

Inter**Lab**

FCC Measurement/Technical Report on

UHF - Reader UNI900F1

FCC ID: XAM300011GR07

IC: 8311A-300011GR07

Report Reference: MDE_ECOM_1302_FCCb

Test Laboratory:

Borsigstrasse 11 Germany 7Layers AG 40880 Ratingen

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7 layers AG Borsigstrasse 11 40880 Ratingen, Germany Phone: +49 (0) 2102 749 0 Fax: +49 (0) 2102 749 350 www.7Layers.com Aufsichtsratsvorsitzender • Chairman of the Supervisory Board: Peter Mertel Vorstand • Board: Dr. H.-J. Meckelburg Dr. H. Ansorge

Registergericht • registered in: Düsseldorf, HRB 44096 USt-IdNr • VAT No.: DE 203159652 TAX No. 147/5869/0385

Table of Contents

U	Applied Standards and Test Summary	3
0.1 0.2 0.3	Technical Report Summary FCC and IC Correlation Table Measurement Summary	3 4 5
1	Administrative Data	7
1.1 1.2	Testing Laboratory Project Data	7 7
1.3 1.4	Applicant Data Manufacturer Data	7 7
2	Test object Data	8
2.1 2.2	General EUT Description EUT Main components	8 9
2.32.4	Ancillary Equipment Auxiliary Equipment	9 10
2.5 2.6	EUT Setups	10 11
2.7	Operating Modes Special software used for testing	11
2.8	Product labelling	11
3	Test Results	12
3.1 3.2	20 dB Bandwidth Peak power output	12 15
3.3	Spurious RF conducted emissions	17
3.4 3.5	Spurious radiated emissions Band edge compliance	20 25
3.6	Carrier Frequency Separation	27
3.7 3.8	No. Of Hopping Channels Dwell Time	29 32
4	Test Equipment	34
5	Photo Report	43
6	Setup Drawings	43

0 Applied Standards and Test Summary

0.1 Technical Report Summary

Type of Authorization

Certification for an Intentional Radiator (Digital Device / Spread Spectrum).

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-13 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C - Intentional Radiators

- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

Note:

Instead of applying ANSI C63.4–1992 which is referenced in the FCC Public Note, the newer ANSI C63.4–2009 is applied.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0.3 Measurement Summary.

Page 3 of 43

0.2 FCC and IC Correlation Table

Correlation of measurement requirements for FHSS devices (e.g. Bluetooth) equipment

The following tables show the correlation of measurement requirements for FHSS (e.g. Bluetooth) equipment from FCC and IC standards.

FHSS equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 3: 7.2.4
Occupied bandwidth	§ 15.247 (a) (1)	RSS-210 Issue 8: A8.1 (b)
Peak conducted output power	§ 15.247 (b) (2) or (3), (4)	RSS-210 Issue 8: A8.4 (1)
Transmitter spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 3: 4.9; RSS-210 Issue 8: A8.5
Transmitter spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 3: 7.2.5; RSS-210 Issue 8: A8.5
Band edge compliance	§ 15.247 (d)	RSS-210 Issue 8: A8.5
Dwell time	§ 15.247 (a) (1) (i)	RSS-210 Issue 8: A8.1 (c)
Channel separation	§ 15.247 (a) (1)	RSS-210 Issue 8: A8.1 (b)
No. of hopping frequencies	§ 15.247 (a) (1) (i)	RSS-210 Issue 8: A8.1 (c)
Hybrid systems (only)	§ 15.247 (f); § 15.247 (e)	RSS-210 Issue 8: A8.3
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 3: 7.1.2
Receiver spurious emissions	-	RSS-210 Issue 8: 2.3; RSS Gen Issue 3: 6 *)

^{*)} Receivers which are part of Transceivers are exempted with respect to Notice 2012-DRS0126.

0.3 Measurement Summary

FCC Part 15, Subpart C § 15.207

Conducted emissions (AC power line)

The measurement was performed according to ANSI C63.4

OP-Mode Setup Port Final Result
- AC port N/A

FCC Part 15, Subpart C § 15.247 (a) (1)

Occupied bandwidth

The measurement was performed according to FCC § 15.31

OP-Mode	Setup	Port	Final Result
op-mode 1	Setup_01	Temp.ant.connector	passed
op-mode 2	Setup_01	Temp.ant.connector	passed
op-mode 3	Setup_01	Temp.ant.connector	passed

FCC Part 15, Subpart C § 15.247 (b) (1)

Peak power output

The measurement was performed according to FCC § 15.31

OP-Mode	Setup	Port	Final Result
op-mode 1	Setup_01	Temp.ant.connector	passed
op-mode 2	Setup_01	Temp.ant.connector	passed
op-mode 3	Setup 01	Temp.ant.connector	passed

FCC Part 15, Subpart C § 15.247 (d), § 15.35 (b), § 15.207

Spurious conducted emissions

The measurement was performed according to ANSI C63.4

OP-Mode	Setup	Port	Final Result
op-mode 1	Setup_01	Temp.ant.connector	passed
op-mode 2	Setup_01	Temp.ant.connector	passed
op-mode 3	Setup_01	Temp.ant.connector	passed

FCC Part 15, Subpart C § 15.247 (d), § 15.35 (b), § 15.209

Spurious radiated emissions

The measurement was performed according to ANSI C63.4

OP-Mode	Setup	Port	Final Result
op-mode 1	Setup_02	Enclosure	passed
op-mode 2	Setup_02	Enclosure	passed
op-mode 3	Setup 02	Enclosure	passed

FCC Part 15, Subpart C § 15.247 (d)

Band edge compliance

The measurement was performed according to FCC § 15.31 / ANSI C63.4

OP-Mode	Setup	Port	Final Result
op-mode 1	Setup_01	Temp.ant.connector	passed
op-mode 2	Setup_01	Temp.ant.connector	passed
op-mode 3	Setup_01	Temp.ant.connector	passed

FCC Part 15, Sub	part C	§ 15.247 (a)(1)				
Carrier Frequency Separation						
The measurement was performed according to FCC § 15.31						
OP-Mode	Setup	Port	Final Result			
op-mode 1	Setup_01	Temp.ant.connector	passed			
op-mode 2	Setup_01	Temp.ant.connector	passed			
op-mode 3	Setup_01	Temp.ant.connector	passed			
FCC Part 15, Sub	part C	§ 15.247 (a)(1)				
Number of Hopping	Channels					
The measurement	was performed acco	ording to FCC § 15.31				
OP-Mode	Setup	Port	Final Result			
op-mode 1	Setup_01	Temp.ant.connector	passed			
op-mode 2	Setup_01	Temp.ant.connector	passed			
op-mode 3	Setup_01	Temp.ant.connector	passed			
FCC Part 15, Sub	part C	§ 15.247 (a)(1)				
Dwell Time						
	The measurement was performed according to FCC § 15.31					
	was performed acco	ording to FCC § 15.31				
	Setup	ording to FCC § 15.31 Port	Final Result			
The measurement OP-Mode op-mode 1	Setup Setup_01	Port Temp.ant.connector	passed			
The measurement OP-Mode op-mode 1 op-mode 2	Setup Setup_01 Setup_01	Port Temp.ant.connector Temp.ant.connector	passed passed			
The measurement OP-Mode op-mode 1	Setup Setup_01	Port Temp.ant.connector	passed			
The measurement OP-Mode op-mode 1 op-mode 2 op-mode 3	Setup Setup_01 Setup_01	Port Temp.ant.connector Temp.ant.connector Temp.ant.connector	passed passed			
The measurement OP-Mode op-mode 1 op-mode 2 op-mode 3	Setup Setup_01 Setup_01 Setup_01	Port Temp.ant.connector Temp.ant.connector Temp.ant.connector	passed passed			
The measurement OP-Mode op-mode 1 op-mode 2 op-mode 3	Setup Setup_01 Setup_01 Setup_01	Port Temp.ant.connector Temp.ant.connector Temp.ant.connector	passed passed			
The measurement OP-Mode op-mode 1 op-mode 2 op-mode 3	Setup Setup_01 Setup_01 Setup_01	Port Temp.ant.connector Temp.ant.connector Temp.ant.connector	passed passed			
The measurement OP-Mode op-mode 1 op-mode 2 op-mode 3	Setup Setup_01 Setup_01 Setup_01	Port Temp.ant.connector Temp.ant.connector Temp.ant.connector	passed passed			
The measurement OP-Mode op-mode 1 op-mode 2 op-mode 3	Setup Setup_01 Setup_01 Setup_01	Port Temp.ant.connector Temp.ant.connector Temp.ant.connector	passed passed			
The measurement OP-Mode op-mode 1 op-mode 2 op-mode 3	Setup Setup_01 Setup_01 Setup_01	Port Temp.ant.connector Temp.ant.connector Temp.ant.connector	passed passed			
The measurement OP-Mode op-mode 1 op-mode 2 op-mode 3	Setup Setup_01 Setup_01 Setup_01	Port Temp.ant.connector Temp.ant.connector Temp.ant.connector	passed passed			
The measurement OP-Mode op-mode 1 op-mode 2 op-mode 3 N/A not applicab	Setup Setup_01 Setup_01 Setup_01	Port Temp.ant.connector Temp.ant.connector Temp.ant.connector ered by DC)	passed passed			
The measurement OP-Mode op-mode 1 op-mode 2 op-mode 3	Setup Setup_01 Setup_01 Setup_01	Port Temp.ant.connector Temp.ant.connector Temp.ant.connector	passed passed			

1 Administrative Data

1.1 Testing Laboratory

1.1 Testing Laboratory	
Company Name:	7 Layers AG
Address	Borsigstr. 11 40880 Ratingen Germany
This facility has been fully described in a under the registration number 96716 .	report submitted to the FCC and accepted
The test facility is also accredited by the Laboratory accreditation no.:	following accreditation organisation: DAkkS D-PL-12140-01-01
Responsible for Accreditation Scope:	DiplIng. Bernhard Retka DiplIng. Robert Machulec DiplIng. Thomas Hoell DiplIng. Andreas Petz DiplIng. Marco Kullik
Report Template Version:	2014-09-11
1.2 Project Data	
Responsible for testing and report:	DiplIng. Marco Kullik
Date of Test(s): Date of Report:	2014-05-27 - 2014-06-03 2014-09-25
1.3 Applicant Data	
Company Name:	Ecom instruments GmbH
Address:	Industriestraße 2 97959 Assamstadt Germany
Contact Person:	Mr. Harald Fiederlein
1.4 Manufacturer Data Company Name:	Please see applicant data
Address:	
Contact Person:	

2 Test object Data

2.1 General EUT Description

Equipment under Test: 915 MHz RFID Head **Type Designation:** UHF - Reader UNI900F1

Kind of Device: -

(optional)

Voltage Type: DC **Voltage Level:** 3.7 V

Tested Modulation Type: Normal modulation

No of Hopping Channels 50

Hopping Rate: 2.5 [1/s]

General product description:

The EUT is a 915 MHz RFID head and is part of an intrinsically safe handheld PDA. This PDA supports the wireless technologies GSM 850/900/1800/1900, UMTS in the Bands FDDI / II / IV / V / VIII, WLAN 2.4 GHz with the modes b,g,n, WLAN 5 GHz with the modes a, n, and Bluetooth. It can be also equipped with different RFID readers in the frequency ranges 125 kHz, 134 kHz,13.56 MHz in combination with a scanner and 915 MHz or measurement heads without wireless technologies. During normal operation the EUT is intended for portable use.

Specific product description for the EUT:

The EUT is a RFID head which can only be used together with the handheld PDA i.roc Ci70-Ex. It uses the Frequency Hopping Spread Spectrum (FHSS) technology with 50 channels spaced in the 902 – 928 MHz frequency range.

The EUT provides the following ports:

Ports

Enclosure
Data Port (ANC1)

The main components of the EUT are listed and described in Chapter 2.2

2.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	
EUT A	RFID Head	UHF - Reader	RFID_UHF_00	UHF-02	98.02	
(Code: 4E020c06)		UNI900F1	85			
Remark: EUT A is eq	uipped with a ten	nporary antenna c	onnector.			
EUT B	RFID Head	UHF - Reader	RFID_UHF_00	UHF-02	98.02	
(Code: 4E020b06)		UNI900F1	76			
Remark: EUT B is equipped with an integral antenna with a maximum gain of 3.9 dBi in the 902 - 928 MHz						
frequency r	ange.					

NOTE: The short description used to simplify the identification of the EUT in this test report.

2.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment, which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status
ANC1	Handheld PDA	i.roc Ci70-ex	22321245032	P4	1.50.19.00

2.4 Auxiliary Equipment

For the purposes of this test report, auxiliary equipment is defined as equipment, which is used temporarily to enable operational and control features especially used for the tests of the EUT, which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status
_	_	_	_	_	_

2.5 EUT Setups

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
Setup_01	EUT A + ANC1	setup for conducted radio measurements
Setup 02	EUT B + ANC1	setup for radiated measurements

2.6 Operating Modes

This chapter describes the operating modes of the EUTs used for testing.

2.6.1 Test Channels

Band:								
900 MHz 902 - 928 MHz			2.4 GHz ISM 2400 - 2483.5 MHz			5 GHz ISM 5725 - 5850 MHz		
Bottom	Middle	Тор	Bottom	Middle	Тор	Bottom	Middle	Тор
1	25	50						
902.7	914.7	927.2						

Shortcuts for operating modes

Operating Mode / Frequency [MHZ]	902.7	914.2	927.2
Transmitter on, normal modulation	1	2	3

The duty cycle of the device when set on a single frequency (special test mode for testing), is 100 %.

2.7 Special software used for testing

The software UHF CM Tool Version: 1.0.2.0 was used to set the required operating modes. Power setting 9 was used for testing.

2.8 Product labelling

2.8.1 FCC ID label

Please refer to the documentation of the applicant.

2.8.2 Location of the label on the EUT

Please refer to the documentation of the applicant.

3 Test Results

3.1 20 dB Bandwidth

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

3.1.1 Test Description

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical. The results recorded were measured with the modulation which produce the worst-case

The results recorded were measured with the modulation which produce the worst-case (widest) occupied bandwidth.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Resolution Bandwidth (RBW): 10 kHz

- Video Bandwidth (VBW): 30 kHz

- Span: 500 kHz - Trace: Maxhold

3.1.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (1)

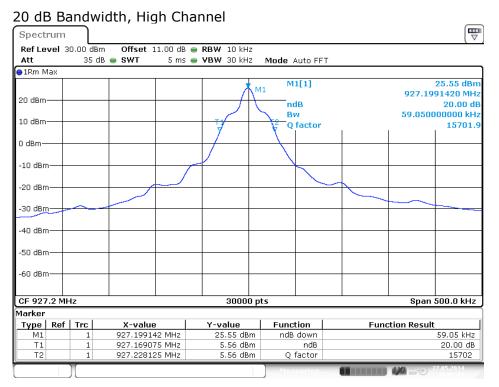
For frequency hopping systems operating in the 902-928 MHz band:...

The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

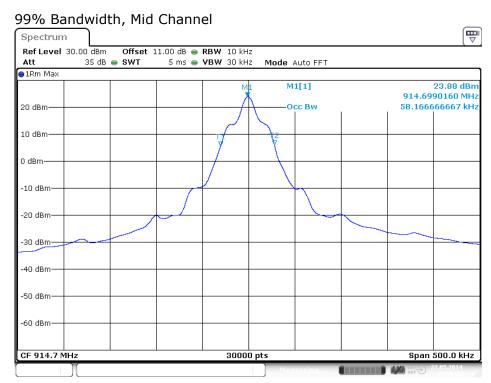
3.1.3 Test Protocol

Temperature: 25 °C Air Pressure: 1003 hPa Humidity: 43 %

3.1.3.1 20 dB bandwidth


Transmi	itter on, no				
Band	Channel No.	Frequency [MHz]	20 dB Bandwidth [kHz]	Limit [kHz]	Margin to Limit [kHz]
900					
MHz	1	902.7	57.983	250	192.017
	25	914.7	55.233	250	194.767
	50	927.2	59.050	250	190.950

3.1.3.2 99% bandwidth


Transmi	tter on, no				
Band	Channel No.	Frequency [MHz]	20 dB Bandwidth [kHz]	Limit [kHz]	Margin to Limit [kHz]
900					
MHz	1	902.7	57.233	250	192.767
	25	914.7	58.166	250	191.834
	50	927.2	27.650	250	222.350

3.1.4 Measurement Plot (showing the highest value, "worst case")

Date: 27 M AY 2014 18:06:04

Date: 27 M AY 2014 17:50:22

3.2 Peak power output

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

3.2.1 Test Description

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyzer was set higher than the output power of the EUT. The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

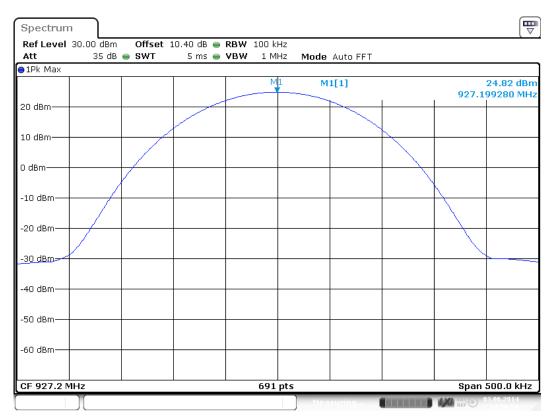
Analyzer settings:
- RBW: 100 kHz
- VBW: 1 MHz
- Detector: Peak
- Trace: Maxhold

3.2.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (b) (2)

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Used conversion factor: Limit (dBm) = $10 \log (Limit (W)/1mW)$



3.2.3 Test Protocol

Temperature: 25 °C Air Pressure: 1003 hPa Humidity: 43 %

Transmit	ter on, nor	mal modulation	on			
Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.F
900 MHz	1	902.7	24.2	30.0	5.8	28.1
	25	914.7	24.7	30.0	5.3	28.6
	50	927.2	24.8	30.0	5.2	28.7

3.2.3.1 Measurement Plot (showing the highest value, "worst case")

Date: 3.JUN 2014 17:50:49

3.3 Spurious RF conducted emissions

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

3.3.1 Test Description

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Detector: Peak

- Frequency range: 30 – 18000 MHz

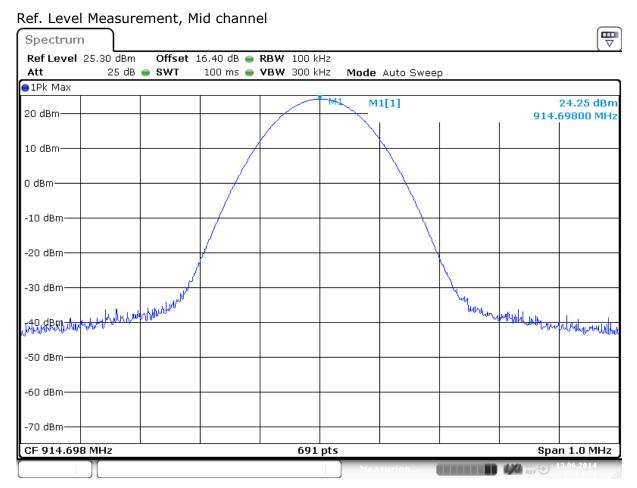
Resolution Bandwidth (RBW): 100 kHz
Video Bandwidth (VBW): 300 kHz
Sweep Time: coupled
Trace: maxhold

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance" (cf. chapter 3.5). This value is used to calculate the 20 dBc limit.

3.3.2 Test Requirements / Limits

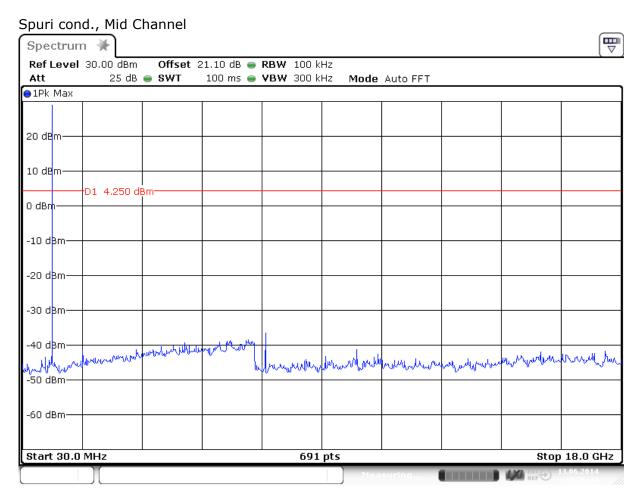
FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.


3.3.3 Test Protocol

Temperature: 23 °C Air Pressure: 1003 hPa Humidity: 45 %

Transmit	ter on, norm	nal modulat	ion					
Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	902.7	_	_	PEAK	100	24.0	4.0	
25	914.7	_	_	PEAK	100	24.3	4.3	
50	927.2	_	_	PEAK	100	24.4	4.4	


Note: No (further) spurious emissions in the range 20 dB below the limit found.

3.3.4 Measurement Plot (showing the highest value, "worst case")

Date: 13.JUN 2014 13:54:14

Date: 13.JUN 2014 13:56:45

3.4 Spurious radiated emissions

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C63.4

3.4.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C63.4 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software ES-K1 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is performed at 2 axes. A pre-check is performed while the EUT is powered from a DC power sourse.

1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber

Antenna distance: 10 mDetector: Peak-Maxhold

- Frequency range: 0.009 - 0.15 MHz and 0.15 - 30 MHz

- Frequency steps: 0.1 kHz and 5 kHz - IF-Bandwidth: 0.2 kHz and 10 kHz

- Measuring time / Frequency step: 100 ms

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side

- Antenna distance: according to the Standard

- Detector: Quasi-Peak

- Frequency range: 0.009 - 30 MHz

- Frequency steps: measurement at frequencies detected in step 1

- IF-Bandwidth: 0.2 - 10 kHz

- Measuring time / Frequency step: 100 ms

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:
- Antenna distance: 3 m
- Detector: Peak-Maxhold

- Frequency range: 30 – 1000 MHz

Frequency steps: 60 kHzIF-Bandwidth: 120 kHz

- Measuring time / Frequency step: 100 μ s - Turntable angle range: -180° to 180°

- Turntable step size: 90°

Height variation range: 1 – 3 m
Height variation step size: 2 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: second measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is, to find out the approximate turntable angle and antenna height for each frequency.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 100 ms

- Turntable angle range: -180° to 180°

- Turntable step size: 45°

Height variation range: 1 – 4 m
Height variation step size: 0.5 m
Polarisation: horizontal + vertical

After this step, the EMI test system has determined the following values for each frequency (of step 1):

- Frequency

- Azimuth value (of turntable)

- Antenna height

The last two values have now the following accuracy:

- Azimuth value (of turntable): 45°

- Antenna height: 0.5 m **Step 3:** final measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 22.5° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 25 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 100 ms

- Turntable angle range: ± 22.5 ° around the determined value - Height variation range: ± 25 cm around the determined value

Step 4: final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed:

EMI receiver settings for step 4:
- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support at 1.4 m height in the fully-anechoic chamber. The measurement distance was reduced to 1 m. The results were extrapolated by the extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements, inverse linear-distance squared for the power reference level measurements). Due to the fact, that in this frequency range a double-ridged wave guided horn antenna (up to 18 GHz) and a horn antenna (18–25 GHz) are used, the steps 2-4 are omitted. Step 1 was performed with one height of the receiving antenna only.

EMI receiver settings:

Detector: Peak, AverageIF Bandwidth = 1 MHz

For the data rate in mode n the test is performed as worst-case-check in order to verify that emissions have a comparable level as found at modes b and g. Typically, the measurement is performed in the frequency range 1 to 8 GHz but it depends on the emissions found during the test for the modes b and g. Please refer to the results for the used frequency range.

3.4.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Calculated Limits(dBµV/m @10m)	Limits(dBµV/m @10m)
0.009 - 0.49	2400/F(kHz)	300 10	(48.5 - 13.8) + 59.1 dB	107.6 - 72.9
0.49 - 1.705	24000/F(kHz)	30 10	(48.9 - 23.0) + 19.1 dB	60.0 - 42.1
1.705 - 30	30	30 10	29.5 + 19.1 dB	48.6

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limit (dBµV/m)
30 - 88	100	3	40.0
88 - 216	150	3	43.5
216 - 960	200	3	46.0
above 960	500	3	54.0

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

Test report Reference: MDE_ECOM_1302_FCCb Page 23 of 43

3.4.3 Test Protocol

Temperature: 24 °C Air Pressure: 1009 hPa Humidity: 45 %

	mitter or	n, normal		Applied o	0.0			
Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
1	902.7	2708.0	41.9	PEAK	1000	74.0	32.1	RB
1	902.7	2708.0	39.7	AV	1000	54.0	14.3	RB
1	902.7	3611.0	39.0	PEAK	1000	74.0	35.0	RB
1	902.7	3611.0	35.1	AV	1000	54.0	18.9	RB
1	902.7	4514.0	48.8	PEAK	1000	74.0	25.2	RB
1	902.7	4514.0	47.3	AV	1000	54.0	6.7	RB
1	902.7	5416.0	47.6	PEAK	1000	74.0	26.4	RB
1	902.7	5416.0	44.9	AV	1000	54.0	9.1	RB
1	902.7	8125.0	47.7	PEAK	1000	74.0	26.3	RB
1	902.7	8125.0	43.3	AV	1000	54.0	10.7	RB
25	914.7	2744.0	47.2	PEAK	1000	74.0	26.8	RB
25	914.7	2744.0	45.3	AV	1000	54.0	8.7	RB
25	914.7	3659.0	44.8	PEAK	1000	74.0	29.3	RB
25	914.7	3659.0	42.8	AV	1000	54.0	11.2	RB
25	914.7	4574.0	45.9	PEAK	1000	74.0	28.1	RB
25	914.7	4574.0	43.3	AV	1000	54.0	10.7	RB
25	914.7	7318.0	51.1	PEAK	1000	74.0	22.9	RB
25	914.7	7318.0	48.9	AV	1000	54.0	5.1	RB
25	914.7	8233.0	46.1	PEAK	1000	74.0	27.9	RB
25	914.7	8233.0	38.4	AV	1000	54.0	15.6	RB
50	927.2	2782.0	40.7	PEAK	1000	74.0	33.3	RB
50	927.2	2782.0	38.3	AV	1000	54.0	15.7	RB
50	927.2	3709.0	47.5	PEAK	1000	74.0	26.5	RB
50	927.2	3709.0	46.0	AV	1000	54.0	8.0	RB
50	927.2	4636.0	52.3	PEAK	1000	74.0	21.7	RB
50	927.2	4636.0	51.3	AV	1000	54.0	2.7	RB
50	927.2	7418.0	54.5	PEAK	1000	74.0	19.5	RB
50	927.2	7418.0	52.9	AV	1000	54.0	1.1	RB

Note: No (further) spurious emissions in the range 20 dB below the limit found.

3.5 Band edge compliance

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C63.4-2009, FCC §15.31

3.5.1 Test Description

Show compliance of the lower and higher band edge by a conducted measurement. For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room.

For the lower band edge the EUT is set to transmit as follows:

For a FHSS system in the 902 928 MHz frequency range:

For the lower band edge the EUT is set to transmit on the lowest possible frequency. For the higher band edge the EUT is set to transmit on the highest possible frequency. These frequencies can be found in the measurement result table.

Analyzer settings for conducted measurement:

- Detector: Peak

- RBW / VBW = 100 / 1000 kHz

- Trace: Maxhold

3.5.2 Test Requirements / Limits

FCC Part 15.247 (d)

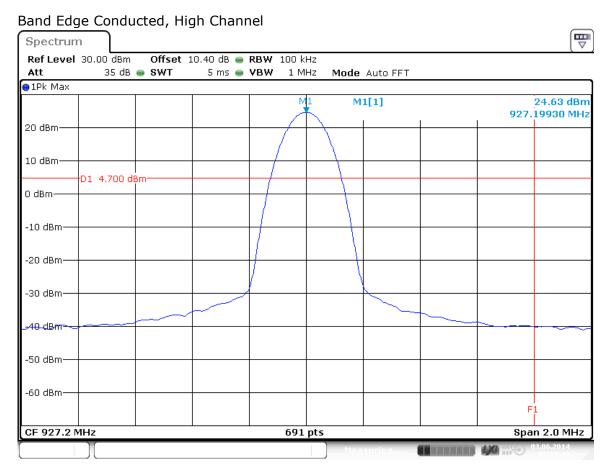
"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ...

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

No emission is generated at a band edge in the near of a restricted band, therefore no radiated test will be performed.

Page 25 of 43


3.5.3 Test Protocol

3.5.3.1 Conducted measurement, lower and higher band edge

Temperature: 23 °C Air Pressure: 45 hPa Humidity: 1003 %

Transmit	Transmitter on, normal modulation							
Channel No	Channel Center Frequency [MHz]	Frequency [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBµV/m]	Margin to Limit [dB]
1	902.7	5725.0	-42.0	PEAK	100	24.3	4.3	46.3
50	927.2	5850.0	-40.0	PEAK	100	24.6	4.6	44.6

3.5.3.2 Measurement Plot (showing the highest value, "worst case")

Date: 3.JUN .2014 17:59:48

3.6 Carrier Frequency Separation

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C63.4-2009, FCC §15.31

3.6.1 Test Description

The Equipment Under Test (EUT) was set up to perform the channel separation measurements. The channel separation is independent from the modulation pattern. The EUT was connected to spectrum analyzer via a short coax cable.

Analyzer settings:

- Detector: Peak-Maxhold

- Span: approx. 1.5 time the expected channel separation

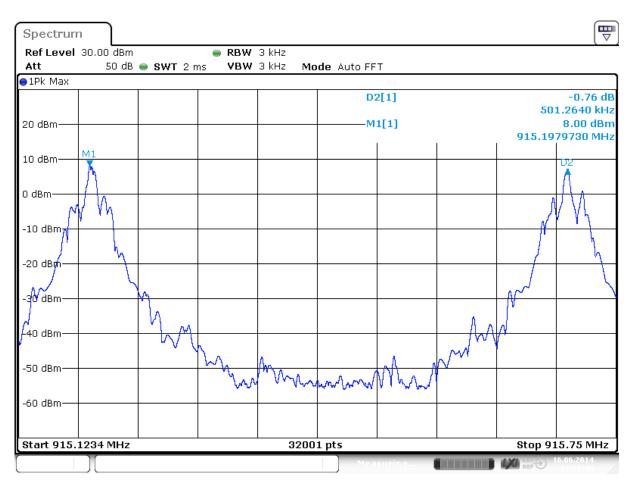
- Centre Frequency: a mid frequency of the 902 - 928 MHz band

Resolution Bandwidth (RBW): 3 kHz
Video Bandwidth (VBW): 3 kHz
Sweep Time: Coupled
Trace: Maxhold

3.6.2 Test Requirements / Limits

FCC Part 15.247 (a)(1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater...



3.6.3 Test Protocol

Temperature: 23 °C Air Pressure: 1003 hPa Humidity: 45 %

Transmitter on, normal modulation								
Band	Channel No.	Channel Separation [kHz]	Limit [kHz]	Margin to Limit [kHz]				
900 MHz	hopping	501.3	59.1	442.2				

3.6.3.1 Measurement Plot (showing the highest value, "worst case")

Date: 16.JUN .2014 13:55:41

3.7 No. Of Hopping Channels

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

3.7.1 Test Description

The Equipment Under Test (EUT) was set up to perform the number of hopping frequencies measurement. The number of hopping frequencies is independent from the modulation pattern.

The EUT was connected to spectrum analyzer via a short coax cable.

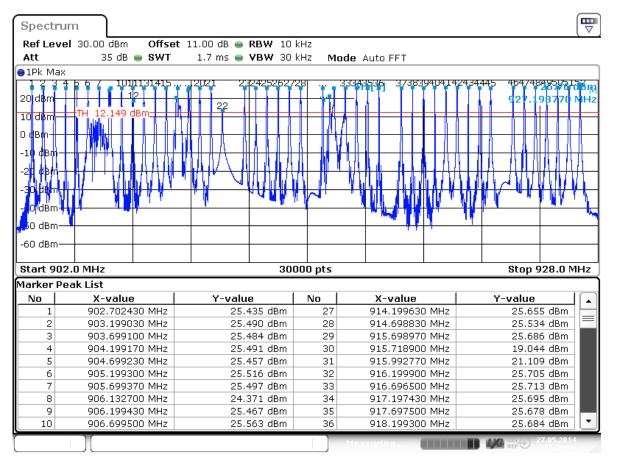
Analyzer settings:

Detector: Peak Maxhold
Start frequency: 902 MHz
Stop frequency: 928 MHz
Resolution Bandwidth (RBW): 100 kHz
Video Bandwidth (VBW): 300 kHz
Sweep Time: Coupled

3.7.2 Test Requirements / Limits

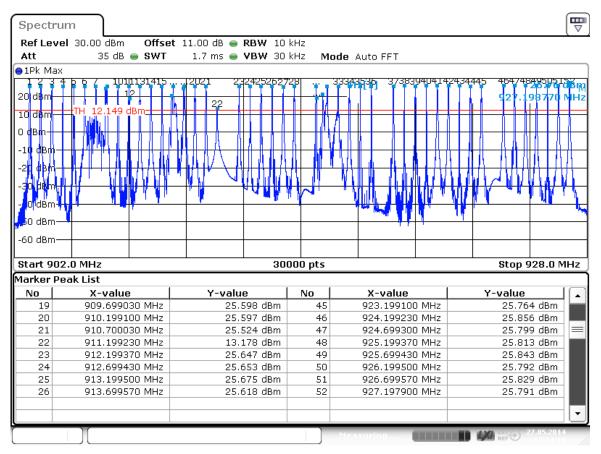
FCC Part 15, Subpart C, §15.247 (a) (i)

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.



3.7.3 Test Protocol

Temperature: 23 °C Air Pressure: 1003 hPa Humidity: 45 %


Transmitter on, normal modulation				
Band	Channel No.	Number of Hopping Channels	Limit [Channels]	Margin to Limit
900 MHz	hopping	50	50	0

3.7.3.1 Measurement Plot (showing the highest value, "worst case")

Date: 27 M AY 2014 17:24:48

Date: 27 M AY 2014 17:24:20

3.8 Dwell Time

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

3.8.1 Test Description

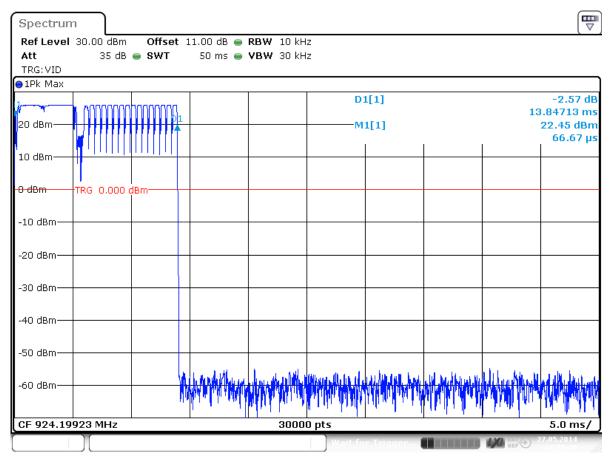
he Equipment Under Test (EUT) was set up to perform the dwell time measurements. The EUT was connected to the spectrum analyzer via a short coax cable. The dwell time is calculated by:

Dwell time = time slot length * hop rate / number of hopping channels * (10 or 20) s

3.8.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (i)

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.



3.8.3 Test Protocol

Temperature: 23 °C Air Pressure: 1003 hPa Humidity: 45 %

Transmitter on, normal modulation							
Band	Channel No.	Time Slot Length [ms]	Hopping Rate [1/s]	No of hopping frequencies	Dwell Time [ms]	Limit [ms]	Margin to Limit [ms]
900 MHz	hopping	13.8470	2.5	50	13.847	400.0	386.2

3.8.3.1 Measurement Plot (showing the highest value, "worst case")

Date: 27 MAY 2014 17:29:20

4 Test Equipment

The calibration, hardware and software states are shown for the testing period.

Test Equipment Anechoic Chamber

Lab ID: Lab 1
Manufacturer: Frankonia

Description: Anechoic Chamber for radiated testing

Type: 10.58x6.38x6.00 m³

Calibration Details Last Execution Next Exec.

NSA (FCC)

FCC) 2014/01/09 2017/01/09

Single Devices for Anechoic Chamber

Single Device Name	Туре	Serial Number	Manufacturer
Air compressor	none	-	Atlas Copco
Anechoic Chamber	10.58 x 6.38 x 6.00 m ³ Calibration Details	none	Frankonia Last Execution Next Exec.
	FCC listing 96716 3m Part15/18		2014/01/09 2017/01/08
Controller Maturo	MCU	961208	Maturo GmbH
EMC camera	CE-CAM/1	-	CE-SYS
EMC camera Nr.2	CCD-400E	0005033	Mitsubishi
Filter ISDN	B84312-C110-E1		Siemens&Matsushita
Filter Universal 1A	BB4312-C30-H3	-	Siemens&Matsushita

Test report Reference: MDE_ECOM_1302_FCCb Page 34 of 43

Test Equipment Auxiliary Equipment for Radiated emissions

Lab ID: Lab 1

Description: Equipment for emission measurements

Serial Number: see single devices

Single Devices for Auxiliary Equipment for Radiated emissions

Single Device Name	Туре	Serial Number	Manufacturer
Antenna mast	AM 4.0	AM4.0/180/119205 13	Maturo GmbH
Biconical Broadband Antenna	SBA 9119	9119-005	Schwarzbeck
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2009/06/04 2014/06/03
Biconical dipole	VUBA 9117 Calibration Details	9117-108	Schwarzbeck Last Execution Next Exec.
	Standard Calibration		2012/01/18 2015/01/17
Broadband Amplifier 18MHz-26GHz	JS4-18002600-32-5P	849785	Miteq
Broadband Amplifier 1GHz-4GHz	AFS4-01000400-1Q-10P-4	-	Miteq
Broadband Amplifier 30MHz-18GHz	JS4-00101800-35-5P	896037	Miteq
Cable "ESI to EMI Antenna"	EcoFlex10	W18.01-2+W38.01 2	- Kabel Kusch
Cable "ESI to Horn Antenna"	UFB311A+UFB293C	W18.02-2+W38.02 2	- Rosenberger Micro-Coax
Double-ridged horn	HF 906	357357/001	Rohde & Schwarz GmbH & Co KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2012/05/18 2015/05/17
Double-ridged horn	HF 906	357357/002	Rohde & Schwarz GmbH & Co KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2012/06/26 2015/06/25
High Pass Filter	4HC1600/12750-1.5-KK	9942011	Trilithic
High Pass Filter	5HC2700/12750-1.5-KK	9942012	Trilithic
High Pass Filter	5HC3500/12750-1.2-KK	200035008	Trilithic
High Pass Filter	WHKX 7.0/18G-8SS	09	Wainwright
Horn Antenna Schwarzbeck 15-26 GHz BBHA 9170	ВВНА 9170		
Logper. Antenna	HL 562 Ultralog	100609	Rohde & Schwarz GmbH & Co KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2012/12/18 2015/12/17
Logper. Antenna	HL 562 Ultralog	830547/003	Rohde & Schwarz GmbH & Co KG
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz GmbH & Co KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/10/27 2014/10/26

Single Devices for Auxiliary Equipment for Radiated emissions (continued)

Single Device Name	Туре	Serial Number	Manufacturer
Pyramidal Horn Antenna 26,5 GHz	3160-09	00083069	EMCO Elektronik GmbH
Pyramidal Horn Antenna 40 GHz	a 3160-10	00086675	EMCO Elektronik GmbH
Tilt device Maturo (Rohacell)	Antrieb TD1.5-10kg	TD1.5- 10kg/024/3790709	Maturo GmbH

Test Equipment Auxiliary Test Equipment

Lab ID:Lab 1, Lab 2Manufacturer:see single devices

Description: Single Devices for various Test Equipment

Type: various Serial Number: none

Single Devices for Auxiliary Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer
Broadband Power Divide N (Aux)	r1506A / 93459	LM390	Weinschel Associates
Broadband Power Divide SMA	rWA1515	A855	Weinschel Associates
Digital Multimeter 03 (Multimeter)	Fluke 177	86670383	Fluke Europe B.V.
(Transmitteen)	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/12/04 2015/12/03
Fibre optic link Satellite (Aux)	FO RS232 Link	181-018	Pontis
Fibre optic link Transceiver (Aux)	FO RS232 Link	182-018	Pontis
Isolating Transformer	LTS 604	1888	Thalheimer Transformatorenwerke GmbH
Notch Filter Ultra Stable (Aux)	WRCA800/960-6EEK	24	Wainwright
Signal Analyzer	FSV30	103005	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard		2014/02/10 2016/02/09
Spectrum Analyser	FSP3	836722/011	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard		2012/06/13 2015/06/12
Spectrum Analyser	FSU26	200418	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/07/29 2014/07/28
Vector Signal Generator	SMIQ 03B	832492/061	Rohde & Schwarz GmbH & Co.KG

Test Equipment Digital Signalling Devices

Lab ID: Lab 1, Lab 2

Description: Signalling equipment for various wireless technologies.

Single Devices for Digital Signalling Devices

•			
Single Device Name	Туре	Serial Number	Manufacturer
Bluetooth Signalling Unit	: СВТ	100589	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/11/24 2014/11/23
CMW500	CMW500	107500	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/01/27 2016/01/26
Digital Radio Communication Tester	CMD 55	831050/020	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/11/28 2014/11/27
Universal Radio Communication Tester	CMU 200	102366	Rohde & Schwarz GmbH & Co. KG
	HW/SW Status		Date of Start Date of End
	Software: K21 4v21, K22 4v21, K23 4v21, K24 4· K43 4v21, K53 4v21, K56 4v22, K57 4· K59 4v22, K61 4v22, K62 4v22, K63 4· K65 4v22, K66 4v22, K67 4v22, K68 4· Firmware: μP1 8v50 02.05.06	v22, K58 4v22, v22, K64 4v22,	
Universal Radio Communication Tester	CMU 200	837983/052	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/12/07 2014/12/06
	HW/SW Status		Date of Start Date of End
	HW options: B11, B21V14, B21-2, B41, B52V14, B5 B54V14, B56V14, B68 3v04, B95, PCM SW options: K21 4v11, K22 4v11, K23 4v11, K24 4· K28 4v10, K42 4v11, K43 4v11, K53 4· K66 4v10, K68 4v10, Firmware: μP1 8v40 01.12.05	CIA, U65V02 v11, K27 4v10,	2007/01/02
	SW: K62, K69		2008/11/03
Vector Signal Generator	SMU200A	100912	Rohde & Schwarz GmbH & Co. KG

Test Equipment Emission measurement devices

Lab ID: Lab 1

Description: Equipment for emission measurements

Serial Number: see single devices

Single Devices for Emission measurement devices

Single Device Name	Туре	Serial Number	Manufacturer
Personal Computer	Dell	30304832059	Dell
Power Meter	NRVD	828110/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/05/13 2015/05/12
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/05/13 2015/05/12
Signal Generator	SMR 20	846834/008	Rohde & Schwarz GmbH & Co. KG
Spectrum Analyzer	ESIB 26	830482/004	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2014/01/07 2016/01/31
	HW/SW Status		Date of Start Date of End
	Firmware-Update 4.34.4 from 3.45 d	uring calibration	2009/12/03

Test Equipment Multimeter 12

Lab ID: Lab 3

Description: Ex-Tech 520 Serial Number: 05157876

Single Devices for Multimeter 12

Single Device Name	Туре	Serial Number	Manufacturer
Digital Multimeter 12 (Multimeter)	EX520	05157876	Extech Instruments Corp.
())	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/12/04 2015/12/03

Test report Reference: MDE_ECOM_1302_FCCb Page 38 of 43

Test Equipment Radio Lab Test Equipment

Lab ID: Lab 2

Description: Radio Lab Test Equipment

Single Devices for Radio Lab Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer
Broadband Power Divide	rWA1515	A856	Weinschel Associates
Coax Attenuator 10dB SMA 2W	4T-10	F9401	Weinschel Associates
Coax Attenuator 10dB SMA 2W	56-10	W3702	Weinschel Associates
Coax Attenuator 10dB SMA 2W	56-10	W3711	Weinschel Associates
Coax Cable Huber&Suhner	Sucotest 2,0m		Huber&Suhner
Coax Cable Rosenberger Micro Coax FA210A0010003030 SMA/SMA 1,0m	FA210A0010003030	54491-2	Rosenberger Micro-Coax
Power Meter	NRVD	828110/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/05/13 2015/05/12
RF Step Attenuator RSP	RSP	833695/001	Rohde & Schwarz GmbH & Co.KG
Rubidium Frequency Standard	Datum, Model: MFS	5489/001	Datum-Beverly
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/06/24 2014/07/02
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/05/13 2015/05/12
Signal Generator SME	SME03	827460/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/11/25 2014/11/24
Signal Generator SMP	SMP02	836402/008	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/05/06 2016/05/05
Spectrum Analyser	FSIQ26	840061/005	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2013/02/12 2015/02/11

Test Equipment Shielded Room 07

Lab ID: Lab 3

Description: Shielded Room 4m x 6m

Test report Reference: MDE_ECOM_1302_FCCb

Page 39 of 43

Test Equipment T/A Logger 13

Lab ID:Lab 1, Lab 2Description:Lufft Opus10 TPRType:Opus10 TPRSerial Number:13936

Single Devices for T/A Logger 13

Single Device Name	Туре	Serial Number	Manufacturer
ThermoAirpressure Datalogger 13 (Environ)	Opus10 TPR (8253.00)	13936	Lufft Mess- und Regeltechnik GmbH
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/02/07 2015/02/06

Test Equipment T/H Logger 03

Lab ID:Lab 2Description:Lufft Opus10Serial Number:7482

Single Devices for T/H Logger 03

Single Device Name	Туре	Serial Number	Manufacturer
ThermoHygro Datalogge 03 (Environ)	erOpus10 THI (8152.00)	7482	Lufft Mess- und Regeltechnik GmbH
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/02/07 2015/02/06

Test Equipment T/H Logger 12

Lab ID:Lab 1Description:Lufft Opus10Serial Number:12482

Single Devices for T/H Logger 12

Single Device Name	Туре	Serial Number	Manufacturer
ThermoHygro Datalo 12 (Environ)	ggerOpus10 THI (8152.00)	12482	Lufft Mess- und Regeltechnik GmbH
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/01/07 2015/01/06

Test Equipment T/H Logger 15

Lab ID:Lab 3Description:Lufft Opus10Serial Number:13985

Single Devices for T/H Logger 15

Single Device Name	Туре	Serial Number	Manufacturer
ThermoHygro Datalogo 15 (Environ)	gerOpus10 THI (8152.00)	13985	Lufft Mess- und Regeltechnik GmbH
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/01/07 2015/01/06

Test report Reference: MDE_ECOM_1302_FCCb Page 40 of 43

Test Equipment Temperature Chamber 01

Lab ID: Lab 3

Manufacturer: see single devices

Description: Temperature Chamber KWP 120/70

Type: Weiss

Serial Number: see single devices

Single Devices for Temperature Chamber 01

Single Device Name	Туре	Serial Number	Manufacturer
Temperature Chamber Weiss 01	KWP 120/70	59226012190010	Weiss Umwelttechnik GmbH
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2014/03/12 2016/03/11

Test Equipment Temperature Chamber 05

Lab ID: Lab 2

Manufacturer: see single devices

Description: Temperature Chamber VT4002

Type: Vötsch

Serial Number: see single devices

Single Devices for Temperature Chamber 05

Single Device Name	Туре	Serial Number	Manufacturer
Temperature Chamber Vötsch 05	VT 4002	58566080550010	Vötsch
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2014/03/11 2016/03/10

Test report Reference: MDE_ECOM_1302_FCCb Page 41 of 43

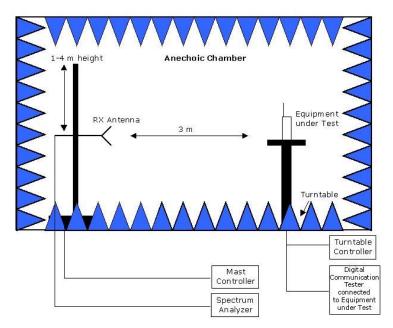
Test Equipment WLAN RF Test Solution

Lab ID:Lab 3Manufacturer:7 layers AG

Description: Regulatory WLAN RF Tests

Type: WLAN RF Serial Number: 001

Single Devices for WLAN RF Test Solution


_			
Single Device Name	Туре	Serial Number	Manufacturer
Arbitrary Waveform Generator	TGA12101	284482	
Power Meter NRVD	NRVD	832025/059	
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/08/26 2014/08/25
Power Sensor NRV Z1 A	PROBE	832279/013	
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/08/28 2014/08/27
Power Supply	NGSM 32/10 Calibration Details	2725	Last Execution Next Exec.
	Standard calibration		2013/06/20 2015/06/19
			. ,
Rubidium Frequency Normal MFS	Datum MFS	002	Datum GmbH
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/08/27 2014/08/26
Signal Analyser FSIQ26	1119.6001.26	832695/007	Rohde & Schwarz GmbH & Co.KG
Spectrum Analyser	FSU26	100136	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2014/01/06 2015/01/05
	HW/SW Status		Date of Start Date of End
FSU FW Update to v4.61 SP3, K5 v4.60 and K73 v4		and K73 v4.61	2011/12/05
Spectrum Analyser	FSU3	200046	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/06/20 2014/06/30
	HW/SW Status		Date of Start Date of End
	Firmware Version 4.51 SP1 Option FS-K72 4.50 SP1 Option FS-K73 4.50 SP1		2011/12/07
TOCT Switching Unit	Switching Unit	040107	7 layers, Inc.
Vector Signal Generator SMIQ03B	SMIQ03B	832870/017	
-	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/06/21 2016/06/20

5 Photo Report

Please refer to external report.

6 Setup Drawings

Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting groundplane.