

Page 1 of 69

		TEST	REPORT		
	Product Trade mark Model/Type refere Serial Number Report Number FCC ID Date of Issue	: NAV : Sting ence : iE26 : N/A : EED : XBD : Oct.	7IGATION MULTIME ger 8, iE268-C, iE268-S 932Q81282704 9-IE268 18, 2024	DIA RECEIVER R, iE268E	
	Test Standards	÷ 47 C	FR Part 15 Subpart	E	
	Test result	: PAS	S		
	AAM	Prof Florida,	epared for: Inc. dba AAMP	Global	
	15500 Lightv	wave Drive, S	Suite 202 Clearw	ater, FL 33760	
	Centre Hongw	Testing inte rei Industrial Shenzhen, G TEL: +86 FAX: +86	Reviewed by:	Jistrict,	2.0 2.0
	NTERNATIONA K	Keven Tan	- 60 -	Frazer Li	
STIM	oproved by:	Lavon Ma	Date:	Oct. 18, 2024	
CENTRE LE	Report Seal	Aaron Ma		Check No.:	5412220824

Page 2 of 69

2 VERSION		•••••••••••••••		•••••		•••••	
3 TEST SUMM	ARY			••••••			
GENERAL IN	FORMATION.					••••••	
4.1 CLIENT IN 4.2 GENERAL 4.3 TEST CON 4.4 TEST ENV 4.5 DESCRIPT	FORMATION DESCRIPTION C IFIGURATION IRONMENT	DF EUT		6		0	
4.6 TEST LOC 4.7 DEVIATIOI 4.8 ABNORMA 4.9 OTHER IN 4 10 MEASUE	ATION N FROM STANDA LITIES FROM ST FORMATION REI EMENT UNCERT	ARDS FANDARD COND QUESTED BY TH FAINTY (95% CO	DITIONS HE CUSTOMER				
				velo, k <i>z</i> j	\mathbf{U}		U
			PECIFICATIO)N	••••••	•••••••••••••••••	••••••
6.2 MAXIMUM 6.3 6DB EMIS 6.4 26DB EM	CONDUCTED O SON BANDWIDT	TH AND 99% (OCCUPIED BAN	NDWIDTH		<u> </u>	
6.2 MAXIMUM 6.3 6DB EMIS 6.4 26DB EMI 6.5 MAXIMUM 6.6 FREQUEN 6.7 RADIATED 6.8 RADIATED	CONDUCTED O SON BANDWIDT SSION BANDWID POWER SPECT CY STABILITY EMISSION EMISSION WHIC	TH AND 99% (TRAL DENSITY CH FALL IN THE	OCCUPIED BAN	NDWIDTH	6		
6.2 MAXIMUM 6.3 6DB EMIS 6.4 26DB EMI 6.5 MAXIMUM 6.6 FREQUEN 6.7 RADIATED 6.8 RADIATED 7 APPENDIX 50	CONDUCTED O SON BANDWIDT ISSION BANDWID POWER SPECT CY STABILITY EMISSION EMISSION WHIC G WI-FI	TH AND 99% (TRAL DENSITY CH FALL IN THE	OCCUPIED BAN	NDWIDTH	6		Ś
6.2 MAXIMUM 6.3 6DB EMIS 6.4 26DB EMIS 6.5 MAXIMUM 6.6 FREQUEN 6.7 RADIATED 6.8 RADIATED 7 APPENDIX 50 PHOTOGRAPH	CONDUCTED O SON BANDWIDT SSION BANDWID POWER SPECT CY STABILITY EMISSION EMISSION WHIC G WI-FI IS OF TEST SI	TH AND 99% (TRAL DENSITY CH FALL IN THE ETUP	OCCUPIED BAN RESTRICTED B	NDWIDTH	٢		8
6.2 MAXIMUM 6.3 6DB EMIS 6.4 26DB EMI 6.5 MAXIMUM 6.6 FREQUEN 6.7 RADIATED 6.8 RADIATED 7 APPENDIX 50 7 HOTOGRAPH	CONDUCTED O SON BANDWIDT ISSION BANDWID POWER SPECT CY STABILITY EMISSION EMISSION WHIC G WI-FI IS OF TEST SI IS OF EUT CO	TH AND 99% (TH AND 99% (TRAL DENSITY CH FALL IN THE ETUP	OCCUPIED BAN RESTRICTED B	NDWIDTH			
6.2 MAXIMUM 6.3 6DB EMIS 6.4 26DB EMI 6.5 MAXIMUM 6.6 FREQUEN 6.7 RADIATED 6.8 RADIATED 7 APPENDIX 50 7 HOTOGRAPH 7 HOTOGRAPH	CONDUCTED O SON BANDWIDT ISSION BANDWID POWER SPECT CY STABILITY EMISSION EMISSION WHIC G WI-FI IS OF TEST SI IS OF EUT CO	TH AND 99% (TH AND 99% (TRAL DENSITY CH FALL IN THE ETUP	OCCUPIED BAN RESTRICTED B	NDWIDTH			6
6.2 MAXIMUM 6.3 6DB EMIS 6.4 26DB EM 6.5 MAXIMUM 6.6 FREQUEN 6.7 RADIATED 6.8 RADIATED 7 APPENDIX 50 7HOTOGRAPH 7HOTOGRAPH	CONDUCTED O SON BANDWIDT ISSION BANDWID POWER SPECT CY STABILITY EMISSION WHIC G WI-FI IS OF TEST SI IS OF EUT CO	CH FALL IN THE	OCCUPIED BAN RESTRICTED B	ANDS			6

Page 3 of 69

Version No.	Date	Description
00	Oct. 18, 2024	Original
((2) (2)	$(c^{(n)})$

1 Current and a start

Page 4 of 69

Teet Item	Toot Deguirement	Deput
Test item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart E Section 15.407 (b)(6)	N/A
Duty Cycle	47 CFR Part 15 Subpart E Section 15.407	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
26dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
99% Occupied bandwidth		PASS
6dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (e)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
Frequency stability	47 CFR Part 15 Subpart E Section 15.407 (g)	PASS
Radiated Emissions	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS
Radiated Emissions which fall in the restricted bands	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS

Remark:

N/A: This item is not applicable.

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Model No.: iE268, iE268-C, iE268-SR, iE268E

Only the model iE268 was tested. They have same electrical circuit design. Only the model names are different for marketing requirements.

4 General Information 4.1 Client Information

Applicant:	AAMP of Florida, Inc. dba AAMP Global
Address of Applicant:	15500 Lightwave Drive, Suite 202 Clearwater, FL 33760
Manufacturer:	Skypine Electronics (ShenZhen)Co., Ltd.
Address of Manufacturer:	3rd Floor of Building B, Jingang Technology Park, Qiaotou Village, Fuhai Sub-District, Baoan, Shenzhen, China
Factory :	Unistrong Intelligence Manufacturing (Henan) Technology Co., Ltd.
Address of Factory :	Building No.33, Building No.31, Zone A, Intelligent Terminal (Mobile Phone) Industrial Park, Intersection of Hua Xia Avenue and Renmin Road, Zhengzhou Airport Economy Zone Zhengzhou City, Henan Province, P. R. China Post Code: 451163

4.2 General Description of EUT

iE268, iE268-C, iE268-SR, iE268E	
iE268	
Stinger	
Mobile Portable Fixed Location	
IEEE 802.11a: OFDM (BPSK, QPSK, 16QAM, 64QAM) IEEE 802.11n(HT20/HT40): OFDM (BPSK, QPSK, 16QAM, 64QA IEEE 802.11ac(VHT20/VHT40/VHT80): OFDM (BPSK, QPSK, 16 64QAM, 256QAM)	AM) SQAM,
U-NII-1: 5150-5250MHz U-NII-3: 5745-5825MHz	
PCB Antenna	V
U-NII-1: -8.38 dBi U-NII-3: -2.75 dBi	
DC 12V	
DC 12V	
Sep. 06, 2024	
Sep. 06, 2024 to Sep. 26, 2024	
	iE268 Stinger □ Mobile Portable Fixed Location IEEE 802.11a: OFDM (BPSK, QPSK, 16QAM, 64QAM) IEEE 802.11n(HT20/HT40): OFDM (BPSK, QPSK, 16QAM, 64QA IEEE 802.11ac(VHT20/VHT40/VHT80): OFDM (BPSK, QPSK, 16G4QAM, 256QAM) U-NII-1: 5150-5250MHz U-NII-3: 5745-5825MHz PCB Antenna U-NII-1: -8.38 dBi U-NII-3: -2.75 dBi DC 12V Sep. 06, 2024 Sep. 06, 2024 to Sep. 26, 2024

Operation Frequency each of channel

802.11a/802.11n/802.11ac (20MHz) Frequency/Channel Operations:

		U-NII-1	U-NII-3		
	Channel	Frequency(MHz)	Channel	Frequency(MHz)	
	36	5180	149	5745	
1	40	5200	153	5765	
	44	5220	157	5785	
	48	5240	161	5805	
	0	9 -	165	5825	

802.11n/802.11ac (40MHz) Frequency/Channel Operations:

	U-NII-1	U-NII-3		
Channel	Frequency(MHz)	Channel	Frequency(MHz)	
38	5190	151	5755	
46	5230	159	5795	
			0	

802.11ac (80MHz) Frequency/Channel Operations:

	U-NII-1	U-NII-3	
Channel	Frequency(MHz)	Channel	Frequency(MHz)
42	5210	155	5775

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Page 7 of 69

4.3 Test Configuration

	igs:		
Software:	MobaXterm_Personal_22.1.ex		12
EUT Power Grade:	Default	(3)	65
Use test software to set the transmitting of the EUT.	e lowest frequency, the middle freque	ncy and the highest frequency keep	V
Test Mode:			
the EUT in transmitting ope	eration, which was shown in this test r	eport and defined as follows:	
Per-scan all kind of data was worst case.	rate in lowest channel, and found t	he follow list which it	
Per-scan all kind of data was worst case. Mo	rate in lowest channel, and found t	he follow list which it Data rate	
Per-scan all kind of data was worst case. Mo 802.	rate in lowest channel, and found t de 11a	he follow list which it Data rate 6 Mbps	
Per-scan all kind of data was worst case. Mo 802. 802.11n	rate in lowest channel, and found t de 11a h(HT20)	he follow list which it Data rate 6 Mbps MCS0	
Per-scan all kind of data was worst case. Mo 802. 802.11n 802.11n	rate in lowest channel, and found t de 11a h(HT20) h(HT40)	he follow list which it Data rate 6 Mbps MCS0 MCS0	
Per-scan all kind of data was worst case. Mo 802.11n 802.11n 802.11ac	rate in lowest channel, and found t ode 11a n(HT20) n(HT40) c(VHT20)	he follow list which it Data rate 6 Mbps MCS0 MCS0 MCS0 MCS0	Ê
Per-scan all kind of data was worst case. Mo 802.11n 802.11n 802.11ac 802.11ac	rate in lowest channel, and found t ide 11a i(HT20) i(HT40) i(VHT20) i(VHT40)	he follow list which it Data rate 6 Mbps MCS0 MCS0 MCS0 MCS0 MCS0 MCS0 MCS0	Ì

4.4 Test Environment

Operating Environment:			
Radiated Spurious Emission	s:		
Temperature:	22~25.0 °C		
Humidity:	50~55 % RH	C.	(C)
Atmospheric Pressure:	1010mbar		
Conducted Emissions:			
Temperature:	22~25.0 °C		
Humidity:	50~55 % RH		(\mathcal{C})
Atmospheric Pressure:	1010mbar		
RF Conducted:			
Humidity:	50~55 % RH	(°>>	~~>
Atmospheric Pressure:	1010mbar	(\mathcal{A})	
	NT (Normal Temperature)	22~25.0 °C	U
Temperature:	LT (Low Temperature)	0 °C	
	HT (High Temperature)	55.0 °C	
	NV (Normal Voltage)	12.0V	
Working Voltage of the EUT:	LV (Low Voltage)	10.8V	0
	HV (High Voltage)	13.2V	

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	Asus	FL8700JP1065-	FCC&CE	СТІ
	S	0D8GXYQ2X10	(C)	(C)

4.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

FCC Designation No.: CN1164

4.7 Deviation from Standards

None.

4.8 Abnormalities from Standard Conditions

None.

4.9 Other Information Requested by the Customer

None.

4.10

Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty		
1	Radio Frequency	7.9 x 10 ⁻⁸		
		0.46dB (30MHz-1GHz)		
2	RF power, conducted	0.55dB (1GHz-18GHz)		
		3.3dB (9kHz-30MHz)		
2	Projected Counting antipological text	4.5dB (30MHz-1GHz)		
3	Radiated Spurious emission test	4.8dB (1GHz-18GHz)		
		3.4dB (18GHz-40GHz)		
4		3.5dB (9kHz to 150kHz)		
4	Conduction emission	3.1dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	3.8%		
7	DC power voltages	0.026%		
		(3)		

5 Equipment List

	RF test system									
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)					
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-14-2023	12-13-2024					
Signal Generator	Keysight	N5182B	MY53051549	12-11-2023	12-10-2024					
DC Power	Keysight	E3642A	MY56376072	12-11-2023	12-10-2024					
Communication test set	R&S	CMW500	169004	03-08-2024	03-07-2025					
RF control unit(power unit)	JS Tonscend	JS0806-2	22G8060592	07-22-2024	07-21-2025					
Wi-Fi 7GHz Band Extendder	JS Tonscend	TS-WF7U2	2206200002	05-31-2024	05-30-2025					
High-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-11-2023	12-10-2024					
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	05-29-2024	05-28-2025					
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	V3.3.20	-						
Spectrum Analyzer	R&S	FSV3044	101509	01-17-2024	01-16-2025					

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

3M Semi-anechoic Chamber (2)- Radiated disturbance Test										
Equipment	Manufacturer Model		Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date					
3M Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025					
Receiver	R&S	ESCI7	100938- 003	09/22/2023 09/07/2024	09/21/2024					
Spectrum Analyzer	R&S	FSV40	101200	07/18/2024	07/17/2025					
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025					
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/16/2024	04/15/2025					
Microwave Preamplifier	Tonscend	EMC051845SE	980380	12/14/2023	12/13/2024					
Horn Antenna	A.H.SYSTEMS	SAS-574	374	07/02/2023	07/01/2026					
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D- 1869	04/16/2024	04/15/2025					
Preamplifier	Agilent	11909A	12-1	03/22/2024	03/21/2025					
Preamplifier	CD	PAP-1840-60	6041.6042	06/19/2024	06/18/2025					
Test software	Fara	EZ-EMC	EMEC- 3A1-Pre							
Cable line	Fulai(7M)	SF106	5219/6A	/	- ~					
Cable line	Fulai(6M)	SF106	5220/6A	(3) _					
Cable line	Fulai(3M)	SF106	5216/6A							
Cable line	Fulai(3M)	SF106	5217/6A		(2					

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 11 of 69

(~)			(4)	(12	
		3M full-anechoi	c Chamber			
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy	
Fully Anechoic Chamber	TDK	FAC-3		01-09-2024	01-08-2027	
Receiver	Keysight	N9038A	MY57290136	01-09-2024	01-08-2025	
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-29-2024	01-28-2025	
Spectrum Analyzer	Keysight	N9030B	MY57140871	01-23-2024	01-22-2025	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2024	04-27-2025	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-16-2024	04-15-2025	
Horn Antenna	ETS-LINDGREN	3117	57407	07-03-2024	07-02-2025	
Preamplifier	EMCI	EMC001330	980563	03-08-2024	03-07-2025	
Preamplifier	Tonscend	TAP-011858	AP21B806112	07-18-2024	07-17-2025	
Preamplifier	Tonscend	EMC051845SE	980380	12-14-2023	12-13-2024	
Communication test set	R&S	CMW500	102898	12-14-2023	12-13-2024	
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-07-2024	04-06-2025	
RSE Automatic test software	JS Tonscend	JS36-RSE	V4.0.0.0			
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	(<u> </u>	
Cable line	Times	SFT205-NMSM-2.50M	394812-0002			
Cable line	Times	SFT205-NMSM-2.50M	394812-0003			
Cable line	Times	SFT205-NMSM-2.50M	393495-0001		(c	
Cable line	Times	EMC104-NMNM-1000	SN160710	<u> </u>		
Cable line	Times	SFT205-NMSM-3.00M	394813-0001			
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	(st)	
Cable line	Times	SFT205-NMSM-7.00M	394815-0001			
Cable line	Times	HF160-KMKM-3.00M	393493-0001			
					(8	

Page 12 of 69

6 Radio Technical Requirements Specification

6.1 Antenna Requirement: Standard requirement: 47 CFR Part 15C Section 15.203 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. EUT Antenna: Please see Internal photos The antenna is PCB antenna. The best case gain of the U-NII-1 is -8.38dBi, of the U-NII-3 is -2.76dBi.

6.2 Maximum Conducted Output Power Test Requirement: 47 CFR Part 15C Section 15.407 (a) Test Method: KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E Test Setup: RF test

root ootup.				
	Control Congruiter Provet Supply TemPerature CAE	Attenuator	RF test System Instrument	
Test Procedure:	 The testing follow General UNII Test The RF output o attenuator. The par measurement. Set to the maxin continuously 	ws the Measurem Procedures New f EUT was conne th loss was comp num power settin	ent Procedure of KDB Rules v02r01 Section cted to the power metro bensated to the results g and enable the EUT	789033 D02 E, 3, a er by RF cable and for each transmit
3	4. Measure the cor report.	nducted output po	ower and record the res	sults in the test
Limit:	Frequency band (MHz)	Limit		
	5150-5250	≤1W(30dBm) fo	or master device	
		≤250mW(24dB	m) for client device	<u>(</u>
	5250-5350	≤250mW(24dB	m) for client device or	11dBm+10logB*
	5470-5725	≤250mW(24dB	m) for client device or	11dBm+10logB*
	5725-5850	≤1W(30dBm)		
	Remark:	* Where B is th The maximum measured over using instrumer equivalent volta	e 26dB emission band conducted output powe any interval of continunt tation calibrated in ter age.	width in MHz er must be lous transmission rms of an rms-
Test Mode:	Transmitting mode	with modulation		
Test Results:	Refer to Appendix	5G Wi-Fi		5

6.3 6dB Emisson Bandwidth

6.4 26dB Emission Bandwidth and 99% Occupied Bandwidth

Test Re	quirement:	47 CFR Part 15C Section 15.407 (a)
Test Me	ethod:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D
Test Se	tup:	
J.		RF test Supply Power Supply Tele Table Remark: Offset=Cable loss+ attenuation factor.
Test Pro	ocedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. Measure and record the results in the test report.
Limit:		No restriction limits
Test Mo	ode:	Transmitting mode with modulation
Test Re	sults:	Refer to Appendix 5G Wi-Fi

6.5 Maximum Power Spectral Density

	Test Requirement:	47 CFR Part 15C S	Section 15.407 (a)							
13	Test Method:	KDB789033 D02 G	eneral UNII Test	Procedures New Rules v02r01	Section F					
S.	Test Setup:	(6	S*)	(25)	(\mathcal{S})					
		C ortrol C orgular C orgular Poter Supply TEMPERATURE CAB	Attenuator	RF test System Instrument						
Ś		Remark: Offset=Ca	ble loss+ attenua	ation factor.						
	Test Procedure:	 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes. Use the peak marker function to determine the maximum amplitude level. 								
	Limit:		U							
		Frequency band (MHz)	Limit							
13		5150-5250	≤17dBm in 1MHz for master device							
6		l (c	≤11dBm in 1MF	Iz for client device	67					
\sim		5250-5350	≤11dBm in 1MF	Iz for client device						
		5470-5725	≤11dBm in 1MH	Iz for client device						
		5725-5850	≤30dBm in 500	kHz						
		Remark:	The maximum a conducted en calibrated test i	oower spectral density is meas nission by direct connection of nstrument to the equipment un	ured as a der test.					
	Test Mode:	Transmitting mode	with modulation							
~~~~	Test Results:	Refer to Appendix	5G Wi-Fi	(1)	13					
(	(c ^r )	6	5)	$(\mathcal{C}^{n})$	$(\mathcal{C})$					





Page 17 of 69

# 6.6 Frequency Stability

Test Requirement:	47 CFR Part 15C Section 15.407 (g)	)	
Test Method:	ANSI C63.10: 2013	(°))	1
Test Setup:	(25)	(25)	(St)
	Control Computer Power Supply TemPERATURE CABINET	RF test System Instrument	
	Remark: Offset=Cable loss+ atten	tion factor	(c^)
Test Procedure:	<ul> <li>1.The EUT was placed inside the end by nominal AC/DC voltage.</li> <li>2. Turn the EUT on and couple its of 3. Turn the EUT off and set the char specified. d. Allow sufficient time (ap of the chamber to stabilize.</li> <li>4. Repeat step 2 and 3 with the temperature.</li> <li>5. The test chamber was allowed to of 30 minutes. The supply voltage w 115% and the frequency record.</li> </ul>	vironmental test char utput to a spectrum an ober to the highest te oproximately 30 min) f perature chamber set stabilize at +20 degre as then adjusted on t	nber and powered nalyzer. mperature for the temperature to the lowest ee C for a minimum he EUT from 85% to
Limit:	The frequency tolerance shall be frequency over a temperature vari normal supply voltage, and for a va 85% to 115% of the rated supply vol	maintained within the ation of 0 degrees t riation in the primary tage at a temperature	e band of operation to 45 degrees C at supply voltage from e of 20 degrees C.
Test Mode:	Transmitting mode with modulation		
Test Results:	Refer to Appendix 5G Wi-Fi		S.







Page 18 of 69

### 6.7 Radiated Emission

	Test Requirement:	47 CFR Part 15C Section 15.209 and 15.407 (b)									
-0-	Test Method:	ANSI C63.10 2013									
	Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)									
9	Receiver Setup:	Frequency	Detector	RB	N	VBW	Remark				
		0.009MHz-0.090MHz		Peak	10kł	Ηz	30kHz	Peak			
		0.009MHz-0.090MHz		Average	10kł	Ηz	30kHz	Average			
		0.090MHz-0.110MH	Ηz	Quasi-pea	k 10kł	Ηz	30kHz	Quasi-peak			
		0.110MHz-0.490MH	Ηz	Peak	10kł	Ηz	30kHz	Peak			
		0.110MHz-0.490MH	Ηz	Average	10kł	Ηz	30kHz	Average			
		0.490MHz -30MH	z	Quasi-pea	k 10kł	Ηz	30kHz	Quasi-peak			
1		30MHz-1GHz	0	Quasi-pea	k 100 k	Hz	300kHz	Quasi-peak			
3		Abaux 4015	7	Peak	1MH	Ιz	3MHz	Peak			
$\sim$		Above 1GHz		Peak	1MF	Ιz	10kHz	Average			
	Limit:		1					·			
		Frequency	Fie (mic	ld strength rovolt/meter)	Limit (dBuV/m)	F	Remark	Measurement distance (m)			
		0.009MHz-0.490MHz 240 0.490MHz-1.705MHz 240 1.705MHz-30MHz		100/F(kHz)	-		-0	300			
				000/F(kHz) -		-		30			
				30	-	-		30			
		30MHz-88MHz	0	100	40.0	Qu	lasi-peak	3			
3		88MHz-216MHz	7	150	43.5	Qu	lasi-peak	3			
		216MHz-960MHz		200	46.0	Qu	lasi-peak	3			
		960MHz-1GHz		500	54.0	Qu	lasi-peak	3			
		Above 1GHz		500	54.0	A	verage	3			
		<ul> <li>*(1) For transmitters outside of the 5.15-4 dBm/MHz.</li> <li>(2) For transmitters op of the 5.15-5.35 GHz k</li> <li>(3) For transmitters op outside of the 5.47-5 dBm/MHz.</li> <li>(4) For transmitters op</li> <li>(i) All emissions shall above or below the ba above or below the ba above or below the ba edge increasing linear the band edge, and f linearly to a level of 27</li> </ul>	ope 5.35 eration operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation operation	rating in the GHz band ng in the 5.2 shall not exc ating in the 5 GHz band ng in the 5.7 mited to a lev edge increas edge, and fr a level of 15 5 MHz abov n/MHz at the	e 5.15-5.2 shall not 5-5.35 GH ceed an e. 5.47-5.72 shall no 25-5.85 G vel of −27 ing linearl tom 25 M 5.6 dBm/W ve or belo band edg	5 G t ex Iz ba i.r.p. 25 G t ex Hz t dBm y to Hz a Hz t Hz t t e.	GHz band: and: All em of -27 dE GHz band: acceed an band: n/MHz at 7 10 dBm/N above or b at 5 MHz a ne band e	All emissions e.i.r.p. of -27 hissions outside Bm/MHz. All emissions e.i.r.p. of -27 5 MHz or more MHz at 25 MHz below the band above or below bdge increasing			
3		Remark: The emissi measurements emplo frequency bands 9-9 emission limits in thes	on I oying 0kH: se th	imits shown   a CISPR z, 110-490k  ree bands a	in the quasi-pea Hz and a re based	abo ak abov on r	ve table detector e ve 1000 M neasureme	are based on except for the MHz. Radiated ents employing			







# Ì

Page 19 of 69









### Page 20 of 69

	Disco the measurement entering away from each area of the FUT
ST.	determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
	b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
<u>ئ</u>	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
S. S	g. Test the EUT in the lowest channel, the middle channel and the highest channel
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Transmitting mode with modulation
Test Results:	Pass





### Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Remark: During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of 6Mbps for 802.11 a was recorded in the report.



No. MI	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	46.0809	14.99	13.58	28.57	40.00	-11.43	QP	100	259	
2	95.9975	23.46	12.57	36.03	43.50	-7.47	QP	100	20	
3	120.0027	24.84	11.66	36.50	43.50	-7.00	QP	100	20	
4 *	168.0008	25.96	10.99	36.95	43.50	-6.55	QP	100	166	
5	299.9988	22.18	16.15	38.33	46.00	-7.67	QP	100	20	
6	660.1079	14.36	22.70	37.06	46.00	-8.94	QP	100	62	







Page 22 of 69



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		39.9312	17.43	13.19	30.62	40.00	-9.38	QP	100	49	
2	*	48.0024	20.84	13.04	33.88	40.00	-6.12	QP	100	7	
3		95.9975	23.16	11.54	34.70	43.50	-8.80	QP	100	38	
4		120.0028	25.34	10.50	35.84	43.50	-7.66	QP	100	90	
5		144.0062	27.83	7.90	35.73	43.50	-7.77	QP	100	49	
6		660.1080	19.28	19.90	39.18	46.00	-6.82	QP	100	111	





### Page 23 of 69

### **Transmitter Emission above 1GHz**

Remark: Through Pre-scan, for 20MHz Occupied Bandwidth, 802.11 a mode was the worst case; for 40MHz Occupied Bandwidth, 802.11 n(HT40) mode was the worst case; for 80MHz Occupied Bandwidth, 802.11ac(VHT80) mode was the worst case,only the worst case was recorded in the report.

3	Mode	:	8	02.11 a Tran	smitting		Chann	el:	5180MHz	
~	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1014.3014	6.85	37.41	44.26	68.20	23.94	PASS	Horizontal	PK
	2	1923.5424	11.83	36.29	48.12	68.20	20.08	PASS	Horizontal	PK
	3	2712.3212	12.25	36.20	48.45	68.20	19.75	PASS	Horizontal	PK
	4	3563.2563	14.90	35.59	50.49	68.20	17.71	PASS	Horizontal	PK
	5	8559.753	-0.65	47.05	46.40	68.20	21.80	PASS	Horizontal	PK
- 0	6	10980.624	6.00	45.24	51.24	68.20	16.96	PASS	Horizontal	PK
	7	14458.3979	11.14	41.58	52.72	68.20	15.48	PASS	Horizontal	PK
-	8	1491.7492	8.02	36.84	44.86	68.20	23.34	PASS	Vertical	PK
	9	2438.9439	12.00	36.41	48.41	68.20	19.79	PASS	Vertical	PK
	10	3296.4796	14.36	36.20	50.56	68.20	17.64	PASS	Vertical	PK
	11	3800.8801	16.48	33.84	50.32	68.20	17.88	PASS	Vertical	PK
	12	8555.7278	-0.62	46.45	45.83	68.20	22.37	PASS	Vertical	PK
	13	10992.6996	6.53	44.91	51.44	68.20	16.76	PASS	Vertical	PK

	Mode	:		802.11 a Tran	smitting		Channe	el:	5200MHz	
2	NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1601.2101	8.79	36.54	45.33	68.20	22.87	PASS	Horizontal	PK
	2	2193.6194	10.16	38.38	48.54	68.20	19.66	PASS	Horizontal	PK
	3	3342.1342	14.64	35.65	50.29	68.20	17.91	PASS	Horizontal	PK
	4	8742.6121	0.20	46.27	46.47	68.20	21.73	PASS	Horizontal	PK
	5	11984.6242	5.99	45.25	51.24	68.20	16.96	PASS	Horizontal	PK
	6	16607.8554	10.90	42.86	53.76	68.20	14.44	PASS	Horizontal	PK
0	7	1694.7195	9.01	36.54	45.55	68.20	22.65	PASS	Vertical	PK
9	8	3064.9065	13.50	36.09	49.59	68.20	18.61	PASS	Vertical	PK
2	9	4295.9296	18.98	32.98	51.96	68.20	16.24	PASS	Vertical	PK
	10	8302.7151	-1.50	46.47	44.97	68.20	23.23	PASS	Vertical	PK
	11	11003.0502	6.78	44.87	51.65	68.20	16.55	PASS	Vertical	PK
	12	15891.3696	10.37	44.14	54.51	68.20	13.69	PASS	Vertical	PK
				1 1 1 1			21		A 71	





Page 24 of 69

		(c))		65		6	e )	(	S)	
	Mode	:	80	)2.11 a Tran	smitting		Channe	el:	5240MHz	
10	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
2	1	1951.5952	12.34	36.24	48.58	68.20	19.62	PASS	Horizontal	PK
2	2	3000	12.69	37.24	49.93	68.20	18.27	PASS	Horizontal	PK
	3	4267.8768	18.30	34.08	52.38	68.20	15.82	PASS	Horizontal	PK
	4	7907.0954	-1.83	47.42	45.59	68.20	22.61	PASS	Horizontal	PK
	5	9278.5389	1.92	45.86	47.78	68.20	20.42	PASS	Horizontal	PK
	6	13999.525	11.91	40.97	52.88	68.20	15.32	PASS	Horizontal	PK
	7	1690.319	8.97	36.79	45.76	68.20	22.44	PASS	Vertical	PK
	8	3293.1793	14.30	35.95	50.25	68.20	17.95	PASS	Vertical	PK
20	9	4399.3399	19.11	32.88	51.99	68.20	16.21	PASS	Vertical	PK
4	10	8989.2995	-0.06	46.37	46.31	68.20	21.89	PASS	Vertical	PK
U	11	11241.1121	6.43	45.12	51.55	68.20	16.65	PASS	Vertical	PK
	12	15902.8701	10.47	43.20	53.67	68.20	14.53	PASS	Vertical	PK

Mode	:	80	)2.11 n(HT4	0) Transmitti	ng	Channe	el:	5190MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1624.3124	8.66	36.36	45.02	68.20	23.18	PASS	Horizontal	PK
2	2435.0935	12.04	36.61	48.65	68.20	19.55	PASS	Horizontal	PK
3	3940.5941	17.64	34.38	52.02	68.20	16.18	PASS	Horizontal	PK
4	6893.8947	-4.38	48.44	44.06	68.20	24.14	PASS	Horizontal	PK
5	8770.2135	-0.39	47.97	47.58	68.20	20.62	PASS	Horizontal	PK
6	13254.2877	8.60	43.58	52.18	68.20	16.02	PASS	Horizontal	PK
7	1776.1276	9.54	36.62	46.16	68.20	22.04	PASS	Vertical	PK
8	3048.4048	13.25	36.56	49.81	68.20	18.39	PASS	Vertical	PK
9	3952.6953	17.76	33.91	51.67	68.20	16.53	PASS	Vertical	PK
10	8562.6281	-0.66	46.47	45.81	68.20	22.39	PASS	Vertical	PK
11	9793.7647	4.06	46.17	50.23	68.20	17.97	PASS	Vertical	PK
12	16600.955	11.34	42.30	53.64	68.20	14.56	PASS	Vertical	PK











Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com



Page 25 of 69

						1 1				
	Mode	:	8	02.11 n(HT4	0) Transmitti	ng	Channe	el:	5230MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
-	1	1526.4026	8.08	37.08	45.16	68.20	23.04	PASS	Horizontal	PK
e l	2	2656.2156	11.91	36.93	48.84	68.20	19.36	PASS	Horizontal	PK
-	3	4402.6403	18.97	33.27	52.24	68.20	15.96	PASS	Horizontal	PK
	4	8297.5399	-1.47	46.81	45.34	68.20	22.86	PASS	Horizontal	PK
	5	10598.8049	6.30	45.80	52.10	68.20	16.10	PASS	Horizontal	PK
	6	13850.5925	11.02	43.16	54.18	68.20	14.02	PASS	Horizontal	PK
	7	1434.5435	8.29	36.85	45.14	68.20	23.06	PASS	Vertical	PK
	8	2288.7789	10.89	35.86	46.75	68.20	21.45	PASS	Vertical	PK
	9	3405.3905	15.00	35.29	50.29	68.20	17.91	PASS	Vertical	PK
-	10	8420.021	-1.43	46.65	45.22	68.20	22.98	PASS	Vertical	PK
4	11	12982.2991	7.76	44.39	52.15	68.20	16.05	PASS	Vertical	PK
S	12	15891.3696	10.37	42.51	52.88	68.20	15.32	PASS	Vertical	PK

	Mode	<b>;</b> :		802.11 ac(VF	IT80) Transm	nitting	Chann	el:	5210MHz	
	NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1466.4466	8.14	36.75	44.89	68.20	23.31	PASS	Horizontal	PK
10	2	2557.2057	12.35	5 35.97	48.32	68.20	19.88	PASS	Horizontal	PK
4	3	3547.3047	15.17	7 34.46	49.63	68.20	18.57	PASS	Horizontal	PK
2	4	8564.9282	-0.67	47.26	46.59	68.20	21.61	PASS	Horizontal	PK
	5	13854.0427	10.81	1 42.31	53.12	68.20	15.08	PASS	Horizontal	PK
	6	16591.7546	10.37	7 42.73	53.10	68.20	15.10	PASS	Horizontal	PK
	7	1608.9109	8.74	36.66	45.40	68.20	22.80	PASS	Vertical	PK
	8	3049.505	13.26	37.01	50.27	68.20	17.93	PASS	Vertical	PK
	9	4104.5105	18.19	33.69	51.88	68.20	16.32	PASS	Vertical	PK
	10	8340.667	-2.55	6 48.00	45.45	68.20	22.75	PASS	Vertical	PK
	11	13843.6922	10.72	2 41.81	52.53	68.20	15.67	PASS	Vertical	PK
C	12	16600.955	11.34	41.37	52.71	68.20	15.49	PASS	Vertical	PK
e.			62	- ) -	6	·)	6			CN)











# C

Page 26 of 69

				( A) ( )						
	Mode	:	80	)2.11 a Tran	smitting		Channe	el:	5745MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
10	1	1135.8636	7.17	37.38	44.55	68.20	23.65	PASS	Horizontal	PK
	2	1794.2794	9.65	39.16	48.81	68.20	19.39	PASS	Horizontal	PK
2	3	2552.2552	12.40	38.17	50.57	68.20	17.63	PASS	Horizontal	PK
	4	3776.6777	15.77	35.85	51.62	68.20	16.58	PASS	Horizontal	PK
	5	7589.506	-2.68	47.81	45.13	68.20	23.07	PASS	Horizontal	PK
	6	12839.9893	7.77	43.63	51.40	68.20	16.80	PASS	Horizontal	PK
	7	1394.3894	8.26	37.53	45.79	68.20	22.41	PASS	Vertical	PK
	8	2552.8053	12.39	37.89	50.28	68.20	17.92	PASS	Vertical	PK
	9	4097.9098	18.18	35.31	53.49	68.20	14.71	PASS	Vertical	PK
	10	7598.7066	-2.32	47.04	44.72	68.20	23.48	PASS	Vertical	PK
	11	10610.374	5.77	45.90	51.67	68.20	16.53	PASS	Vertical	PK
3	12	15896.1264	10.60	42.72	53.32	68.20	14.88	PASS	Vertical	PK

	Mode	:		802.11 a Tran	smitting		Channe	el:	5785MHz	
	NO	Freq. [MHz]	Facto [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1280.5187	6.95	36.85	43.80	68.20	24.40	PASS	Horizontal	PK
e i	2	2097.8732	10.60	41.36	51.96	68.20	16.24	PASS	Horizontal	PK
1	3	3954.0636	17.38	33.10	50.48	68.20	17.72	PASS	Horizontal	PK
2	4	7184.679	-4.68	50.86	46.18	68.20	22.02	PASS	Horizontal	PK
	5	10999.0999	6.81	43.71	50.52	68.20	17.68	PASS	Horizontal	PK
	6	15886.9258	10.14	42.29	52.43	68.20	15.77	PASS	Horizontal	PK
	7	1367.7912	7.99	36.97	44.96	68.20	23.24	PASS	Vertical	PK
	8	2402.9602	12.30	36.06	48.36	68.20	19.84	PASS	Vertical	PK
	9	4524.2683	20.34	32.39	52.73	68.20	15.47	PASS	Vertical	PK
	10	7375.5917	-3.89	47.66	43.77	68.20	24.43	PASS	Vertical	PK
	11	11004.467	6.75	43.34	50.09	68.20	18.11	PASS	Vertical	PK
1	12	15896.1264	10.60	41.33	51.93	68.20	16.27	PASS	Vertical	PK
	$\langle \cdot \rangle$		6.	·)	(2)	1	6			621













### Page 27 of 69

	Mode	:		802.11 a Tran	smitting		Channe	el:	5825MHz	
	NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
-	1	1285.4785	7.04	38.71	45.75	68.20	22.45	PASS	Horizontal	PK
	2	2195.2695	10.09	42.12	52.21	68.20	15.99	PASS	Horizontal	PK
2	3	3789.3289	16.22	36.36	52.58	68.20	15.62	PASS	Horizontal	PK
	4	7199.2466	-4.82	51.56	46.74	68.20	21.46	PASS	Horizontal	PK
	5	10600.4067	6.34	44.81	51.15	68.20	17.05	PASS	Horizontal	PK
	6	15250.55	11.62	41.58	53.20	68.20	15.00	PASS	Horizontal	PK
	7	1221.1221	6.29	38.63	44.92	68.20	23.28	PASS	Vertical	PK
	8	2196.9197	10.08	39.59	49.67	68.20	18.53	PASS	Vertical	PK
	9	3962.0462	17.21	35.26	52.47	68.20	15.73	PASS	Vertical	PK
	10	6991.4661	-4.83	48.61	43.78	68.20	24.42	PASS	Vertical	PK
2	11	10998.3332	6.78	45.53	52.31	68.20	15.89	PASS	Vertical	PK
6	12	15899.1933	10.75	42.45	53.20	68.20	15.00	PASS	Vertical	PK

Mode	:	80	)2.11 n(HT4	0) Transmitti	ng	Channe	el:	5755MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1657.3157	8.66	37.29	45.95	68.20	22.25	PASS	Horizontal	PK
2	2387.7888	11.91	37.10	49.01	68.20	19.19	PASS	Horizontal	PK
3	3591.3091	14.41	36.85	51.26	68.20	16.94	PASS	Horizontal	PK
4	8143.8429	-2.01	47.14	45.13	68.20	23.07	PASS	Horizontal	PK
5	10600.4067	6.34	44.07	50.41	68.20	17.79	PASS	Horizontal	PK
6	15125.575	11.59	40.64	52.23	68.20	15.97	PASS	Horizontal	PK
7	1592.9593	8.61	37.37	45.98	68.20	22.22	PASS	Vertical	PK
8	2924.0924	13.35	37.98	51.33	68.20	16.87	PASS	Vertical	PK
9	4103.4103	18.23	34.26	52.49	68.20	15.71	PASS	Vertical	PK
10	8559.404	-0.64	46.86	46.22	68.20	21.98	PASS	Vertical	PK
11	13444.9297	10.41	41.72	52.13	68.20	16.07	PASS	Vertical	PK
12	16441.2628	9.14	43.87	53.01	68.20	15.19	PASS	Vertical	PK
	1	1		1.1		1.0			







Page 28 of 69

### Report No. : EED32Q81282704

Mode	:	8	02.11 n(HT4	0) Transmitti	ng	Channe	el:	5795MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1668.8669	8.78	38.35	47.13	68.20	21.07	PASS	Horizontal	PK
2	2224.9725	10.53	37.72	48.25	68.20	19.95	PASS	Horizontal	PK
3	3554.4554	15.28	37.22	52.50	68.20	15.70	PASS	Horizontal	PK
4	8525.6684	-0.97	48.26	47.29	68.20	20.91	PASS	Horizontal	PK
5	11975.1317	5.80	45.45	51.25	68.20	16.95	PASS	Horizontal	PK
6	16606.1071	11.01	42.64	53.65	68.20	14.55	PASS	Horizontal	PK
7	1426.8427	8.30	37.73	46.03	68.20	22.17	PASS	Vertical	PK
8	2267.3267	10.98	37.68	48.66	68.20	19.54	PASS	Vertical	PK
9	3362.4862	14.74	36.82	51.56	68.20	16.64	PASS	Vertical	PK
10	7380.192	-3.92	48.31	44.39	68.20	23.81	PASS	Vertical	PK
11	9298.5199	2.51	45.17	47.68	68.20	20.52	PASS	Vertical	PK
12	13442.6295	10.32	42.44	52.76	68.20	15.44	PASS	Vertical	PK

Mode	Mode:		302.11 ac(VH	T80) Transm	nitting	Channe	el:	5775MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1477.9978	8.10	37.44	45.54	68.20	22.66	PASS	Horizontal	PK
2	2268.9769	10.97	37.01	47.98	68.20	20.22	PASS	Horizontal	PK
3	3356.9857	14.78	37.21	51.99	68.20	16.21	PASS	Horizontal	PK
4	4300.8801	19.17	34.22	53.39	68.20	14.81	PASS	Horizontal	PK
5	8752.6168	0.25	46.87	47.12	68.20	21.08	PASS	Horizontal	PK
6	15904.5603	10.28	43.29	53.57	68.20	14.63	PASS	Horizontal	PK
7	1579.2079	8.49	36.80	45.29	68.20	22.91	PASS	Vertical	PK
8	2383.9384	11.78	36.96	48.74	68.20	19.46	PASS	Vertical	PK
9	3341.5842	14.71	36.62	51.33	68.20	16.87	PASS	Vertical	PK
10	8626.8751	-0.83	47.23	46.40	68.20	21.80	PASS	Vertical	PK
11	10966.8978	5.40	46.35	51.75	68.20	16.45	PASS	Vertical	PK
12	15899.1933	10.75	43.32	54.07	68.20	14.13	PASS	Vertical	PK

### Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

2) Scan from 9kHz to 40GHz, the disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.



Page 29 of 69

# 6.8 Radiated Emission which fall in the restricted bands

	Test Requirement:	47 CFR Part 15C Section 15.209 and 15.407 (b)								
15	Test Method:	ANSI C63.10 2013				13			13	
6	Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)								
	Receiver Setup:	Frequency	~	Detector		RBW	/	VBW	Remark	
		0.009MHz-0.090MH	Ηz	Peak		10kHz		30kHz	Peak	
		0.009MHz-0.090MH	Ηz	Average		10kHz		30kHz	Average	
		0.090MHz-0.110MH	Ηz	Quasi-pea	k	10kH	z	30kHz	Quasi-peak	
		0.110MHz-0.490MH	Ηz	Peak		10kH	z	30kHz	Peak	
		0.110MHz-0.490MH	0.110MHz-0.490MHz			10kH	z	30kHz	Average	
		0.490MHz -30MHz	z	Quasi-pea	k	10kH	z	30kHz	Quasi-peak	
		30MHz-1GHz	9	Quasi-pea	k ′	100 kł	Ηz	300kHz	Quasi-peak	
0				Peak		1MH	z	3MHz	Peak	
		Above IGHZ		Peak		1MHz		10kHz	Average	
	Limit:			-						
		Frequency	Fiel (micr	d strength ovolt/meter)	Liı (dBu	mit ıV/m)	R	emark	Measurement distance (m)	
		0.009MHz-0.490MHz	24	00/F(kHz)	-	-		-	300	
		0.490MHz-1.705MHz 2		000/F(kHz)	-	-		-	30	
100		1.705MHz-30MHz		30	-	100		-	30	
		30MHz-88MHz		100	40.	.0	Qua	asi-peak	3	
		88MHz-216MHz	1	150	43.	.5	Qua	asi-peak	3	
		216MHz-960MHz		200	46.0		Quasi-peak		3	
		960MHz-1GHz		500	0 54.0		Quasi-peak		3	
		Above 1GHz		500	54.	.0	A١	verage	3	
		<ul> <li>*(1) For transmitters outside of the 5.15-5 dBm/MHz.</li> <li>(2) For transmitters op of the 5.15-5.35 GHz b</li> <li>(3) For transmitters of outside of the 5.47-5 dBm/MHz.</li> <li>(4) For transmitters op</li> <li>(i) All emissions shall b above or below the ba above or below the ba edge increasing linear the band edge, and f linearly to a level of 27 Remark: The emission</li> </ul>	opera 5.35 eratir opera 5.725 eratir ope lim and e and e ly to rom	ating in the GHz band of the 5.24 shall not exc shall not exc shall not exc shall not exc shall not exc shall not exc shall not exc due in the 5.72 nited to a lev edge increas edge, and fr a level of 15 5 MHz abov n/MHz at the mits shown	<ul> <li>5.1</li> <li>shal</li> <li>5-5.3</li> <li>5.47</li> <li>5.47</li> <li>sha</li> <li>25-5.</li> <li>vel of</li> <li>ing li</li> <li>com 2</li> <li>5.6 dE</li> <li>ve or</li> <li>banc</li> <li>in</li> </ul>	5-5.25 I not 5 GHz an e.i. -5.725 II not 85 GH -27 c nearly 25 MH 3m/MI belov d edge the a	5 G exc z ba r.p. 5 G iBm / to iIZ a Hz a Hz a w th e. abov	Hz band: ceed an nd: All em of -27 dB Hz band: ceed an and: /MHz at 7 10 dBm/N bove or b at 5 MHz a ie band e	All emissions e.i.r.p. of -27 dissions outside m/MHz. All emissions e.i.r.p. of -27 5 MHz or more MHz at 25 MHz below the band above or below dge increasing are based on	
0		frequency bands 9-9	oying 0kHz	a USPR 2. 110-490kl	qua: Hz a	si-pea ind a	κ c bov	etector e a 1000 N	MHz. Radiated	







# Ì

Page 30 of 69







Page 31 of 69

	Note: For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have
	to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
	k. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	I. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	m. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	n. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	<ul> <li>o. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.</li> </ul>
	p. Test the EUT in the lowest channel, the Highest channel
	q. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	r. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Transmitting mode with modulation
Test Results:	Pass







### Page 32 of 69

Fest Da	ta:			
	Test_Mode	802.11 a Transmitting	Test_Frequency	5180MHz
	Tset_Engineer	Aiden.wang	Test_Date	2024\09\24
	Remark	١		

### Test Graph



### 

<u> </u>	1					100	<i>.</i>		
Suspecte	ed List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150	20.05	33.53	53.58	68.24	14.66	PASS	Horizontal	PK
2	5150	20.05	18.96	39.01	54.00	14.99	PASS	Horizontal	AV
0									















Page 33 of 69

Test_Mode	802.11 a Transmitting	Test_Frequency	5180MHz	
Tset_Engineer	Aiden.wang	Test_Date	2024\09\24	6
Remark	١			

### Test Graph



### - PK Limit - AV Limit tical PK * AV Detector

						- C.	11.				
Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5150	20.05	33.17	53.22	68.24	15.02	PASS	Vertical	PK		
2	5150	20.05	19.11	39.16	54.00	14.84	PASS	Vertical	AV		
6				·					-		



















Page 34 of 69

Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5180MHz
Tset_Engineer	Aiden.wang	Test_Date	2024\09\24
Remark	١	0	

### Test Graph



### 

A						10					
Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5150	20.05	30.48	50.53	68.24	17.71	PASS	Horizontal	PK		
2	5150	20.05	18.30	38.35	54.00	15.65	PASS	Horizontal	AV		
0						<u>e</u>					















Page 35 of 69

Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5180MHz
Tset_Engineer	Aiden.wang	Test_Date	2024\09\24
Remark	١		

### Test Graph



### - PK Limit - AV Limit tical PK * AV Detector

Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5150	20.05	33.15	53.20	68.24	15.04	PASS	Vertical	PK		
2	5150	20.05	18.46	38.51	54.00	15.49	PASS	Vertical	AV		
6				·							



















Page 36 of 69

Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5190MHz
Tset_Engineer	Aiden.wang	Test_Date	2024\09\24
Remark	١		

### Test Graph



### Horizontal PK - PK Limit - AV Limit ----- Horizontal AV · AV Detector

2						- C.	10.			
Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	5150	19.80	32.78	52.58	68.20	15.62	PASS	Horizontal	PK	
2	5150	19.80	18.40	38.20	54.00	15.80	PASS	Horizontal	AV	
0						<u>e</u>				



















Page 37 of 69

Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5190MHz
Tset_Engineer	Aiden.wang	Test_Date	2024\09\24
Remark	١		

### Test Graph



### - PK Limit - AV Limit cal PK · AV Detector

2						- C.			
Suspecte	ed List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150	19.80	31.00	50.80	68.20	17.40	PASS	Vertical	PK
2	5150	19.80	18.69	38.49	54.00	15.51	PASS	Vertical	AV
0	2.1					<u>i</u>			•





















Page 38 of 69

Test_Mode	802.11 ac(VHT20) Transmitting	Test_Frequency	5180MHz	
Tset_Engineer	Aiden.wang	Test_Date	2024\09\24	6
Remark	١			

### Test Graph



### 

	/					10			
Suspecte	ed List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150	20.05	32.12	52.17	68.24	16.07	PASS	Horizontal	PK
2	5150	20.05	18.55	38.60	54.00	15.40	PASS	Horizontal	AV



















Page 39 of 69

Test_Mode	802.11 ac(VHT20) Transmitting	Test_Frequency	5180MHz	
Tset_Engineer	Aiden.wang	Test_Date	2024\09\24	6
Remark	1			

### Test Graph



### - PK Limit - AV Limit tical PK · AV Detector

A						10	10		
Suspecte	ed List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150	20.05	30.82	50.87	68.24	17.37	PASS	Vertical	PK
2	5150	20.05	19.28	39.33	54.00	14.67	PASS	Vertical	AV
0		·							













Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com



Page 40 of 69

Test_Mode	802.11 ac(VHT40) Transmitting	Test_Frequency	5190MHz
Tset_Engineer	Aiden.wang	Test_Date	2024\09\24
Remark	١		

### Test Graph



### 

2						10			
Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150	19.80	30.84	50.64	68.20	17.56	PASS	Horizontal	PK
2	5150	19.80	18.49	38.29	54.00	15.71	PASS	Horizontal	AV
0						(*)			















Page 41 of 69

Test_Mode	802.11 ac(VHT40) Transmitting	Test_Frequency	5190MHz	
Tset_Engineer	Aiden.wang	Test_Date	2024\09\24	6
Remark	1			

### Test Graph



### - PK Limit - AV Limit cal PK · AV Detector

2						- C.	10.		
Suspecte	ed List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150	19.80	30.96	50.76	68.20	17.44	PASS	Vertical	PK
2	5150	19.80	18.52	38.32	54.00	15.68	PASS	Vertical	AV
0									



















Page 42 of 69

Test_Mode	802.11 ac(VHT80) Transmitting	Test_Frequency	5210MHz	
Tset_Engineer	Aiden.wang	Test_Date	2024\09\24	6
Remark	1			

### Test Graph



### ----- Horizontal AV PK Limit - AV Limit Horizontal PK · AV Detector

Suspecte	ed List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150	19.80	32.16	51.96	68.20	16.24	PASS	Horizontal	PK
2	5150	19.80	19.55	39.35	54.00	14.65	PASS	Horizontal	AV
0									



















Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com



Page 43 of 69

Test_Mode	802.11 ac(VHT80) Transmitting	Test_Frequency	5210MHz	
Tset_Engineer	Aiden.wang	Test_Date	2024\09\24	6
Remark	١			

### Test Graph



### - PK Limit - AV Limit cal PK · AV Detector

N						- C -	11.		$\langle \rangle$
Suspecte	ed List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150	19.80	30.23	50.03	68.20	18.17	PASS	Vertical	PK
2	5150	19.80	18.93	38.73	54.00	15.27	PASS	Vertical	AV
0	1 J					<u>i</u>			•















Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com



Page 44 of 69

	(4)				
Test_Mode	802.11 a Transmitting		Test_Frequency	5745MHz	
Tset_Engineer	Aiden.wang		Test_Date	2024\09\25	12
Remark	\	0		C	C



1	Susp	ected List								
(C)	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5745.6478	-9.33	94.39	85.06	122.20	37.14	PASS	Horizontal	PK
·		(A)				(ti)				



Page 45 of 69

Test_Mode	802.11 a Transmitting	Test_Frequency	5745MHz	
Tset_Engineer	Aiden.wang	Test_Date	2024\09\25	(
Remark	١			



_	<ul> <li>PK Limit</li> </ul>	Vertical PK	
*	PK Detector	<ul> <li>AV Detector</li> </ul>	

	/					6	10		
Suspe	ected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5748.3342	-9.21	98.19	88.98	122.20	33.22	PASS	Vertical	PK







Page 46 of 69

Test_Mode	802.11 a Transmitting	Test_Frequency	5825MHz
Tset_Engineer	Aiden.wang	Test_Date	2024\09\25
Remark	١	0	



_	PK Limit	_	Horizontal PK
*	PK Detector	*	AV Detector

	Suspec	cted List								
2	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
ĺ	1	5829.8199	-9.08	96.14	87.06	122.20	35.14	PASS	Horizontal	PK
•		112	•							







Page 47 of 69

Test_Mode	802.11 a Transmitting	Test_Frequency	5825MHz
Tset_Engineer	Aiden.wang	Test_Date	2024\09\25
Remark	1		



_	PK Limit	Vertical PK
*	PK Detector	<ul> <li>AV Detector</li> </ul>

Susp	ected List						_		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5821.7609	-9.14	98.60	89.46	122.20	32.74	PASS	Vertical	PK





Page 48 of 69

Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5745MHz
Tset_Engineer	Aiden.wang	Test_Date	2024\09\25
Remark	1		

### Test Graph



### PK Limit Horizontal PK PK Detector AV Detector

Suspe NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5747.4387	-9.25	102.99	93.74	122.20	28.46	PASS	Horizontal	PK
	(ST)		$\mathcal{C}$		(Sr)			$(\mathcal{S})$	





Page 49 of 69

Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5745MHz	
Tset_Engineer	Aiden.wang	Test_Date	2024\09\25	(
Remark	١			



—	PK Limit	Vertical PK
*	PK Detector	<ul> <li>AV Detector</li> </ul>

Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5751.916	-9.16	102.69	93.53	122.20	28.67	PASS	Vertical	PK
	10			I					







### Page 50 of 69

Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5825MHz
Tset_Engineer	Aiden.wang	Test_Date	2024\09\25
Remark	١		



_	PK Limit	_	Horizontal PK
*	PK Detector	*	AV Detector

Susp	ected List		_		_				
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5831.6108	-9.07	102.67	93.60	122.20	28.60	PASS	Horizontal	PK









Page 51 of 69

Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5825MHz
Tset_Engineer	Aiden.wang	Test_Date	2024\09\25
Remark	١		



PK Limit	Vertical PK
★ PK Detector	<ul> <li>AV Detector</li> </ul>

Suspe	ected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5828.9245	-9.08	102.84	93.76	122.20	28.44	PASS	Vertical	PK
	(~ ¹ )	1	$(\mathcal{C})$	I	(N)		9	6	1







### Page 53 of 69

Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5755MHz	
Tset_Engineer	Aiden.wang	Test_Date	2024\09\25	6
Remark	1			



_	<ul> <li>PK Limit</li> </ul>	— Vertical PK
*	PK Detector	<ul> <li>AV Detector</li> </ul>

Suena	ctod List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5746.5433	-9.29	99.76	90.47	122.20	31.73	PASS	Vertical	PK







### Page 54 of 69

Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5795MHz
Tset_Engineer	Aiden.wang	Test_Date	2024\09\25
Remark	١		



_	PK Limit	_	Horizontal PK
*	PK Detector	•	AV Detector

Susp	ected List								1 2 3 1
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5785.943	-9.26	93.56	84.30	122.20	37.90	PASS	Horizontal	PK
				•					







### Page 55 of 69

Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5795MHz
Tset_Engineer	Aiden.wang	Test_Date	2024\09\25
Remark	١		

### Test Graph



### PK Limit Vertical PK * PK Detector * AV Detector

Susp	ected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5794.002	-9.28	97.27	87.99	122.20	34.21	PASS	Vertical	PK











### Page 56 of 69

Test_Mode	802.11 ac(VHT20) Transmitting	Test_Frequency	5745MHz	
Tset_Engineer	Aiden.wang	Test_Date	2024\09\25	(
Remark	١			

### Test Graph



### PK Limit Horizontal PK * PK Detector * AV Detector

NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5752.8114	-9.16	103.22	94.06	122.20	28.14	PASS	Horizontal	PK





Page 57 of 69

Test_Mode	802.11 ac(VHT20) Transmitting	Test_Frequency	5745MHz
Tset_Engineer	Aiden.wang	Test_Date	2024\09\25
Remark	١		



PK Limit	Vertical PK
★ PK Detector	<ul> <li>AV Detector</li> </ul>

Suspe	cted List		_						
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remarl
1	5741.1706	-9.50	103.75	94.25	122.20	27.95	PASS	Vertical	PK







### Page 58 of 69

Test_Mode	802.11 ac(VHT20) Transmitting	Test_Frequency	5825MHz
Tset_Engineer	Aiden.wang	Test_Date	2024\09\25
Remark	1		

### Test Graph



### PK Limit Horizontal PK PK Detector AV Detector

		/					100			
S	uspe	cted List								
1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5466.2681	-10.50	50.36	39.86	68.20	28.34	PASS	Horizontal	PK
	2	5819.0745	-9.16	103.85	94.69	122.20	27.51	PASS	Horizontal	PK
-										



















### Page 59 of 69

Test_Mode	802.11 ac(VHT20) Transmitting	Test_Frequency	5825MHz
Tset_Engineer	Aiden.wang	Test_Date	2024\09\25
Remark	١		



- PK Limit	Vertical PK
* PK Detector	<ul> <li>AV Detector</li> </ul>

Suspe	cted List	Factor							
NO	Freq. [MHz]	[dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5821.7609	-9.14	104.04	94.90	122.20	27.30	PASS	Vertical	PK
1	5821.7609	-9.14	104.04	94.90	122.20	27.30	PASS	Vertical	







### Page 60 of 69

Test_Mode	802.11 ac(VHT40) Transmitting	Test_Frequency	5755MHz
Tset_Engineer	Aiden.wang	Test_Date	2024\09\25
Remark	1		



_	PK Limit	-	Horizontal PK
*	PK Detector	•	AV Detector

1 5765.3477 -9.20 100.33 91.13 122.20 31.07 PASS Horizontal	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5765.3477	-9.20	100.33	91.13	122.20	31.07	PASS	Horizontal	PK



Page 61 of 69

Test_Mode	802.11 ac(VHT40) Transmitting	Test_Frequency	5755MHz
Tset_Engineer	Aiden.wang	Test_Date	2024\09\25
Remark	1		



— PK Limit	Vertical PK
* PK Detector	<ul> <li>AV Detector</li> </ul>

Sus	pected List						<u></u>		1.2
NC	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5749.2296	-9.18	99.90	90.72	122.20	31.48	PASS	Vertical	PK







Page 62 of 69

Test_Mode	802.11 ac(VHT40) Transmitting	Test_Frequency	5795MHz
Tset_Engineer	Aiden.wang	Test_Date	2024\09\25
Remark	1		

### Test Graph



### PK Limit Horizontal PK PK Detector AV Detector

Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5786.8384	-9.26	99.51	90.25	122.20	31.95	PASS	Horizontal	PK







### Page 63 of 69

Test_Mode	802.11 ac(VHT40) Transmitting	Test_Frequency	5795MHz
Tset_Engineer	Aiden.wang	Test_Date	2024\09\25
Remark	1		



-	PK Limit	Vertical PK
*	PK Detector	<ul> <li>AV Detector</li> </ul>

Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5790.4202	-9.28	100.56	91.28	122.20	30.92	PASS	Vertical	PK
(			$(\mathcal{A})$			)	9	$(\mathcal{A})$	







### Page 64 of 69

Test_Mode	802.11 ac(VHT80) Transmitting	Test_Frequency	5775MHz
Tset_Engineer	Aiden.wang	Test_Date	2024\09\25
Remark	1		



	<ul> <li>PK Limit</li> </ul>	Horizontal PK				
*	PK Detector	*	AV Detector			

Suspect	ed List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5811.0155	-9.22	90.53	81.31	122.20	40.89	PASS	Horizontal	PK







### Page 65 of 69

Test_Mode	802.11 ac(VHT80) Transmitting	Test_Frequency	5775MHz	
Tset_Engineer	Aiden.wang	Test_Date	2024\09\25	(
Remark	١			

### Test Graph



### PK Limit Vertical P PK Detector AV Detector

	1					100	10		
Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5802.061	-9.29	93.90	84.61	122.20	37.59	PASS	Vertical	PK

### Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic

equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

2) Scan from 1GHz to 25GHz, the disturbance above 13GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.







Page 69 of 69

# PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No. EED32Q81282701 for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

