D4: SYSTEM VALIDATION DIPOLE # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 S Client ADT (Auden) Certificate No: D2600V2-1020_Jan09 | CALIBRATION C | ERTIFICATI | | | |-----------------------------------|-----------------------------------|--|--------------------------| | Object | D2600V2 - SN: 1 | 020 | | | Calibration procedure(s) | QA CAL-05.v7
Calibration proce | dure for dipole validation kits | | | Calibration date: | January 14, 2009 | | | | Condition of the calibrated item | In Tolerance | | | | | | onal standards, which realize the physical units robability are given on the following pages and | | | All calibrations have been conduc | oted in the closed laborator | y facility: environment temperature (22 ± 3)°C a | and humidity < 70%. | | Calibration Equipment used (M&T | E critical for calibration) | | | | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Power meter EPM-442A | GB37480704 | 08-Oct-08 (No. 217-00898) | Oct-09 | | Power sensor HP 8481A | US37292783 | 08-Oct-08 (No. 217-00898) | Oct-09 | | Reference 20 dB Attenuator | SN: 5086 (20g) | 01-Jul-08 (No. 217-00864) | Jul-09 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Jul-08 (No. 217-00867) | Jul-09 | | Reference Probe ES3DV2 | SN: 3025 | 28-Apr-08 (No. ES3-3025_Apr08) | Apr-09 | | DAE4 | SN: 601 | 14-Mar-08 (No. DAE4-601_Mar08) | Mar-09 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-07) | In house check: Oct-09 | | RF generator R&S SMT-06 | 100005 | 4-Aug-99 (in house check Oct-07) | In house check: Oct-09 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-08) | In house check: Oct-09 | | | Name | Function | Signature | | Calibrated by: | Jeton Kastrati | Laboratory Technician | Je Uc | | Approved by: | Katja Pokovic | Technical Manager | II: Holy | | | | | Issued: January 15, 2009 | This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2600V2-1020_Jan09 Page 1 of 9 ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL N/A tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V5.0 | |------------------------------|---------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.0 ± 6 % | 1.93 mho/m ± 6 % | | Head TSL temperature during test | (21.6 ± 0.2) °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm³ (1 g) of Head TSL | condition | | |--|--------------------|----------------------------| | SAR measured | 250 mW input power | 14.7 mW / g | | SAR normalized | normalized to 1W | 58.8 mW / g | | SAR for nominal Head TSL parameters ¹ | normalized to 1W | 58.8 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 6.59 mW / g | | SAR normalized | normalized to 1W | 26.4 mW / g | | SAR for nominal Head TSL parameters ¹ | normalized to 1W | 26.3 mW / g ± 16.5 % (k=2) | Certificate No: D2600V2-1020_Jan09 Page 3 of 9 ¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.5 | 2.16 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.5 ± 6 % | 2.13 mho/m ± 6 % | | Body TSL temperature during test | (21.6 ± 0.2) °C | | | # SAR result with Body TSL | SAR averaged over 1 cm³ (1 g) of Body TSL | condition | | |--|--------------------|----------------------------| | SAR measured | 250 mW input power | 14.2 mW / g | | SAR normalized | normalized to 1W | 56.8 mW / g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 57.3 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 6.37 mW / g | | SAR normalized | normalized to 1W | 25.5 mW / g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 25.6 mW / g ± 16.5 % (k=2) | Certificate No: D2600V2-1020_Jan09 ² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" ## **Appendix** #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 49.2 Ω - 5.0 jΩ | |--------------------------------------|-----------------| | Return Loss | – 25.9 dB | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 44.6 Ω - 3.9 jΩ | |--------------------------------------|-----------------| | Return Loss | – 23.1 dB | # **General Antenna Parameters and Design** | <u> </u> | | |----------------------------------|----------| | Electrical Delay (one direction) | 1.154 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|--------------| | Manufactured on | May 13, 2008 | Certificate No: D2600V2-1020_Jan09 ### **DASY5 Validation Report for Head TSL** Date/Time: 14.01.2009 10:37:41 Test Laboratory: SPEAG, Zurich, Switzerland **DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN1020** Communication System: CW-2600; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: HSL U10 BB Medium parameters used: f = 2600 MHz; $\sigma = 1.93 \text{ mho/m}$; $\varepsilon_r = 38$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC) # DASY5 Configuration: Probe: ES3DV2 - SN3025; ConvF(4.29, 4.29, 4.29); Calibrated: 28.04.2008 • Sensor-Surface: 3.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 14.03.2008 • Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45 Pin = 250 mW; d = 10 mm 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.3 V/m; Power Drift = 0.031 dB Peak SAR (extrapolated) = 31.6 W/kg SAR(1 g) = 14.7 mW/g; SAR(10 g) = 6.59 mW/g Maximum value of SAR (measured) = 17.7 mW/g 0 dB = 17.7 mW/g Certificate No: D2600V2-1020_Jan09 # Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date/Time: 14.01.2009 11:55:42 Test Laboratory: SPEAG, Zurich, Switzerland **DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN1020** Communication System: CW-2600; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: MSL U10 Medium parameters used: f = 2600 MHz; $\sigma = 2.13$ mho/m; $\varepsilon_r = 53.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC) #### DASY5 Configuration: Probe: ES3DV2 - SN3025; ConvF(3.96, 3.96, 3.96); Calibrated: 28.04.2008 • Sensor-Surface: 3.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 14.03.2008 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45 Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.7 V/m; Power Drift = 0.014 dB Peak SAR (extrapolated) = 29.8 W/kg SAR(1 g) = 14.2 mW/g; SAR(10 g) = 6.37 mW/g Maximum value of SAR (measured) = 17.8 mW/g 0 dB = 17.8 mW/g Certificate No: D2600V2-1020 Jan09 # Impedance Measurement Plot for Body TSL