TEST REPORT

of

FCC Part 15 Subpart C AND CANADA RSS-247

Full Modular Approval

Product: Bluetooth 4.1 Module

Brand: FANSTEL

Model: BH661

Model Difference: N/A

FCC ID: X8WBH661

IC: 4100A-BH661

FCC Rule Part: §15.247, Cat: DTS

IC Rule Part: RSS-247 issue 1: May 28, 2015

RSS-Gen issue 4: 2014

Applicant: Fanstel Corporation, Taipei

Address: 10F-10, No. 79, Sec. 1, Hsin Tai Wu Rd.,

Hsi-Chih, New Taipei City 221 Taiwan

Test Performed by: International Standards Laboratory

<Lung-Tan LAB>

*Site Registration No.

BSMI: SL2-IN-E-0013; MRA TW1036; TAF: 0997; IC: IC4067B-3;

*Address:

No. 120, Lane 180, Hsin Ho Rd.

Lung-Tan Dist., Tao Yuan City 325, Taiwan *Tel: 886-3-407-1718; Fax: 886-3-407-1738

Report No.: ISL-16LR226FC

Issue Date: 2016/08/24

Test results given in this report apply only to the specific sample(s) tested and are traceable to national or international standard through calibration of the equipment and evaluating measurement uncertainty herein.

This report MUST not be used to claim product endorsement by TAF, NVLAP or any agency of the Government.

This test report shall not be reproduced except in full, without the written approval of International Standards Laboratory.

-2 of 39-

FCC ID: X8WBH661 IC: 4100A-BH661

VERIFICATION OF COMPLIANCE

Applicant: Fanstel Corporation, Taipei

Product Description: Bluetooth 4.1 Module

Brand Name: FANSTEL

Model No.: BH661

Model Difference: N/A

FCC ID: X8WBH661

IC: 4100A-BH661

Date of test: 2016/07/21 ~ 2016/08/12

Date of EUT Received: 2016/07/21

We hereby certify that:

All the tests in this report have been performed and recorded in accordance with the standards described above and performed by an independent electromagnetic compatibility consultant, International Standards Laboratory.

The test results contained in this report accurately represent the measurements of the characteristics and the energy generated by sample equipment under test at the time of the test. The sample equipment tested as described in this report is in compliance with the limits of above standards.

Test By:	()inoChen	Date:	2016/08/24
	Dion Chang / Engineer		
Prepared By:	Gigi yen	Date:	2016/08/24
	Gigi Yeh / Specialist		
Approved By:	Timent Su	Date:	2016/08/24
	Vincent Su / Technical Manager		

Version

Version No.	Date	Description
00	2016/08/24	Initial creation of document

Report Number: ISL-16LR226FC

Table of Contents

1	GEN	NERAL INFORMATION	6
	1.1	Related Submittal(s) / Grant (s)	7
	1.2	Test Methodology	7
	1.3	Test Facility	7
	1.4	Special Accessories	7
	1.5	Equipment Modifications	7
2	SYS	TEM TEST CONFIGURATION	8
	2.1	EUT Configuration	
	2.2	EUT Exercise	
	2.3	Test Procedure	8
	2.4	Configuration of Tested System	
3	SUM	IMARY OF TEST RESULTS	10
4	DES	CRIPTION OF TEST MODES	10
5	CON	NDUCTED EMISSION TEST	11
	5.1	Standard Applicable:	11
	5.2	Measurement Equipment Used:	11
	5.3	EUT Setup:	11
	5.4	Measurement Procedure:	12
	5.5	Measurement Result:	12
6	PEA	K OUTPUT POWER MEASUREMENT	15
	6.1	Standard Applicable:	
	6.2	Measurement Equipment Used:	16
	6.3	Test Set-up:	
	6.4	Measurement Procedure:	16
	6.5	Measurement Result:	17
7	6dB	Bandwidth & 99% Bandwidth	18
	7.1	Standard Applicable:	18
	7.2	Measurement Equipment Used:	18
	7.3	Test Set-up:	18
	7.4	Measurement Procedure:	18
	7.5	Measurement Result:	18
8	100K	KHZ BANDWIDTH OF BAND EDGES MEASUREMENT	22
	8.1	Standard Applicable:	22
	8.2	Measurement Equipment Used:	23
	8.3	Test SET-UP:	
	8.4	Measurement Procedure:	25
	8.5	Field Strength Calculation:	25
	8.6	Measurement Result:	25
9	SPU	RIOUS RADIATED EMISSION TEST	28
	9.1	Standard Applicable	28
	9.2	Measurement Equipment Used:	
	9.3	Test SET-UP:	
	9.4	Measurement Procedure:	29
	9.5	Field Strength Calculation	29
	9.6	Measurement Result:	29

10	Peak	Power Spectral Density	36
		Standard Applicable:	
		Measurement Equipment Used:	
		Test Set-up:	
		Measurement Procedure:	
	10.5	Measurement Result:	36
11	ANT	ENNA REQUIREMENT	39
		Standard Applicable:	
		Antenna Connected Construction:	30

1 GENERAL INFORMATION

General:

Product Name:	Bluetooth 4.1 Module
Brand Name:	FANSTEL
Model Name:	BH661
Model Difference:	N/A
Power Supply:	3.3Vdc

IC RSS-Gen:

Product SW/HW version	SW/HW:none
D I. CM/IIM	CW//IW
Radio SW/HW version	SW/HW:none
PMN (Product Marketing	D11661
Name)	BH661
HVIN (Hardware Version	DII//1
Identification Number)	BH661
FVIN (Firmware Version	ROM:503
Identification Number)	KOWI.303
Test SoftWare Version	HCITester 2.1.00
10st Soft ware version	1101103001 2.1.00
RF power setting:	0x25
1 8	

Bluetooth:

Frequency Range:	2402 – 2480MHz
Bluetooth Version:	V4.1
Channel number:	40 channels, 2MHz step
Modulation type	Digital Modulation
Modulation type:	GFSK
Tune-up power	-4.0 dBm
Power Tolerance:	+/- 1.0 dBm
Dwell Time:	N/A
Antenna Designation:	Chip Ant, 1.6dBi

Remark: The above DUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

-7 of 39- FCC ID: X8WBH661

IC: 4100A-BH661

Report Number: ISL-16LR226FC

1.1 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID:** <u>X8WBH661</u> filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules and **IC:** <u>4100A-BH661</u> filing to comply with Industry Canada RSS-247 issue 1: 2015.

1.2 Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.10: 2013 and RSS-Gen issue 4: 2014. Radiated testing was performed at an antenna to EUT distance 3 meters.

KDB Document: 558074 D01 DTS Meas Guidance v03r05

1.3 Test Facility

The measurement facilities used to collect the 3m Radiated Emission and AC power line conducted data are located on the address of International Standards Laboratory <Lung-Tan LAB> No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan which are constructed and calibrated to meet the FCC requirements in documents . FCC Registration Number is: 872200; Designation Number is: TW1036, Canada Registration Number: 4067B-3.

1.4 Special Accessories

Not available for this EUT intended for grant.

1.5 Equipment Modifications

Not available for this EUT intended for grant.

-8 of 39- FCC ID: X8WBH661

IC: 4100A-BH661

2 SYSTEM TEST CONFIGURATION

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

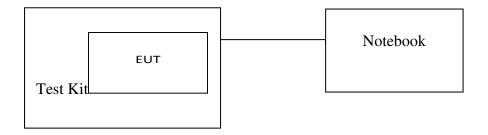
The EUT (Transmitter) was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements.

2.3 Test Procedure

2.3.1 Conducted Emissions

The EUT is a placed on as turn table which is 0.8 m above ground plane. According to the requirements in Section 6 and RSS-Gen issue 4: 2014. Con-ducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR 16-1-1 Quasi-Peak and Average detector mode.

2.3.2 Radiated Emissions


The EUT is a placed on as turn table which is 0.8 m/1.5m(Frequency above 1GHz) above ground plane. The turn table shall rotate 360 degrees to determine the position of maxi-mum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter(EUT) was rotated through three orthogonal axes according to the requirements in Section 6 and 11 of ANSI C63.10: 2013.

-9 of 39- FCC ID: X8WBH661

IC: 4100A-BH661

2.4 Configuration of Tested System

Fig. 2-1 Configuration

Table 2-1 Equipment Used in Tested System

Item	Equipment	Mfr/Brand	Model/ Type No.	Series No.	Data Cable	Power Cord
1	NB	HP	440G1	2CE40911GZ	Non-shield	Non-shield

Note: All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test.

Grounding: Grounding was in accordance with the manufacturer's requirements and conditions for the intended use.

-10 of 39-

FCC ID: X8WBH661 IC: 4100A-BH661

3 SUMMARY OF TEST RESULTS

FCC Rules	Description Of Test	Result
-----------	---------------------	--------

-11 of 39- FCC ID: X8WBH661 IC: 4100A-BH661

5 CONDUCTED EMISSION TEST

5.1 Standard Applicable:

According to §15.207 and RSS-Gen §7.2.4, frequency range within 150KHz to 30MHz shall not exceed the Limit table as below.

exceed the Emili table as a			
	Limits		
Frequency range	dB((uV)	
MHz	Quasi-peak	Average	
0.15 to 0.50	66 to 56	56 to 46	
0.50 to 5	56	46	
5 to 30	60	50	

Note

1. The lower limit shall apply at the transition frequencies

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

5.2 Measurement Equipment Used:

AC Power Line Test Site						
EQUIPMENT MFR		MODEL	SERIAL	LAST	CAL DUE.	
TYPE		NUMBER	NUMBER	CAL.		
Conduction 04-3 Cable	WOKEN	CFD 300-NL	Conduction 04 -3	07/27/2016	07/26/2017	
EMI Receiver 17	Rohde & Schwarz	ESCI 7	100887	09/08/2015	09/07/2016	
LISN 18	ROHDE & SCHWARZ	ENV216	101424	02/11/2016	02/10/2017	
LISN 19	ROHDE & SCHWARZ	ENV216	101425	03/12/2016	03/11/2017	
Test Software	Farad	EZEMC Ver:ISL-03A2	N/A	N/A	N/A	

5.3 EUT Setup:

- 1. The conducted emission tests were performed in the test site, using the setup in accordance with the .
- 2. The AC/DC Power adaptor of PC was plug-in LISN. The EUT was placed flushed with the rear of the table.

Report Number: ISL-16LR226FC

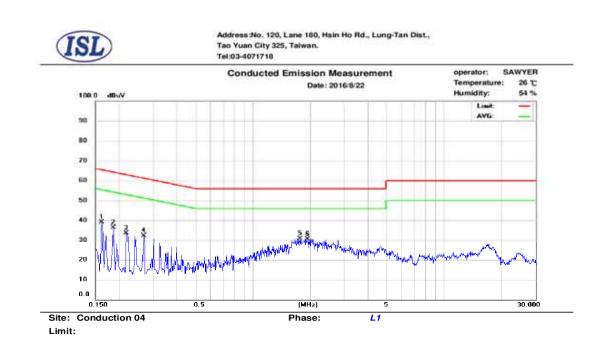
3. The LISN was connected with 120Vac/60Hz power source.

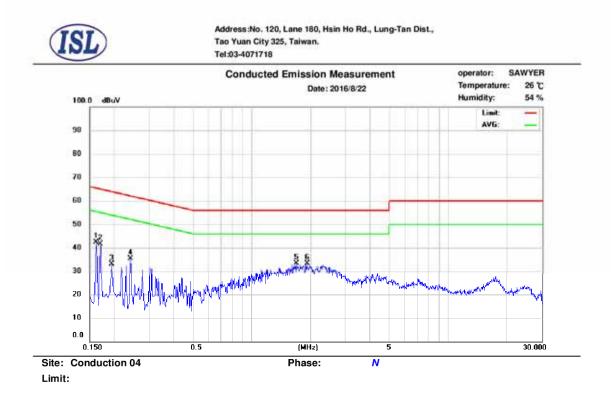
5.4 Measurement Procedure:

- 1. The EUT was placed on a table which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

5.5 Measurement Result:

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.


Note: Refer to next page for measurement data and plots.


AC POWER LINE CONDUCTED EMISSION TEST DATA

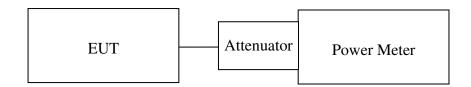
Operation Mode:	Operation Mode	Test Date:	2016/08/22
Test By:	Lake		

No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.162	26.50	1.88	9.69	36.19	65.36	-29.17	11.57	55.36	-43.79
2	0.186	23.49	1.22	9.69	33.18	64.21	-31.03	10.91	54.21	-43.30
3	0.218	20.87	-0.39	9.69	30.56	62.89	-32.33	9.30	52.89	-43.59
4	0.270	16.37	-0.38	9.69	26.06	61.12	-35.06	9.31	51.12	-41.81
5	1.754	15.48	9.26	9.74	25.22	56.00	-30.78	19.00	46.00	-27.00
6	1.934	16.99	11.44	9.75	26.74	56.00	-29.26	21.19	46.00	-24.81

No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin
1	` ′	· ,		` ′	` ′		(dB)	, ,	, ,	(dB)
2	0.162	25.95	1.88	9.68	35.63	65.36	-29.73	11.56	55.36	-43.80
3	0.170	25.61	2.83	9.68	35.29	64.96	-29.67	12.51	54.96	-42.45
4	0.194	23.05	6.50	9.68	32.73	63.86	-31.13	16.18	53.86	-37.68
5	0.242	18.69	3.40	9.68	28.37	62.03	-33.66	13.08	52.03	-38.95
6	1.682 1.918	18.54 19.48	12.26 13.86	9.73 9.74	28.27 29.22	56.00 56.00	-27.73 -26.78	21.99 23.60	46.00 46.00	-24.01 -22.40

6 PEAK OUTPUT POWER/ERIP MEASUREMENT

6.1 Standard Applicable:


According to

6.2 Measurement Equipment Used:

5.2 Measurement Equipment Oscu.						
Conducted Emission Test Site						
EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.	
TYPE		NUMBER	NUMBER	CAL.		
Power Meter 05	Anritsu	ML2495A	1116010	07/28/2016	07/27/2017	
Power Sensor 05	Anritsu	MA2411B	34NKF50	07/28/2016	07/27/2017	
Power Sensor 06	DARE	RPR3006W	13I00030SN O33	11/03/2015	11/02/2016	
Power Sensor 07	DARE	RPR3006W	13I00030SN O34	11/03/2015	11/02/2016	
Temperature Chamber	KSON	THS-B4H100	2287	06/28/2016	06/27/2017	
DC Power supply	ABM	8185D	N/A	09/05/2015	09/04/2016	
AC Power supply	EXTECH	CFC105W	NA	12/26/2015	12/25/2016	
Attenuator	Woken	Watt-65m3502	11051601	NA	NA	
Splitter	MCLI	PS4-199	12465	12/26/2015	12/25/2017	
Spectrum analyzer	Agilent	N9030A	MY51360021	10/02/2015	10/01/2016	
Test Sofware	DARE	Radimation Ver:2013.1.23	NA	NA	NA	

6.3 Test Set-up:

6.4 Measurement Procedure:

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power meter
- 3. Record the max. reading.
- 4. Repeat above procedures until all frequency measured were complete.

-17 of 39-

FCC ID: X8WBH661 IC: 4100A-BH661

6.5 Measurement Result:

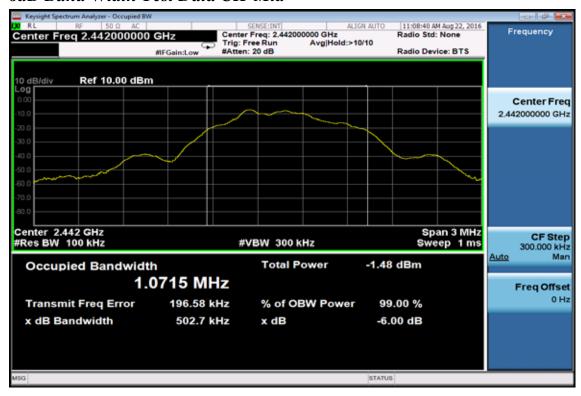
Frequency (MHz)	Peak Reading Power (dBm)	Cable Loss	Output Power (dBm)	Output Power (W)	Limit (W)
Low	-5.05	0.00	-5.05	0.00031	1
Mid	-4.37	0.00	-4.37	0.00037	1
High	-4.21	0.00	-4.21	0.00038	1

Offset: 0.8dB

7 6dB Bandwidth & 99% Bandwidth


7.1 Standard Applicable:

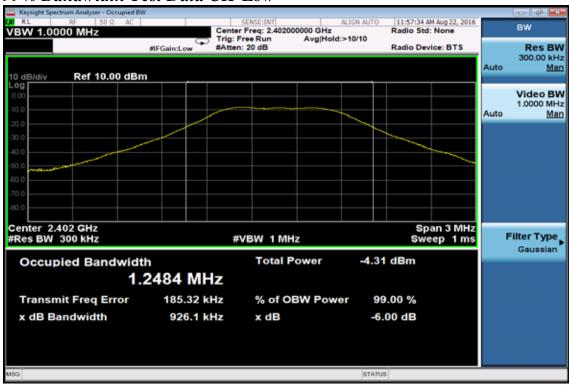
According to


(まし) 開報料技般份有限公司

FCC ID: X8WBH661 IC: 4100A-BH661

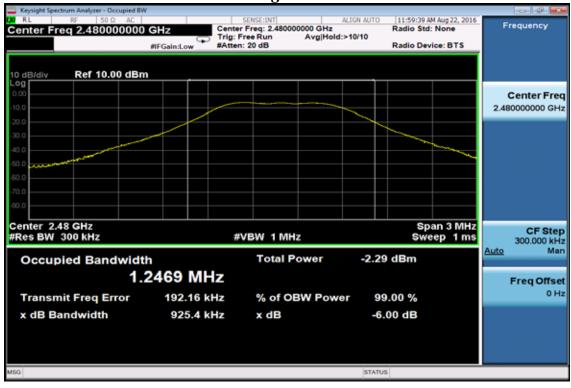
6dB Bandwidth Test Data CH-Low

6dB Band Width Test Data CH-Mid



6dB Band Width Test Data CH-High

99% Bandwidth Test Data CH-Low


(多し 期間科技般份有限公司

FCC ID: X8WBH661 IC: 4100A-BH661

99% Band Width Test Data CH-Mid

99% Band Width Test Data CH-High

-22 of 39-

FCC ID: X8WBH661 IC: 4100A-BH661

8 100KHz BANDWIDTH OF BAND EDGES MEASUREMENT

8.1 Standard Applicable:

According to

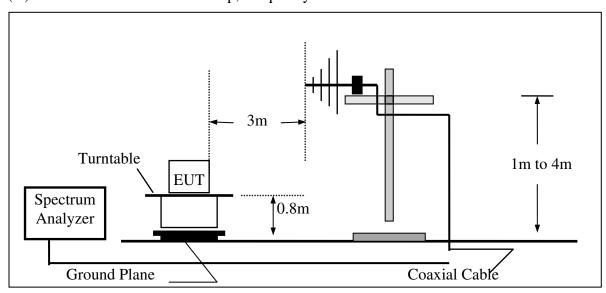
8.2 Measurement Equipment Used:

8.2.1 Conducted Emission at antenna port:

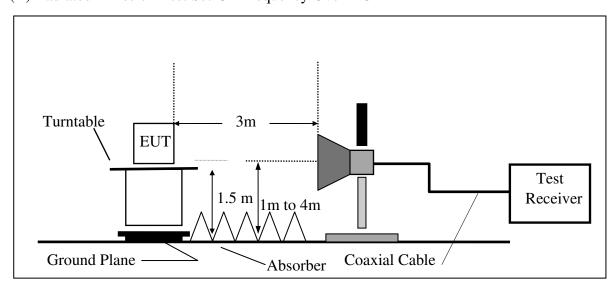
Refer to section 6.2 for details.

8.2.2 Radiated emission:

	8.2.2 Radiated emission: Chamber 14(966)						
EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.		
TYPE		NUMBER	NUMBER	CAL.			
Spectrum Analyzer 21(26.5GHz)	Agilent	N9010A	MY49060537	07/29/2016	07/28/2017		
Spectrum Analyzer 20(6.5GHz)	Agilent	E4443A	MY48250315	05/20/2016	05/19/2017		
Spectrum Analyzer 22(43GHz)	R&S	FSU43	100143	05/22/2016	05/21/2017		
Loop Antenna9K-30M	A.H.SYSTEM	SAS-564	294	06/17/2015	06/16/2017		
Bilog Antenna30-1G	Schaffner	CBL 6112D	37873	03/02/2016	03/01/2017		
Horn antenna1-18G	ETS	3117	00066665	11/30/2015	11/29/2016		
Horn antenna26-40G(05)	Com-power	AH-640	100A	01/21/2015	01/20/2017		
Horn antenna18-26G(04)	Com-power	AH-826	081001	07/24/2015	07/23/2017		
Preamplifier9-1000M	HP	8447D	NA	03/11/2016	03/10/2017		
Preamplifier1-18G	MITEQ	AFS44-001018 00-25-10P-44	1329256	07/27/2016	07/26/2017		
Preamplifier1-26G	EM	EM01M26G	NA	03/10/2016	03/09/2017		
Preamplifier26-40G	MITEQ	JS-26004000-2 7-5A	818471	07/23/2015	07/22/2017		
Cable1-18G	HUBER SUHNER	Sucoflex 106	NA	11/25/2015	11/24/2016		
Cable UP to 1G	HUBER SUHNER	RG 214/U	NA	10/02/2015	10/01/2016		
SUCOFLEX 1GHz~40GHz cable	HUBER SUHNER	Sucoflex 102	27963/2&3742 1/2	11/03/2015	11/02/2017		
2.4G Filter	Micro-Tronics	Brm50702	76	12/26/2015	12/25/2016		
Test Software	Audix	E3 Ver:6.12023	N/A	N/A	N/A		


8.3 Test SET-UP:

8.3.1 Conducted Emission at antenna port:


Refer to section 6.3 for details.

8.3.2 Radiated emission:

(A) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(B) Radiated Emission Test Set-UP Frequency Over 1 GHz

-25 of 39- FCC ID: X8WBH661

IC: 4100A-BH661

8.4 Measurement Procedure:

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = operating frequency.
- 4. Set the spectrum analyzer as RBW, VBW=100KHz, Span=25MHz, Sweep = auto
- 5. Mark Peak, 2.390GHz and 2.4835GHz and record the max. level.
- 6. Repeat above procedures until all frequency measured were complete.

8.5 Field Strength Calculation:

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CL - AG$$

Where	FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)		
	RA = Reading Amplitude	AG = Amplifier Gain		
	AF = Antenna Factor			

8.6 Measurement Result:

Note: Refer to next page spectrum analyzer data chart and tabular data sheets.

-26 of 39- FCC ID: X8WBH661

IC: 4100A-BH661

Radiated Emission:

Operation Mode TX CH Low Test Date 2016/08/17 Fundamental Frequency 2402 MHz Test By Lake

-27 of 39- FCC ID: X8WBH661

IC: 4100A-BH661

Operation Mode TX CH High Fundamental Frequency 2480 MHz Temperature 25

Test Date 2016/08/17 Test By Lake

9 SPURIOUS RADIATED EMISSION TEST

9.1 Standard Applicable

According to

-29 of 39- FCC ID: X8WBH661

IC: 4100A-BH661

9.4 Measurement Procedure:

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. The turn table shall rotate 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emissions.
- 4. When measurement procedures for electric field radiated emissions above 1 GHz the EUT measurement is to be made "while keeping the antenna in the 'cone of radiation' from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response." is still within the 3dB illumination BW of the measurement antenna.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. Repeat above procedures until all frequency measured were complete.

9.5 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CL - AG$$

Where FS = Field Strength		CL = Cable Attenuation Factor (Cable Loss)
	RA = Reading Amplitude	AG = Amplifier Gain
	AF = Antenna Factor	

9.6 Measurement Result:

Note: Refer to next page spectrum analyzer data chart and tabular data sheets.

-30 of 39- FCC ID: X8WBH661

IC: 4100A-BH661

Report Number: ISL-16LR226FC

Radiated Spurious Emission Measurement Result (below 1GHz)

Operation Mode TX CH Low Test Date 2016/08/17 Fundamental Frequency 2402MHz Test By Lake

-31 of 39- FCC ID: X8WBH661

IC: 4100A-BH661

Radiated Spurious Emission Measurement Result (below 1GHz)

Operation Mode TX CH Mid Test Date 2016/08/17 Fundamental Frequency 2442MHz Test By Lake

-32 of 39- FCC ID: X8WBH661

IC: 4100A-BH661

Report Number: ISL-16LR226FC

Radiated Spurious Emission Measurement Result (below 1GHz)

Operation Mode TX CH High Test Date 2016/08/17 Fundamental Frequency 2480MHz Test By Lake

-33 of 39- FCC ID: X8WBH661

IC: 4100A-BH661

Report Number: ISL-16LR226FC

Radiated Spurious Emission Measurement Result (above 1GHz)

Operation Mode TX CH Low Test Date 2016/08/17 Fundamental Frequency 2402MHz Test By Lake

-34 of 39-**FCC ID: X8WBH661**

IC: 4100A-BH661

Report Number: ISL-16LR226FC

Radiated Spurious Emission Measurement Result (above 1GHz)

Operation Mode TX CH Mid Test Date 2016/08/17 Test By Lake

Fundamental Frequency 2442MHz

-35 of 39- FCC ID: X8WBH661

IC: 4100A-BH661

Report Number: ISL-16LR226FC

Radiated Spurious Emission Measurement Result (above 1GHz)

Operation Mode TX CH High Test Date 2016/08/17 Fundamental Frequency 2480MHz Test By Lake

-36 of 39-**FCC ID: X8WBH661**


IC: 4100A-BH661

10 Peak Power Spectral Density

10.1 Standard Applicable: According to

Power Spectral Density Test Plot (CH-Low)

Power Spectral Density Test Plot (CH-Mid)

Power Spectral Density Test Plot (CH-High)

-39 of 39-**FCC ID: X8WBH661**

IC: 4100A-BH661

11 ANTENNA REQUIREMENT

11.1 Standard Applicable: According to