SAR TEST REPORT #### FCC 47 CFR Part 2.1093 Industry Canada RSS-102 ## RF-Exposure evaluation of portable equipment Report Reference No. G0M-1212-2506-TFC093S-V01 Testing Laboratory: Eurofins Product Service GmbH Address: Storkower Str. 38c 15526 Reichenwalde Germany Accreditation: A2LA Accredited Testing Laboratory, Certificate No.: 1983.01 FCC Filed Test Laboratory, Reg.-No.: 96970 IC OATS Filing assigned code: 3470A Applicant's name: ecom instruments GmbH Address: Industriestaße 2 97959 Assamstadt Germany Test specification: Standard...... FCC 47 CFR Part 2 §2.1093 FCC OET Bulletin 65 Supplement C 01-01 IEEE Std. 1528 - 2003 IC RSS-102 Issue 4 Safety Code 6 (2009) Non-standard test method...... None Test scope.....: complete Radio compliance test **Equipment under test (EUT):** Product description Handheld Computer with WLAN (abgn) & bluetooth , Scanner and **RFID** Model No. Ci70AN2XX00 (Numeric) Ci70AQ2XX00 (Alpha) Additional Models None Hardware version A Firmware / Software version 1.50.19.0013 Contains FCC-ID: XAM300011GR01 IC: 8311A-300011GR01 Test result Passed | _ | | | | | VER STOLEN WORK | | |---|-------|-----|-------|------|-----------------|-------| | | ossib | 0 | toet | 0200 | Vord | icte: | | _ | USSIL | 165 | 16.51 | Lase | VEIL | 11.15 | - neither assessed nor tested N/N - required by standard but not appl. to test object......: N/A - required by standard but not tested...... N/T - not required by standard for the test object N/R - test object does meet the requirement...... P (Pass) - test object does not meet the requirement..... F (Fail) #### Testing: Compiled by: Christian Weber Tested by (+ signature)...... Burkhard Pudell (Testing Manager) TODOS APERANOS ANGAS PAR NA GAL Approved by (+ signature) : Jens Zimmermann (Test Lab Manager) Date of issue: 2013-08-16 Total number of pages: 103 #### General remarks: The test results presented in this report relate only to the object tested. The results contained in this report reflect the results for this particular model and serial number. It is the responsibility of the manufacturer to ensure that all production models meet the intent of the requirements detailed within this report. This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory. #### Additional comments: # **REPORT INDEX** | 1 | EQUIPMENT (TEST ITEM) DESCRIPTION | 5 | |------|--|----| | 1.1 | Equipment photos | 6 | | 1.2 | Equipment setup photos | 10 | | 1.3 | Reference Documents | 11 | | 1.4 | Supporting Equipment Used During Testing | 12 | | 1.5 | Supported standalone operating modes | 13 | | 1.6 | Supported concurrent (multi-transmitter) operating modes | 14 | | 1.7 | Supported use cases | 15 | | 1.8 | Radio Test Modes | 16 | | 1.9 | Conducted Power Values Bluetooth | 18 | | 1.10 | Conducted Power Values WLAN 2.4 GHz | 18 | | 1.11 | Conducted Power Values WLAN 5 GHz | 19 | | 1.12 | Test Positions | 20 | | 1.13 | Test Equipment Used During Testing | 21 | | 2 | RESULT SUMMARY | 22 | | 3 | DEFINITIONS | 23 | | 3.1 | Controlled Exposure | 23 | | 3.2 | Uncontrolled Exposure | 23 | | 3.3 | Localized SAR | 23 | | 4 | LOCALIZED SAR MEASUREMENT EQUIPMENT | 24 | | 4.1 | Complete SAR DASY5 Measurement System | 24 | | 4.2 | Robot Arm | 26 | | 4.3 | Data Acquisition Electronics | 26 | | 4.4 | Isotropic E-Field Probe ≤ 3 GHz | 27 | | 4.5 | Isotropic E-Field Probe ≤ 6 GHz | 28 | | 4.6 | Test phantom and positioner | 29 | | 4.7 | System Validation Dipoles | 30 | | 5 | SINGLE-BAND SAR MEASUREMENT | 31 | | 5.1 | General measurement description | 31 | | 5.2 | SAR measurement description | 31 | | 5.3 | Reference lines and points for Handsets | 32 | | 5.4 | Test positions relative to the Head | | 33 | |-----|---|---------------------|----| | 5.5 | Test positions relative to the human bo | dy | 34 | | 5.6 | Measurement Uncertainty | | 35 | | 6 | TEST CONDITIONS AND RESULT | S | 36 | | 6.1 | Test Conditions and Results – Tissue \ | /alidation | 36 | | 6.2 | Test Conditions and Results – System | Validation | 38 | | 6.3 | Test Conditions and Results – Standald | one SAR Measurement | 40 | | | NEX A Calibration Documents | | 41 | | ANN | NEX B System Validation Reports | | 90 | | ANN | NEX.C. SAR Measurement Reports | | 95 | # 1 Equipment (Test item) Description | Description | Handheld Computer with WLAN (abgn)&bluetooth , Scanner and RFID | | | | | |------------------------------|---|-------------------------------|--|--|--| | Model | Ci70AN2XX00 | (Numeric) Ci70AQ2XX00 (Alpha) | | | | | Additional Models | None | | | | | | Serial number | None | | | | | | Hardware version | A | | | | | | Software / Firmware version | 1.50.19.0013 | | | | | | Contains FCC-ID | XAM300011GR | 201 | | | | | Contains IC | 8311A-3000110 | GR01 | | | | | Equipment type | End product | | | | | | Prototype or production unit | Identical Prototy | уре | | | | | Device category | Handset | | | | | | Environment | General public | | | | | | Radio technologies | Bluetooth, WLAN IEEE 802.11a,b,g,n | | | | | | Operating frequency ranges | 2.4 GHz : 2402 – 2480 MHz
2.4 GHz : 2412 – 2472 MHz
5 GHz : 5180 – 5320 MHz
5500 – 5700 MHz
5745 – 5825 MHz | | | | | | Modulations | Bluetooth: GFSK / PI/4-DQPSK / 8-DPSK
WLAN: CCK / DSSS / OFDM | | | | | | | Туре | integrated | | | | | Antenna | Model | unspecified | | | | | Antenna | Manufacturer | unspecified | | | | | | Gain | 3.3 dBi | | | | | Power supply | V _{NOM} | 3.7 VDC (Lithium Battery) | | | | | | Model | N/A | | | | | AC/DC-Adaptor | Vendor | N/A | | | | | AC/DC-Adaptor | Input | N/A | | | | | | Output | N/A | | | | | Accessories | None | | | | | | Manufacturer | ecom instruments GmbH Industriestaße 2 97959 Assamstadt Germany | | | | | # 1.1 Equipment photos # **Product Service** # **Product Service** # 1.2 Equipment setup photos #### 1.3 Reference Documents | _ | | | | | | | |---|----|--------|----|---|---|----| | D | | \sim | 11 | n | 2 | ٠. | | | u. | | | | | | KDB Publication 447498: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Polices KDB Publication 648474: SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas KDB Publication 648474: Review and Approval Policies for SAR Evaluation of Handsets with Multiple Transmitters and Antennas KDB Publication 865664 : SAR measurement procedures for devices operating between 100 MHz to 6 GHz KDB Publication 941225: SAR Measurement Procedures for 3G Devices KDB Publication 941225: 3GPP R6 HSPA and R7 HSPA+ SAR Guidance KDB Publication 941225: Recommended SAR Test Reduction Procedures for GSM/GPRS/EDGE KDB Publication 941225: SAR Test Consideration for LTE Handsets and Data Modems KDB Publication 447498 : SAR Measurement Procedures for USB Dongle Transmitters KDB Publication 248227 : SAR Measurement Procedures for 802.11 a/b/g Transmitters KDB Publication 450824 : SAR Probe Calibration and System Verification considerations for measurements from 150 MHz to 3 GHz # 1.4 Supporting Equipment Used During Testing | Product
Type* | Device | Manufacturer | Model No. | Comments | | | | | |------------------|---|--------------|-----------|----------|--|--|--|--| | | None | | | | | | | | | *Note: Us | *Note: Use the following abbreviations: | | | | | | | | | AE: | AE : Auxiliary/Associated Equipment, or | | | | | | | | | SIM: | SIM : Simulator (Not Subjected to Test) | | | | | | | | | CABL: | Connecting cables | | | | | | | | # 1.5 Supported standalone operating modes | Mode | Modulation | Frequency range | Maximum Duty cycle | |---------------------|------------------|-----------------|--------------------| | Bluetooth | FHSS, GFSK | 2402 – 2480 MHz | 0.775 | | Bluetooth | FHSS, PI/4-DQPSK | 2402 – 2480 MHz | 0.775 | | Bluetooth | FHSS, 8-DPSK | 2402 – 2480 MHz | 0.775 | | 802.11b/n
20MHz | DSSS | 2412 – 2472 MHz | 1.0 | | 802.11g/n
20MHz | OFDM | 2412 – 2472 MHz | 1.0 | | 802.11a/n
20 MHz | OFDM | 5180 – 5320 MHz | 1.0 | | 802.11a/n
20 MHz | OFDM | 5500 – 5700 MHz | 1.0 | | 802.11a/n
20 MHz | OFDM | 5745 – 5825 MHz | 1.0 | #### 1.6 Supported concurrent (multi-transmitter) operating modes The EUT contains a fixed WLAN transceiver, a Bluetooth BR+EDR transceiver and one RFID reader. The RFID reader can be either model TLB30 (FCC-ID: XAM300011GR03 / IC: 8311A-300011GR03), UNI13 (FCC-ID: XAM300011GR04 / IC: 8311A-300011GR04) or LID (FCC-ID: XAM300011GR05 / IC: 8311A-300011GR05). Each of the RFID reader can operate on either 125 khz, 134 kHz or 13.56 MHz. All three transceiver (WLAN, Bluetooth and RFID) can operate simultaneously. Due to the fact that the RFID reader are categorically excluded from RF-Exposure evaluation according to 47 CFR §2.1093 the RFID readers are excluded from the RF-Exposure evaluation. According to KDB 447498 D01 v05 for standalone SAR evaluation the test exclusion power condition is given by $$\frac{\max Power, mW}{test \ distance, mm} \cdot \sqrt{f_{GHz}} \le 3.0$$ With the maximum source-base time averaged conducted power level of 5.21 dBm the test exclusion condition gives (test distance 5 mm for distances ≤ 5 mm) $$\frac{max\ Power, mW}{test\ distance, mm} \cdot \sqrt{f_{GHz}} = \frac{3.3}{5} \cdot \sqrt{2.441} = 1.0 \le 3.0$$ Hence the test exclusion condition for the Bluetooth transmitter for standalone operation is fulfilled. For simultaneous transmission SAR the following SAR estimation exists: $$\frac{\max Power, mW}{test \ distance, mm} \cdot \frac{\sqrt{f_{GHZ}}}{7.5}$$ For the maximum power level and the test distance of 5 mm the following SAR value estimation is given: $$\frac{max\ Power, mW}{test\ distance, mm} \cdot
\frac{\sqrt{f_{GHz}}}{7.5} = \frac{3.3}{5} \cdot \frac{\sqrt{2.441}}{7.5} = 0.137 \frac{W}{kg}$$ Taking this SAR estimation into account the maximum SAR value for the WLAN transceiver has to be lower or equal to 1.6 - 0.137 = 1.463. As long as the maximum SAR value for the WLAN transmitter is lower than 1.463 W/kg that WLAN transmitter complies with the SAR limit. # 1.7 Supported use cases | Use case | Distance to human body | corresponding test configuration | |--------------------------|------------------------|----------------------------------| | EUT placed at human body | 0 mm (worst case) | body-worn device | #### 1.8 Radio Test Modes | Mode | Settings | |-----------------|---| | Bluetooth DH5 | Mode = Bluetooth Modulation = FHSS, GFSK Duty cycle = 77.5% Data rate = 1 Mbps Power level = maximum Antenna = integrated | | Bluetooth 2-DH5 | Mode = Bluetooth Modulation = FHSS, PI/4-DQPSK Duty cycle = 77.5% Data rate = 2 Mbps Power level = maximum Antenna = integrated | | Bluetooth 3-DH5 | Mode = Bluetooth Modulation = FHSS, 8-DPSK Duty cycle = 77.5% Data rate = 3 Mbps Power level = maximum Antenna = integrated | | IEEE 802.11b | Mode = 802.11b/n 20MHz Modulation = DSSS Duty cycle = 100% Data rate = 1, 2, 5.5, 11 Mbps Power level = maximum Antenna = integrated | | IEEE 802.11g | Mode = 802.11g/n 20MHz Modulation = OFDM Duty cycle = 100% Data rate = 6, 9, 12, 18, 24, 36, 48, 54 Mbps Power level = maximum Antenna = integrated | | IEEE 802.11g/n | Mode = 802.11g/n 20MHz Modulation = OFDM Duty cycle = 100% Data rate = MCS0-7 Power level = maximum Antenna = integrated | | IEEE 802.11a | Mode = 802.11a/n 20MHz Modulation = OFDM Duty cycle = 100% Data rate = 6, 9, 12, 18, 24, 36, 48, 54 Mbps Power level = maximum Antenna = integrated | |----------------|--| | IEEE 802.11a/n | Mode = 802.11a/n 20MHz Modulation = OFDM Duty cycle = 100% Data rate = MCS0-7 Power level = maximum Antenna = integrated | #### 1.9 Conducted Power Values Bluetooth | | Bluetooth | | | | | | | | |---------|-----------|-----------|---------------------|--------------|--|------------------|--------------|--| | | Frequency | Peak | (Burst) RMS Power [| dBm] | Source-based time averaged Power [dBm] | | | | | Channel | [MHz] | BR (GFSK) | EDR (PI/4-DQPSK) | EDR (8-DPSK) | BR (GFSK) | EDR (PI/4-DQPSK) | EDR (8-DPSK) | | | | [IVITIZ] | DH5 | 2-DH5 | 3-DH5 | DH5 | 2-DH5 | 3-DH5 | | | 0 | 2402 | 6.27 | 3.81 | 3.72 | 5.16 | 2.70 | 2.61 | | | 39 | 2441 | 6.32 | 3.99 | 4.09 | <u>5.21</u> | 2.88 | 2.98 | | | 78 | 2480 | 6.14 | 3.95 | 4.03 | 5.13 | 2.75 | 2.92 | | #### 1.10 Conducted Power Values WLAN 2.4 GHz The conducted power values for the various operating modes of the Wireless LAN transmitter were measured according to KDB 248227 v01r02: | IEEE 802.11b | | | | | | | | | |--------------|---------|-----------|------------------------|---------------|-------------|---------|--|--| | | | | Source | -based time a | erage power | r [dBm] | | | | Mode | Channel | Frequency | uency Data Rate [Mbps] | | | | | | | | | | 1 | 2 | 5.5 | 11 | | | | IEEE 802.11b | 1 | 2412 | 16.78 | 16.93 | 16.68 | 16.62 | | | | | 6 | 2437 | <u>17.52</u> | 17.55 | 17.48 | 17.39 | | | | | 11 | 2462 | 17.32 | 17.24 | 17.15 | 17.02 | | | | | IEEE 802.11g | | | | | | | | | | | | |--------------|--------------|--------------|--------------|------------------|---------|--------------|-------------|---------|-------|-------|--|--| | | | | | | Source- | based time a | verage powe | r [dBm] | | | | | | Mode | Channel | el Frequency | | Data Rate [Mbps] | | | | | | | | | | | | | 6 | 9 | 12 | 18 | 24 | 36 | 48 | 54 | | | | | 1 | 2412 | 13.48 | 13.51 | 13.44 | 13.54 | 13.48 | 13.52 | 13.51 | 13.42 | | | | IEEE 802.11g | 6 | 2437 | <u>13.99</u> | 13.92 | 13.80 | 13.99 | 13.74 | 13.60 | 13.84 | 13.68 | | | | | 11 | 2462 | 13.89 | 13.87 | 13.81 | 13.86 | 13.79 | 13.72 | 13.65 | 13.55 | | | | | IEEE 802.11n / 20 MHz / 1 Stream | | | | | | | | | | | | | |--------------|----------------------------------|-----------|-----------|---------------|---------|------------------|-----------|--------------|-------------|---------|---------|---------|--| | | | | | | | | Source- | based time a | verage powe | r [dBm] | | | | | Mode Channel | Channal | Frequency | Bandwidth | Guard | | Data Rate [Mbps] | | | | | | | | | | Chamilei | riequency | [MHz] | Interval [ns] | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | | | | | | 6.5/7.2 | 13/14.4 | 19.5/21.7 | 26/28.9 | 39/43.3 | 52/57.8 | 58.5/65 | 65/72.2 | | | | 1 | 2412 | 20 | 800/400 | 13.55 | 13.55 | 13.49 | 13.45 | 13.40 | 13.33 | 13.33 | 12.76 | | | IEEE 802.11n | 6 | 2437 | 20 | 800/400 | 14.05 | 14.00 | 13.83 | 13.85 | 13.74 | 13.76 | 13.62 | 13.13 | | | | 11 | 2462 | 20 | 800/400 | 14.02 | 14.01 | 13.96 | 13.99 | 14.01 | 13.93 | 13.81 | 13.35 | | According to KDB 248227 v01r02 SAR measurements for 802.11g are not necessary because the conducted power values are not more than $\frac{1}{4}$ dB higher than the power values for 802.11b. According to KDB 248227 v01r02 SAR measurements for 802.11n are not necessary because the conducted power values are not more than ¼ dB higher than the power values for 802.11b. According to KDB 248227 v01r02 SAR measurements are performed for 802.11b and the lowest data rate of 1 Mbps. # 1.11 Conducted Power Values WLAN 5 GHz The conducted power values for the various operating modes of the Wireless LAN transmitter were measured according to KDB 248227 v01r02: | | | | | | IEEE 80 | 2.11a | | | | | | | | |--------------|----------|---------|-----------|--------------|------------------|---------|--------------|--------------|---------|------|------|--|--| | | | | | | | Source- | based time a | verage power | r [dBm] | | | | | | Mode | Band | Channel | Frequency | | Data Rate [Mbps] | | | | | | | | | | | | | | 6 | 9 | 12 | 18 | 24 | 36 | 48 | 54 | | | | | | 36 | 5180 | 10.03 | 9.92 | 9.96 | 9.91 | 9.74 | 9.80 | 9.15 | 9.12 | | | | | U-NII-1 | 40 | 5200 | 9.98 | 9.99 | 9.98 | 10.02 | 9.88 | 9.85 | 9.27 | 9.24 | | | | | 0-1111-1 | 44 | 5220 | 10.00 | 9.96 | 9.98 | 9.90 | 9.89 | 9.86 | 9.31 | 9.32 | | | | | | 48 | 5240 | <u>10.17</u> | 10.01 | 10.06 | 10.03 | 9.97 | 9.80 | 9.43 | 9.33 | | | | | | 52 | 5260 | 10.28 | 10.21 | 10.23 | 10.17 | 10.11 | 10.07 | 9.53 | 9.53 | | | | | U-NII-2 | 56 | 5280 | 10.22 | 10.26 | 10.30 | 10.23 | 10.20 | 10.03 | 9.62 | 9.63 | | | | | 0-1111-2 | 60 | 5300 | 10.34 | 10.33 | 10.34 | 10.26 | 10.25 | 10.09 | 9.63 | 9.56 | | | | | | 64 | 5320 | <u>10.43</u> | 10.46 | 10.51 | 10.28 | 10.24 | 10.21 | 9.78 | 9.61 | | | | | | 100 | 5500 | 10.32 | 10.30 | 10.20 | 10.21 | 10.14 | 10.14 | 9.52 | 9.57 | | | | | | 104 | 5520 | 10.11 | 10.06 | 10.05 | 10.06 | 9.96 | 9.91 | 9.41 | 9.39 | | | | | | 108 | 5540 | 9.92 | 9.92 | 9.93 | 9.94 | 9.92 | 9.86 | 9.28 | 9.17 | | | | IEEE 802.11a | | 112 | 5560 | 9.95 | 9.93 | 9.78 | 9.90 | 9.84 | 9.75 | 9.11 | 9.09 | | | | 1LLL 802.11a | | 116 | 5580 | 9.60 | 9.54 | 9.32 | 9.29 | 9.19 | 9.24 | 8.53 | 7.98 | | | | | U-NII-2e | 120 | 5600 | N/A | | | | | 124 | 5620 | N/A | | | | | 128 | 5640 | N/A | | | | | 132 | 5660 | 8.68 | 8.47 | 8.45 | 8.18 | 8.20 | 8.29 | 7.77 | 7.66 | | | | | | 136 | 5680 | 8.76 | 8.42 | 8.45 | 8.41 | 8.53 | 8.43 | 7.95 | 7.82 | | | | | | 140 | 5700 | 8.36 | 8.42 | 8.33 | 8.18 | 8.23 | 8.37 | 7.91 | 7.81 | | | | | | 149 | 5745 | <u>8.58</u> | 8.21 | 8.25 | 8.23 | 8.20 | 8.12 | 7.77 | 7.70 | | | | | | 153 | 5765 | 8.48 | 8.08 | 8.10 | 8.03 | 7.91 | 7.83 | 7.70 | 7.71 | | | | | U-NII-3 | 157 | 5785 | 8.32 | 8.24 | 8.27 | 8.16 | 8.15 | 8.07 | 7.52 | 7.56 | | | | | | 161 | 5805 | 8.40 | 8.10 | 8.14 | 8.09 | 7.97 | 7.83 | 7.44 | 7.25 | | | | | | 165 | 5825 | 7.81 | 7.94 | 7.80 | 7.85 | 7.79 | 7.78 | 7.24 | 7.19 | | | | | | | | | IEEE | 802.11n / 20 | MHz / 1 Strea | m | | | | | | |--------------|----------|----------|-----------|--------------------|------------------------|------------------|---------------|-----------|--------------|-------------|---------|---------|---------| | | | | | | Guard
Interval [ns] | | | | based time a | verage powe | r [dBm] | | | | Mode | Band | Charact. | F | Bandwidth
[MHz] | | Data Rate [Mbps] | | | | | | | | | iviode | Danu | Channel | Frequency | | | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | | | | | | 6.5/7.2 | 13/14.4 | 19.5/21.7 | 26/28.9 | 39/43.3 | 52/57.8 | 58.5/65 | 65/72.2 | | | | 36 | 5180 | | | 9.99 | 9.90 | 9.85 | 9.81 | 9.83 | 9.15 | 9.12 | 7.80 | | | U-NII-1 | 40 | 5200 | 20 | 800/400 | 9.92 | 9.85 | 9.92 | 9.83 | 9.82 | 9.30 | 9.22 | 7.77 | | | 0-1411-1 | 44 | 5220 | 20 | 800/400 | 10.04 | 9.99 | 9.93 | 9.91 | 9.86 | 9.29 | 9.18 | 7.81 | | | | 48 | 5240 | | | <u>10.14</u> | 9.98 | 9.89 | 9.94 | 9.91 | 9.44 | 9.33 | 7.98 | | | | 52 | 5260 | | | 10.33 | 10.18 | 10.23 | 10.19 | 10.13 | 9.63 | 9.58 | 8.11 | | | U-NII-2 | 56 | 5280 | 20 | 800/400 | 10.22 | 10.36 | 10.28 | 10.23 | 10.19 | 9.58 | 9.59 | 8.15 | | | U-INII-2 | 60 | 5300 | - 20 | 800/400 | 10.45 | 10.42 | 10.38 | 10.30 | 10.25 | 9.67 | 9.70 | 8.23 | | | | 64 | 5320 | | | <u>10.53</u> | 10.50 | 10.47 | 10.36 | 10.29 | 9.83 | 9.81 | 8.33 | | | | 100 | 5500 | - | 800/400 | 10.33 | 10.30 | 10.31 | 10.34 | 10.23 | 9.61 | 9.50 | 8.11 | | | | 104 | 5520 | | | 10.24 | 10.22 | 10.19 | 10.07 | 10.04 | 9.57 | 9.35 | 7.87 | | | | 108 | 5540 | | | 10.11 | 10.13 | 10.01 | 10.05 | 9.95 | 9.46 | 9.27 | 7.83 | | IEEE 802.11n | | 112 | 5560 | | | 10.04 | 9.96 | 9.92 | 9.90 | 9.85 | 9.25 | 9.06 | 7.65 | | 1002.1111 | | 116 | 5580 | | | 9.83 | 9.71 | 9.76 | 9.62 | 9.62 | 9.14 | 8.88 | 7.52 | | | U-NII-2e | 120 | 5600 | 20 | | N/A | | | 124 | 5620 | | | N/A | | | 128 | 5640 | | | N/A | | | 132 | 5660 | | |
9.32 | 9.20 | 9.23 | 9.21 | 9.12 | 8.55 | 8.37 | 6.92 | | | | 136 | 5680 | | | 9.14 | 8.99 | 8.90 | 8.91 | 8.86 | 8.44 | 8.25 | 6.80 | | | | 140 | 5700 | | | 8.91 | 8.83 | 8.85 | 8.85 | 8.77 | 8.10 | 7.96 | 6.64 | | | | 149 | 5745 | | | 8.42 | 8.41 | 8.36 | 8.44 | 8.32 | 7.79 | 7.76 | 6.34 | | | | 153 | 5765 | | | 8.26 | 8.27 | 8.28 | 8.32 | 8.17 | 7.69 | 7.65 | 6.26 | | | U-NII-3 | 157 | 5785 | 20 | 800/400 | 8.19 | 8.20 | 8.22 | 8.22 | 8.15 | 7.53 | 7.46 | 6.15 | | | | 161 | 5805 | | | 8.15 | 7.94 | 8.10 | 7.99 | 7.83 | 7.44 | 7.34 | 5.84 | | | | 165 | 5825 | | | 8.04 | 7.94 | 7.83 | 7.75 | 7.67 | 7.08 | 7.12 | 5.77 | According to KDB 248227 v01r02 SAR measurements for 802.11n are not necessary because the conducted power values are not more than ¼ dB higher than the power values for 802.11a. According to KDB 248227 v01r02 SAR measurements are performed for 802.11a and the lowest data rate of 6 Mbps. ## 1.12 Test Positions | Position | Description | | | | | |---|--|--|--|--|--| | FRONT-0MM EUT top side directly touching the phantom. | | | | | | | BACK-0MM | EUT rear side directly touching the phantom. | | | | | # 1.13 Test Equipment Used During Testing | | SA | R Measurement | | | | |---|------------------|---------------|------------|--------------------------------|--------------------------------| | Description | Manufacturer | Model | Identifier | Cal. Date | Cal. Due | | Stäubli Robot | Stäubli | RX90B L | EF00271 | functional test | functional test | | Stäubli Robot Controller | Stäubli | CS7MB | EF00272 | functional test | functional test | | DASY 5 Measurement Server | Schmid & Partner | | EF00273 | functional test | functional test | | Control Pendant | Stäubli | | EF00274 | functional test | functional test | | Dell Computer | Schmid & Partner | Intel | EF00275 | functional test | functional test | | Data Acquisition Electronics | Schmid & Partner | DAE3V1 | EF00276 | 2012-09 | 2013-09 | | Dosimetric E-Field Probe | Schmid & Partner | ET3DV6 | EF00279 | 2012-09 | 2013-09 | | Dosimetric E-Field Probe | Schmid & Partner | EX3DV4 | EF00826 | 2012-11 | 2013-11 | | System Validation Kit | Schmid & Partner | D300V3 | EF00299 | 2012-09 | 2015-09 | | System Validation Kit | Schmid & Partner | D450V3 | EF00300 | 2012-09 | 2015-09 | | System Validation Kit | Schmid & Partner | D900V2 | EF00281 | 2012-09 | 2015-09 | | System Validation Kit | Schmid & Partner | D1800V2 | EF00282 | 2012-09 | 2015-09 | | System Validation Kit | Schmid & Partner | D1900V2 | EF00283 | 2012-09 | 2015-09 | | System Validation Kit | Schmid & Partner | D2450V2 | EF00284 | 2012-09 | 2015-09 | | System Validation Kit | Schmid & Partner | D5GHZV2 | EF00827 | 2012-11 | 2015-11 | | Flat phantom | Schmid & Partner | V 4.4 | EF00328 | no calibration required | no calibration required | | Oval flat phantom | Schmid & Partner | ELI 4 | EF00289 | functional test | functional test | | Mounting Device | Schmid & Partner | V 3.1 | EF00287 | functional test | functional test | | Millivoltmeter | Rohde & Schwarz | URV 5 | EF00126 | 2010-07 | 2013-07 | | Power sensor | Rohde & Schwarz | NRV-Z2 | EF00125 | 2011-03 | 2013-03 | | RF signal generator | Rohde & Schwarz | SMP 02 | EF00165 | 2011-03 | 2013-03 | | Insertion unit | Rohde & Schwarz | URV5-Z4 | EF00322 | 2012-07 | 2013-07 | | Directional Coupler | HP | HP 87300B | EF00288 | functional test | functional test | | Radio Communication Tester | Rohde & Schwarz | CMD65 | EF00625 | ICO (initial calibration only) | ICO (initial calibration only) | | Universal Radio
Communication Tester | Rohde & Schwarz | CMU 200 | EF00304 | 2012-05 | 2013-05 | | Network Analyzer 300 kHz to 3 GHz | Agilent | 8752C | EF00140 | 2012-06 | 2013-06 | | Dielectric Probe Kit | Agilent | 85070C | EF00291 | functional test | functional test | # 2 Result Summary | OET Bulletin 65 Supplement C, RSS-102 | | | | | | | | | | |--|------------------------|--|--------------------------|--------|---------|--|--|--|--| | Product Specific
Standard Section | Requirement – Test | Reference
Method | Maximum SAR
[W/kg] | Result | Remarks | | | | | | OET Bulletin 65 Suppl. C
Section 2
RSS-102 Section 3 | Single-band conformity | KDB Publication 447498
KDB Publication 248227
KDB Publication 865664 | 0.334 | PASS | | | | | | | OET Bulletin 65 Suppl. C
Section 2
RSS-102 Section 3 | Multi-band conformity | KDB Publication 447498
KDB Publication 648474
KDB Publication 865664 | 0.334 + 0.137
= 0.471 | PASS | | | | | | #### 3 Definitions The specific absorption rate (SAR) is defined as the time derivative of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ_i), expressed in watts per kilogram (W/kg) SAR = d/dt (dW/dm) = d/dt (dW/ $$\rho_t$$ dV) = $\sigma/\rho_t |E_t|^2$ where $$dW/dt = \int_{V} E J dV = \int_{V} \sigma E^{2} dV$$ #### 3.1 Controlled Exposure The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Warning labels placed on low-power consumer devices such as cellular telephones are not considered sufficient to allow the device to be considered under the occupational/controlled category and the general population/uncontrolled exposure limits apply to these devices. #### 3.2 Uncontrolled Exposure In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. Awareness of the potential for RF exposure in a workplace or similar environment can be provided through specific training as part of a RF safety program. If appropriate, warning signs and labels can also be used to establish such awareness by providing prominent information on the risk of potential exposure and instructions on the risk of potential exposure risks. #### 3.3 Localized SAR Compliance with the localized SAR limits is demonstrated using the head and trunk limit because this SAR limit is only half the limbs limit value. The values are obtained by SAR measurements according to EN 62209-2. # 4 Localized SAR Measurement Equipment The measurements were performed with Dasy5 automated near-field scanning system comprised of high precision robot, robot controller, computer, e-field probe, probe alignment unit, phantoms, non-conductive phone positioned and software extension. #### 4.1 Complete SAR DASY5 Measurement System Measurements are performed using the DASY5 automated assessment system made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland. The following Diagram show the elements involved in the measurement setup. The DASY5 system for performing compliance tests consists of the following items: | | DASY5 SAR Measurement System | |---------------------------|---| | Device | Description: | | RX90BL | A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. | | Probe Alignment Unit | A probe alignment unit which improves the (absolute) accuracy of the probe positioning. | | Teach Pendant | The Manual Control Pendant (MCP), also called the manual teach pendant, is the user interface to the robot. In DASY, it is used for certain installation and teach procedures | | Signal Lamps | External warning lamp which indicates when the robot arm is powered-on and if the robot is under software control or in manual mode (controlled with the teach pendant). | | DAE | The data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. | | E-Field Probes | Isotropic E-Field probe optimized and calibrated for E-field measurements in free space. | | EOC | The electro-optical converter (EOC) performs the conversion between optical and electrical signals | | Measurement Server | The functions of the measurement server is to perform the time critical task such as signal filtering, surveillance of the robot operation, fast movement interrupts. | | Control Computer | A computer operating Windows 2000 or Windows NT with DASY 4 Software. | | Control Software | DASY4 and SEMCAD post processing Software | | SAM Twin Phantom | The SAM twin phantom enabling testing left-hand and right-hand usage. | | Flat Phantom | Flat Phantom (only for body-mounted transceivers operating below 800 MHz). | | Tissue
simulating liquid | Tissue simulating liquid mixed according to the given recipes. | | Device Holder | The device holder for handheld mobile phones. | | System Validation Dipoles | System validation dipoles allowing to validate the proper functioning of the system. | #### 4.2 Robot Arm The DASY5 system uses the high precision robots RX90BL type out of the newer series from Stäubli SA (France). The RX robot series have many features that are important for our application: - High precision (repeatability 0.02 mm) - > High reliability (industrial design) - Jerk-free straight movements - Low ELF interference (the closed metallic construction shields against motor control fields) - > 6-axis controller ### 4.3 Data Acquisition Electronics The data acquisition electronics (DAE3) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE3 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB. #### 4.4 Isotropic E-Field Probe ≤ 3 GHz #### **Probe Specifications** #### Construction: One dipole parallel, two dipoles normal to probe axis built-in shielding against static charges. #### Calibration: In air from 10 MHz to 2.5 GHz, In brain and muscle simulating tissue at Frequencies of 835MHz, 900MHz, 1800MHz, 1900 MHz and 2450 MHz #### Frequency: 10MHz to > 3GHz, Linearity \pm 0.2dB (30MHz to 3GHz) #### **Directivity:** ±0.2dB in HSL (rotation around probe axis) ±0.4dB in HSL (rotation normal to probe axis) #### **Dynamic Range:** $5\mu W/g$ to > 100mW/g #### Linearity: ±0.2dB #### **Dimensions:** Overall Length: 330mm (Tip: 16mm), Tip Diameter: 6.8mm (Body: 12mm), Distance from probe tip to dipole centers: 2.7mm #### Application: General dosimetry up to 3 GHz Compliance tests of mobile phones Fast automatic scanning in arbitrary phantoms #### 4.5 Isotropic E-Field Probe ≤ 6 GHz #### **Probe Specifications** #### Construction: One dipole parallel, two dipoles normal to probe axis built-in shielding against static charges. #### Calibration: In air from 10 MHz to 6 GHz, In brain and muscle simulating tissue at Frequencies of 5200, 5500, 5800 #### Frequency: 10MHz to 6GHz, Linearity ± 0.2 dB (30MHz to 6GHz) #### **Directivity:** ± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis) #### **Dynamic Range:** $10\mu W/g$ to > 100mW/g ## Linearity: $\pm 0.2 dB$ #### **Dimensions:** Overall Length: 337mm (Tip: 20mm), Tip Diameter: 2.5mm (Body: 12mm), Distance from probe tip to dipole centers: 1mm #### Application: General dosimetry up to 6 GHz Compliance tests of mobile phones Fast automatic scanning in arbitrary phantoms # Isotropic E-Field Probe EX3DV4 #### 4.6 Test phantom and positioner The positioner and test phantoms are manufactured by SPEAG. The test phantoms are used for all tests i.e. for both validation testing and device testing. The positioner and test phantom conforms to the requirements of EN 62209 and IEEE 1528. The SPEAG device holder was used to position the test device in all tests whilst a tripod was used to position the validation dipoles in the test arch. #### 4.7 System Validation Dipoles A set of calibration dipoles (D900V2, D1900V2, D2450V2, D5GHzV2) is included as a part of the SAR measurement setup. These are used for the validation of the test setup after its installation and prior to the EUT measurements. The calibration dipole is placed in the position normally occupied by the EUT. All calibration dipoles have the same height which allows an exact fitting below the center point of the test phantom. The dipole center is 10mm below the surface of the test phantom. # 5 Single-band SAR Measurement After successful completion of the tissue and system verification the SAR values of the EUT are measured according to the following description. #### 5.1 General measurement description The measurement is performed for each frequency band of the device. If the width of the transmit frequency band exceeds 1% of its center frequency, than the channels at the lowest and highest frequencies should also be tested. Furthermore, if the width of the transmit band exceeds 10% of its center frequency the following formula is used to determine the number of channels: $$N_C=2 \cdot roundup[10 \cdot (f_{high} - f_{low})/f_c] + 1$$ First the device is tested on the center channel of each frequency band used by the device. An operation mode and configuration with maximum transmit power is established. If battery operated equipment is used, the batteries are fully charged. SAR measurements are performed using the steps outlined in the next section for all relevant operational modes, EUT configurations and measurement positions. For the condition (position, configuration, operational mode) that provides the highest spatial-average SAR value on the center channel, the other channels are also tested. Additionally all other conditions where the spatial-average SAR value is within 3dB of the SAR limit are also tested on all determined test frequencies. # 5.2 SAR measurement description First the local SAR value at a test point within 10mm or less in normal direction from the inner surface of the phantom is measured. This SAR value is used to determine the measurement drift during SAR measurement. Next an area scan is performed over an area larger than the projection of the EUT with antenna on the surface of the phantom with a spatial grid step of 10mm. From the scanned SAR distribution the position of maximum SAR value is identified as well as any local SAR maxima within 2dB of the maximum value that are not within the zoom scan volume. (The additional peaks are only measured when the primary peak is within 2dB of the SAR limit.) The zoom-scan volume constructed on the peak SAR position is scanned with a grid step of 5mm. The measured data are extracted and the local SAR value for each measurement point is calculated. The measured values are interpolated over a fine-mesh within the scan volume and the average SAR value over 10g mass is calculated. At the end of the measurement the reference point measured at the beginning of the measurement is measured again and from the difference the drift is calculated. #### 5.3 Reference lines and points for Handsets For all measurement positions of the EUT, the EUT has to be place in a specific orientation with respect to the phantom. The orientation of the EUT relative to the phantom is defined by reference lines and points. According to IEEE 1528, the reference lines and points shall be positioned at the EUT as shown in the following figure. #### 5.4 Test positions relative to the Head #### **Cheek position** The handset is positioned close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure), such that the plane defined by the vertical centerline and the horizontal line of the handset is approximately parallel to the sagittal plane of the phantom. Next the handset is translated towards the phantom along the line passing through RE and LE until handset point A touches the pinna at the ERP. While the handset is maintained in this plane, it is rotated around the LE-RE line until the vertical centerline is in the plane normal to the plane containing B-M and N-F lines, i.e., the Reference Plane. Then it is rotated around the vertical centerline until the handset (horizontal line) is parallel to the N-F line. While the vertical centerline is maintained in the Reference Plane, point A is kept on the line passing through RE and LE, and the handset is maintained in contact with the pinna, the handset is rotated about the N-F line until any point on the handset is in contact with a phantom point below the pinna on the cheek. #### Tilt position First the EUT is placed in the cheek position. Next the handset is moved away from the pinna along the line passing through RE and LE far enough to allow a rotation of the handset away from the cheek by 15°. Then the handset is rotated around the horizontal line by 15°. The handset is moved towards the phantom on the line passing through RE and LE until any part of the handset touches the ear. The tilt position is obtained when the contact point is on the pinna. See Figure. If contact occurs at any location other than the pinna, e.g., the antenna at the back of the phantom head, the angle of the handset should be reduced. In this case, the tilt position is obtained if any point on the handset is in contact with the pinna and a second point on the handset is in contact with the phantom, e.g., the antenna with the back of the head #### 5.5 Test positions relative to the human body In body worn configuration the device is positioned parallel to the phantom surface with either top or bottom side of the EUT facing against the phantom. The separation distance of the EUT is selected according to the use case of the EUT (e.g. with belt clip or holster). ## 5.6 Measurement Uncertainty | | Measureme | nt Uncertainty | / accordi | ng to IE | EE 1528 | | | |--|----------------------|-----------------------------|------------|---------------------|----------------------|-----------|------------------| | Error Description | Uncertainty
Value | Probability
Distribution | Div. | c _i (1g) | c _i (10g) | Std. Unc. | Std. Unc.
10g | | Measurement System | | | | | | | | | Probe Calibration | ±6.55% | N | 1 | 1 | 1
 ±6.55% | ±6.55% | | Axial Isotropy | ±4.7% | R | $\sqrt{3}$ | 0.7 | 0.7 | ±1.9% | ±1.9% | | Hemispherical Isotropy | ±9.6% | R | $\sqrt{3}$ | 0.7 | 0.7 | ±3.9% | ±3.9% | | Linearity | ±4.7% | R | $\sqrt{3}$ | 1 | 1 | ±2.7% | ±2.7% | | Modulation Response | ±2.4% | R | $\sqrt{3}$ | 1 | 1 | ±1.4% | ±1.4% | | System Detection Limits | ±1.0% | R | $\sqrt{3}$ | 1 | 1 | ±0.6% | ±0.6% | | Boundary effects | ±2.0% | R | $\sqrt{3}$ | 1 | 1 | ±1.2% | ±1.2% | | Readout Electronics | ±0.3% | N | 1 | 1 | 1 | ±0.3% | ±0.3% | | Response Time | ±0.8% | R | $\sqrt{3}$ | 1 | 1 | ±0.5% | ±0.5% | | Integration Time | ±2.6% | R | $\sqrt{3}$ | 1 | 1 | ±1.5% | ±1.5% | | RF Ambient Noise | ±3.0% | R | $\sqrt{3}$ | 1 | 1 | ±1.7% | ±1.7% | | RF Ambient Reflections | ±3.0% | R | $\sqrt{3}$ | 1 | 1 | ±1.7% | ±1.7% | | Probe Positioner | ±0.8% | R | $\sqrt{3}$ | 1 | 1 | ±0.5% | ±0.5% | | Probe Positioning | ±6.7% | R | $\sqrt{3}$ | 1 | 1 | ±3.9% | ±3.9% | | Post processing | ±4.0% | R | $\sqrt{3}$ | 1 | 1 | ±2.3% | ±2.3% | | Test Sample Related | | | | | | | | | Device Holder | ±3.6% | N | 1 | 1 | 1 | ±3.6% | ±3.6% | | Test Sample Positioning | ±2.9% | N | 1 | 1 | 1 | ±2.9% | ±2.9% | | Power Scaling | ±0% | R | $\sqrt{3}$ | 1 | 1 | ±0% | ±0% | | Power Drift | ±5.0% | R | $\sqrt{3}$ | 1 | 1 | ±2.9% | ±2.9% | | Phantom and Setup Rela | ated | | | | | | | | Phantom Uncertainty | ±7.9% | R | $\sqrt{3}$ | 1 | 1 | ±4.6% | ±4.6% | | SAR correction | ±1.9% | R | $\sqrt{3}$ | 1 | 0.84 | ±1.1% | ±0.9% | | Liquid conductivity (measured) | ±2.5% | Ν | 1 | 0.78 | 0.71 | ±2.0% | ±1.8% | | Liquid permittivity (measured) | ±2.5% | N | 1 | 0.26 | 0.26 | ±0.1% | ±0.1% | | Temperature uncertainty - Conductivity | ±5.2% | R | $\sqrt{3}$ | 0.78 | 0.71 | ±2.3% | ±2.1% | | Temperature uncertainty - Permittivity | ±0.8% | R | $\sqrt{3}$ | 0.23 | 0.26 | ±0.1% | ±0.1% | | Combined Standard Unce | rtainty | | | | | ±12.8% | ±12.7% | | Expanded Standard Und | ertainty | | | | | ±25.6% | ±25.4% | # 6 Test Conditions and Results #### 6.1 Test Conditions and Results - Tissue Validation | Tissue Validati | ion acc. to FCC O | ET Bulletin 65 | Suppl. C / IC RSS | S-102 | Verdict: PASS | | | | |-----------------|---|-------------------------|---|-------------------------|------------------|--|--|--| | Test ac | cording to | | Reference Method | | | | | | | | ent reference | | | | | | | | | | | Target V | alues | | | | | | | | Head | d | Bod | у | Permitted | | | | | Frequency [MHz] | Relative dielectric constant ε _r | Conductivity σ
[S/m] | Relative dielectric constant ε _r | Conductivity σ
[S/m] | tolerance
[%] | | | | | 150 | 52.3 | 0.76 | 61.9 | 0.80 | ≤ ±5 | | | | | 300 | 45.3 | 0.87 | 58.2 | 0.92 | ≤ ±5 | | | | | 450 | 43.5 | 0.87 | 56.7 | 0.94 | ≤ ±5 | | | | | 835 | 41.5 | 0.90 | 55.2 | 0.97 | ≤ ±5 | | | | | 900 | 41.5 | 0.97 | 55.0 | 1.05 | ≤ ±5 | | | | | 915 | 41.5 | 0.98 | 55.0 | 1.06 | ≤ ±5 | | | | | 1450 | 40.5 | 1.20 | 54.0 | 1.30 | ≤ ±5 | | | | | 1610 | 40.3 | 1.29 | 53.8 | 1.40 | ≤ ±5 | | | | | 1800 – 2000 | 40.0 | 1.40 | 53.3 | 1.52 | ≤ ±5 | | | | | 2450 | 39.2 | 1.80 | 52.7 | 1.95 | ≤ ±5 | | | | | 3000 | 38.5 | 2.40 | 52.0 | 2.73 | ≤ ±5 | | | | | 5200 | 36.0 | 4.66 | 49.0 | 5.30 | ≤ ±5 | | | | | 5500 | 35.6 | 4.96 | 48.6 | 5.65 | ≤ ±5 | | | | | 5800 | 35.3 | 5.27 | 48.2 | 6.00 | ≤ ±5 | | | | ## **Test procedure** - 1. The dielectric probe kit is calibrated using the standards air, short circuit and deionized water - 2. The tissue simulating liquid is measured using the dielectric probe - 3. Target values are compared to the measurement values and deviations are determined | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | Test results | | | | | | | |--|------|--------------|-------|----------|-------|------|------|----------------| | | | Tissue | | <u> </u> | - | | | Delta σ
[%] | | 5200 Body 49.15 49.0 00.31 5.47 5.30 03.2 | 2450 | Body | 52.93 | 52.7 | 00.44 | 2.00 | 1.95 | 02.56 | | | 5200 | Body | 49.15 | 49.0 | 00.31 | 5.47 | 5.30 | 03.21 | | 5500 Body 48.9 48.6 00.62 5.86 5.65 03.72 | 5500 | Body | 48.9 | 48.6 | 00.62 | 5.86 | 5.65 | 03.72 | | 5800 Body 48.4 48.2 00.41 6.29 6.00 04.83 | 5800 | Body | 48.4 | 48.2 | 00.41 | 6.29 | 6.00 | 04.83 | Comments: ## 6.2 Test Conditions and Results - System Validation | System Validation acc. to FCC OET Bulletin 65 Suppl. C / IC RSS-102 Verdict: PASS | | | | | |---|---|-------------------------|--|--| | Test according to | Reference Method | | | | | measurement reference | OET Bulletin 65 Supplement C | / IEEE 1528 | | | | Toot from your rongs | Tested frequencies | 3 | | | | Test frequency range | 2450 MHz , 5200 MHz, 5500 MHz, 5800 MHz | | | | | Test mode | unmodulated CW | | | | | Target Values | | | | | | Frequency [MHz] | Target SAR value
[W/kg (1g)] | Permitted tolerance [%] | | | | 2450 | 12.9 @ 250mW | ≤ ±10 | | | | 5200 | 7.42 @ 100mW | ≤ ±10 | | | | 5500 | 7.97 @ 100mW | ≤ ±10 | | | | 5800 | 7.43 @ 100mW | ≤ ±10 | | | The target reference values are taken from the calibration sheets (see annex) #### **Test setup** #### Test procedure - The dipole antenna input power is set to 250mW - 2. The reference dipole is positioned under the phantom - 3. With the dipole antenna powered the SAR value is measured - 4. The measured SAR values are compared to the target SAR values | | | Test results | | | |--------------------|---------------------|-----------------------------------|---------------------------------|--------------| | Frequency
[MHz] | Input power
[mW] | Measured SAR value
[W/kg (1g)] | Target SAR value
[W/kg (1g)] | Delta
[%] | | 2450 | 250 | 12.8 | 12.9 | -00.78 | | 5200 | 100 | 7.47 | 7.42 | 00.67 | | 5500 | 100 | 8.67 | 7.97 | 08.78 | | 5800 | 100 | 8.04 | 7.43 | 08.21 | | Comments: | | | | | ### 6.3 Test Conditions and Results - Standalone SAR Measurement | Standalone S/ | AR acc. to FCC | OET Bul | lletin 65 Suppl | . C / IC RS | S-102 | Verdict: PASS | |---------------|---------------------------------------|------------|------------------------|----------------|----------------------------|--------------------------| | Tes | at according to | | Reference Method | | | | | | rement reference | Э | FCC OET Bu | ılletin 65 Sup | plement C / IC RS | SS-102 Issue 4 | | Roo | m temperature | | | 22.0 |) – 22.6 °C | | | L | iquid depth | | | 1 | 5.5 cm | | | E | invironment | | | gen | eral public | | | | | | Limits | | | | | | Region | | Occupational S
[W/k | | • | c SAR values
/kg] | | Whole b | ody average SA | .R | 0.4 | | 0. | 08 | | | SAR (Head and trueraging mass = 10 | | 8 | | 1.6 | | | | ized SAR (Limbs)
eraging mass = 10 | g | 20 | | 4 | | | | | | Test results | | | | | Mode | Position | Channel | Frequency
[MHz] | Drift
[dB] | Average SAR
[W/kg (1g)] | SAR Limit
[W/kg (1g)] | | IEEE 802.11b | FRONT-0MM | 6 | 2437 | -0.05 | 0.098 | 1.463* | | IEEE 802.11b | BACK-0MM | 6 | 2437 | -0.16 | 0.134 | 1.463* | | IEEE 802.11a | BACK-0MM | 48 | 5240 | -0.09 | 0.260 | 1.463* | | IEEE 802.11a | BACK-0MM | 64 | 5320 | 0.09 | 0.334 | 1.463* | | IEEE 802.11a | FRONT-0MM | 100 | 5500 | 0.06 | 0.0002 | 1.463* | | IEEE 802.11a | BACK-0MM | 100 | 5500 | 0.05 | 0.101 | 1.463* | | IEEE 802.11a | FRONT-0MM | 149 | 5745 | 0.1 | 0.0003 | 1.463* | | IEEE 802.11a | BACK-0MM | 149 | 5745 | -0.01 | 0.019 | 1.463* | | 0 | verall maximun | n SAR valu | e [W/kg (1g)] | | 0.334 | 1.463* | Comments: * See section 1.6 multi-transmitter operation modes Result plots entitled front 2_0mm show results measured with 0mm separation distance. The "2" is not related to the measurement distance. SAR measurements were started with the highest power channel of the transmission band under investigation. Other measurement channels were omitted when the SAR value of the highest power channel was below 0.8 W/kg according to KDB 248227 v01r02. ## **ANNEX A** Calibration Documents ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **Eurofins** Certificate No: DAE3-522 Sep12 Accreditation No.: SCS 108 S C S ## CALIBRATION CERTIFICATE Object DAE3 - SD 000 D03 AA - SN: 522 Calibration procedure(s) QA CAL-06 v25 Calibration procedure for the data acquisition electronics (DAE) Calibration date: September 13, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|-------------|----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 28-Sep-11 (No:11450) | Sep-12 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Calibrator Box V2.1 | | 05-Jan-12 (in house check) | In house check: Jan-13 | | | | | | Name Function Signature Calibrated by: Eric Hainfeld Technician ✓ Approved by: Fin Bomholt R&D Director CACAGO STATE OF THE Issued: September 13, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of
Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 ## Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ## **Methods Applied and Interpretation of Parameters** - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - *Input Offset Current:* Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. ## **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = 6.1μV , full range = -100...+300 mV Low Range: 1LSB = 61nV , full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | х | Υ | Z | |---------------------|----------------------|----------------------|----------------------| | High Range | 404.217 ± 0.1% (k=2) | 403.888 ± 0.1% (k=2) | 404.717 ± 0.1% (k=2) | | Low Range | 3.96459 ± 0.7% (k=2) | 3.95751 ± 0.7% (k=2) | 3.97359 ± 0.7% (k=2) | ## **Connector Angle** | Connector Angle to be used in DASY system | 58.5 ° ± 1 ° | |---|--------------| ## **Appendix** 1. DC Voltage Linearity | High Range | | Reading (μV) | Difference (μV) | Error (%) | |------------|---------|--------------|-----------------|-----------| | Channel X | + Input | 199991.81 | -4.03 | -0.00 | | Channel X | + Input | 20002.27 | 2.17 | 0.01 | | Channel X | - Input | -19995.43 | 5.20 | -0.03 | | Channel Y | + Input | 199993.43 | -2.55 | -0.00 | | Channel Y | + Input | 20001.04 | 0.99 | 0.00 | | Channel Y | - input | -19995.47 | 5.03 | -0.03 | | Channel Z | + Input | 199994.05 | -2.30 | -0.00 | | Channel Z | + Input | 19999.35 | -0.75 | -0.00 | | Channel Z | - Input | -19999.80 | 0.84 | -0.00 | | Low Range | | Reading (μV) | Difference (μV) | Error (%) | |-----------|---------|--------------|-----------------|-----------| | Channel X | + Input | 2001.10 | 0.62 | 0.03 | | Channel X | + Input | 200.14 | -0.87 | -0.43 | | Channel X | - Input | -199.18 | -0.19 | 0.09 | | Channel Y | + Input | 2001.44 | 0.83 | 0.04 | | Channel Y | + Input | 201.16 | 0.07 | 0.03 | | Channel Y | - Input | -199.16 | -0.37 | 0.19 | | Channel Z | + Input | 2000.47 | -0.05 | -0.00 | | Channel Z | + Input | 201.05 | -0.08 | -0.04 | | Channel Z | - Input | -199.85 | -0.99 | 0.50 | ## 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | -3.67 | -5.85 | | | - 200 | 6.43 | 4.78 | | Channel Y | 200 | 0.13 | -0.43 | | | - 200 | 0.44 | -0.00 | | Channel Z | 200 | 15.39 | 15.59 | | | - 200 | -17.30 | -17.70 | ## 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | -1.27 | -2.12 | | Channel Y | 200 | 7.68 | - | -1.36 | | Channel Z | 200 | 5.92 | 5.53 | - | ## 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 15740 | 16746 | | Channel Y | 15716 | 14973 | | Channel Z | 16056 | 16442 | ## 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation
(μV) | | |-----------|--------------|------------------|------------------|------------------------|--| | Channel X | 1.32 | -0.05 | 3.02 | 0.63 | | | Channel Y | -0.52 | -1.56 | 1.04 | 0.55 | | | Channel Z | 0.13 | -1.29 | 1.70 | 0.60 | | ## 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | |----------------|-------------------| | Supply (+ Vcc) | +7.9 | | Supply (- Vcc) | -7.6 | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **Eurofins** Certificate No: ET3-1711_Sep12 Accreditation No.: SCS 108 ## **CALIBRATION CERTIFICATE** Object ET3DV6 - SN:1711 Calibration procedure(s) QA CAL-01.v8, QA CAL-12.v7, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes Calibration date: September 19, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 29-Mar-12 (No. 217-01508) | Apr-13 | | Power sensor E4412A | MY41498087 | 29-Mar-12 (No. 217-01508) | Apr-13 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 27-Mar-12 (No. 217-01531) | Apr-13 | | Reference 20 dB Attenuator | SN: S5086 (20b) | 27-Mar-12 (No. 217-01529) | Apr-13 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 27-Mar-12 (No. 217-01532) | Apr-13 | | Reference Probe ES3DV2 | SN: 3013 | 29-Dec-11 (No. ES3-3013_Dec11) | Dec-12 | | DAE4 | SN: 660 | 20-Jun-12 (No. DAE4-660_Jun12) | Jun-13 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-11) | In house check: Apr-13 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-11) | In house check: Oct-12 | Calibrated by: Name Function Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: September 19, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2003,
"IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 ## Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. # Probe ET3DV6 SN:1711 Manufactured: August 7, 2002 Calibrated: September 19, 2012 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) ET3DV6-SN:1711 ## DASY/EASY - Parameters of Probe: ET3DV6 - SN:1711 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 1.87 | 1.88 | 2.07 | ± 10.1 % | | DCP (mV) ^B | 98.8 | 95.1 | 97.4 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | PAR | | A
dB | B
dB | C
dB | VR
mV | Unc ^E
(k=2) | |-----|---------------------------|------|---|---------|---------|---------|----------|---------------------------| | 0 | CW | 0.00 | Х | 0.00 | 0.00 | 1.00 | 151.8 | ±3.3 % | | | | | Υ | 0.00 | 0.00 | 1.00 | 148.9 | | | | | | Z | 0.00 | 0.00 | 1.00 | 159.4 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^B Numerical linearization parameter: uncertainty not required. A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6). ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ET3DV6- SN:1711 September 19, 2012 ## DASY/EASY - Parameters of Probe: ET3DV6 - SN:1711 ## Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|-------|---------------|----------------| | 450 | 43.5 | 0.87 | 7.14 | 7.14 | 7.14 | 0.21 | 2.26 | ± 13.4 % | | 900 | 41.5 | 0.97 | 6.15 | 6.15 | 6.15 | 0.30 | 2.88 | ± 12.0 % | | 1810 | 40.0 | 1.40 | 5.21 | 5.21 | 5.21 | 0.80 | 2.08 | ± 12.0 % | | 1950 | 40.0 | 1.40 | 4.95 | 4.95 | 4.95 | 0.80 | 2.05 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 4.34 | 4.34 | 4.34 | 0.80 | 1.86 | ± 12.0 % | ^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ET3DV6-- SN:1711 September 19, 2012 ## DASY/EASY - Parameters of Probe: ET3DV6 - SN:1711 ## Calibration Parameter Determined in Body Tissue Simulating Media | | | | - | | _ | | | | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|-------|---------------|----------------| | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | | 450 | 56.7 | 0.94 | 7.58 | 7.58 | 7.58 | 0.15 | 2.25 | ± 13.4 % | | 900 | 55.0 | 1.05 | 6.07 | 6.07 | 6.07 | 0.35 | 3.00 | ± 12.0 % | | 1810 | 53.3 | 1.52 | 4.73 | 4.73 | 4.73 | 0.80 | 2.49 | ± 12.0 % | | 1950 | 53.3 | 1.52 | 4.72 | 4.72 | 4.72 | 0.80 | 2.36 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 4.07 | 4.07 | 4.07 | 0.56 | 0.87 | ± 12.0 % | ^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) ## **Conversion Factor Assessment** # Deviation from Isotropy in Liquid Error (ϕ, ϑ) , f = 900 MHz # DASY/EASY - Parameters of Probe: ET3DV6 - SN:1711 ## **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 70.8 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | enabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 10 mm | | Tip Diameter | 6.8 mm | | Probe Tip to Sensor X Calibration Point | 2.7 mm | | Probe Tip to Sensor Y Calibration Point | 2.7 mm | | Probe Tip to Sensor Z Calibration Point | 2.7 mm | | Recommended Measurement Distance from Surface | 4 mm | # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **Eurofins** Certificate No: EX3-3893 Nov12 Accreditation No.: SCS 108 ## CALIBRATION CERTIFICATE Object EX3DV4 - SN:3893 Calibration procedure(s) QA CAL-01.v8, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes Calibration date: November 26, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 29-Mar-12 (No. 217-01508) | Apr-13 | | Power sensor E4412A | MY41498087 | 29-Mar-12 (No. 217-01508) | Apr-13 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 27-Mar-12 (No. 217-01531) | Apr-13 | | Reference 20 dB Attenuator | SN: S5086 (20b) | 27-Mar-12 (No. 217-01529) | Apr-13 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 27-Mar-12 (No. 217-01532) | Apr-13 | | Reference Probe ES3DV2 | SN: 3013 | 29-Dec-11
(No. ES3-3013_Dec11) | Dec-12 | | DAE4 | SN: 660 | 20-Jun-12 (No. DAE4-660_Jun12) | Jun-13 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-11) | In house check: Apr-13 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 | Calibrated by: Claudio Leubler Claudio Leubler Eunction Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: November 26, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: DCP TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters diode compression point Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis ## Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 ## Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Certificate No: EX3-3893_Nov12 Page 2 of 11 EX3DV4 - SN:3893 # Probe EX3DV4 SN:3893 Manufactured: October 9, 2012 Calibrated: November 26, 2012 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3893 ## **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.56 | 0.42 | 0.33 | ± 10.1 % | | DCP (mV) ^B | 100.3 | 104.2 | 99.9 | | ### **Modulation Calibration Parameters** | UID | Communication System Name | PAR | | A
dB | B
dB | C
dB | VR
mV | Unc ^b
(k=2) | |-----|---------------------------|------|---|---------|---------|---------|----------|---------------------------| | 0 | CW | 0.00 | Х | 0.00 | 0.00 | 1.00 | 174.8 | ±3.0 % | | | | | Υ | 0.00 | 0.00 | 1.00 | 147.0 | | | | | | Z | 0.00 | 0.00 | 1.00 | 167.2 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^B Numerical linearization parameter: uncertainty not required. ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3893 ## Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|-------|---------------|----------------| | 5200 | 36.0 | 4.66 | 5.46 | 5.46 | 5.46 | 0.30 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 5.13 | 5.13 | 5.13 | 0.30 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.65 | 4.65 | 4.65 | 0.45 | 1.80 | ± 13.1 % | ^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. EX3DV4- SN:3893 November 26, 2012 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3893 ## Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|-------|---------------|----------------| | 5200 | 49.0 | 5.30 | 4.33 | 4.33 | 4.33 | 0.57 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 4.10 | 4.10 | 4.10 | 0.55 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 4.08 | 4.08 | 4.08 | 0.59 | 1.90 | ± 13.1 % | ^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^f At frequencies below 3 GHz, the validity of tiesus parameters (s and s) can be released to ± 10% if liquid componential formula is applied to Certificate No: EX3-3893_Nov12 Page 6 of 11 F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) EX3DV4- SN:3893 November 26, 2012 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) EX3DV4- SN:3893 November 26, 2012 ## Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) EX3DV4-SN:3893 ## **Conversion Factor Assessment** ## **Deviation from Isotropy in Liquid** Error $(\phi, 9)$, f = 900 MHz EX3DV4- SN:3893 November 26, 2012 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3893 ## **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -26.4 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 2 mm | Certificate No: EX3-3893_Nov12 Page 11 of 11 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse
d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **Eurofins** Accreditation No.: SCS 108 Certificate No: D2450V2-722_Sep12 ## CALIBRATION CERTIFICATE Object D2450V2 - SN: 722 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: September 13, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Power sensor HP 8481A | US37292783 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 27-Mar-12 (No. 217-01530) | Apr-13 | | Type-N mismatch combination | SN: 5047,2 / 06327 | 27-Mar-12 (No. 217-01533) | Apr -1 3 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-11 (No. ES3-3205_Dec11) | Dec-12 | | DAE4 | SN: 601 | 27-Jun-12 (No. DAE4-601_Jun12) | Jun-13 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-11) | In house check: Oct-12 | Calibrated by: Name Function Laboratory Technician Approved by: Katja Pokovic Jeton Kastrati Technical Manager Issued: September 13, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2450V2-722_Sep12 Page 1 of 8 Page 69 of 103 Signature ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ## Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.