

FCC PART 15 B

MEASUREMENT AND TEST REPORT

For

JINGXIN METAL&PLASTIC PRODUCTS (HUIZHOU) CO;LTD.

8# Area Songshan Industrial Park ZhongKai Huizhou,
Guangdong,China

FCC ID: X8G-SNL-R

March 24, 2010

This Report Concerns: <input checked="" type="checkbox"/> Original Report	Equipment Type: Receiver of Stair Night Light
Test By: <u>Steven Zou/</u>	
Report Number: <u>BCT10CR-0244E-2</u>	
Test Date: <u>March 01~ March 24, 2010</u>	
Reviewed By: <u>Thom Chen/</u>	
Approved By: <u>Kendy Wang/</u>	
Prepared By: Bontek Compliance Testing Laboratory Ltd. 1/F, Block East H-3, OCT Eastern Ind. Zone, Qiaocheng East Road, Nanshan, Shenzhen, China Tel: +86-755-86337020 Fax: +86-755-86337028	

TABLE OF CONTENTS

1 - GENERAL INFORMATION	3
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
1.2 TEST STANDARDS	3
1.3 TEST SUMMARY	3
1.4 TEST METHODOLOGY	4
1.5 TEST FACILITY	4
1.6 TEST EQUIPMENT LIST AND DETAILS	5
2 - SYSTEM TEST CONFIGURATION.....	7
2.1 JUSTIFICATION	7
2.2 EUT EXERCISE SOFTWARE.....	7
2.3 SPECIAL ACCESSORIES	7
2.4 EQUIPMENT MODIFICATIONS.....	7
2.5 CONFIGURATION OF TEST SYSTEM	7
2.6 TEST SETUP DIAGRAM.....	7
3 - DISTURBANCE VOLTAGE AT THE MAINS TERMINALS.....	8
3.1 MEASUREMENT UNCERTAINTY.....	8
3.2 LIMIT OF DISTURBANCE VOLTAGE AT THE MAINS TERMINALS.....	8
3.3 EUT SETUP	8
3.4 INSTRUMENT SETUP	8
3.5 TEST PROCEDURE	9
3.6 SUMMARY OF TEST RESULTS	9
3.7 TEST RESULT	9
4 - RADIATED DISTURBANCES	10
4.1 MEASUREMENT UNCERTAINTY.....	10
4.2 LIMIT OF RADIATED DISTURBANCES	10
4.3 EUT SETUP	10
4.4 TEST RECEIVER SETUP	11
4.5 TEST PROCEDURE	11
4.6 CORRECTED AMPLITUDE & MARGIN CALCULATION	11
4.7 RADIATED EMISSIONS TEST RESULT	11
4.8 TEST RESULT	11

1 - GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant: **JINGXIN METAL&PLASTIC PRODUCTS (HUIZHOU) CO;LTD.**
Address of applicant: 8# Area Songshan Industrial Park ZhongKai Huizhou,Guangdong, China
Manufacturer: **JINGXIN METAL&PLASTIC PRODUCTS (HUIZHOU) CO;LTD.**
Address of manufacturer: 8# Area Songshan Industrial Park ZhongKai Huizhou,Guangdong, China

General Description of E.U.T

EUT Description: **Receiver of Stair Night Light**
Trade Name: N.A.
Model No.: **SNL**
Power Rating: DC 4.5V from battery

Remark: * *The test data gathered are from the production sample provided by the manufacturer.*

1.2 Test Standards

The following Declaration of Conformity report of EUT is prepared in accordance with
FCC Rules and Regulations Part 15 Subpart B 2006

The objective of the manufacturer is to demonstrate compliance with the described above standards.

1.3 Test Summary

For the EUT described above. The standards used were FCC Part 15 Subpart B for Emissions

Table 1 : Tests Carried Out Under FCC Part 15 Subpart B

Standard	Test Items	Status
FCC Part 15 Subpart B	Conduction Emission, 0.15MHz to 30MHz	✗
FCC Part 15 Subpart B	Radiation Emission, 30MHz to 1000MHz	✓

✓ Indicates that the test is applicable
✗ Indicates that the test is not applicable

1.4 Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2009, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

The equipment under test (EUT) was configured to measure its highest possible radiation level. The test modes were adapted accordingly in reference to the Operating Instructions.

The maximum emission levels emanating from the device are compared to the FCC Part 15 Subpart B limits for radiation emissions and the measurement results contained in this test report show that EUT is to be technically compliant with FCC requirements.

All measurement required was performed at BONTEK COMPLIANCE TESTING LABORATORY LTD. at 1/F, Block East H-3, OCT Eastern Ind. Zone, Qiaocheng East Road, Nanshan, Shenzhen, China

1.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC – Registration No.: 338263

BONTEK COMPLIANCE TESTING LABORATORY LTD. , EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 338263, March, 2008.

IC Registration No.: 7631A

The 3m alternate test site of BONTEK COMPLIANCE TESTING LABORATORY LTD. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 7631A on August 2009.

CNAS - Registration No.: L3923

BONTEK COMPLIANCE TESTING LABORATORY LTD. to ISO/IEC 17025:25 General Requirements for the Competence of Testing and Calibration Laboratories(CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

The acceptance letter from the CNAS is maintained in our files: Registration:L3923,February,2009.

TUV - Registration No.: UA 50145371-0001

BONTEK COMPLIANCE TESTING LABORATORY LTD. An assessment of the laboratory was conducted according to the"Procedures and Conditions for EMC Test Laboratories"with reference to EN ISO/IEC 17025 by a TUV Rheinland auditor. Audit Report NO. 17010783-001

1.6 Test Equipment List and Details

Test equipments list of BONTEK COMPLIANCE TESTING LABORATORY LTD.

No.	Instrument no.	Equipment	Manufacturer	Model No.	S/N	Calculator date	Calculator due date
1	BCT-EMC001	EMI Test Receiver	R&S	ESCI	100687	2009-4-14	2010-4-13
2	BCT-EMC002	EMI Test Receiver	R&S	ESPI	100097	2009-4-14	2010-4-13
3	BCT-EMC003	Amplifier	HP	8447D	1937A02492	2009-4-14	2010-4-13
4	BCT-EMC004	Single Power Conductor Module	FCC	FCC-LISN-5-50-1-01-CISPR25	07101	2009-4-14	2010-4-13
5	BCT-EMC005	Single Power Conductor Module	FCC	FCC-LISN-5-50-1-01-CISPR25	07102	2009-4-14	2010-4-13
6	BCT-EMC006	Power Clamp	SCHWARZBECK	MDS-21	3812	2009-4-14	2010-4-13
7	BCT-EMC007	Positioning Controller	C&C	CC-C-1F	MF7802113	N/A	N/A
8	BCT-EMC008	Electrostatic Discharge Simulator	TESEQ	NSG437	125	2009-4-14	2010-4-13
9	BCT-EMC009	Fast Transient Burst Generator	SCHAFFNER	MODULA6150	34572	2009-4-14	2010-4-13
10	BCT-EMC010	Fast Transient Noise Simulator	Noiseken	FNS-105AX	31485	2009-4-14	2010-4-13
11	BCT-EMC011	Color TV Pattern Generator	PHILIPS	PM5418	TM209947	N/A	N/A
12	BCT-EMC012	Power Frequency Magnetic Field Generator	EVERFINE	EMS61000-8K	608002	2009-4-14	2010-4-13
13	BCT-EMC014	Capacitive Coupling Clamp	TESEQ	CDN8014	25096	2009-4-14	2010-4-13
14	BCT-EMC015	High Field Biconical Antenna	ELECTRO-METRICS	EM-6913	166	2009-4-14	2010-4-13
15	BCT-EMC016	Log Periodic Antenna	ELECTRO-METRICS	EM-6950	811	2009-4-14	2010-4-13

16	BCT-EMC017	Remote Active Vertical Antenna	ELECTRO-METRICS	EM-6892	304	2009-4-14	2010-4-13
17	BCT-EMC018	TRILOG Broadband Test-Antenna	SCHWARZBECK	VULB9163	9163-324	2009-4-14	2010-4-13
18	BCT-EMC019	Horn Antenna	SCHWARZBECK	BBHA9120A	B08000991-0001	2009-4-14	2010-4-13
19	BCT-EMC020	Teo Line Single Phase Module	SCHWARZBECK	NSLK8128	D-69250	2009-4-14	2010-4-13
20	BCT-EMC021	10dB attenuator	SCHWARZBECK	MTAIMP-136	R65.90.0001#06	2009-4-14	2010-4-13
21	BCT-EMC022	Electric bridge	Zentech	100 LCR METER	803024	N/A	N/A
22	BCT-EMC023	RF Current Probe	FCC	F-33-4	80	2009-4-14	2010-4-13
23	BCT-EMC024	SIGNAL GENERATOR	HP	8647A	3349A02296	2009-4-14	2010-4-13
24	BCT-EMC025	MICROWAVE AMPLIFIER	HP	8349B	2627A00994	2009-4-14	2010-4-13
25	BCT-EMC026	Triple-Loop Antenna	EVERFINE	LLA-2	607004	2009-4-14	2010-4-13
26	BCT-EMC027	CDN	FRANKONIA	M2+M3	A3027019	2009-10-20	2010-10-19
27	BCT-EMC028	6dB Attenuator	FRANKONIA	75-A-FFN-06	1001698	2009-10-20	2010-10-19
28	BCT-EMC029	EMV-Mess-Systeme GMBH	FRANKONIA	FLL-75	1020A1109	2009-10-20	2010-10-19
29	BCT-EMC030	EM Injection Clamp	FCC	F-203I-13mm	091536	2009-10-20	2010-10-19
30	BCT-EMC031	9KHz-2.4GHz Signal generator	MARCONI INSTRUMENTS	2024	112260/042	2009-10-20	2010-10-19

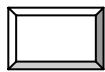
2 - SYSTEM TEST CONFIGURATION

2.1 Justification

The system was configured for testing in a typical fashion (as Normal used by a typical user).

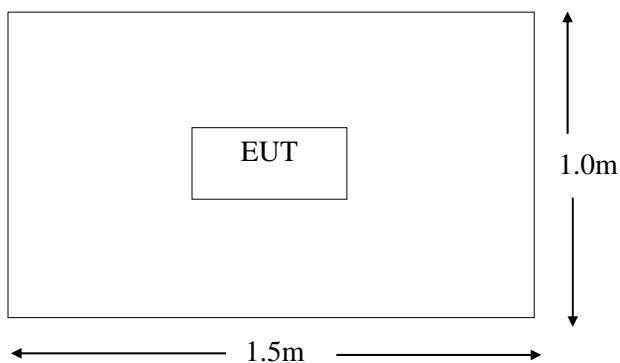
2.2 EUT Exercise Software

The EUT exercising program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use. The software offered by manufacturer, can let the EUT being Normal operation.


2.3 Special Accessories

As shown in section 2.5, interface cable used for compliance testing is shielded as Normal Operation only supplied by **JINGXIN METAL&PLASTIC PRODUCTS (HUIZHOU) CO;LTD.** and its respective support equipment manufacturers.

2.4 Equipment Modifications


The EUT tested was not modified by BCT.

2.5 Configuration of Test System

EUT

2.6 Test Setup Diagram

3 - DISTURBANCE VOLTAGE AT THE MAINS TERMINALS

3.1 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

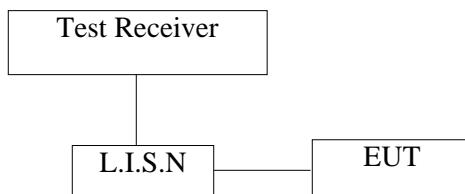
The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement is 3.4 dB.

3.2 Limit of Disturbance Voltage at The Mains Terminals

Frequency Range (MHz)	Limits (dBuV)	
	Quasi-Peak	Average
0.150~0.500	66~56	56~46
0.500~5.000	56	46
5.000~30.00	60	50

Note: (1)The tighter limit shall apply at the edge between two frequency bands.

3.3 EUT Setup


The setup of EUT is according with ANSI C63.4-2009 measurement procedure. The specification used was the FCC Rules and Regulations Part 15 Subpart B limits.

The EUT was placed center and the back edge of the test table.

The AV cables were draped along the test table and bundled to 30-40cm in the middle.

The spacing between the peripherals was 10 cm.

Maximum emission emitted from EUT was determined by manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation and the levels in the final result of the test were recorded with the EUT running in the operating mode that maximum emission was emitted.

3.4 Instrument Setup

The test receiver was set with the following configurations:

Test Receiver Setting:

Frequency Range.....150 KHz to 30 MHz
Detector.....Peak & Quasi-Peak & Average
Sweep Speed.....Auto
IF Band Width.....9 KHz

3.5 Test Procedure

During the conducted emission test, the EUT power cord was connected to the auxiliary outlet of the first Artificial Mains.

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance using all installation combination.

All data was recorded in the peak detection mode. Quasi-peak and Average readings were only performed when an emission was found to be marginal (within -10 dB μ V of specification limits). Quasi-peak readings are distinguished with a "QP". Average readings are distinguished with a "AV".

3.6 Summary of Test Results

According to the data in section 3.6, the EUT complied with the FCC Part 15 B Conducted margin, with the worst margin reading of:

3.7 Test Result

NOTE: The EUT is powered by DC 4.5V battery,without AC mains ,this test isn't applicable.

4 - RADIATED DISTURBANCES

4.1 Measurement Uncertainty

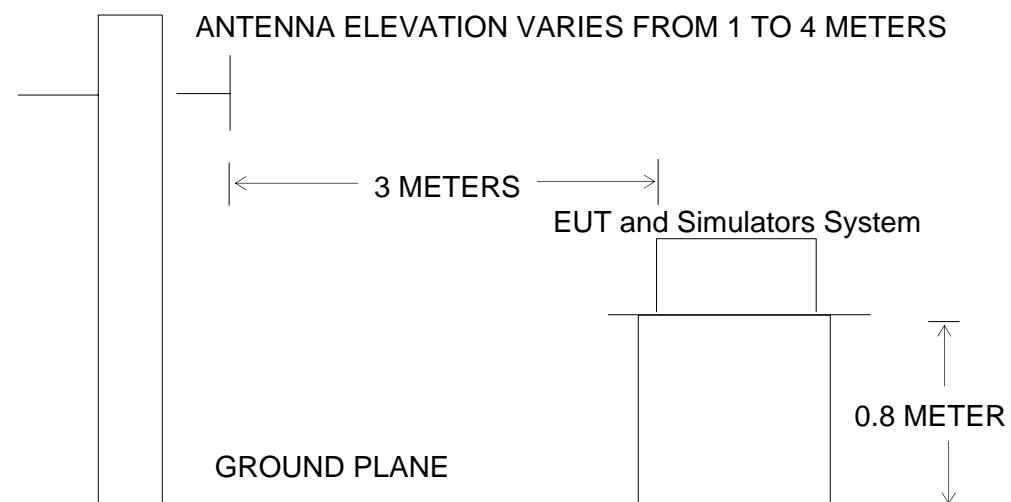
All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement is 4.0 dB.

4.2 Limit of Radiated Disturbances

Frequency (MHz)	Distance (Meters)	Field Strengths Limits (dB μ V/m)
30 ~ 88	3	40
88~216	3	43.5
216 ~ 960	3	46
960 ~ 1000	3	54

Note: (1) The tighter limit shall apply at the edge between two frequency bands.
(2) Distance refers to the distance in meters between the test instrument antenna and the closest point of any part of the E.U.T.


4.3 EUT Setup

The radiated emission tests were performed in the in the 3-meter anechoic chamber, using the setup accordance with the ANSI C63.4-2009. The specification used was the FCC Part 15 Subpart B limits.

The EUT was placed on the center of the test table.

Maximum emission emitted from EUT was determined by manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation and the levels in the final result of the test were recorded with the EUT running in the operating mode that maximum emission was emitted.

Block diagram of test setup (In chamber)

4.4 Test Receiver Setup

According to FCC Part 15 rule, the frequency was investigated from 30 to 1000 MHz. During the radiated emission test, the test receiver was set with the following configurations:

Test Receiver Setting:

Detector.....Peak & Quasi-Peak
IF Band Width.....120KHz
Frequency Range.....30MHz to 1000MHz
Turntable Rotated.....0 to 360 degrees

Antenna Position:

Height.....1m to 4m
Polarity.....Horizontal and Vertical

4.5 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the peak detection mode. Quasi-peak readings performed only when an emission was found to be marginal (within $-10 \text{ dB}\mu\text{V}$ of specification limits), and are distinguished with a "QP" in the data table.

4.6 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

$$\text{Corr. Ampl.} = \text{Indicated Reading} + \text{Antenna Factor} + \text{Cable Factor} - \text{Amplifier Gain}$$

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-7 \text{ dB}\mu\text{V}$ means the emission is $7 \text{ dB}\mu\text{V}$ below the maximum limit for Subpart B. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Limit} - \text{Corr. Ampl.}$$

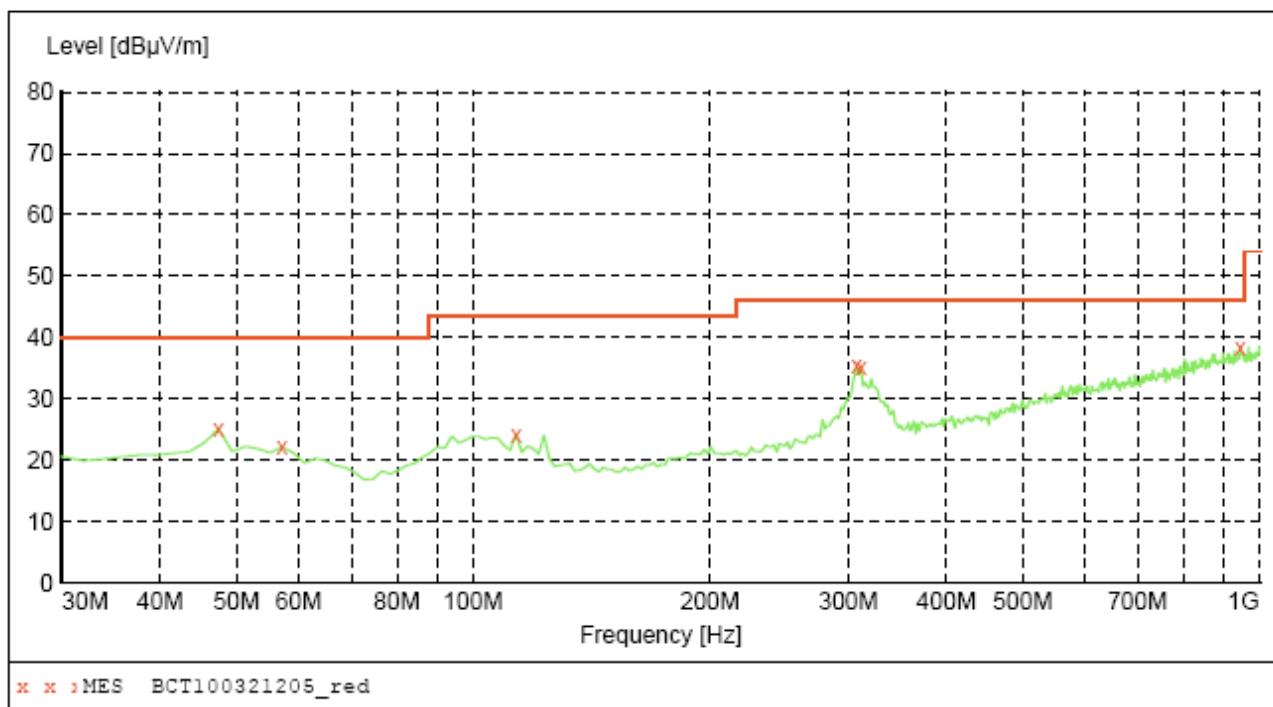
4.7 Radiated Emissions Test Result

Temperature (°C)	22~25
Humidity (%RH)	50~54
Barometric Pressure (mbar)	950~1000
EUT	Receiver of Stair Night Light
M/N	SNL
Operating Mode	Normal Operation

Test data see following pages

Remark: (1) When PK reading is less than relevant limit 20dB, the QP reading and AV reading will not be recorded.
(2) Where QP reading is less than relevant AV limit, the AV reading will not be measured

4.8 Test Result


PASS

Radiated Emission Test Data:

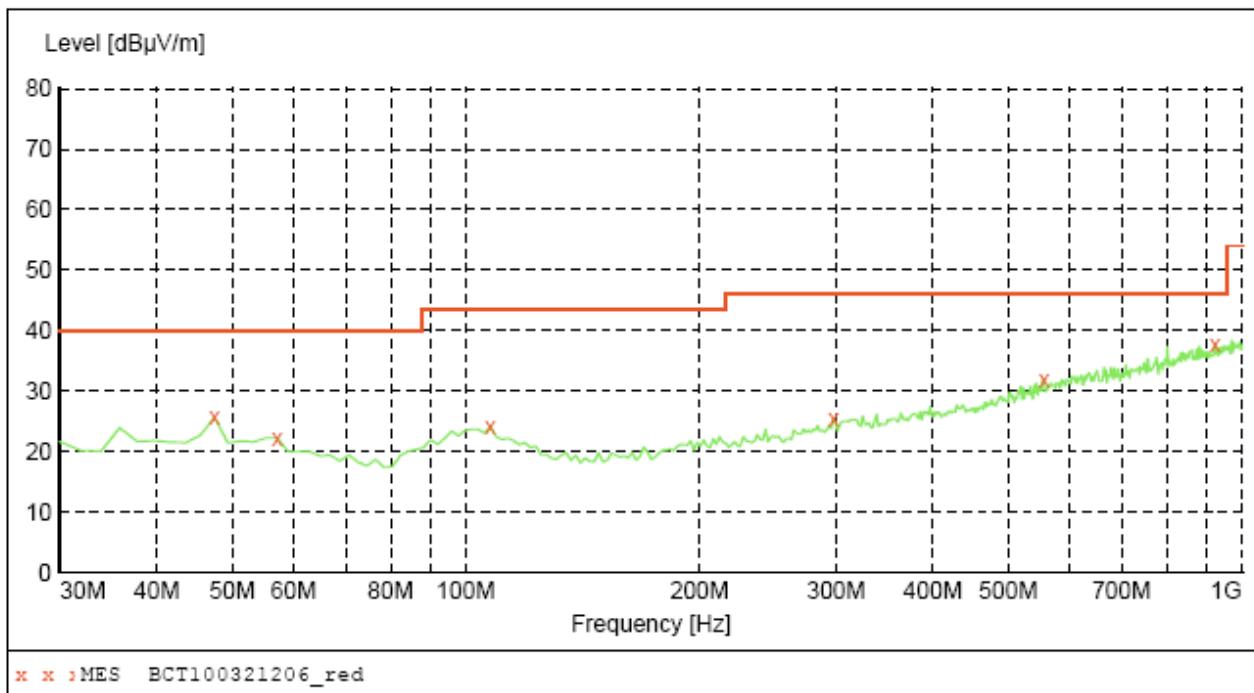
EUT: Receiver of Stair Night Light
M/N: SNL
Operating Condition: Normal Operation
Test Site: 3m CHAMBER
Operator: Chen
Test Specification: DC 4.5V
Comment: Polarization: Horizontal
Tem:25°C Hum:50%

SWEET TABLE: "test (30M-1G)"

Short Description:		Field Strength		
Start Frequency	Stop Frequency	Detector	Meas.	IF
30.0 MHz	1.0 GHz	MaxPeak	Coupled	100 kHz
Transducer VULB9163 NEW				

MEASUREMENT RESULT: "BCT100321205_red"

3/22/2010 10:34


Frequency MHz	Level dB μ V/m	Transd dB	Limit dB μ V/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
47.460000	25.20	15.8	40.0	14.8	---	100.0	0.00	HORIZONTAL
57.160000	22.10	15.1	40.0	17.9	---	100.0	0.00	HORIZONTAL
113.420000	24.30	16.2	43.5	19.2	---	100.0	0.00	HORIZONTAL
307.420000	35.30	18.9	46.0	10.7	---	100.0	0.00	HORIZONTAL
311.300000	35.10	19.0	46.0	10.9	---	100.0	0.00	HORIZONTAL
945.680000	38.50	31.7	46.0	7.5	---	100.0	0.00	HORIZONTAL

Radiated Emission Test Data:

EUT: Receiver of Stair Night Light
M/N: SNL
Operating Condition: Normal Operation
Test Site: 3m CHAMBER
Operator: Chen
Test Specification: DC 4.5V
Comment: Polarization: Vertical
Tem:25°C Hum:50%

SWEEP TABLE: "test (30M-1G)"

Short Description:		Field Strength		
Start Frequency	Stop Frequency	Detector	Meas.	IF
30.0 MHz	1.0 GHz	MaxPeak	Coupled	100 kHz
				Transducer
				VULB9163 NEW

MEASUREMENT RESULT: "BCT100321206_red"

3/22/2010 10:41

Frequency MHz	Level dB μ V/m	Transd dB	Limit dB μ V/m	Margin dB	Det. ---	Height cm	Azimuth deg	Polarization
47.460000	25.70	15.8	40.0	14.3	---	100.0	0.00	VERTICAL
57.160000	22.30	15.1	40.0	17.7	---	100.0	0.00	VERTICAL
107.600000	24.10	16.9	43.5	19.4	---	100.0	0.00	VERTICAL
297.720000	25.40	18.7	46.0	20.6	---	100.0	0.00	VERTICAL
555.740000	32.00	25.3	46.0	14.0	---	100.0	0.00	VERTICAL
924.340000	37.70	31.5	46.0	8.3	---	100.0	0.00	VERTICAL