

MRT Technology (Taiwan) Co., Ltd Phone: +886-3-3288388

Web: www.mrt-cert.com

Report No.: 2312TWN801-U6 Report Version V1.0 Issue Date: 2024-02-19

# **RF Exposure Evaluation Declaration**

FCC ID : XBG-BA1GMNRCH12

**IC** : 21285-BA1GMNRCH12

**Applicant**: AVALUE TECHNOLOGY INCORPORATION

**Application Type**: Certification

**Product**: Intercom

Model Name : Monarch 12

**Model Number**: BUTTERFLYMX.M12.1

Trade Mark :

FCC Classification: Digital Transmission System (DTS)

Direct Sequence Spread spectrum (DSS)

Unlicensed National Information Infrastructure (NII)

FCC Rule Part(s) : FCC Part 2.1091

ISED Standard : RSS-102 Issue 6

Received Date : December 05, 2023

Tested By : Owen Tsai

(Owen Tsai)

Reviewed By : Paddy Chen

(Paddy Chen)

Approved By : am her

lac-MRA



(Chenz Ker)

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standards through the calibration of the equipment and evaluated measurement uncertainty herein.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Taiwan) Co., Ltd.



# **Revision History**

| Report No.    | Version | Description     | Issue Date | Note |
|---------------|---------|-----------------|------------|------|
| 2312TWN801-U6 | 1.0     | Original Report | 2024-02-19 |      |



## **CONTENTS**

| Des | cription | n                                     | Page |
|-----|----------|---------------------------------------|------|
| 1.  | INTRO    | DUCTION                               | 5    |
|     | 1.1.     | Scope                                 | 5    |
|     | 1.2.     | MRT Test Location                     | 5    |
| 2.  | PROD     | UCT INFORMATION                       | 6    |
|     | 2.1.     | Feature of Equipment under Test       | 6    |
|     | 2.2.     | Description of Available Antennas     | 7    |
| 3.  | RF Ex    | posure Evaluation                     | 8    |
|     | 3.1.     | Limits                                | 8    |
|     | 3.2.     | Test Result of RF Exposure Evaluation | 10   |



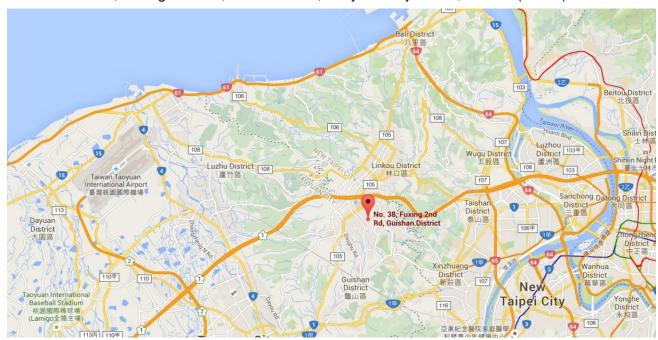
#### **General Information**

| Applicant                | AVALUE TECHNOLOGY INCORPORATION                                            |  |  |  |
|--------------------------|----------------------------------------------------------------------------|--|--|--|
| Applicant Address        | 7F, 228, Lian-cheng Road, Zhonghe Dist., New Taipei City 235, Taiwan       |  |  |  |
| Manufacturer             | ButterflyMX, inc.                                                          |  |  |  |
| Manufacturer Address     | 44 West 28th Street, 4th Floor New York, NY 10001                          |  |  |  |
| Test Site                | MRT Technology (Taiwan) Co., Ltd                                           |  |  |  |
| Test Site Address        | No. 38, Fuxing Second Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C) |  |  |  |
| MRT FCC Registration No. | 291082                                                                     |  |  |  |
| Test Device Serial No.   | N/A ☐ Production ☐ Pre-Production ☐ Engineering                            |  |  |  |

### **Test Facility / Accreditations**

- 1. MRT facility is a FCC registered (Reg. No. 291082) test facility with the site description report on file and is designated by the FCC as an Accredited Test Firm.
- 2. MRT facility is an IC registered (MRT Reg. No. 21723) test laboratory with the site description on file at Industry Canada.
- **3.** MRT Lab is accredited to ISO 17025 by the Taiwan Accreditation Foundation (TAF Cert. No. 3261) in EMC, Telecommunications and Radio testing for FCC (Designation Number: TW3261), Industry Canada, EU and TELEC Rules.




### 1. INTRODUCTION

### 1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada and Certification and Engineering Bureau.

### 1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taoyuan City. These measurement tests were conducted at the MRT Technology (Taiwan) Co., Ltd. Facility located at No.38, Fuxing 2nd Rd., Guishan Dist., Taoyuan City 33377, Taiwan (R.O.C).





### 2. PRODUCT INFORMATION

# 2.1. Feature of Equipment under Test

| Droduct Name             | Intercom                                          |  |  |
|--------------------------|---------------------------------------------------|--|--|
| Product Name             | Intercom                                          |  |  |
| Trade Mark               | ButterflyMX                                       |  |  |
| Model Name               | Monarch 12                                        |  |  |
| Model Number             | BUTTERFLYMX.M12.1                                 |  |  |
|                          | WPAN:                                             |  |  |
|                          | Bluetooth Dual Mode: V5.0                         |  |  |
|                          | RFID: 125kHz & 13.56MHz                           |  |  |
| Supports Radios Spec.    | WLAN:                                             |  |  |
|                          | 2.4G: 802.11b/g/n-20/n-40                         |  |  |
|                          | 5G: 802.11a/n-20/ac-20/n-40/ac-40/ac-80, Band 1,4 |  |  |
|                          | WWAN:                                             |  |  |
|                          | 4G: Band 2,4,5,7,12,13,25,26,38,41                |  |  |
| Accessory                |                                                   |  |  |
|                          | Brand Name: EDAC                                  |  |  |
| Power Adapter            | Model: EA10731F-240                               |  |  |
| Power Adapter            | Input: AC 100-240V~0.2A, 50-60Hz                  |  |  |
|                          | Output: DC 24.0V-2.08A                            |  |  |
|                          | Brand Name: EDAC                                  |  |  |
| Power Adapter #2         | Model: EA10681H-240                               |  |  |
| ·                        | Input: AC 100-240V~2.0A, 50-60Hz                  |  |  |
| (This time new addition) | Output: DC 24.0V-2.08A 50.0W                      |  |  |
|                          | DC Cable Out: Non-Shielded, 1.2m                  |  |  |



### 2.2. Description of Available Antennas

| No.  | Manufacturer                                        | Manufacturer Dort No.                   |      | ntenna Gain (dBi) |                            |                                                                      |
|------|-----------------------------------------------------|-----------------------------------------|------|-------------------|----------------------------|----------------------------------------------------------------------|
| INO. | Manufacturer                                        | Part No.                                | Type | BT/BLE            | Wi-Fi 2.4G                 | Wi-Fi 5G                                                             |
| 1    | INPAQ TECHNOLOGY CO., LTD. (This time new addition) | WA-P-LB-01-315<br>and<br>WA-P-LB-02-996 | РСВ  | 4.45              | Ant 0: 4.45<br>Ant 1: 4.35 | Ant 0_B1: 7.26<br>Ant 1_B1: 7.77<br>Ant 0_B4: 8.26<br>Ant 1_B4: 7.06 |



### 3. RF Exposure Evaluation

### 3.1. FCC Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

### LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

| Frequency Range | Electric Field                                 | Magnetic Field       | Power Density         | Average Time |  |  |
|-----------------|------------------------------------------------|----------------------|-----------------------|--------------|--|--|
| (MHz)           | Strength (V/m)                                 | Strength (A/m)       | (mW/cm <sup>2</sup> ) | (Minutes)    |  |  |
|                 | (A) Limits for Occupational/ Control Exposures |                      |                       |              |  |  |
| 300-1500        | -                                              |                      | f/300                 | 6            |  |  |
| 1500-100,000    | 1                                              |                      | 5                     | 6            |  |  |
|                 | (B) Limits for Gene                            | ral Population/ Unco | ntrolled Exposures    |              |  |  |
| 300-1500        |                                                |                      | f/1500                | 6            |  |  |
| 1500-100,000    |                                                |                      | 1                     | 30           |  |  |

f= Frequency in MHz

Calculation Formula:  $Pd = (Pout*G)/(4*pi*r^2)$ 

Where

Pd = power density in mW/cm<sup>2</sup>

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

r = distance between observation point and center of the radiator in cm

Pd is the limit of MPE, 1mW/cm<sup>2</sup>. If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

Page Number: 8 of 11



### 3.2. ISED Limits

According to RSS-102 section 4: Exposure Limits

Table 4: RF Field Strength Limits for Devices Used by the General Public (Uncontrolled Environment)

| Frequency Range<br>(MHz) | Electric Field<br>(V/m rms) | Magnetic Field<br>(A/m rms)              | Power Density<br>(W/m2)     | Reference Period (minutes) |
|--------------------------|-----------------------------|------------------------------------------|-----------------------------|----------------------------|
| 0.003-10 <sup>21</sup>   | 83                          | 90                                       | -                           | Instantaneous*             |
| 0.1-10                   | -                           | 0.73/f                                   | -                           | 6**                        |
| 1.1-10                   | 87/f <sup>0.5</sup>         | -                                        | -                           | 6**                        |
| 10-20                    | 27.46                       | 0.0728                                   | 2                           | 6                          |
| 20-48                    | 58.07/f <sup>0.25</sup>     | 0.1540/f <sup>0.25</sup>                 | 8.944/f <sup>0.5</sup>      | 6                          |
| 48-300                   | 22.06                       | 0.05852                                  | 1.291                       | 6                          |
| 300-6000                 | 3.142* f <sup>0.3417</sup>  | 0.008335*f <sup>0.3417</sup>             | 0.02619*f <sup>0.6834</sup> | 6                          |
| 6000-15000               | 61.4                        | 0.163                                    | 10                          | 6                          |
| 15000-150000             | 61.4                        | 0.163                                    | 10                          | 616000/f <sup>1.2</sup>    |
| 150000-300000            | 0.158* f <sup>0.5</sup>     | 4.21*10 <sup>-4</sup> * f <sup>0.5</sup> | 6.67*10 <sup>-5</sup> *f    | 616000/f <sup>1.2</sup>    |

Note: *f* is frequency in MHz.

f= Frequency in MHz

Calculation Formula:  $Pd = (Pout*G)/(4*pi*r^2)$ 

#### Where

Pd = power density in mW/cm<sup>2</sup>

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

r = distance between observation point and center of the radiator in cm

Pd is the limit of MPE, 1mW/cm<sup>2</sup>. If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

<sup>\*</sup>Based on nerve stimulation (NS).

<sup>\*\*</sup> Based on specific absorption rate (SAR).



### 3.3. Test Result of RF Exposure Evaluation

### For FCC

| Product   | Intercom               |
|-----------|------------------------|
| Test Item | RF Exposure Evaluation |

Antenna Gain: Refer to clause 2.2.

| Test Mode | Frequency Band<br>(MHz)    | Conducted Power (dBm) | Antenna Gain<br>(dBi) | Maximum EIRP<br>(dBm) |
|-----------|----------------------------|-----------------------|-----------------------|-----------------------|
| BT/BLE    | 2402 ~ 2480                | 9.27                  | 4.5                   | 13.77                 |
| WLAN 2.4G | 2412 ~ 2462                | 29.00                 | 4.45                  | 33.45                 |
| WLAN 5G   | 5180 ~ 5240<br>5745 ~ 5825 | 18.98                 | 8.26                  | 27.24                 |
| WWAN      | 1850 ~ 1915                | 24.41                 | 2.46                  | 26.87                 |

| Test Mode | Frequency Band             | Maximum | Compliance | Power                 | Limit of Power        |
|-----------|----------------------------|---------|------------|-----------------------|-----------------------|
|           | (MHz)                      | EIRP    | Distance   | Density               | Density               |
|           |                            | (dBm)   | (cm)       | (mW/cm <sup>2</sup> ) | (mW/cm <sup>2</sup> ) |
| BT/BLE    | 2402 ~ 2480                | 13.77   | 21         | 0.0043                | 1                     |
| WLAN 2.4G | 2412 ~ 2462                | 33.45   | 21         | 0.3993                | 1                     |
| WLAN 5G   | 5180 ~ 5240<br>5745 ~ 5825 | 27.24   | 21         | 0.0956                | 1                     |
| WWAN      | 1850 ~ 1915                | 26.87   | 21         | 0.0878                | 1                     |

### **CONCLUSION:**

BT and WLAN 2.4GHz Band and WWAN can transmit simultaneously.

The max Power Density at R  $(20.00 \text{ cm}) = 0.0043 \text{mW/cm}^2 + 0.3993 \text{mW/cm}^2 + 0.0878 \text{mW/cm}^2 = 0.4914 \text{mW/cm}^2 < 1 \text{mW/cm}^2$ .

BT and WLAN 5GHz Band and WWAN can transmit simultaneously.

The max Power Density at R  $(20.00 \text{ cm}) = 0.0043 \text{mW/cm}^2 + 0.0956 \text{mW/cm}^2 + 0.0878 \text{mW/cm}^2 = 0.1877 \text{mW/cm}^2 < 1 \text{mW/cm}^2$ .

Therefore, the compliance Distance R = 21cm.



### For ISED

Antenna Gain: Refer to clause 2.2.

| Test Mode | Frequency Band<br>(MHz)    | Conducted Power (dBm) | Antenna Gain<br>(dBi) | Maximum EIRP<br>(dBm) |
|-----------|----------------------------|-----------------------|-----------------------|-----------------------|
| BT/BLE    | 2402 ~ 2480                | 9.27                  | 4.5                   | 13.77                 |
| WLAN 2.4G | 2412 ~ 2462                | 29.00                 | 4.45                  | 33.45                 |
| WLAN 5G   | 5180 ~ 5240<br>5745 ~ 5825 | 18.98                 | 8.26                  | 27.24                 |
| WWAN      | 1850 ~ 1915                | 24.41                 | 2.46                  | 26.87                 |

| Test Mode      | Frequency Band | Maximum | Compliance | Power                 | Limit of Power        |
|----------------|----------------|---------|------------|-----------------------|-----------------------|
|                | (MHz)          | EIRP    | Distance   | Density               | Density               |
|                |                | (dBm)   | (cm)       | (mW/cm <sup>2</sup> ) | (mW/cm <sup>2</sup> ) |
| BT/BLE         | 2402 ~ 2480    | 13.77   | 21         | 0.0043                | 0.5351                |
| WLAN 2.4G      | 2412 ~ 2462    | 33.45   | 21         | 0.3993                | 0.5366                |
| WLAN 5G        | 5180 ~ 5240    | 27.24   | 21         | 0.0956                | 0.9047                |
| VV E7 (( V O O | 5745 ~ 5825    | 27.21   | 21         | 0.0000                | 0.0017                |
| WWAN           | 1850 ~ 1915    | 26.87   | 21         | 0.0878                | 0.4476                |

#### **CONCLUSION:**

The BT and WLAN 2.4GHz and WWAN can transmit simultaneously.

CPD = Calculation Power Density, LPD = Limit of Power Density

For R = 21cm

CPD1/LPD1 + CPD2/LPD2 + CPD4/LPD4= 0.0043 / 0.5351 + 0.3993 / 0.5366 + 0.0878 / 0.4476= 0.9483< 1.

The BT and WLAN 5GHz and WWAN can transmit simultaneously.

CPD = Calculation Power Density, LPD = Limit of Power Density

For R = 21cm

CPD1/LPD1 + CPD3/LPD3 + CPD4/LPD4 = 0.0043 / 0.5351 + 0.0956 / 0.9047 + 0.0878 / 0.4476 = 0.3099 < 1.

| Therefore, the compliance Distance R = 21cm. |  |
|----------------------------------------------|--|
| ——— The End                                  |  |