kHz, VBW = 100kHz, Span = 3MHz, Sweep = auto.
- 5. Max hold, mark 2 peaks of hopping channel and record the 2 peaks frequency.

TEST RESULTS

No non-compliance noted

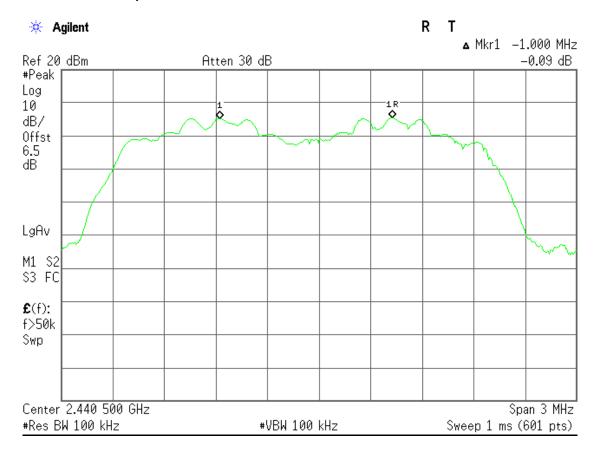

Operation Mode:	1 Mbps	Test Date:	November 12, 2013
Temperature:	24°C	Tested by:	Blent.Wang

Channel	Frequency	Separation	(2/3 of 20dB BW)	Result
Chamilei	(MHz)	(MHz)	Limits (MHz)	Nesuit
38~39	2440~2441	1.000	0.583	Pass

Operation Mode:	3 Mbps	Test Date:	November 12, 2013
Temperature:	24°C	Tested by:	Blent.Wang

Channel	Frequency	Separation	(2/3 of 20dB BW)	Result
Gnanne	(MHz)	(MHz)	Limits (MHz)	Nesuit
38~39	2440~2441	1.000	0.809	Pass

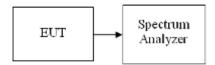
1M Channel Separation Plot on Channel 38-39



Date of Issue :December 2, 2013

IC ID: 7756A-SB300BT

3M Channel Separation Plot on Channel 38-39



6.5 NUMBER OF HOPPING FREQUENCY

LIMIT

According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands shall use at least 15 hopping frequencies.

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set spectrum analyzer Start=2400MHz, Stop = 2441.5MHz, Sweep = auto and Start=2441.5MHz, Stop = 2483.5MHz, Sweep = auto.
- 4. Set the spectrum analyzer as RBW, VBW=1MHz.
- 5. Max hold, view and count how many channel in the band.

TEST RESULTS

No non-compliance noted

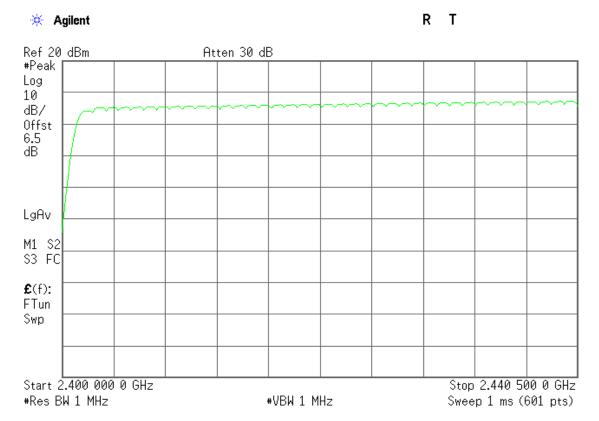
Test Data

Operation Mode:	1 Mbps	Test Date:	November 12, 2013
Temperature:	24°C	Tested by:	Blent.Wang

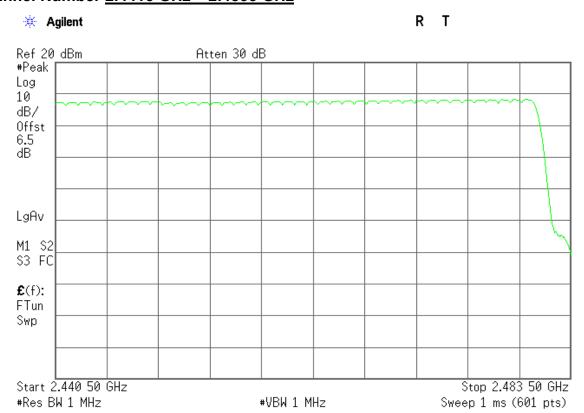
Result (No. of CH)	Limit (No. of CH)	Result
79	>15	PASS

Operation Mode:	3 Mbps	Test Date:	November 12, 2013
Temperature:	24°C	Tested by:	Blent.Wang

Result (No. of CH)	Limit (No. of CH)	Result
79	>15	PASS


Compliance Certification Services Inc.

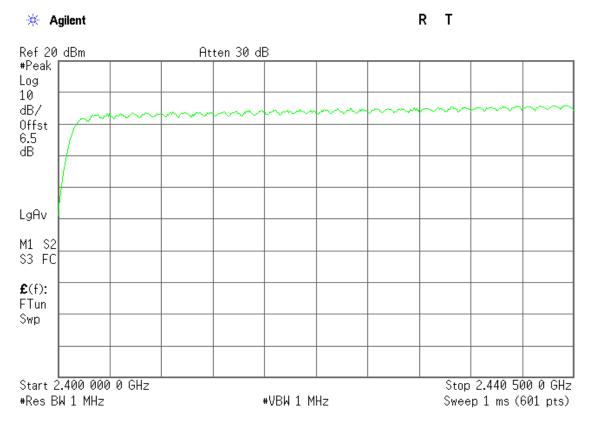
Report No: C131106R01-RPB FCC ID: XCO-SB300BT Date of Issue :December 2, 2013

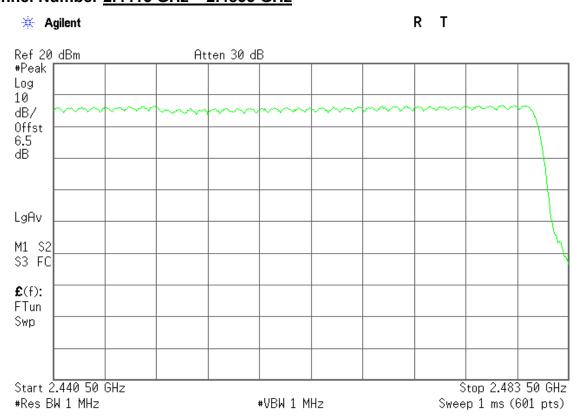

IC ID: 7756A-SB300BT

Test Plot:1M

Channel Number 2.4 GHz - 2.4415 GHz

Channel Number <u>2.4415 GHz – 2.4835 GHz</u>

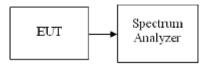



IC ID: 7756A-SB300BT

Test Plot:3M

Channel Number 2.4 GHz - 2.4415 GHz

Channel Number <u>2.4415 GHz – 2.4835 GHz</u>



6.6 TIME OF OCCUPANCY (DWELL TIME)

LIMIT

According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = operating frequency.
- 4. Set the spectrum analyzer as RBW, VBW=1MHz, Span = 0Hz, Sweep = auto.
- 5. Repeat above procedures until all frequency measured were complete.

TEST RESULTS

No non-compliance noted

Test Data

1M

DH 1

0.3948 * (1600/2)/79 * 31.6 = 126.34(ms)

Pulse Time (ms)		Period Time (s)	Limit (ms)	Result
0.3948	126.34	31.60	400	PASS

DH₃

1.642 * (1600/4)/79 * 31.6 = 262.72 (ms)

Pulse Time	Total of Dwell	Period Time	Limit	Result
(ms)	(ms)	(s)	(ms)	
1.642	262.72	31.60	400	PASS

DH 5

2.900* (1600/6)/79 * 31.6 = 309.33 (ms)

Pulse Time (ms)	Total of Dwell (ms)		Limit (ms)	Result
2.900	309.33	31.60	400	PASS

3M DH 1

0.399 * (1600/2)/79 * 31.6 = 127.68 (ms)

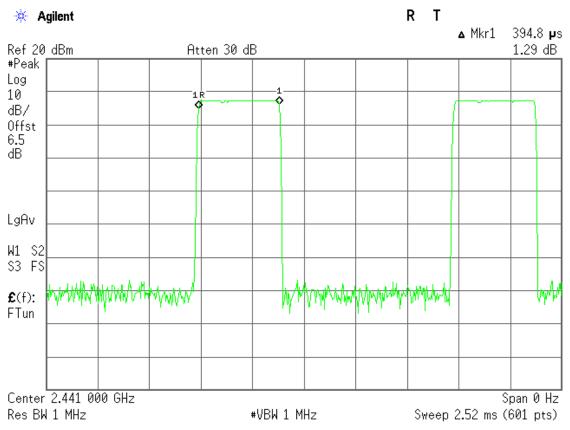
Pulse Time (ms)			Limit (ms)	Result
0.399	127.68	31.60	400	PASS

DH 3

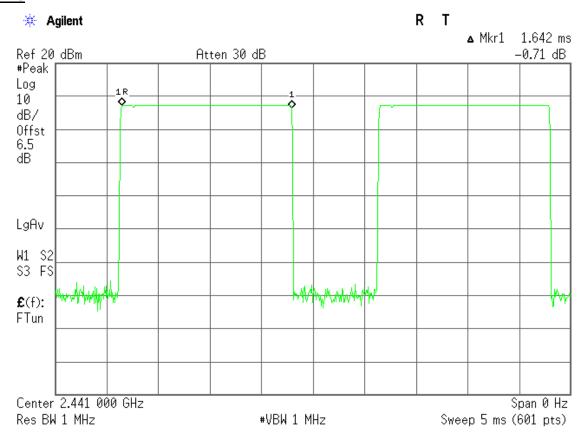
1.650 * (1600/4)/79 * 31.6 = 264.00 (ms)

Pulse Time (ms)			Limit (ms)	Result
1.650	264.00	31.60	400	PASS

DH 5


2.917* (1600/6)/79 * 31.6 = 311.15(ms)

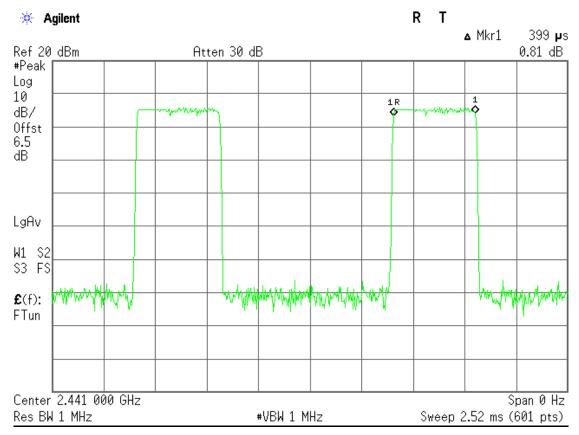
Pulse Time (ms)		Period Time (s)	Limit (ms)	Result
2.917	311.15	31.60	400	PASS



Date of Issue :December 2, 2013 IC ID: 7756A-SB300BT

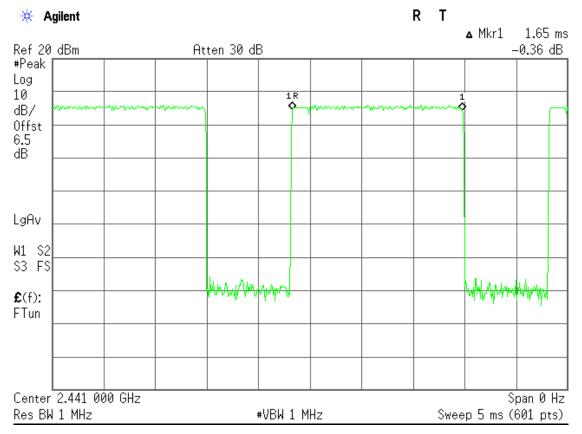
1M-DH1

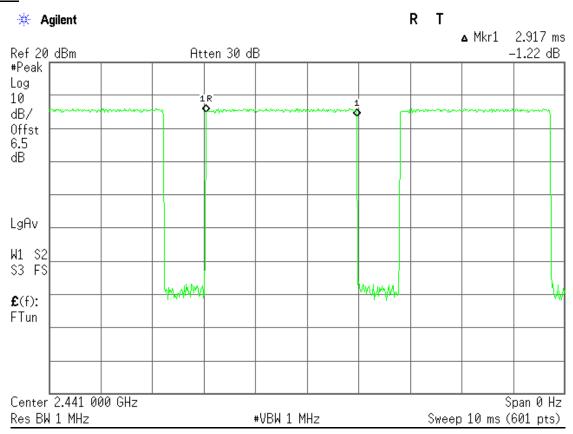

<u>1M-DH3</u>



Date of Issue :December 2, 2013 IC ID: 7756A-SB300BT

1M-DH5

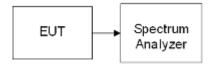

3M-DH1



Date of Issue :December 2, 2013 IC ID: 7756A-SB300BT

3M-DH3

3M-DH5


6.7 SPURIOUS EMISSION

Conducted Measurement

LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

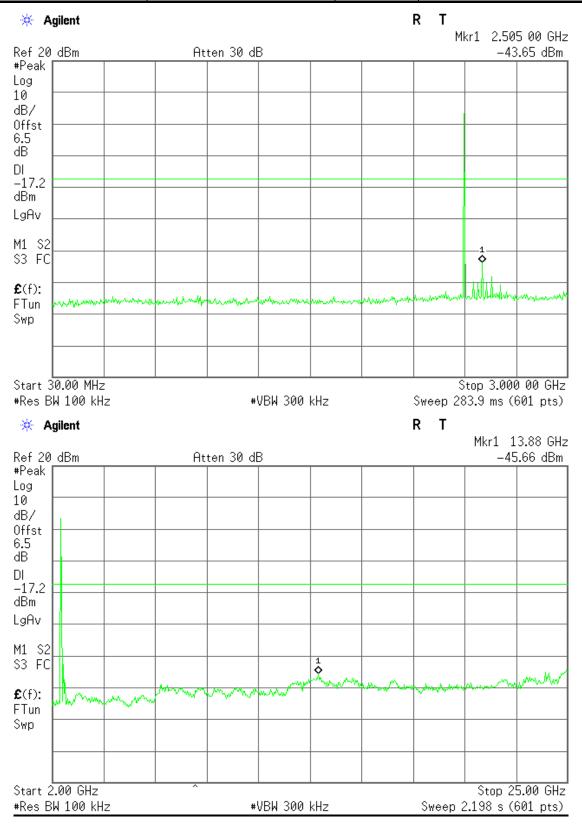
Test Configuration

TEST PROCEDURE

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

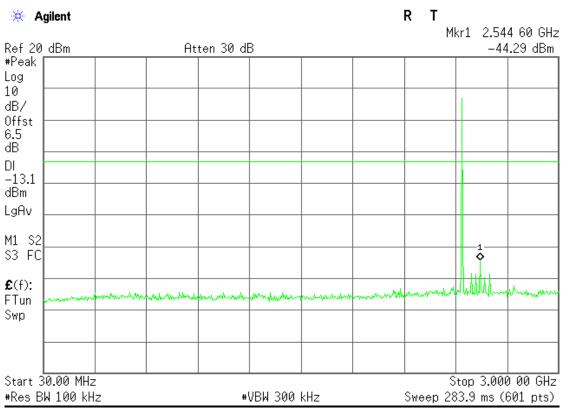
The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 KHz. The video bandwidth is set to 100 KHz.

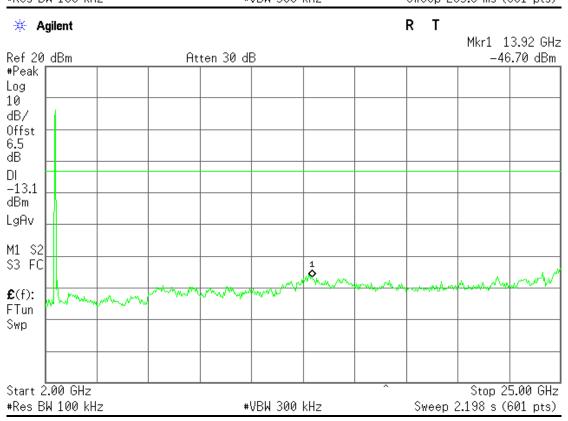
Measurements are made over the 30MHz to 26GHz range with the transmitter set to the lowest, middle, and highest channels.


TEST RESULTS

No non-compliance noted

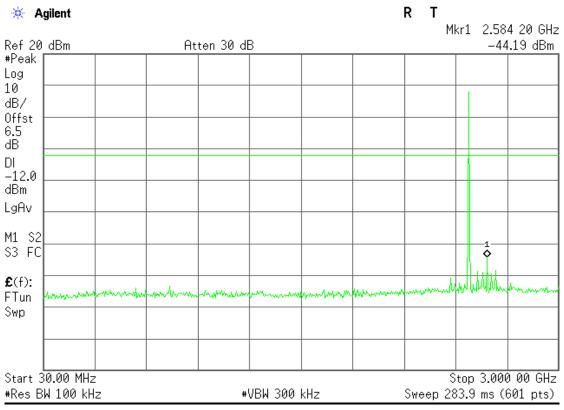
PB FCC ID: XCO-SB300BT Date of Issue :December 2, 2013
IC ID: 7756A-SB300BT

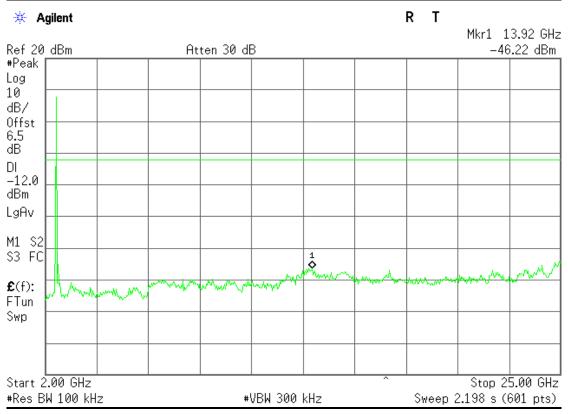

Operation Mode:	1 Mbps	Test Date:	November 12, 2013
Test Channel:	00	Tested by:	Blent.Wang
Humidity:	52 % RH	Temperature:	24°C



IC ID: 7756A-SB300BT

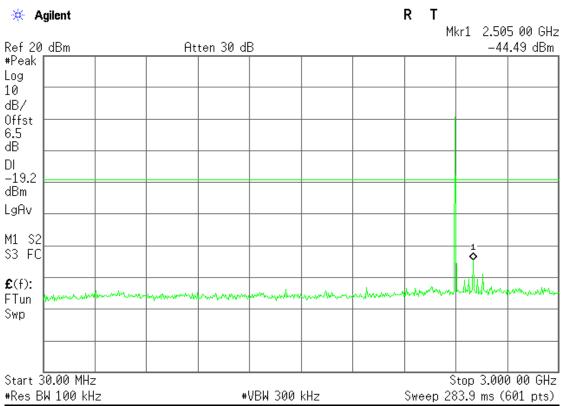
Operation Mode:	1 Mbps	Test Date:	November 12, 2013
Test Channel:	39	Tested by:	Blent.Wang
Humidity:	52 % RH	Temperature:	24°C

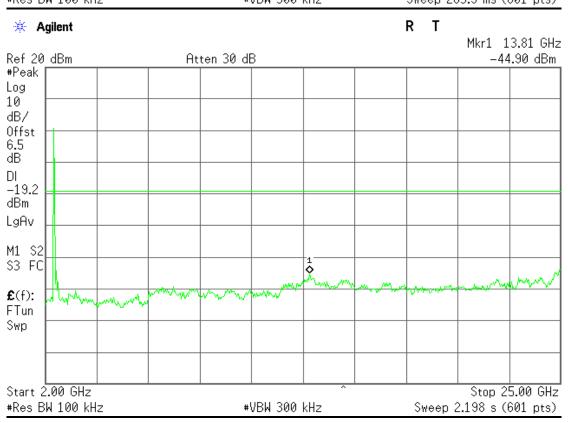




| Report No: C131106R01-RPB | FCC ID: XCO-SB300BT | Date of Issue :December 2, 2013 | IC ID: 7756A-SB300BT |

Operation Mode:	1 Mbps	Test Date:	November 12, 2013
Test Channel:	78	Tested by:	Blent.Wang
Humidity:	52 % RH	Temperature:	24°C

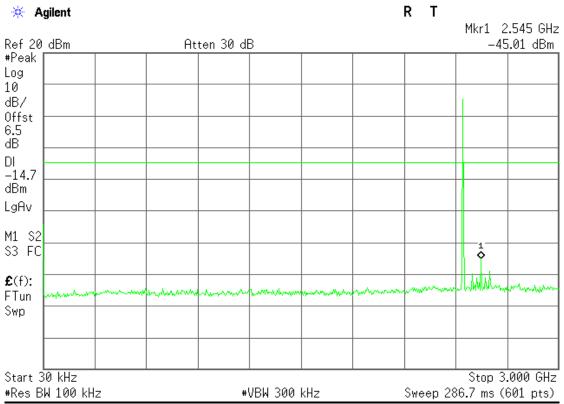


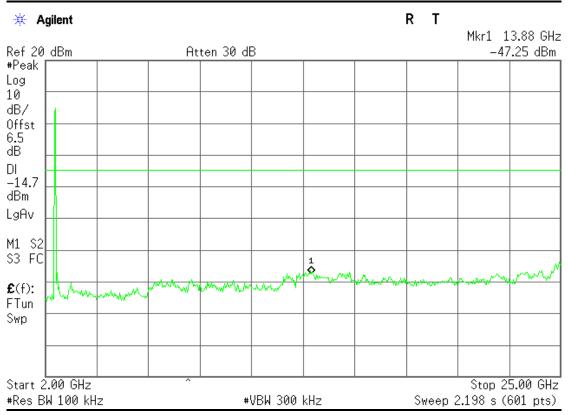

Operation Mode: 3 Mbps Test Date: November 12, 2013

Test Channel: 00 Tested by: Blent.Wang

Humidity: 52 % RH Temperature: 24°C

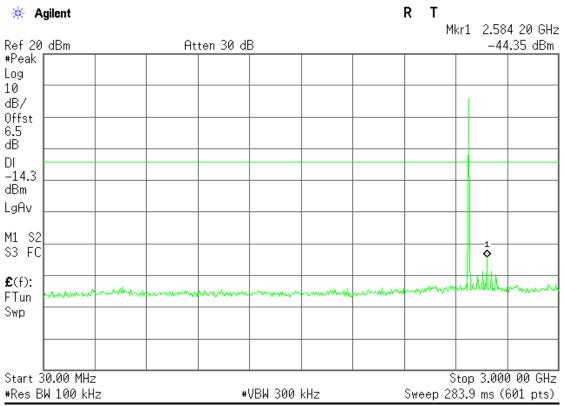
IC ID: 7756A-SB300BT

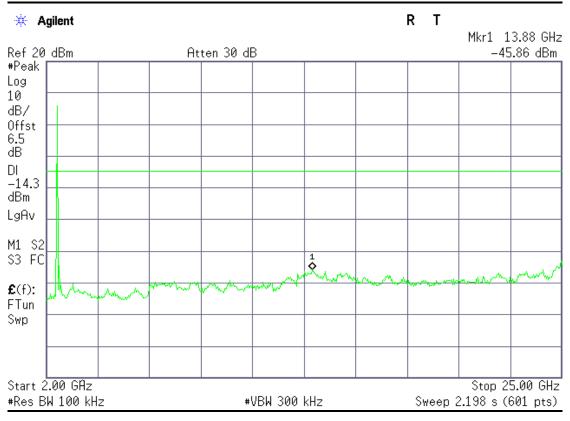




Date of Issue :December 2, 2013 IC ID: 7756A-SB300BT

Operation Mode:	3 Mbps	Test Date:	November 12, 2013
Test Channel:	39	Tested by:	Blent.Wang
Humidity:	52 % RH	Temperature:	24°C





FCC ID: XCO-SB300BT Date of Issue :December 2, 2013
IC ID: 7756A-SB300BT

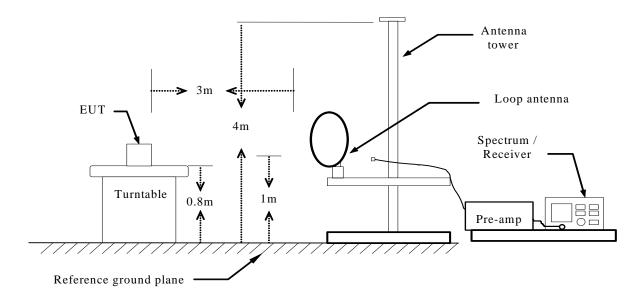
Operation Mode:	3 Mbps	Test Date:	November 12, 2013
Test Channel:	78	Tested by:	Blent.Wang
Humidity:	52 % RH	Temperature:	24°C

6.8 Radiated Band Edge and Spurious Emission Measurement

LIMIT

1. Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (mV/m)	Measurement Distance (m)
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3

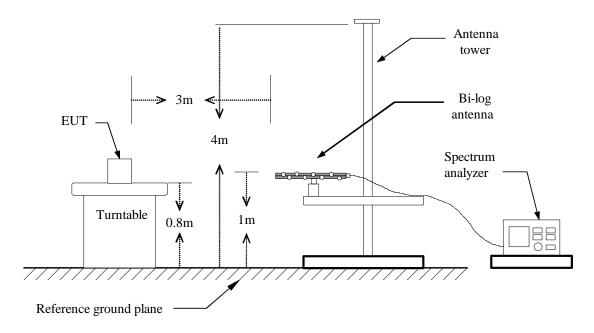

Remark: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

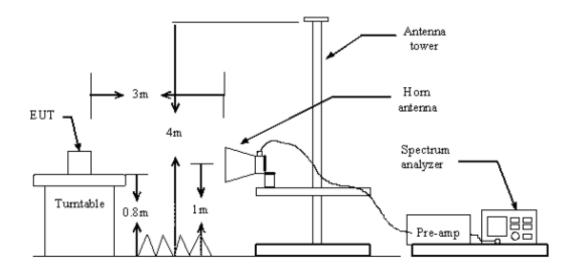
2. In the above emission table, the tighter limit applies at the band edges.

Frequency (Hz)	Field Strength (μV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

Test Configuration

Below 30MHz




Date of Issue :December 2, 2013

IC ID: 7756A-SB300BT

Below 1 GHz

Above 1 GHz

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

Below 1GHz:

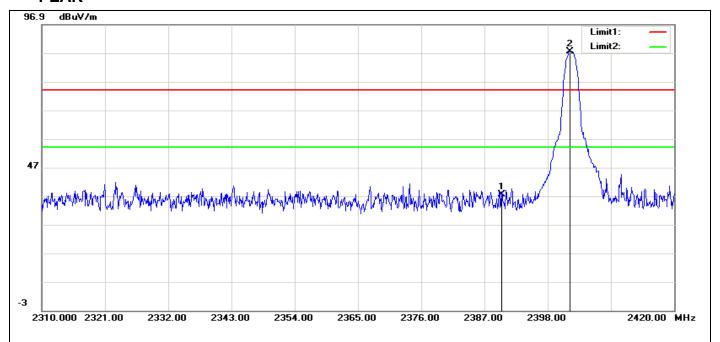
RBW=100kHz / VBW=300kHz / Sweep=AUTO

Above 1GHz:

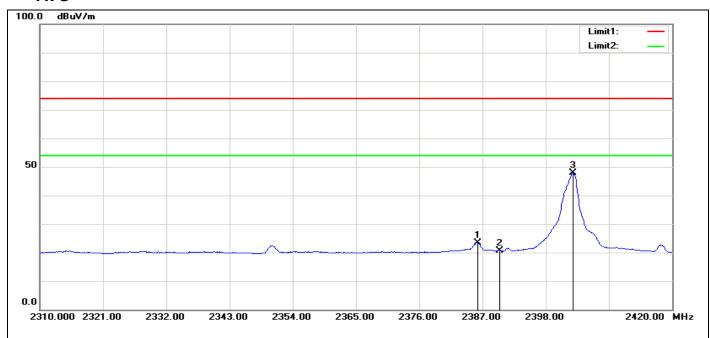
(a) PEAK: RBW=VBW=1MHz / Sweep=AUTO

(b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO

7. Repeat above procedures until the measurements for all frequencies are complete.



IC ID: 7756A-SB300BT

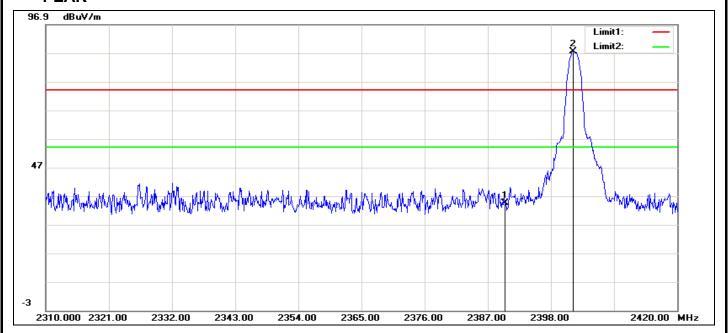

Date of Issue :December 2, 2013

RESTRICTED BANDEDGE (1Mbps, Low Channel, Horizontal)

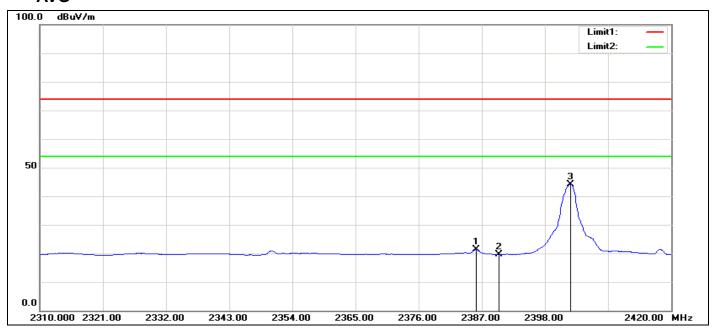
PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	2390.000	51.77	-14.28	37.49	74.00	-36.51	101	231	peak
2	2401.850	101.75	-14.27	87.48	74.00	13.48	101	272	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	2386.120	37.62	-14.28	23.34	54.00	-30.66	101	333	AVG
2	2390.000	34.89	-14.28	20.61	54.00	-33.39	101	231	AVG
3	2402.730	62.16	-14.27	47.89	54.00	-6.11	101	272	AVG



IC ID: 7756A-SB300BT

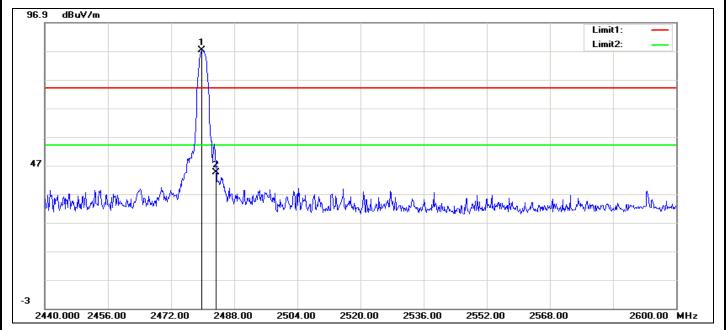

Date of Issue :December 2, 2013

RESTRICTED BANDEDGE (1Mbps, Low Channel, Vertical)

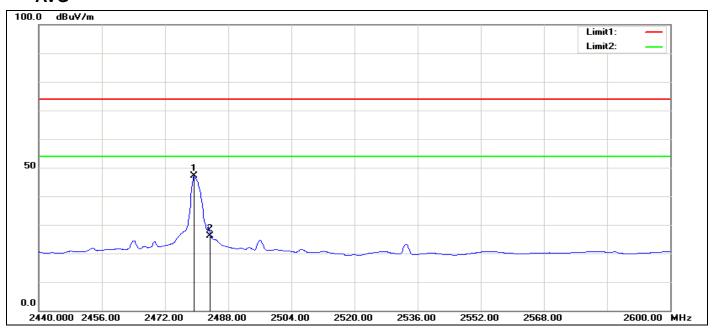
PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	2390.000	48.69	-14.28	34.41	74.00	-39.59	100	183	peak
2	2401.850	101.80	-14.27	87.53	74.00	13.53	100	97	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	2386.010	35.67	-14.28	21.39	54.00	-32.61	100	82	AVG
2	2390.000	33.86	-14.28	19.58	54.00	-34.42	100	183	AVG
3	2402.400	58.42	-14.27	44.15	54.00	-9.85	100	87	AVG



IC ID: 7756A-SB300BT

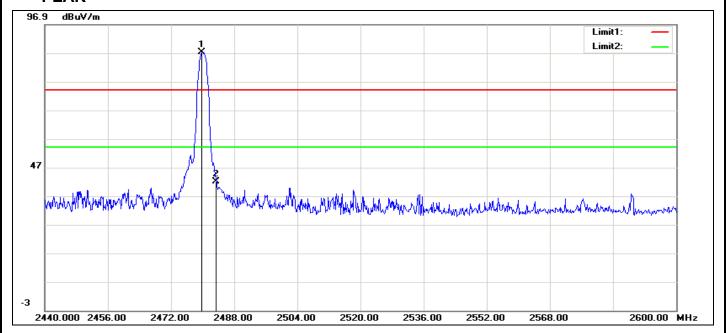

Date of Issue :December 2, 2013

RESTRICTED BANDEDGE (1Mbps Mode, High Channel, Horizontal)

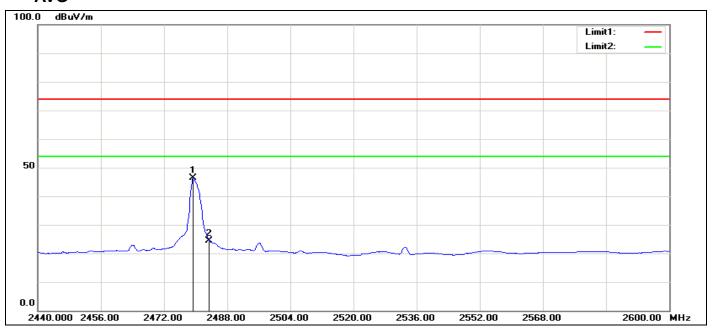
PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	2479.840	100.84	-13.67	87.17	74.00	13.17	100	135	peak
2	2483.500	58.11	-13.65	44.46	74.00	-29.54	100	288	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	2479.360	60.90	-13.68	47.22	54.00	-6.78	100	323	AVG
2	2483.500	39.76	-13.65	26.11	54.00	-27.89	100	288	AVG



IC ID: 7756A-SB300BT

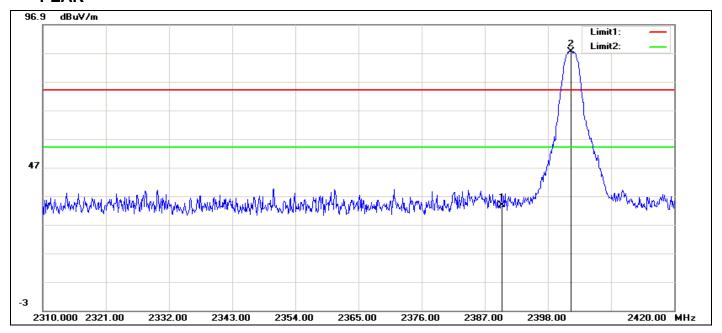

Date of Issue :December 2, 2013

RESTRICTED BANDEDGE (1Mbps, High Channel, Vertical)

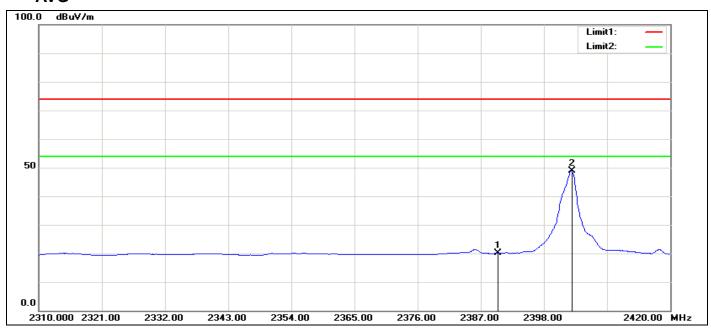
PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	2479.840	100.84	-13.67	87.17	74.00	13.17	100	121	peak
2	2483.500	55.62	-13.65	41.97	74.00	-32.03	100	126	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	2479.360	60.09	-13.68	46.41	54.00	-7.59	100	283	AVG
2	2483.500	38.10	-13.65	24.45	54.00	-29.55	100	126	AVG



Date of Issue :December 2, 2013

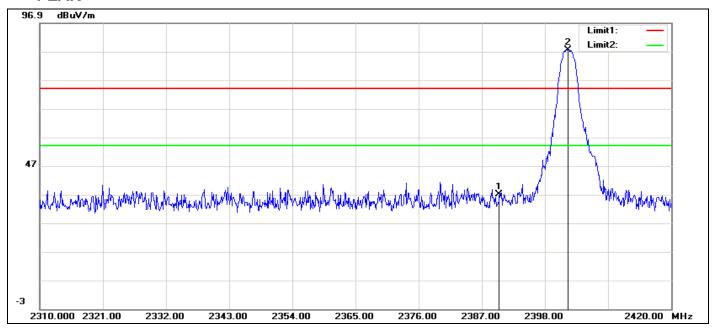

IC ID: 7756A-SB300BT

RESTRICTED BANDEDGE (3Mbps, Low Channel, Horizontal)

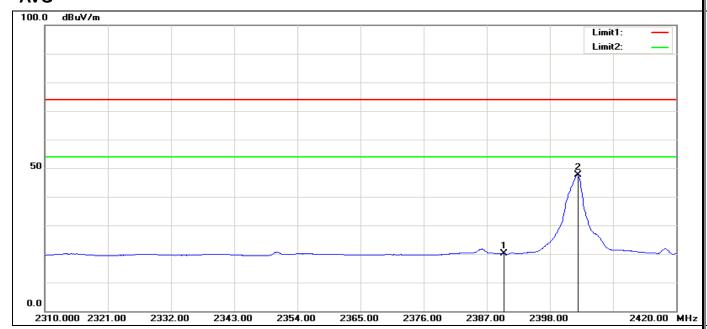
PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	2390.000	47.97	-14.28	33.69	74.00	-40.31	100	286	peak
2	2401.960	101.79	-14.27	87.52	74.00	13.52	100	134	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	2390.000	34.39	-14.28	20.11	54.00	-33.89	100	286	AVG
2	2402.840	63.03	-14.27	48.76	54.00	-5.24	100	286	AVG



Date of Issue :December 2, 2013

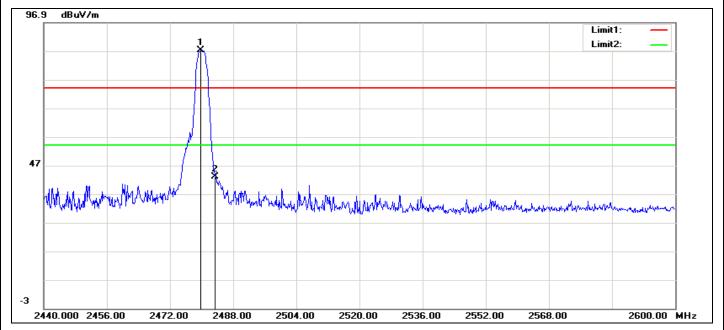

IC ID: 7756A-SB300BT

RESTRICTED BANDEDGE (3Mbps, Low Channel, Vertical)

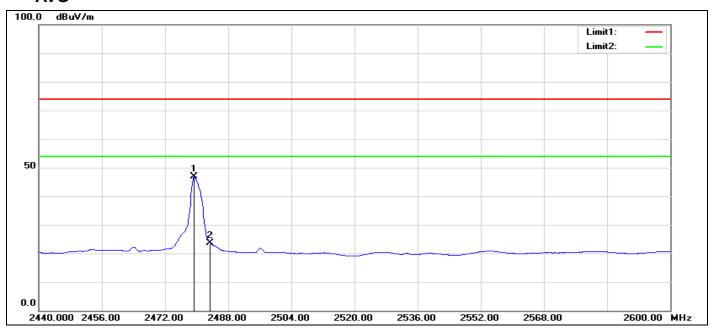
PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	2390.000	51.30	-14.28	37.02	74.00	-36.98	100	255	peak
2	2401.960	101.79	-14.27	87.52	74.00	13.52	100	98	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	2390.000	34.32	-14.28	20.04	54.00	-33.96	100	255	AVG
2	2402.840	61.80	-14.27	47.53	54.00	-6.47	100	73	AVG



Date of Issue :December 2, 2013

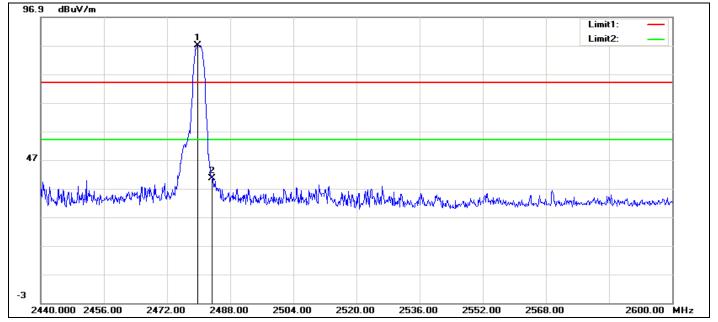

IC ID: 7756A-SB300BT

RESTRICTED BANDEDGE (3Mbps, High Channel, Horizontal)

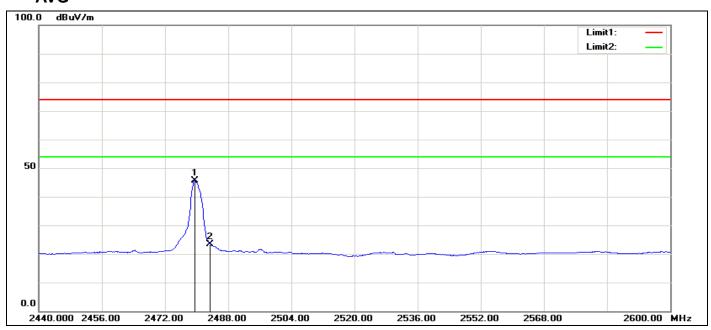
PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	2479.840	100.88	-13.67	87.21	74.00	13.21	100	136	peak
2	2483.500	56.59	-13.65	42.94	74.00	-31.06	100	145	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	2479.360	60.49	-13.68	46.81	54.00	-7.19	100	141	AVG
2	2483.500	37.16	-13.65	23.51	54.00	-30.49	100	145	AVG



IC ID: 7756A-SB300BT


Date of Issue :December 2, 2013

RESTRICTED BANDEDGE (3Mbps, High Channel, Vertical)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	2479.840	100.81	-13.67	87.14	74.00	13.14	100	191	peak
2	2483.500	54.11	-13.65	40.46	74.00	-33.54	100	69	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	2479.520	59.42	-13.68	45.74	54.00	-8.26	100	75	AVG
2	2483.500	36.93	-13.65	23.28	54.00	-30.72	100	69	AVG

Compliance Certification Services Inc.

Report No: C131106R01-RPB FCC ID: XCO-SB300BT Date of Issue :December 2, 2013

IC ID: 7756A-SB300BT

TEST RESULT OF RADIATED EMISSION

30MHz-1GHz

Operation Mode: 1 Mbps Test Date: November 19, 2013

Test Channel: CH78 Tested by: Blent.Wang

Temperature: 25°C **Polarity:** Ver. / Hor.

Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	56.1900	22.35	8.22	30.57	40.00	-9.43	100	181	peak
2	180.3500	27.89	12.21	40.10	43.50	-3.40	100	103	peak
3	280.2600	28.40	15.23	43.63	46.00	-2.37	100	344	peak
4	353.0100	26.44	16.84	43.28	46.00	-2.72	100	232	peak
5	436.4300	22.10	19.00	41.10	46.00	-4.90	100	270	peak
6	516.9400	20.31	20.47	40.78	46.00	-5.22	100	219	peak

Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	56.1900	21.39	8.22	29.61	40.00	-10.39	100	240	peak
2	165.8000	18.66	12.99	31.65	43.50	-11.85	100	240	peak
3	232.7300	21.92	13.53	35.45	46.00	-10.55	100	267	peak
4	665.3500	14.71	22.34	37.05	46.00	-8.95	100	262	peak
5	839.9500	13.67	25.09	38.76	46.00	-7.24	100	258	peak
6	935.9800	17.08	25.3	42.38	46.00	-3.62	100	75	peak

Notes:

- 1. Mea surements above show only up to maximum emissions noted, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 2. Radiated emissions measured in frequency range from 9 KHz to 1000MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

Date of Issue :December 2, 2013 IC ID: 7756A-SB300BT

Above 1 GHz

Operation Mode: Test Date: November 19, 2013 1 Mbps

Test Channel: CH00 Tested by: Blent.Wang Temperature: 25°C **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4786.859	V	63.70	-8.07	55.63	74.00	-18.37	PEAK
7211.538	V	47.82	-0.59	47.23	74.00	-26.77	PEAK
4786.859	Н	61.85	-8.07	53.78	74.00	-20.22	PEAK
7238.782	Н	45.30	-0.68	44.62	74.00	-29.38	PEAK

Operation Mode: Test Date: November 19, 2013 1 Mbps

Test Channel: CH39 Tested by: Blent.Wang 25°C Temperature: **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4868.590	V	65.13	-7.72	57.41	74.00	-16.59	PEAK
7320.513	٧	52.54	-0.83	51.71	74.00	-22.29	PEAK
4868.590	I	61.48	-7.72	53.76	74.00	-20.24	PEAK
7320.513	Н	47.45	-0.83	46.62	74.00	-27.38	PEAK

Operation Mode: 1 Mbps Test Date: November 19, 2013

Test Channel: CH78 Tested by: Blent.Wang 25°C **Polarity:** Ver. / Hor. Temperature:

Frequency (MHz)	Ant. Pol. (H/V)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4950.320	V	58.10	-7.58	50.52	74.00	-23.48	PEAK
7429.487	٧	53.15	-0.55	52.60	74.00	-21.40	PEAK
4950.320	I	57.73	-7.58	50.15	74.00	-23.85	PEAK
7429.487	Τ	47.76	-0.55	47.21	74.00	-26.79	PEAK

Date of Issue :December 2, 2013 IC ID: 7756A-SB300BT

Operation Mode: Test Date: November 19, 2013 3 Mbps

Test Channel: CH00 Tested by: Blent.Wang 25°C Temperature: Polarity: Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4786.859	V	57.95	-8.07	49.88	74.00	-24.12	PEAK
7211.538	٧	45.52	-0.59	44.93	74.00	-29.07	PEAK
4786.859	Н	53.66	-8.07	45.59	74.00	-28.41	PEAK
7184.295	Ι	45.21	-0.65	44.56	74.00	-29.44	PEAK

Operation Mode: Test Date: November 19, 2013 3 Mbps

Test Channel: CH39 Tested by: Blent.Wang Temperature: 25°C **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4868.590	V	60.37	-7.72	52.65	74.00	-21.35	PEAK
7674.680	V	45.00	0.48	45.48	74.00	-28.52	PEAK
4868.590	Н	59.50	-7.72	51.78	74.00	-22.22	PEAK
7701.923	Н	46.00	0.67	46.67	74.00	-27.33	PEAK

Operation Mode: 3 Mbps Test Date: November 19, 2013

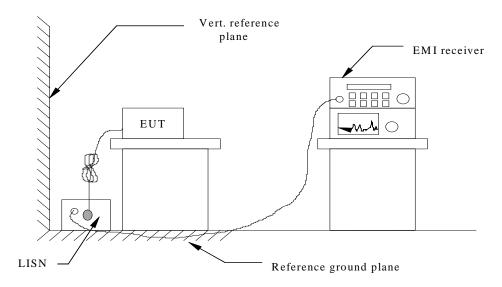
Test Channel: CH78 Tested by: Blent.Wang 25°C Polarity: Ver. / Hor. Temperature:

Frequency (MHz)	Ant. Pol. (H/V)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4950.320	V	56.55	-7.58	48.97 74.		-25.03	PEAK
7429.487	٧	49.17	-0.55	48.62	74.00	-25.38	PEAK
4950.320	I	57.86	-7.58	50.28	74.00	-23.72	PEAK
7729.167	Η	44.18	0.63	44.81	74.00	-29.19	PEAK

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz to 10th harmonics of fundamental, RBW = 1MHz, VBW = 1MHz, Sweep time = Auto.
 - b. AV Setting 1GH z to 10th harmonics of fundamental, RBW = 1MHz, VBW = 10Hz, Sweep time = Auto.

6.9 POWERLINE CONDUCTED EMISSIONS


LIMIT

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range (MHz)	Limits (dΒμV)
requeries runge (mil2)	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

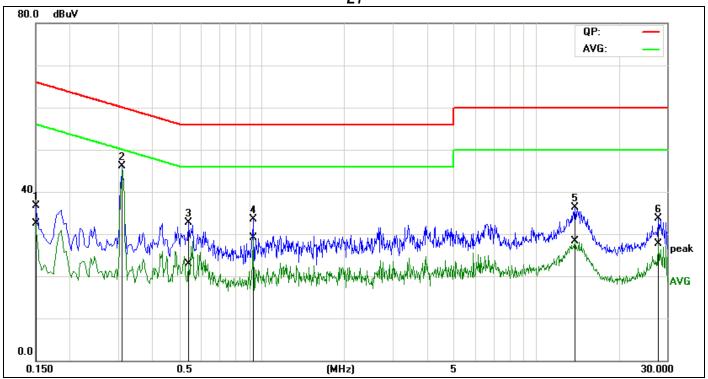
See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

TEST RESULTS

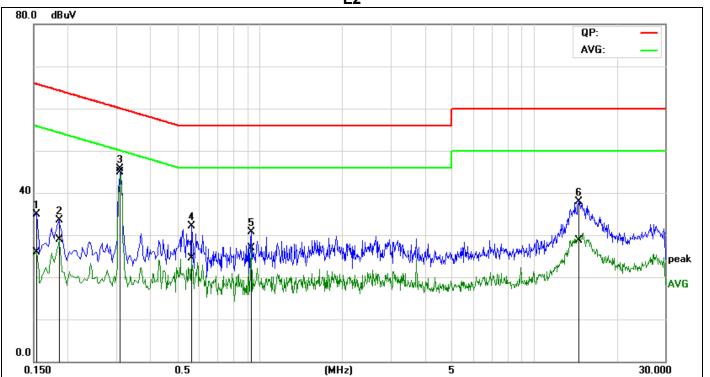
The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.


Compliance Certification Services Inc.

Report No: C131106R01-RPB FCC ID: XCO-SB300BT Date of Issue :Dece Date of Issue :December 2, 2013 IC ID: 7756A-SB300BT

Test Data

Model: SB-300	Humidity: 51% RH
Temperature: 23°C	Test Results: Pass
Tested by: Blent.Wang	


No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1500	16.89	12.66	19.81	36.70	32.47	66.00	56.00	-29.30	-23.53	Pass
2*	0.3100	26.49	26.49	19.68	46.17	46.17	59.97	49.97	-13.80	-3.80	Pass
3	0.5420	12.86	2.99	19.83	32.69	22.82	56.00	46.00	-23.31	-23.18	Pass
4	0.9300	13.58	9.31	19.84	33.42	29.15	56.00	46.00	-22.58	-16.85	Pass
5	13.8860	15.52	7.40	20.82	36.34	28.22	60.00	50.00	-23.66	-21.78	Pass
6	27.9260	12.42	6.44	21.32	33.74	27.76	60.00	50.00	-26.26	-22.24	Pass

Date of Issue :December 2, 2013

IC ID: 7756A-SB300BT

L2

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1540	15.20	6.27	19.72	34.92	25.99	65.78	55.78	-30.86	-29.79	Pass
2	0.1860	13.81	9.14	19.67	33.48	28.81	64.21	54.21	-30.73	-25.40	Pass
3*	0.3100	25.96	25.14	19.72	45.68	44.86	59.97	49.97	-14.29	-5.11	Pass
4	0.5660	12.35	4.56	19.85	32.20	24.41	56.00	46.00	-23.80	-21.59	Pass
5	0.9340	10.84	6.99	19.82	30.66	26.81	56.00	46.00	-25.34	-19.19	Pass
6	14.5420	17.24	8.07	20.69	37.93	28.76	60.00	50.00	-22.07	-21.24	Pass

Remark:

- 1. The measuring frequencies range between 0.15 MHz and 30 MHz.
- 2. The emissions measured in the frequency range between 0.15 MHz and 30MHz were made with an instrument using Quasi-peak detector and Average detector.
- 3."---" denotes the emission level was or more than 2dB below the Average limit, and no re-check was made.
- 4.The IF bandwidth of SPA between 0.15MHz and 30MHz was 10KHz. The IF bandwidth of Test Receiver between 0.15MHz and 30MHz was 9kHz.

END OF REPORT