

Report No. : EED32L00178101 Page 1 of 59

TEST REPORT

Product : NAVIGATION MULTIMEDIA RECEIVER

Trade mark : Stinger

Model/Type reference : UN1810, UN1810X, UN1810OE,

UN1810XOE, UN1810M, UN1810PS

Serial Number : N/A

Report Number : EED32L00178101

FCC ID : XBDUN1810

Date of Issue : Aug. 07, 2019

Test Standards : 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

AAMP of Florida, Inc. dba AAMP Global 15500 Lightwave Drive, Suite 202 Clearwater, FL 33760

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Jay Zheng

Jay Zheng

Compiled by:

Report Seal

Reviewed by:

Mare Xm

Ware Xin

Date:

Aug. 07, 2019

Alex Wu

Kevin Yang

Check No.: 3096368058

2 Version

Version No.	Date	16	Description	<u>ا </u>
00	Aug. 07, 2019	Original		
		100	15	705
((%)	(675)	(65)

Report No.: EED32L00178101 Page 3 of 59

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c) ANSI C63.10-		PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

Model No.: UN1810, UN1810X, UN1810OE, UN1810XOE, UN1810M, UN1810PS

Only the model UN1810 was tested, Software, mechanical and package is a bit different, the main hardware is the same 10inch. Details as below:

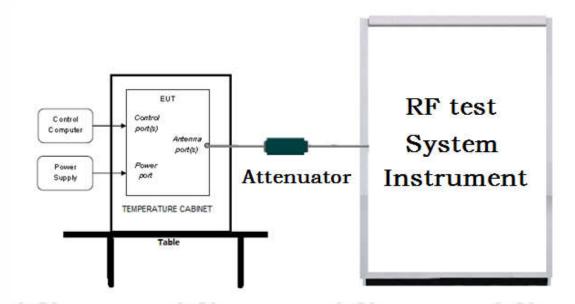
They are place holders in the event we have customers that need different kitting. In all cases the same radio / package would be sold as is, the different part number would indicate additional items kitting with the radio. UN1810X would be the same product but includes the optional iGO Navigation card that is normally sold separate. UN18100E would be the same product but sold with a vehicle specific mounting kit not the universal bracket. UN1810XOE would be the same product and include the iGO Navigation card with a vehicle specific mounting kit

UN1810M would be the same product but sold with marine mounting hardware and cover system.

Report No. : EED32L00178101 Page 4 of 59

4 Content

1 COVER PA	GE		•••••		•••••		1
2 VERSION			•••••	•••••	•••••		2
	MARY						
4 CONTENT.		•••••		•••••			4
5 TEST REQ	JIREMENT			•••••			5
5.1 TEST SI	ETUP						5
	r Conducted test	•					
	r Radiated Emiss		•				
	r Conducted Emi		•				
	ONDITION						
	INFORMATION.						
	INFORMATION						
	AL DESCRIPTION C						
6.3 PRODU	CT SPECIFICATION	SUBJECTIVE T	O THIS STANDA	RD			7
	PTION OF SUPPOR						
	OCATION						_
	ON FROM STANDA MALITIES FROM ST						
	INFORMATION RE						
	REMENT UNCERTA						
7 EQUIPMEN	T LIST						10
•	CHNICAL REQUI						
	x A): 6dB Occup						
Appendi	x B): Conducted	Peak Output	Power	••••••		•••••	14 16
	x C): Band-edge	•					
	x D): RF Conduc						
	x E): Power Spe	,					
	x F): Antenna Re						
	x G): Restricted l x H) Radiated Sp				,		
	6 1		10115		•••••		
	PHS OF TEST S				•••••	•••••	41
PHOTOGRAI	PHS OF EUT CO	NSTRUCTIO	NAL DETAILS	ō		•••••	43



Report No.: EED32L00178101 Page 5 of 59

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

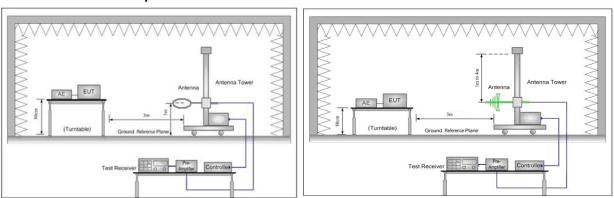
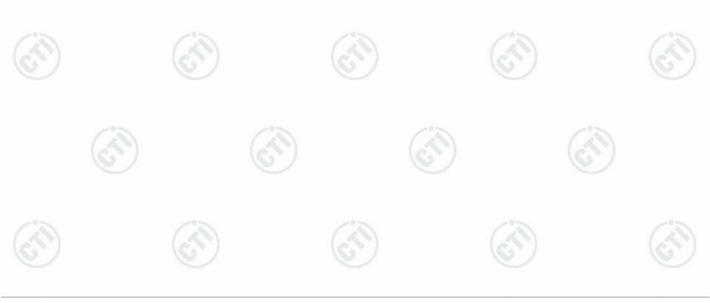


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

Operating Environment:			(6)
Temperature:	23.0 °C		
Humidity:	54 % RH	1000	
Atmospheric Pressure:	1010mbar		1

5.3 Test Condition

Test channel:

	Test Mode	Tx/Rx		RF Channel		
١		TA/NX	Low(L) Middle(M) High(I			
l	05014			Channel 20	Channel 40	
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz		
	Transmitting mode:	Keep the EUT in transmitting mod rate.	e with all kind of m	odulation and a	all kind of data	
			1.00			

6 General Information

6.1 Client Information

Applicant:	AAMP of Florida, Inc. dba AAMP Global
Address of Applicant:	15500 Lightwave Drive, Suite 202 Clearwater, FL 33760
Manufacturer:	SKYPINE ELECTRONICS (SHEN ZHEN) CO.,LTD.
Address of Manufacturer:	A1,A5 Building, No.6, Xinxing Industrial Park, Xinhe Village, Fuyong Town, Bao'an District, Shenzhen City,Guangdong Province,China
Factory:	SKYPINE ELECTRONICS (SHEN ZHEN) CO.,LTD.
Address of Factory:	A1,A5 Building, No.6, Xinxing Industrial Park, Xinhe Village, Fuyong Town, Bao'an District, Shenzhen City,Guangdong Province,China

6.2 General Description of EUT

Product Name:	NAVIGATION MULTIMEDIA RECEIVER				
Model No.(EUT):	UN1810, UN1810X, UN1810OE, UN1810XOE, UN1810M, UN1810PS				
Trade mark:	Stinger		_0		
EUT Supports Radios application:	BT 4.2 Dual mode, 2402-2480MHz	(%)	(3)		
Power Supply:	DC 12V				
Sample Received Date:	Jul. 04, 2019				
Sample tested Date:	Jul. 04, 2019 to Aug. 07, 2019				

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz			
Bluetooth Version:	4.2			- 0
Modulation Technique:	FHSS			(4)
Modulation Type:	GFSK	(6)		10.
Number of Channel:	40			
Test Power Grade:	40			
Test Software of EUT:	BlueTest 3 (manufacturer declare)		120	
Antenna Type and Gain:	Type:internal antenna, Gain:0dBi		(0,	
Test Voltage:	DC 12V			

200				200		20%	
Operation F	requency eac	h of channe	l	(2)		(2))
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

Report No. : EED32L00178101 Page 9 of 59

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE newer conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
2	Dadiated Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No. : EED32L00178101 Page 10 of 59

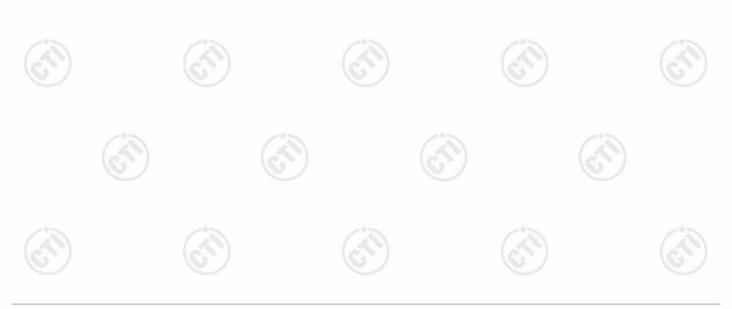
7 Equipment List

		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-28-2020
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-28-2020
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-28-2020
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-09-2019	01-08-2020
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-28-2020
PC-1	Lenovo	R4960d		03-01-2019	02-28-2020
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-28-2020
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-01-2019	02-28-2020
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019

Report No. : EED32L00178101 Page 11 of 59

	3M S	emi/full-anecho	ic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-22-2020
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-617	11-04-2018	11-03-2019
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-21-2018	08-20-2019
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-16-2019	01-15-2020
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-23-2021
Horn Antenna	ETS- LINDGREN	3117	00057410	06-05-2018	06-03-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.604 2	07-26-2019	07-24-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-25-2021
Spectrum Analyzer	R&S	FSP40	100416	04-28-2019	04-26-2020
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020
Receiver	R&S	ESCI7	100938- 003	11-23-2018	11-22-2019
Multi device Controller	maturo	NCD/070/107 11112		01-09-2019	01-08-2020
Signal Generator	Agilent	E4438C	MY45095 744	03-01-2019	02-28-2020
Signal Generator	Keysight	E8257D	MY53401 106	03-01-2019	02-28-2020
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020
Cable line High-pass filter	Fulai(3M) Sinoscite	SF106 FL3CX03WG 18NM12- 0398-002	5217/6A 	01-09-2019 01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002	6	01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-09-2019	01-08-2020

3M full-anechoic Chamber								
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd- yyyy)	Cal. Due date (mm-dd-yyyy)			
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-19-2019	06-17-2020			
Receiver	Keysight	N9038A	MY57290136	03-27-2019	03-25-2020			
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-27-2019	03-25-2020			
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-27-2019	03-25-2020			
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-075	04-25-2018	04-23-2021			
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-23-2021			
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-23-2021			
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-23-2021			
Horn Antenna	Schwarzbeck	BBHA 9170	9170-829	04-25-2018	04-23-2021			
Communication Antenna	Schwarzbeck	CLSA 0110L	1014	02-14-2019	02-13-2020			
Biconical antenna	Schwarzbeck	VUBA 9117	9117-381	04-25-2018	04-23-2021			
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-08-2021			
Preamplifier	EMCI	EMC184055SE	980596	05-22-2019	5-20-2020			
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020			
Preamplifier	EMCI	EMC001330	980563	05-08-2019	05-06-2020			
Preamplifier	Agilent	8449B	3008A02425	08-21-2018	08-20-2019			
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	05-01-2019	04-30-2020			
Signal Generator	KEYSIGHT	E8257D	MY53401106	03-01-2019	02-28-2020			
Fully Anechoic Chamber	TDK	FAC-3)	01-17-2018	01-15-2021			
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-08-2021			
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001	01-09-2019	01-08-2020			
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002	01-09-2019	01-08-2020			
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003	01-09-2019	01-08-2020			
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	01-09-2019	01-08-2020			
Cable line	Times	EMC104-NMNM- 1000	SN160710	01-09-2019	01-08-2020			
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001	01-09-2019	01-08-2020			
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001	01-09-2019	01-08-2020			
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001	01-09-2019	01-08-2020			
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	01-09-2019	01-08-2020			


8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	3.10 6dB Occupied Bandwidth		Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Appendix A): 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.6896	1.0463	PASS
BLE	MCH	0.6884	1.0444	PASS
BLE	НСН	0.6873	1.0443	PASS

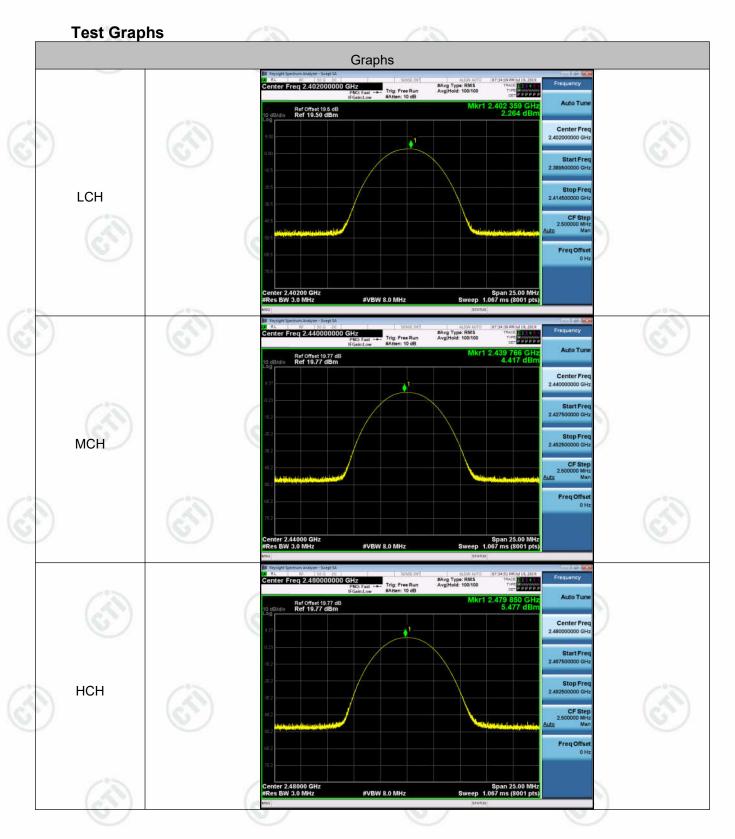
 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Test Graphs

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	2.264	PASS
BLE	MCH	4.417	PASS
BLE	HCH	5.477	PASS



Report No. : EED32L00178101 Page 18 of 59

Appendix C): Band-edge for RF Conducted Emissions

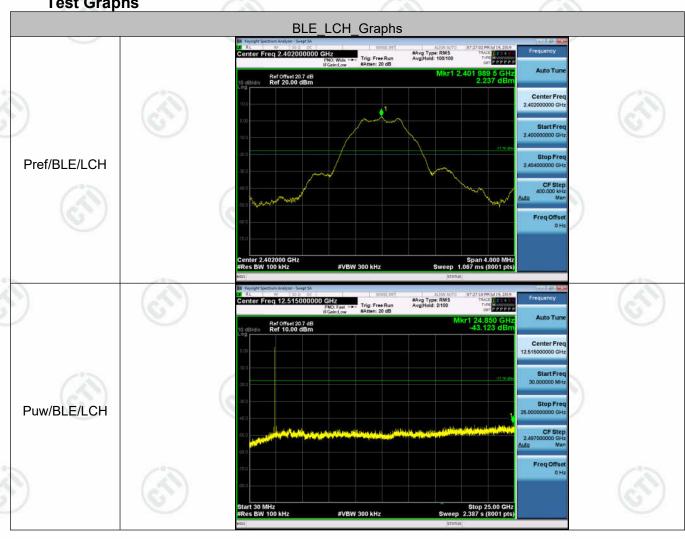
Result Table

	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
5	BLE	LCH	2.397	-59.047	-17.6	PASS
_	BLE	НСН	5.285	-53.071	-14.72	PASS

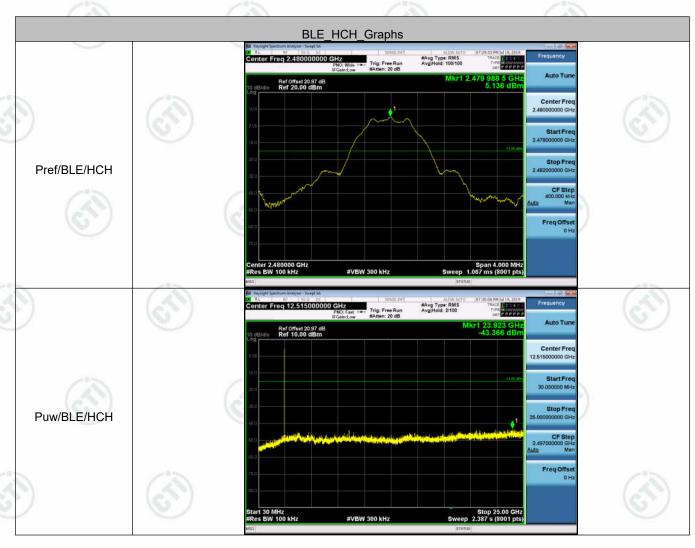
Test Graphs

Report No. : EED32L00178101 Page 20 of 59

Appendix D): RF Conducted Spurious Emissions


Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	2.237	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	4.651	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	нсн	5.136	<limit< td=""><td>PASS</td></limit<>	PASS



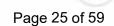
Page 24 of 59

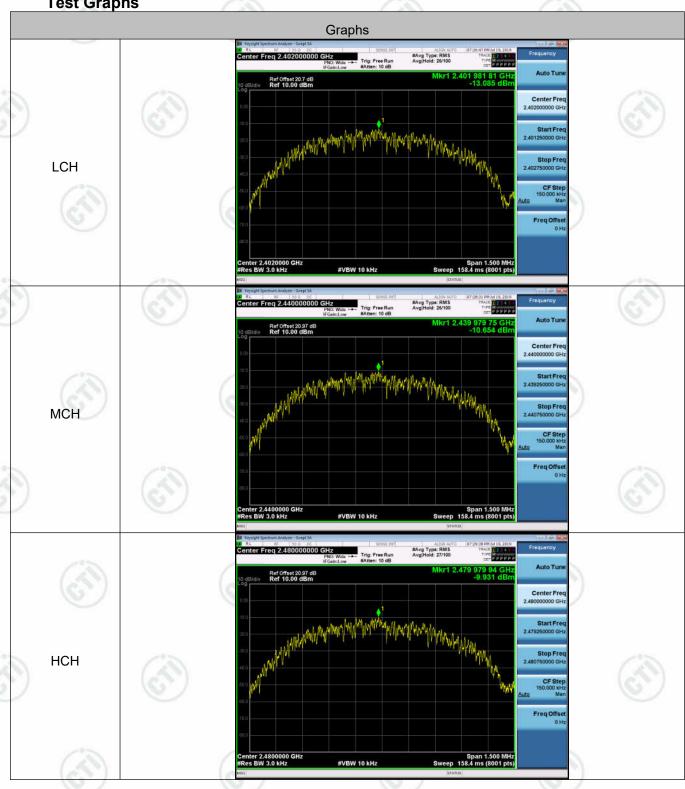
Appendix E): Power Spectral Density

Result Table

	Mode	Channel	PSD [dBm]	Verdict
	BLE	LCH	-13.085	PASS
2	BLE	MCH	-10.654	PASS
	BLE	НСН	-9.931	PASS







Appendix F): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

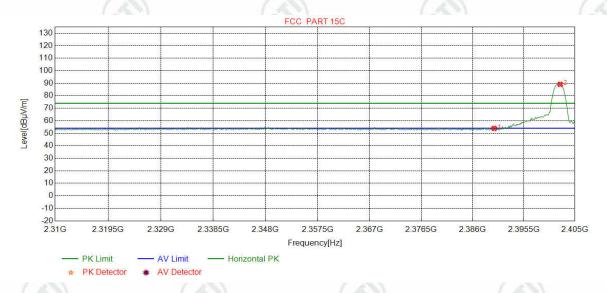
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

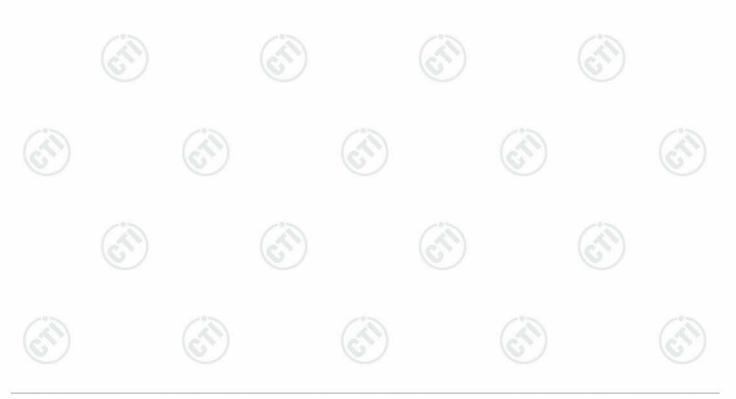
EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

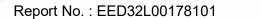
Appendix G): Restricted bands around fundamental frequency (Radiated)

(Radiated)	(6)	(6.4)		1	G 7 /	
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	(
	AL 4011	Peak	1MHz	3MHz	Peak	-05
	Above 1GHz	Peak	1MHz	10Hz	Average	(65)
Test Procedure:	a. The EUT was placed of at a 3 meter semi-aned determine the position. b. The EUT was set 3 meters was mounted on the total control of the antenna height is a determine the maximum polarizations of the antenna was turned was turned from 0 degree. The test-receiver systems and width with Maximum f. Place a marker at the seminary of the second of the seminary of th	ure as below: on the top of a rotal choic camber. The of the highest rade ters away from the pof a variable-he waried from one man value of the field tenna are set to manission, the EUT value to heights from 1 to heights from 1 trees to 360 degreem was set to Peaum Hold Mode.	ating table table was liation. The interfered sight antended the make the make the meter to meter to the sto find ak Detect F	0.8 meters rotated 3 ence-receinna tower. ur meters easurement to its value of the maxing function a	rs above the 360 degrees ving antenna above the graziontal and vent. worst case along the rotate and the rotate and Specified	to a, which ound to vertical and the able
	frequency to show combands. Save the spectron for lowest and highest Above 1GHz test procedured g. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the lower in the radiation measure that Transmitting mode, and j. Repeat above procedured to show the same that the second second in the second sec	npliance. Also merum analyzer plot. channel ure as below: we is the test site, aber change form 1 meter and table owest channel, the ments are perforred found the X axis	change from table 0.8 relies 1.5 meters and in X, New positionir	emissions or each po om Semi- meter to 1 er). channel Y, Z axis p ng which i	s in the restri ower and mod Anechoic Ch .5 meter(Abo positioning for t is worse cas	dulation nambe ove
Limit:	Frequency	Limit (dBµV/n		- /	mark	
	30MHz-88MHz	40.0	,	- \	eak Value	
	88MHz-216MHz	43.5			eak Value	
	216MHz-960MHz	46.0			eak Value	
	960MHz-1GHz	54.0	12		eak Value	
	OGGIVII IZ- TOTIZ	54.0	(6)		je Value	
	Above 1GHz	74.0			Value	
		74.0		1 can	value	
7.5	(2)	13			1.5	

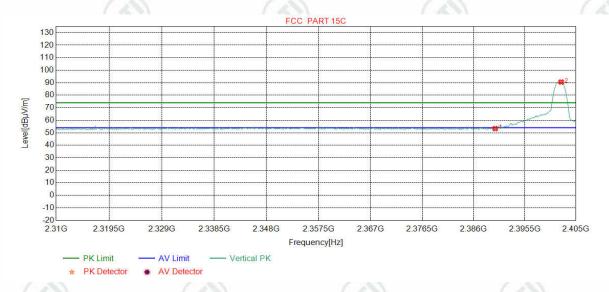


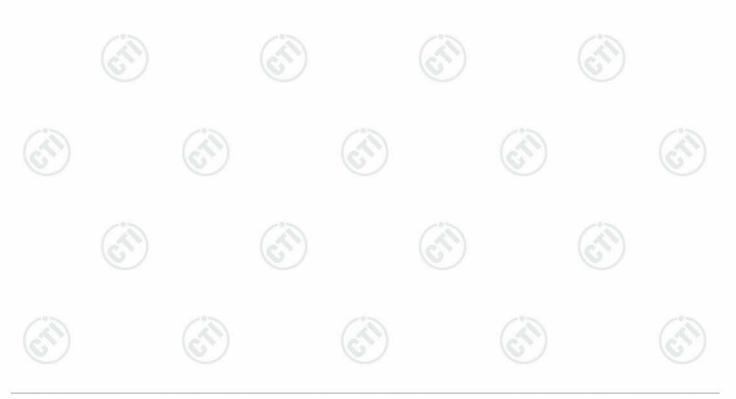

Test plot as follows:

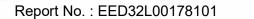
Mode:	BLE GFSK Transmitting	Channel:	2402	
Remark:	PK			


Test Graph

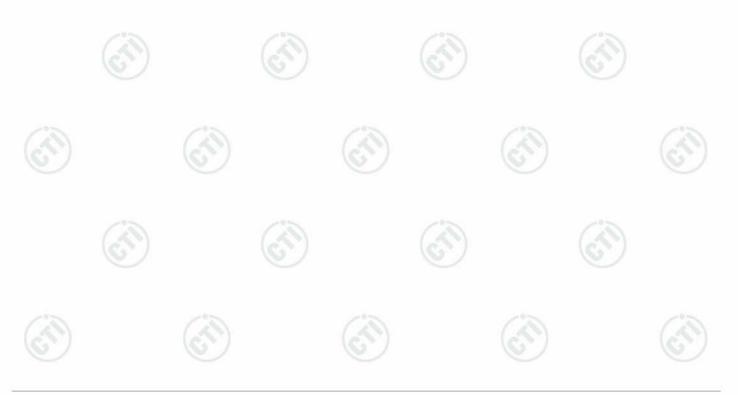
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	50.71	53.89	74.00	20.11	Pass	Horizontal
2	2402.2653	32.26	13.31	-42.43	85.97	89.11	74.00	-15.11	Pass	Horizontal



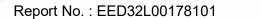



Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

N	0	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	1	2390.0000	32.25	13.37	-42.44	50.14	53.32	74.00	20.68	Pass	Vertical
	_	2402.2653	32.26	13.31	-42.43	87.41	90.55	74.00	-16.55	Pass	Vertical



Page	30	of	59
------	----	----	----


Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

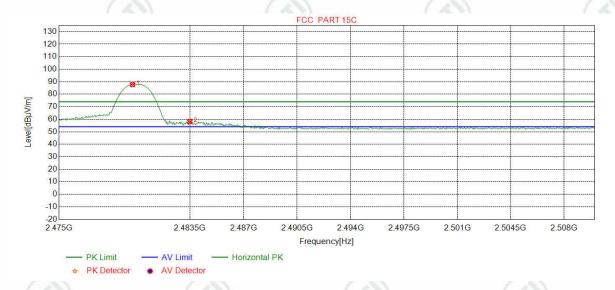
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.45	41.63	54.00	12.37	Pass	Horizontal
2	2402.0275	32.26	13.31	-42.43	65.49	68.63	54.00	-14.63	Pass	Horizontal



Page	31	of 59
ı ayc	0 1	01 00

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

1	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
9	1	2390.0000	32.25	13.37	-42.44	38.52	41.70	54.00	12.30	Pass	Vertical
	2	2402.0275	32.26	13.31	-42.43	66.43	69.57	54.00	-15.57	Pass	Vertical

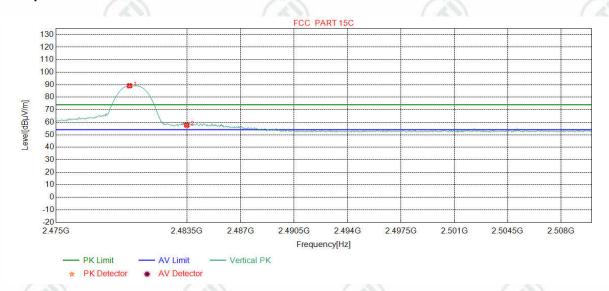


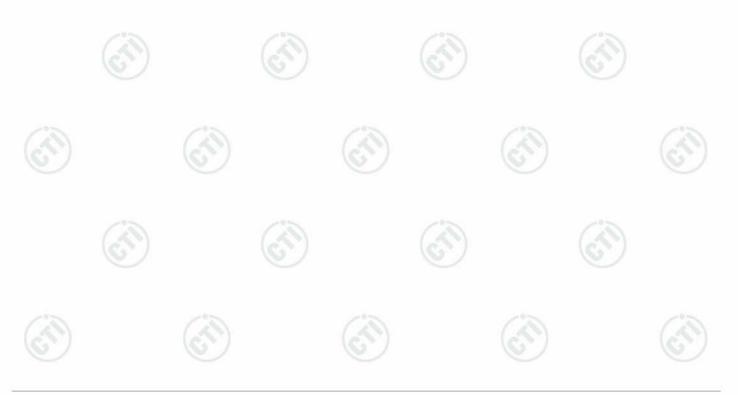


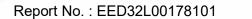
Page	32	of	59

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

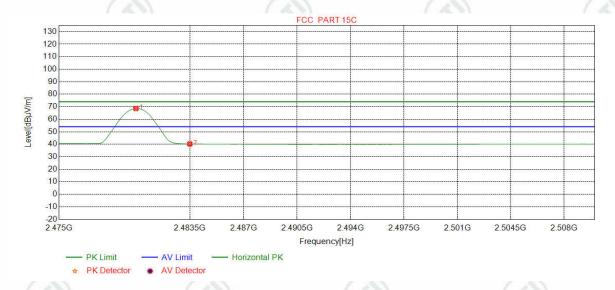
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
j	1	2479.7747	32.37	13.39	-42.39	84.33	87.70	74.00	-13.70	Pass	Horizontal
	2	2483.5000	32.38	13.38	-42.40	54.92	58.28	74.00	15.72	Pass	Horizontal





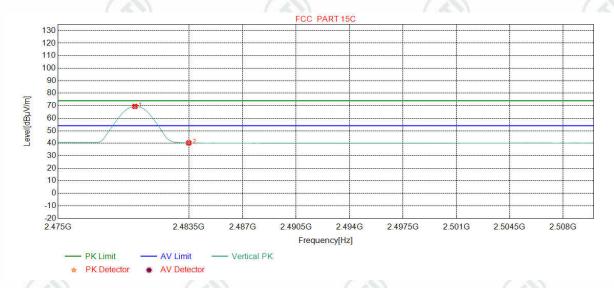

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

NC	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7747	32.37	13.39	-42.39	85.76	89.13	74.00	-15.13	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	54.35	57.71	74.00	16.29	Pass	Vertical

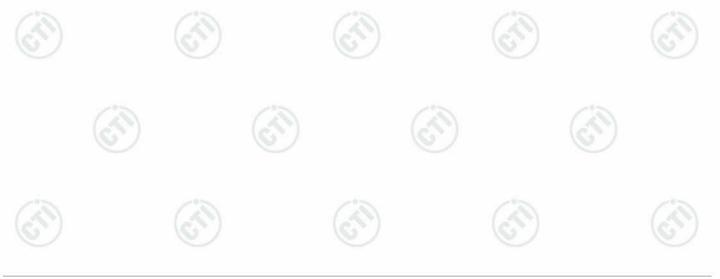




Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		


N	Ю	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2479.9937	32.37	13.39	-42.39	65.24	68.61	54.00	-14.61	Pass	Horizontal
	2	2483.5000	32.38	13.38	-42.40	36.89	40.25	54.00	13.75	Pass	Horizontal

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9937	32.37	13.39	-42.39	66.07	69.44	54.00	-15.44	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	36.93	40.29	54.00	13.71	Pass	Vertical

Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix H) Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	(0,
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	A h 4 O L h-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	
					_	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

	:		:1	_
	ır	n	IΤ	•
_	••		,,	

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-		300
0.490MHz-1.705MHz	24000/F(kHz)	-		30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Ē		atea Elliiss		1.15	A T		1.47.47		1,000		
N	Лode	:	BLE GF	SK Tran	smitting		Channel:		2402		
ı	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	245.5556	12.08	1.86	-31.89	60.15	42.20	46.00	3.80	Pass	Н
	2	260.1070	12.40	1.92	-31.87	59.11	41.56	46.00	4.44	Pass	Н
	3	354.8855	14.41	2.25	-31.86	47.01	31.81	46.00	14.19	Pass	Н
	4	480.0280	16.68	2.61	-31.90	45.41	32.80	46.00	13.20	Pass	Н
	5	649.0189	19.39	3.10	-32.07	41.65	32.07	46.00	13.93	Pass	Н
	6	719.2539	20.01	3.22	-32.08	48.30	39.45	46.00	6.55	Pass	Н
	7	208.9829	11.13	1.71	-31.94	49.16	30.06	43.50	13.44	Pass	V
	8	246.9137	12.12	1.87	-31.90	56.92	39.01	46.00	6.99	Pass	V
	9	261.2711	12.43	1.93	-31.88	55.12	37.60	46.00	8.40	Pass	V
Ä	10	373.8994	14.83	2.30	-31.88	41.99	27.24	46.00	18.76	Pass	V
1	11	480.0280	16.68	2.61	-31.90	39.89	27.28	46.00	18.72	Pass	V
	12	720.7091	20.03	3.23	-32.08	46.48	37.66	46.00	8.34	Pass	V

Mode	e :	BLE GF	SK Tran	smitting		Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	132.4422	7.58	1.34	-32.01	55.11	32.02	43.50	11.48	Pass	Н
2	246.6227	12.11	1.87	-31.90	59.81	41.89	46.00	4.11	Pass	Н
3	260.1070	12.40	1.92	-31.87	59.12	41.57	46.00	4.43	Pass	Н
4	366.6237	14.67	2.28	-31.86	45.82	30.91	46.00	15.09	Pass	Н
5	479.2519	16.67	2.61	-31.90	45.67	33.05	46.00	12.95	Pass	Н
6	720.3210	20.02	3.22	-32.07	48.70	39.87	46.00	6.13	Pass	Н
7	247.6898	12.14	1.87	-31.90	56.86	38.97	46.00	7.03	Pass	V
8	260.1070	12.40	1.92	-31.87	55.12	37.57	46.00	8.43	Pass	V
9	399.8980	15.40	2.38	-31.76	42.21	28.23	46.00	17.77	Pass	V
10	480.0280	16.68	2.61	-31.90	39.93	27.32	46.00	18.68	Pass	V
11	721.8732	20.04	3.23	-32.07	46.53	37.73	46.00	8.27	Pass	V
12	895.9086	22.05	3.59	-31.59	40.97	35.02	46.00	10.98	Pass	V

Page 38 of 59

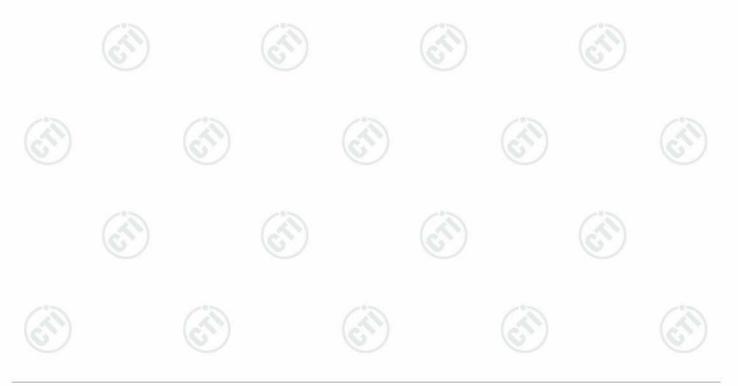
						21076				
Mode	ə:	BLE GF	SK Tran	smitting		Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	133.6064	7.52	1.35	-32.01	55.02	31.88	43.50	11.62	Pass	Н
2	247.3987	12.13	1.87	-31.90	59.98	42.08	46.00	3.92	Pass	Н
3	260.8831	12.42	1.92	-31.87	58.94	41.41	46.00	4.59	Pass	Н
4	354.9825	14.41	2.25	-31.86	47.07	31.87	46.00	14.13	Pass	Н
5	479.2519	16.67	2.61	-31.90	45.46	32.84	46.00	13.16	Pass	Н
6	720.3210	20.02	3.22	-32.07	48.43	39.60	46.00	6.40	Pass	Н
7	199.8640	10.89	1.67	-31.94	50.78	31.40	43.50	12.10	Pass	V
8	246.9137	12.12	1.87	-31.90	56.79	38.88	46.00	7.12	Pass	V
9	260.8831	12.42	1.92	-31.87	55.10	37.57	46.00	8.43	Pass	V
10	375.0635	14.85	2.31	-31.88	40.93	26.21	46.00	19.79	Pass	V
11	478.5729	16.66	2.61	-31.90	40.14	27.51	46.00	18.49	Pass	V
12	720.0300	20.02	3.22	-32.07	46.89	38.06	46.00	7.94	Pass	V
		3.30.30								

Transmitter Emission above 1GHz

Mode	e :		BLE G	SK Trans	smitting		Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1897.2897	31.02	3.42	-42.66	50.97	42.75	74.00	31.25	Pass	Н	PK
2	3007.0005	33.20	4.92	-42.12	50.80	46.80	74.00	27.20	Pass	Н	PK
3	5910.1940	35.66	5.11	-41.01	46.79	46.55	74.00	27.45	Pass	Н	PK
4	7206.2804	36.31	5.81	-41.02	47.50	48.60	74.00	25.40	Pass	Н	PK
5	9607.4405	37.64	6.63	-40.76	49.78	53.29	74.00	20.71	Pass	Н	PK
6	11746.583	39.10	7.47	-41.30	47.20	52.47	74.00	21.53	Pass	Н	PK
7	9608.0202	37.64	6.63	-40.76	44.27	47.78	54.00	6.22	Pass	Н	AV
8	2069.7070	31.80	3.57	-42.58	53.40	46.19	74.00	27.81	Pass	V	PK
9	3359.0239	33.34	4.53	-41.90	50.71	46.68	74.00	27.32	Pass	V	PK
10	4795.1197	34.50	4.55	-40.67	46.68	45.06	74.00	28.94	Pass	V	PK
11	5379.1586	34.88	4.83	-40.60	47.32	46.43	74.00	27.57	Pass	V	PK
12	7224.2816	36.32	5.80	-41.00	46.94	48.06	74.00	25.94	Pass	V	PK
13	9608.4406	37.64	6.63	-40.76	51.88	55.39	74.00	18.61	Pass	V	PK
14	9608.0489	37.64	6.63	-40.76	43.96	47.47	54.00	6.53	Pass	V	AV

Mode	e:		BLE G	SK Trans	smitting		Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1598.2598	29.05	3.07	-42.90	53.51	42.73	74.00	31.27	Pass	Н	PK
2	3017.0011	33.21	4.90	-42.12	51.18	47.17	74.00	26.83	Pass	Н	PK
3	5691.1794	35.31	5.01	-40.81	46.98	46.49	74.00	27.51	Pass	Н	PK
4	6271.2181	35.85	5.40	-41.14	46.50	46.61	74.00	27.39	Pass	Н	PK
5	7635.3090	36.55	6.14	-40.84	47.20	49.05	74.00	24.95	Pass	Н	PK
6	9760.4507	37.70	6.73	-40.62	49.07	52.88	74.00	21.12	Pass	Н	PK
7	9760.0210	37.70	6.73	-40.62	42.93	46.74	54.00	7.26	Pass	Н	AV
8	2185.5186	31.96	3.65	-42.53	54.31	47.39	74.00	26.61	Pass	V	PK
9	2938.1938	33.10	4.40	-42.16	51.43	46.77	74.00	27.23	Pass	V	PK
10	4343.0895	34.28	4.49	-40.86	46.47	44.38	74.00	29.62	Pass	V	PK
11	5470.1647	34.97	5.02	-40.63	46.92	46.28	74.00	27.72	Pass	V	PK
12	7641.3094	36.54	6.14	-40.83	46.90	48.75	74.00	25.25	Pass	V	PK
13	9760.4507	37.70	6.73	-40.62	49.06	52.87	74.00	21.13	Pass	V	PK
14	9759.9763	37.70	6.73	-40.62	41.76	45.57	54.00	8.43	Pass	V	AV

			20%			ST.		20%			
Mode:			BLE GFSK Transmitting			Channel:		2480			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1959.2959	31.43	3.43	-42.63	51.08	43.31	74.00	30.69	Pass	Н	PK
2	3066.0044	33.23	4.79	-42.08	50.03	45.97	74.00	28.03	Pass	Н	PK
3	4245.0830	34.14	4.51	-40.84	47.84	45.65	74.00	28.35	Pass	Н	PK
4	6072.2048	35.81	5.23	-41.10	46.84	46.78	74.00	27.22	Pass	Н	PK
5	7636.3091	36.55	6.14	-40.84	46.76	48.61	74.00	25.39	Pass	Н	PK
6	9544.4363	37.62	6.76	-40.82	46.68	50.24	74.00	23.76	Pass	Н	PK
7	1595.4595	29.03	3.07	-42.89	55.43	44.64	74.00	29.36	Pass	V	PK
8	1977.6978	31.55	3.45	-42.62	56.25	48.63	74.00	25.37	Pass	V	PK
9	3199.0133	33.28	4.65	-42.00	50.58	46.51	74.00	27.49	Pass	V	PK
10	5534.1689	35.05	5.16	-40.67	46.77	46.31	74.00	27.69	Pass	V	PK
11	7644.3096	36.54	6.14	-40.83	47.42	49.27	74.00	24.73	Pass	V	PK
12	10128.475	37.98	6.87	-40.60	46.83	51.08	74.00	22.92	Pass	V	PK


Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

