

FCC Test Report

Product Name	: SkyCaddie
Model No.	: Touch
FCC ID.	: X8F-SCTOUCH

Applicant : SkyHawke Technologies, LLC

274 Commerce Park Drive, Ridgeland, Mississippi 39157 USA Address

Date of Receipt	:	2014/02/17
Issued Date	:	2014/12/31
Report No.	:	1490372R-RFUSP01V00-B
Report Version	:	V1.0
lac-m	A ANNA	TAF
" International	her	Testing Laboratory 3024

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.

Test Report Certification

Issued Date : 2014/12/31 Report No. : 1490372R-RFUSP01V00-B

Product Name	:	SkyCaddie				
Applicant	:	SkyHawke Technologies, LLC				
Address	:	274 Commerce Park Drive, Ridgeland, Mississippi 39157 USA				
Manufacturer	:	Holux Technology, Inc.				
Model No.	:	Touch				
FCC ID.	:	X8F-SCTOUCH				
EUT Voltage	:	Vode 1: DC 3.7V (Power by Battery) Vode 2: AC100-240V, 50-60Hz Vode 3: DC 5V (Power by PC)				
Trade Name	:	SkyCaddie / SkyGolf				
Applicable Standard	:	FCC CFR Title 47 Part 15 Subpart C Section 15.247: 2013				
Test Result	:	Complied				
The test results relate only to	the	e samples tested.				
The test report shall not be rep	oro	duced except in full without the written approval of QuieTek Corporation.				
Documented By		Forbo Fang				
		(Fonbo Fang / Engineering Adm. Assistant)				
Reviewed By		Ken Huang				
		(Ken Huang / Assistant Engineer)				
Approved By		Roy Wang				
		(Roy Wang / Director)				

Laboratory Information

We, **QuieTek Corporation**, are an independent RF consultancy that was established the whole facility in our laboratories. The test facility has been accredited/accepted (audited or listed) by the following related bodies in compliance with ISO 17025 specified testing scopes:

Taiwan R.O.C.	:	TAF, Accreditation Number: 3024 NCC, Certificate No: NCC-RCB-07
USA	:	FCC, Registration Number: 365520
Canada	:	IC, Submission No: 150981

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site:http://www.quietek.com/tw/ctg/cts/accreditations.htm

The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site :

http://www.quietek.com/

If you have any comments, Please don't hesitate to contact us. Our contact information is as below:

HsinChu Testing Laboratory:

No.75-2, 3rd Lin, Wangye Keng, Yonghxing Tsuen, Qionglin Shiang, Hsinchu County 307, Taiwan, R.O.C. TEL:+886-3-592-8858 / FAX:+886-3-592-8859 E-Mail : <u>service@quietek.com</u>

LinKou Testing Laboratory:

No.5-22, Ruishukeng, Linkou Dist., New Taipei City 24451, Taiwan, R.O.C. TEL : 886-2-8601-3788 / FAX : 886-2-8601-3789 E-Mail : <u>service@quietek.com</u>

TABLE OF CONTENTS

Description

Page

1.	General Information	6
1.1.	EUT Description	6
1.2.	Test Mode	7
1.3.	Tested System Details	8
1.4.	Configuration of tested System	9
1.5.	EUT Exercise Software	.10
1.6.	Test Facility	. 11
2.	Conducted Emission	.12
2.1.	Test Equipment	.12
2.2.	Test Setup	.12
2.3.	Limits	13
2.4.	Test Procedure	.13
2.5.	Test Specification	.13
2.6.	Uncertainty	.13
2.7.	Test Result	.14
2.8.	Test Photo	.18
3.	Peak Power Output	.20
3.1.	Test Equipment	.20
3.2.	Test Setup	.20
3.3.	Test procedures	.20
3.4.	Limits	20
3.5.	Test Specification	.20
3.6.	Test Result	21
4.	Radiated Emission	.22
4.1.	Test Equipment	.22
4.2.	Test Setup	.22
4.3.	Limits	23
4.4.	Test Procedure	.23
4.5.	Test Specification	.23
4.6.	Test Result	.24
4.7.	Test Photo	41
5.	RF antenna conducted test	.45
5.1.	Test Equipment	.45
5.2.	Test Setup	.45
5.3.	Limits	46
5.4.	Test Procedure	46
5.5.	Test Specification	.46
5.6.	Test Result	47
6.	Band Edge	.56
6.1.	Test Equipment	.56
6.2.	Test Setup	56

6.3.	Limits	. 57
6.4.	Test Procedure	. 57
6.5.	Test Specification	. 57
6.6.	Test Result	. 58
7.	Occupied Bandwidth	. 66
7.1.	Test Equipment	. 66
7.2.	Test Setup	. 66
7.3.	Limits	. 66
7.4.	Test Procedures	. 66
7.5.	Test Specification	. 66
7.6.	Test Result	. 67
8.	Power Density	.70
8.1.	Test Equipment	.70
8.2.	Test Setup	. 70
8.3.	Limits	.70
8.4.	Test Procedures	.70
8.5.	Test Specification	.70
8.6.	Uncertainty	. 70
8.7.	Test Result	.71
Attachement		.74
	EUT Photograph	.74

1. General Information

1.1. EUT Description

Product Name	SkyCaddie
Trade Name	SkyCaddie / SkyGolf
Model No.	Touch
Frequency Range/Channel Number	2402~2480MHz / 40 Channels
Type of Modulation	Bluetooth 4.0(GFSK)
Antenna Type	Chip Antenna
Antenna Gain	0.2dBi

Working Frequency of Each Channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
Channel 00	2402 MHz	Channel 10	2422 MHz	Channel 20	2442 MHz	Channel 30	2462 MHz	
Channel 01	2404 MHz	Channel 11	2424 MHz	Channel 21	2444 MHz	Channel 31	2464 MHz	
Channel 02	2406 MHz	Channel 12	2426 MHz	Channel 22	2446 MHz	Channel 32	2466 MHz	
Channel 03	2408 MHz	Channel 13	2428 MHz	Channel 23	2448 MHz	Channel 33	2468 MHz	
Channel 04	2410 MHz	Channel 14	2430 MHz	Channel 24	2450 MHz	Channel 34	2470 MHz	
Channel 05	2412 MHz	Channel 15	2432 MHz	Channel 25	2452 MHz	Channel 35	2472 MHz	
Channel 06	2414 MHz	Channel 16	2434 MHz	Channel 26	2454 MHz	Channel 36	2474 MHz	
Channel 07	2416MHz	Channel 17	2436 MHz	Channel 27	2456 MHz	Channel 37	2476 MHz	
Channel 08	2418 MHz	Channel 18	2438 MHz	Channel 28	2458 MHz	Channel 38	2478 MHz	
Channel 09	2420 MHz	Channel 19	2440 MHz	Channel 29	2460 MHz	Channel 39	2480 MHz	

- 1. This device is a SkyCaddie including a 2.4GHz Bluetooth 4.0 function and BT 2.0 function.
- 2. Regards to the frequency band operation; the lowest

 middle and highest frequency of channel were selected to perform the test, and then shown on this report.
- 3. This device is a Bluetooth 4.0 in accordance with Part 15 regulations. The function receiving was measured and made a test report that the report number is 1480253R-RFUSP01V00 under Declaration of Conformity and The function BT 2.0 was measured and made a test report that the report number is 1480253R-RFUSP01V00-A under Declaration of Conformity.

1.2. Test Mode

QuieTek has verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-Test Mode					
Test Mode	Mode 1: Transmit (Power by Battery)				
	Mode 2: Transmit (Power by Adapter)				
	Mode 3: Transmit (Power by PC)				
Final Test Mode					
Test Mode	Mode 1: Transmit (Power by Battery)				
Mode 2: Transmit (Power by Adapter)					
Mode 3: Transmit (Power by PC)					

Test Items	Mode	Modulation	Channel	Antenna	Result
Conducted Emission	2/3	GFSK	19	0	Complies
Peak Power Output	2	GFSK	0/19/39	0	Complies
Radiated Emission	1/2/3	GFSK	0/19/39	0	Complies
RF antenna conducted test	2	GFSK	0/19/39	0	Complies
Radiated Emission Band	2	CEOK	0/20	0	Complias
Edge	Z	Gron	0/39	0	Complies
Occupied Bandwidth	2	GFSK	0/19/39	0	Complies
Power Density	2	GFSK	0/19/39	0	Complies

1.3. Tested System Details

The types for all equipments, plus descriptions of all cables used in the tested system (including inserted cards) are:

Test Mode	Mode 1: Transmit (Power by Battery)
	Mode 2: Transmit (Power by Adapter)

N/A

	Test Mode	Mode 3: Trans	smit (Power by	PC)		
	Product	Manufacturer	Model No.	Serial No.	FCC ID	Power Cord
1	Notebook PC	ACER	PAV70	LUSEW0D0371	DoC	Non-Shielded, 2.5m
				105FE221601		one ferrite core bonded
2	USB 2.0 Flash	Apacer	AH223	N/A	DoC	
	Memory					
3	Microphone &	Fujiei	SBZ-38	N/A	DoC	
	Earphone					
4	USB Mouse	Logitech	M-UV83	35005917	DoC	

1.4. Configuration of tested System

1.5. EUT Exercise Software

1	Setup the EUT as shown in Section 1.4.
2	Execute the setting with the fixture.
3	Configure the test mode, the test channel to start the continuous transmit.
4	Verify that the EUT works properly.

1.6. Test Facility

Ambient conditions in the laboratory:

Items	Test Item	Required (IEC 68-1)	Actual
Temperature (°C)		15 - 35	20
Humidity (%RH)		25 - 75	50
Barometric pressure (mbar)	Conducted Emission	860 - 1060	950-1000
Temperature (°C)		15 - 35	23
Humidity (%RH)	POC PART 15 C 15.247	25 - 75	50
Barometric pressure (mbar)		860 - 1060	950-1000
Temperature (°C)		15 - 35	25
Humidity (%RH)	Podiated Emission	25 - 75	54
Barometric pressure (mbar)		860 - 1060	950-1000
Temperature (°C)		15 - 35	25
Humidity (%RH)	Pond Edge	25 - 75	50
Barometric pressure (mbar)	Band Edge	860 - 1060	950-1000
Temperature (°C)		15 - 35	24
Humidity (%RH)	CC PART 15 C 15.247	25 - 75	48
Barometric pressure (mbar)		860 - 1060	950-1000
Temperature (°C)		15 - 35	24
Humidity (%RH)	PE antenna conducted test	25 - 75	48
Barometric pressure (mbar)		860 - 1060	950-1000
Temperature (°C)		15 - 35	24
Humidity (%RH)	Power Density	25 - 75	48
Barometric pressure (mbar)		860 - 1060	950-1000

2. Conducted Emission

2.1. Test Equipment

The following test equipments are used during the test:

Conducted Emission / SR3

Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
LISN	R&S	ENV216	100096	2015/08/10
LISN	R&S	ESH3-Z5	836679/022	2015/12/15
Test Receiver	R&S	ESCS 30	825442/017	2016/12/23

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart C Paragraph 15.207 Limits (dBuV)					
Frequency MHz	QP	AV			
0.15 - 0.50	66-56	56-46			
0.50 - 5.0	56	46			
5.0 - 30	60	50			

Remarks: In the above table, the tighter limit applies at the band edges.

2.4. Test Procedure

The EUT was setup according to ANSI C63.10 and tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs.)

Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.

2.5. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.207: 2013

2.6. Uncertainty

The measurement uncertainty is defined as ± 2.26 dB.

2.7. **Test Result**

Site : SR3	Time : 2014/12/26 - 11:28
Limit : CISPR_B_00M_QP	Margin : 10
Probe : SR3_LISN(16A)-4_0811 - Line1	Power : AC 120V 60Hz
EUT : SkyCaddie	Note : Mode 2: Transmit (Power by Adapter)
	GFSK-802.11n(40M)-2440MHz

Frequency (MHz)

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	
1		0.295	9.725	37.580	47.306	-13.090	60.396	QUASIPEAK
2		0.295	9.725	26.360	36.086	-14.310	50.396	AVERAGE
3		0.369	9.772	44.960	54.731	-3.798	58.529	QUASIPEAK
4	*	0.369	9.772	36.190	45.961	-2.568	48.529	AVERAGE
5		1.345	9.950	36.640	46.590	-9.410	56.000	QUASIPEAK
6		1.345	9.950	27.080	37.030	-8.970	46.000	AVERAGE
7		1.798	9.950	36.180	46.130	-9.870	56.000	QUASIPEAK
8		1.798	9.950	26.690	36.640	-9.360	46.000	AVERAGE
9		3.736	10.027	33.060	43.087	-12.913	56.000	QUASIPEAK
10		3.736	10.027	23.600	33.627	-12.373	46.000	AVERAGE
11		20.873	10.122	31.260	41.382	-18.618	60.000	QUASIPEAK
12		20.873	10.122	18.770	28.892	-21.108	50.000	AVERAGE

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

Site : SR3	Time : 2014/12/26 - 11:33
Limit : CISPR_B_00M_QP	Margin : 10
Probe : SR3_LISN(16A)-4_0811 - Line2	Power : AC 120V 60Hz
EUT : SkyCaddie	Note : Mode 2: Transmit (Power by Adapter)
	GFSK-802.11n(40M)-2440MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	
1	*	0.369	9.770	37.680	47.450	-11.079	58.529	QUASIPEAK
2		0.369	9.770	27.200	36.970	-11.559	48.529	AVERAGE
3		0.572	9.861	28.560	38.421	-17.579	56.000	QUASIPEAK
4		0.572	9.861	17.910	27.771	-18.229	46.000	AVERAGE
5		1.216	9.952	29.960	39.912	-16.088	56.000	QUASIPEAK
6		1.216	9.952	18.680	28.632	-17.368	46.000	AVERAGE
7		3.408	10.024	27.360	37.384	-18.616	56.000	QUASIPEAK
8		3.408	10.024	16.270	26.294	-19.706	46.000	AVERAGE
9		14.627	10.254	21.540	31.794	-28.206	60.000	QUASIPEAK
10		14.627	10.254	9.200	19.454	-30.546	50.000	AVERAGE
11		23.990	10.404	25.180	35.584	-24.416	60.000	QUASIPEAK
12		23.990	10.404	11.230	21.634	-28.366	50.000	AVERAGE

Note:

1. All Reading Levels are Quasi-Peak and average value.

2. " * ", means this data is the worst emission level.

3. Measurement Level = Reading Level + Correct Factor.

Site : SR3	Time : 2014/12/26 - 11:42
Limit : CISPR_B_00M_QP	Margin : 10
Probe : SR3_LISN(16A)-4_0811 - Line1	Power : DC 5V (Power by PC)
EUT : SkyCaddie	Note : Mode 3: Transmit (Power by PC)
	GFSK-802.11n(40M)-2440MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	
1	*	0.177	9.652	40.320	49.972	-14.653	64.625	QUASIPEAK
2		0.177	9.652	22.290	31.942	-32.683	64.625	AVERAGE
3		0.212	9.650	34.020	43.670	-19.457	63.127	QUASIPEAK
4		0.212	9.650	12.020	21.670	-41.457	63.127	AVERAGE
5		0.662	9.744	24.580	34.324	-21.676	56.000	QUASIPEAK
6		0.662	9.744	12.410	22.154	-33.846	56.000	AVERAGE
7		1.884	9.825	20.920	30.745	-25.255	56.000	QUASIPEAK
8		1.884	9.825	5.310	15.135	-40.865	56.000	AVERAGE
9		8.689	10.081	25.340	35.421	-24.579	60.000	QUASIPEAK
10		8.689	10.081	9.800	19.881	-40.119	60.000	AVERAGE
11		26.666	10.183	32.140	42.323	-17.677	60.000	QUASIPEAK
12	*	26.666	10.183	26.560	36.743	-23.257	60.000	AVERAGE

Note:

1. All Reading Levels are Quasi-Peak and average value.

2. " * ", means this data is the worst emission level.

3. Measurement Level = Reading Level + Correct Factor.

Site : SR3	Time : 2014/12/26 - 11:45
Limit : CISPR_B_00M_QP	Margin : 10
Probe : SR3_LISN(16A)-4_0811 -	Power : DC 5V (Power by PC)
EUT : SkyCaddie	Note : Mode 3: Transmit (Power by PC)
	GFSK-802.11n(40M)-2440MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	
1	*	0.170	9.653	47.280	56.933	-8.050	64.983	QUASIPEAK
2		0.170	9.653	29.670	39.323	-15.660	54.983	AVERAGE
3		0.197	9.651	42.800	52.451	-11.291	63.741	QUASIPEAK
4		0.197	9.651	20.470	30.121	-23.621	53.741	AVERAGE
5		0.361	9.742	32.860	42.602	-16.105	58.707	QUASIPEAK
6		0.361	9.742	14.380	24.122	-24.585	48.707	AVERAGE
7		1.869	9.824	21.940	31.764	-24.236	56.000	QUASIPEAK
8		1.869	9.824	13.450	23.274	-22.726	46.000	AVERAGE
9		13.814	10.135	21.880	32.015	-27.985	60.000	QUASIPEAK
10		13.814	10.135	10.980	21.115	-28.885	50.000	AVERAGE
11		26.662	10.183	31.460	41.643	-18.357	60.000	QUASIPEAK
12		26.662	10.183	25.490	35.673	-14.327	50.000	AVERAGE

Note:

1. All Reading Levels are Quasi-Peak and average value.

2. " * ", means this data is the worst emission level.

3. Measurement Level = Reading Level + Correct Factor.

3. Peak Power Output

3.1. Test Equipment

The following test equipment is used during the test:

Peak Power Output / SR7

Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date	
Power Meter	Agilent	N1911A	MY45101353	2015/10/31	
Power Sensor	Agilent	N1921A	MY45241670	2015/10/31	

Note: All equipment upon which need to calibrated are with calibration period of 1 year.

3.2. Test Setup

3.3. Test procedures

The EUT was setup according to ANSI C63.10; tested according to DTS test procedure of KDB558074 V03R02 for compliance to FCC 47CFR 15.247 requirements.

3.4. Limits

The maximum peak power shall be less 1 Watt.

3.5. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247

3.6. Test Result

Product	SkyCaddie				
Test Item	Peak Power Output				
Test Mode Mode 2: Transmit (Power by Adapter)					
Date of Test	2014/12/29	Test Site	SR7		

GFSK

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
00	2402	4.21	30	Pass
19	2440	5.70	30	Pass
39	2480	7.15	30	Pass

4. Radiated Emission

4.1. Test Equipment

The following test equipments are used during the test:

Radiated Emission / CB1

Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
Bilog Antenna	SCHAFFNER	CBL6112B	2895(CB1)	2015/08/14
Double Ridged Guide	Schwarzback	BBHA 9120		
Horn Antenna			D743	2015/02/12
Pre-Amplifier	Quietek	AMF-4D.	888003	2015/06/02
Pre-Amplifier	QuieTek	AP-025C	CHM-0706049	2015/02/06
Spectrum Analyzer	Agilent	E4440A	MY46187335	2015/01/12
k Type Cable	Huber Suhner	Sucoflex 102	25623/2	2015/02/10
Bilog Antenna	SCHAFFNER	CBL6112B	2895(CB1)	2015/08/14

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.

4.2. Test Setup

Under 1GHz Test Setup:

Above 1GHz Test Setup:

Page: 22 of 85

4.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209 Limits					
Frequency MHz	uV/m	dBuV/m			
30-88	100	40			
88-216	150	43.5			
216-960	200	46			
Above 960	500	54			

Remarks : 1. RF Voltage (dBuV) = 20 log RF Voltage (uV)

2. In the Above Table, the tighter limit applies at the band edges.

3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

4.4. Test Procedure

The EUT was setup according to ANSI C63.10 and tested according to DTS test procedure of KDB558074 V03R02 for compliance to FCC 47CFR 15.247 requirements.

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10 on radiated measurement.

On any frequency or frequencies below or equal to 1000 MHz, the limits shown are based on measuring equipment employing a quasi-peak detector function and on any frequency or frequencies above 1000 MHz the radiated limits shown are based upon the use of measurement instrumentation employing an average detector function. When average radiated emission measurement are included emission measurement below 1000 MHz, there also is a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit. The bandwidth below 1GHz setting on the field strength meter is 120 kHz and above 1GHz is 1MHz.

4.5. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247

4.6. Test Result

30MHz-1GHz Spurious

Site : CB1	Time : 2014/12/29 - 21:27
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB1_FCC_EFS_30-1G-2_1011 - HORIZONTAL	Power : DC 3.7V (Power by Battery)
EUT : SkyCaddie	Note : Mode 1: Transmit (Power by Battery)_2440MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		130.448	10.459	10.572	21.031	-22.469	43.500	QUASIPEAK
2		355.332	14.081	10.734	24.815	-21.185	46.000	QUASIPEAK
3		499.258	17.168	10.352	27.520	-18.480	46.000	QUASIPEAK
4		637.687	17.675	10.410	28.085	-17.915	46.000	QUASIPEAK
5	*	803.102	19.222	10.208	29.430	-16.570	46.000	QUASIPEAK
6		986.507	20.178	10.444	30.623	-23.377	54.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Site : CB1	Time : 2014/12/29 - 21:31
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB1_FCC_EFS_30-1G-2_1011 - VERTICAL	Power : DC 3.7V (Power by Battery)
EUT : SkyCaddie	Note : Mode 1: Transmit (Power by Battery)_2440MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		120.453	10.802	10.323	21.125	-22.375	43.500	QUASIPEAK
2		273.874	12.298	10.208	22.506	-23.494	46.000	QUASIPEAK
3		408.805	15.333	11.236	26.569	-19.431	46.000	QUASIPEAK
4		512.751	17.221	10.807	28.028	-17.972	46.000	QUASIPEAK
5	*	787.609	19.062	10.465	29.528	-16.472	46.000	QUASIPEAK
6		988.006	20.191	10.149	30.340	-23.660	54.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Site : CB1	Time : 2014/12/29 - 21:35
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB1_FCC_EFS_30-1G-2_1011 - HORIZONTAL	Power : AC 120V / 60Hz
EUT : SkyCaddie	Note : Mode 2: Transmit (Power by Adapter)_2440MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		124.951	10.648	11.403	22.051	-21.449	43.500	QUASIPEAK
2		287.867	12.541	13.322	25.863	-20.137	46.000	QUASIPEAK
3	*	508.753	17.210	23.622	40.831	-5.169	46.000	QUASIPEAK
4		687.161	17.927	10.408	28.335	-17.665	46.000	QUASIPEAK
5		791.108	19.105	10.500	29.605	-16.395	46.000	QUASIPEAK
6		959.521	19.958	11.208	31.166	-14.834	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Site : CB1	Time : 2014/12/29 - 21:39
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB1_FCC_EFS_30-1G-2_1011 - VERTICAL	Power : AC 120V / 60Hz
EUT : SkyCaddie	Note : Mode 2: Transmit (Power by Adapter)_2440MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		117.955	10.718	9.863	20.581	-22.919	43.500	QUASIPEAK
2		326.847	13.397	12.685	26.082	-19.918	46.000	QUASIPEAK
3		503.756	17.195	10.208	27.402	-18.598	46.000	QUASIPEAK
4		703.653	18.037	10.412	28.449	-17.551	46.000	QUASIPEAK
5	*	832.087	19.297	10.825	30.122	-15.878	46.000	QUASIPEAK
6		960.021	19.962	12.249	32.211	-21.789	54.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Site : CB1	Time : 2014/12/29 - 21:45
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB1_FCC_EFS_30-1G-2_1011 - HORIZONTAL	Power : DC 5V (Power by PC)
EUT : SkyCaddie	Note : Mode 3: Transmit (Power by PC)_2440MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		119.954	10.802	14.248	25.050	-18.450	43.500	QUASIPEAK
2		246.888	11.652	20.459	32.111	-13.889	46.000	QUASIPEAK
3		316.352	13.145	18.438	31.583	-14.417	46.000	QUASIPEAK
4		449.784	16.164	10.729	26.893	-19.107	46.000	QUASIPEAK
5		822.092	19.271	10.299	29.570	-16.430	46.000	QUASIPEAK
6	*	959.521	19.958	13.669	33.627	-12.373	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Site : CB1	Time : 2014/12/29 - 21:50
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB1_FCC_EFS_30-1G-2_1011 - VERTICAL	Power : DC 5V (Power by PC)
EUT : SkyCaddie	Note : Mode 3: Transmit (Power by PC)_2440MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		188.418	8.220	18.239	26.459	-17.041	43.500	QUASIPEAK
2		330.345	13.481	14.431	27.912	-18.088	46.000	QUASIPEAK
3		521.247	17.246	11.296	28.543	-17.457	46.000	QUASIPEAK
4		710.649	18.122	12.834	30.956	-15.044	46.000	QUASIPEAK
5		833.586	19.301	9.633	28.934	-17.066	46.000	QUASIPEAK
6	*	934.034	19.750	11.853	31.603	-14.397	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Harmonic & Spurious:

Site : CB1	Time : 2014/12/27 - 15:43
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V / 60Hz
EUT : SkvCaddie	Note : Mode 2: Transmit (Power by Adapter)
	GFSK-2402MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4803.760	-0.582	51.350	50.767	-23.233	74.000	PEAK
2	*	7206.820	5.456	49.370	54.826	-19.174	74.000	PEAK
3		9606.220	9.175	39.040	48.215	-25.785	74.000	PEAK
4		12018.090	11.119	38.540	49.659	-24.341	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 13GHz were not included is because their levels are too low.

Site : CB1	Time : 2014/12/27 - 15:43
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V / 60Hz
EUT : SkyCaddie	Note : Mode 2: Transmit (Power by Adapter)_
	GFSK-2402MHz-

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	7205.990	5.454	37.580	43.034	-10.966	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 13GHz were not included is because their levels are too low.

Site : CB1	Time : 2014/12/27 - 16:04
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V / 60Hz
EUT : SkyCaddie	Note : Mode 2: Transmit (Power by Adapter)_
	GFSK-2402MHz-

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	4804.210	-0.581	50.930	50.348	-3.652	54.000	PEAK
2		7206.590	5.455	46.330	51.785	-22.215	74.000	PEAK
3		9604.690	9.165	38.780	47.946	-26.054	74.000	PEAK
4		12117.300	11.074	38.960	50.034	-23.966	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 13GHz were not included is because their levels are too low.

Site : CB1	Time : 2014/12/27 - 16:14
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V / 60Hz
EUT : SkyCaddie	Note : Mode 2: Transmit (Power by Adapter)_
	GFSK-2440MHz-

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4879.480	-0.398	53.340	52.942	-21.058	74.000	PEAK
2	*	7319.240	5.698	48.840	54.539	-19.461	74.000	PEAK
3		9754.070	10.132	39.380	49.513	-24.487	74.000	PEAK
4		12209.690	11.032	37.990	49.022	-24.978	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 13GHz were not included is because their levels are too low.

Site : CB1	Time : 2014/12/27 - 16:14
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V / 60Hz
EUT : SkyCaddie	Note : Mode 2: Transmit (Power by Adapter)_
	GFSK-2440MHz-

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Detector Type
1		4879.960	-0.397	41.050	40.653	-13.347	54.000	AVERAGE
2	*	7319.850	5.700	36.850	42.550	-11.450	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 13GHz were not included is because their levels are too low.

Site : CB1	Time : 2014/12/27 - 16:27
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V / 60Hz
EUT : SkyCaddie	Note : Mode 2: Transmit (Power by Adapter)_
	GFSK-2440MHz-

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4880.450	-0.396	51.920	51.524	-22.476	74.000	PEAK
2	*	7319.930	5.700	48.010	53.710	-20.290	74.000	PEAK
3		9757.060	10.151	38.670	48.822	-25.178	74.000	PEAK
4		12206.460	11.032	38.980	50.013	-23.987	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 13GHz were not included is because their levels are too low.

Site : CB1	Time : 2014/12/27 - 16:28
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V / 60Hz
EUT : SkyCaddie	Note : Mode 2: Transmit (Power by Adapter)_
	GFSK-2440MHz-

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	7319.930	5.700	36.740	42.440	-11.560	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 13GHz were not included is because their levels are too low.

Site : CB1	Time : 2014/12/27 - 16:45
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V / 60Hz
EUT : SkyCaddie	Note : Mode 2: Transmit (Power by Adapter)_
	GFSK-2480MHz-

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4959.440	-0.203	53.790	53.587	-20.413	74.000	PEAK
2	*	7439.150	5.958	49.800	55.758	-18.242	74.000	PEAK
3		9926.470	11.249	38.620	49.869	-24.131	74.000	PEAK
4		12400.510	10.945	37.660	48.604	-25.396	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 13GHz were not included is because their levels are too low.

Site : CB1	Time : 2014/12/27 - 16:45
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V / 60Hz
EUT : SkyCaddie	Note : Mode 2: Transmit (Power by Adapter)_
	GFSK-2480MHz-

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Detector Type
1		4960.000	-0.202	41.600	41.398	-12.602	54.000	AVERAGE
2	*	7440.000	5.960	37.680	43.640	-10.360	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 13GHz were not included is because their levels are too low.

Site : CB1	Time : 2014/12/27 - 16:58
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V / 60Hz
EUT : SkyCaddie	Note : Mode 2: Transmit (Power by Adapter)_
	GFSK-2480MHz-

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4959.400	-0.203	52.710	52.507	-21.493	74.000	PEAK
2	*	7439.120	5.958	48.450	54.408	-19.592	74.000	PEAK
3		9928.360	11.261	37.890	49.151	-24.849	74.000	PEAK
4		12398.200	10.946	37.730	48.676	-25.324	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 13GHz were not included is because their levels are too low.

Site : CB1	Time : 2014/12/27 - 16:59
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V / 60Hz
EUT : SkyCaddie	Note : Mode 2: Transmit (Power by Adapter)_
	GFSK-2480MHz-

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Detector Type
1		4960.000	-0.202	40.880	40.678	-13.322	54.000	AVERAGE
2	*	7440.000	5.960	36.660	42.620	-11.380	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 13GHz were not included is because their levels are too low.

5. RF antenna conducted test

5.1. Test Equipment

The following test equipment is used during the test:

RF antenna conducted test / SR7

Spectrum Analyzer Agilent N9010A-EXA US47140172 2015/07/14	Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
	Spectrum Analyzer	Agilent	N9010A-EXA	US47140172	2015/07/14

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.

5.2. Test Setup

RF Conducted Measurement:

	Spectrun	n Analyz	zer				
				EL	л		
_	I and a start of						
		No	on-Conduc Table	ted			
	1	-	Table		-	 	

5.3. Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on an RF conducted or radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

5.4. Test Procedure

The EUT was setup according to ANSI C63.10 and tested according to DTS test procedure of KDB558074 V03R02 for compliance to FCC 47CFR 15.247 requirements. Set RBW = 100 kHz, Set VBW> RBW, scan up through 10th harmonic.

5.5. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247

5.6. Test Result

Product	SkyCaddie												
Test Item	RF antenna conducte	F antenna conducted test											
Test Mode	Mode 2: Transmit (Po	lode 2: Transmit (Power by Adapter)											
Date of Test 2014/12/29 Test Site SR7													
GFSK													
Channel Ne	Frequency	Measurement Level	Required Lim	it	Desult								
Channel No.	(MHz)	(dB)	(dBc)		Result								
00	2402	44.664	≧20		Pass								
19	2440	59.811	≧20		Pass								
39		Pass											

D Ag	ilent 9	Spec	num	Analyzer	Swept SA										
Cen	L Iter	Fre	eq	2.402	000000	GHz		I SEN		Avg Avall	ALIG Type: Log Hold:> 100	NAUTO g-Pwr 1/100	03:01:06 TR T	PMDec 29, 2014 ACE 1 2 3 4 5 6 YPE MWWWWW	Frequency
					npuc Kr	IFGain:Lov	N ##	Atten: 30	dB	Ext G	Gain: -2.00	dB	2.2	DET P N N N N N	Auto Tupo
10 d	B/div		Re	F 10.00	dBm							ΔMk	2 2.03	5 0 MHz 4.664 dB	Auto Tune
Log					•	1			2Δ3						-
-10.0	1.						1				11			1	Center Freq
-20.0					1						-		-	-16.07 dBm	2.40200000 GH2
-30.0	1±				1.01			1	-	-					1
-40.0									1r		-				Start Freq
-50.0	2.				111			NA S	s M		- 15				2.352000000 GHz
-60.0	of the state		u, de	And the second	in an interest	Charles and the second	per de la competitione	A111	www.	lid dip that its	muse mutue	اللا بالإلا الديدة	n an all an al al al		
-70.0	1	_							_						Stop Freq
-80.0		_	_	-	-	-	-		-	-		_			2.452000000 GHz
Cen #Re	ter s B	2.4 W 1	020	0 GHz kHz		#\	/BW 30	0 kHz		_	Swe	ep 1	Span 0.7 ms (100.0 MHz 40001 pts)	CF Step
MKR	MODE	TRO	SCL		×			Y) F	UNCTION	FUNCTION	N WIDTH	FUNC	TION VALUE	Auto Man
1	N	1	f	(A)	2.402.00	75GHz	(A)	3.928 dE	3m		*				
3	F	1	f		2.399 97	25 GHz	-40	0.736 dE	3m					-	Freg Offset
4															0 Hz
6		-													1
8									1		1				
10															
11				-					-		+	-			
MSG			h	1			L.		4		-1- -	STATUS			
1.000												102.122			

ll Ag	ilent S	Spect	rum	Analyze	r - Swept SA										
Mar	L ker	41	50 s	44.75	5000000) MHz	A	IC SE	NSE:INT	Av	ALIC g Type: Lo	SNAUTO	03:09:08 TR.	PMDec 29, 2014 ACE 1 2 3 4 5 6	Marker
1					Input: RF	PNO: Fas IFGain:Lov	t 🖓 N	#Atten: 3	e Run 0 dB	Ext	Gain: -2.0	0/100 0 dB			Select Marker
10 d	B/div		Re	F 10.00	0 dBm	Υ.					Δ	Mkr4	-44.75 5	5 0 MHz 9.811 dB	4
Log							1		4Δ5						
-10.0	11								t.		11			14 20 486	Norma
-20.0						-					1			-14.20 QDIII	
-30.0		_			-			/	1				-	-	
-40.0		-	+		-	-	-	M	MA	-			-		Delta
-50.0	-	den un	X.		una derila interitate	والمعاليس المحاصية أحمال أو		annen intital	"I HARAS	unt Hartel	Manufer wet the sta	un internet	Lattinganderland	Martin Constants	· · · · ·
-60.0			<u></u>												
-70.0	11							1.11							Fixed
00.0													1.		
Cer #Re	s B	2.44 W 1	400 00	0 GHZ kHZ		#V	BW	300 kHz			SW	eep 1	Span 0.7 ms (100.0 MHz 40001 pts)	
MKR	MODE	TRC	SCL		X			Y		FUNCTION	FUNCTIO	IN WIDTH	FUNC	ION VALUE	Of
1	N	1	f	101	2.440 0	05 0 GHz	(4)	5.802 d	Bm		-				
3	F	1	f		2.398 1	67 5 GHz		-54.154 d	Bm						
4	∆5	1	f	(Δ)	-44.7	55 0 MHz	(Δ)	59.811	dB						Properties
5	F	1	r	-	2.484 /	60 0 GHZ		-54.008 d	Bm	_		-			and the second second
7		-					12								
8															15 million (1975)
10			-												Mor
11					_										1 of 2
12	_	-							1	_		_	-		
Í												STATUS			

III Ag	ilent (Speci	muri	Analyzer	- Swept SA										
Cer	nter	Fre	eq	2.480	000000) GHz	AC	Tria: Fre	e Run	A A	vg 1 valH	ALIGNAUTO ype: Log-Pwr old:>100/100	03:05:00 TRA TN	PMDec 29, 2014 CE 1 2 3 4 5 6 PE MWWWWW	Frequency
					nput: RF	IFGain:Lo	w	#Atten: 3	0 dB	E	xt G	ain: -2.00 dB	0 2 07		Auto Tune
10 d	B/div		Rei	F 10.00	dBm	1.			ie.			ΔΙνικι	2 -3.97 55	5.490 dB	
0.00	1				-	1	1		2Δ3				10.00	1	Center Fre
-10.0	-	_												12.61 dBm	2.480000000 GH
-20.0		_			-				1						-
-30.0								ľ	W						Start Free
-50.0								- I I	W.	3			1		2.430000000 GHz
-60.0	-	d starting					MA LAND OF BELLE		14	Mina ba dipitana		ingen an			N. CONTRACT
-70.0														1	2 53000000 GH
-00.0					1					1.					
Cer #Re	nter es B	2.4 W 1	800 800	0 GHZ kHz		#\	/BW	300 kHz				Sweep 1	Span ').7 ms (4	100.0 MHZ 10001 pts)	CF Step
MKR	MODE	TRC) SCL		X		(Y		FUNCTIO	N	FUNCTION WIDTH	FUNCT	ON VALUE	Auto Mar
1	N A3	1	f	(A)	2.480	007 5 GHz	(A)	7.387 d	Bm dB						1
3	F	1	f	(<u> </u>	2.483	982 5 GHz		-48.104 d	Bm						Fred Offse
4	1.1		-1		-	1.1.1.1.1	-				- 14				i i cq on se
6				1			1		_		-				0 1.
7															
8	_	-	-						_		-				
10															
11							1		-						
12	_	-	<u>i</u>	-		-		_	-	_	-		-		
ISG												STATUS			

Product	SkyCaddie		
Test Item	RF antenna conducted test		
Test Mode	Mode 2: Transmit (Power by Adapter)		
Date of Test	2014/12/29	Test Site	SR7

Channel 00 (30MHz-1GHz)- GFSK

RL S0 3 AC Steric Freq 30.00000 MHz Frequency Imput: RF PNO: Fast PHO: F	🗊 Agilent Spectrum Analyzer - Swe	pt SA				
If GaineLow #Atten: 30 dB Ext Gain: 2.00 dB IEE (P NNNN) Mkr1 69.988 MHz -38.228 dBm -38.228 dBm Auto Tune 000 -38.228 dBm -38.228 dBm Center Freq 515.00000 MHz 100 -46.07 dBm -46.07 dBm -38.228 dBm 100 -46.07 dBm -46.07 dBm -38.228 dBm 100 -46.07 dBm -46.07 dBm -46.07 dBm 200 -46.07 dBm -46.07 dBm -46.07 dBm 300 -40.0 -46.07 dBm -46.07 dBm -46.07 dBm 300 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 40.0 -40.0	Start Freq 30.000000		C SENSE:INT Trig: Free Run	ALIGNAUTO Avg Type: Log-Pwr Avg Hold:>10/10	03:27:20 PM Dec 29, 2014 TRACE 1 2 3 4 5 6 TYPE MWWMMMW	Frequency
Mkr1 69.988 MHz Auto Tune 10 dB/div Ref 10.00 dBm -38.228 dBm 000 -38.228 dBm -38.228 dBm -38.228 dBm -38.228 dBm -38.228 dBm -300 -38.228 dBm -38.228 dBm -400 -39.300000 GHz -39.300000 GHz -300 -39.3000 KHz Stop 1.0000 GHz	input.	IFGain:Low	#Atten: 30 dB	Ext Gain: -2.00 dB	DET P N N N N N	and a los
Center Freq 0.00	10 dB/div Ref 10.00 dB	Auto Tune				
10.0						Center Freq
100 1	0.00					515.000000 MHz
200 300 400 400 400 500 500 500 500 5	-10.0				-16.07 dBm	Start Freq
300 1 Image: Stop Freq 1,00000000 GHz 400 1 Image: Stop Freq 1,00000000 GHz 500 Image: Stop Freq 1,00000000 GHz 500 Image: Stop Freq 1,00000000 GHz 600 Image: Stop Freq 1,00000000 GHz 600 Image: Stop Freq 1,0000 GHz 600 Image: Stop 1,0000 GHz 800 Image: Stop 1,0000 GHz 800 <td>-20.0</td> <td></td> <td></td> <td></td> <td></td> <td>30.000000 MHz</td>	-20.0					30.000000 MHz
40.0 1.00000000 GHz 50.0 50.0 60.0 1.00000000 GHz 60.0 1.0000000 GHz 60.0 1.0000000 GHz 70.0 1.0000000 GHz 80.0 1.0000000 GHz Start 30.0 MHz #VBW 300 KHz Stop 1.0000 GHz 97.0000 GHz <t< td=""><td>-30.0</td><td></td><td></td><td></td><td></td><td>Stop Freq</td></t<>	-30.0					Stop Freq
-500 -500	-40.0					1.000000000 GHz
4000 97.000000 MHz 4000 97.000000 MHz 4000 97.00000 MHz 4000 MHz 97.00000 MHz 4000 MHz 97.	-50.0					CF Step
-70.0 -70.0 -70.0 -8	-60.0	A should be about the state of	L. B. 1975 . Alter floor of the second states of th	ing, I. Also matches a produce of hading		97.000000 MHz <u>Auto</u> Man
-80.0	-70.0					Freq Offsel
Start 30.0 MHz Stop 1.0000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 93.3 ms (40001 pts) Isg Istatus			i			0 Hz
Start 30.0 MHz Stop 1.0000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 93.3 ms (40001 pts)	-60.0					
	Start 30.0 MHz #Res BW 100 kHz	#VBW	300 kHz	Sween 9	Stop 1.0000 GHz	
	MSG			STATUS	no ma (10001 pra)	

Channel 00 (1GHz-8GHz)- GFSK

🗊 Agilent Spectrum And	alyzer - Swept SA							
Start Freq 1.00	0000000 G	iHz A	C SENSEUNT	Avg Type	ALIGNAUTO	03:28:35 PM De TRACE 1	2 3 4 5 6	Frequency
exarctine net	Input: RF	PNO: Fast 😱 IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Hold Ext Gain:	>10/10 -2.00 dB	DET P	NNNNN	Sec.
10 dB/div Ref 1	0.00 dBm				Mkr1	4.803 975 -45.414	dBm	Auto Tune
0.00			i i	- 1				Center Fred
			has it is in					4.000000000000
-10.0							-16.07 dBm	Start Free
-20.0								1.000000000 GHz
-30.0								Stop Fred
-40.0			1					8.00000000 GHz
-50.0		thus at		The address	at descrite anotherita	shitts.com		CF Step
-60.0	shed to and the second se		na salatan na na militan na milita Militan na militan na mi				intellar (Up, juliziona Millione presidenti presidenti Millione presidenti	700.000000 MHz <u>Auto</u> Mar
-70.0			124					Freq Offse
-80.0								0 Hz
Start 1.000 GHz						Stop 8.00	0 GHz	
#Res BW 100 kH	lz	#VBW	300 kHz		Sweep 6	69 ms (400	01 pts)	
JSG					STATUS			

					-			Swept SA	m Analyzer -	ent Spectru	D Agi
Frequency	MDec 29, 2014	03:31:57 P	ALIGN AUTO		NSE:INT	C SE	A	1	00	5	RI RI
Frequency	E 1 2 3 4 5 6 E M MMMMM T P N N N N N	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N		Avg Typ Avg Hold Ext Gain	Avg Ty Trig: Free Run Avg Hol #Atten: 30 dB Ext Gain		IO: Fast 🧔 Jain:Low	req 8.000000000 GHz Input: RF PNO: Fast G IFGain:Low		t Freq	Star
Auto Tune	Mkr1 15.163 4 GHz 10 dB/div Ref 10.00 dBm -48.322 dBm										
10000000										11	Log
Center Freq							1.1		11.1		0.00
12.000000000 GHz											0.00
			-				_		-		-10.0
Start Freq	-16.07 dBm										
8.000000000 GHz										-	-20.0
1						1.001			_	1.000	.30.0
Stop Freq		1					1.000				50.0
16.00000000 GHz		-	-	-							-40.0
	P		1.1				1				
CF Step	and age a loss of the second of the	in the second state	And Att Constitution	والمع فالدو فالم	a tom indidud		وريار المراطق ال	Judalies.	all section and	r sate als	-50.0
Auto Man	and the second of	a solution of a sector	. Same and the second	a paramininte dapara	and the particular	- and the promotion of the	N. C. Station and Station (1)	, marked in _{the second second}	(With Install of the	in and an array of the second	-60.0
							1.5	1.1	1000		
Freq Offset						-					-70.0
0 Hz											_
						-		-			-80.0
	.000 GHz 0001 pts)	Stop 16. 65 ms (4)	Sweep 7			300 kHz	#VBW		GHZ 0 kHz	8.000 C BW 10	Star #Res
			STATUS								MSG

Channel 00 (8GHz-16GHz)- GFSK

Channel 00 (16GHz-25GHz)- GFSK

🗊 Agilent Spectrum Analyzer - Sw	ept SA							
M RL 50 Ω Start Freq 16.000000	000 GHz	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	03:31:02 PMDec 29, 2014 TRACE 1 2 3 4 5 6	Frequency			
Input: RF PN0: Fast Pine Rdin Avgination on a strip NNNNN IFGain:Low #Atten: 30 dB Ext Gain: -2.00 dB Detrip NNNNN Mkr1 24.992 350 GHz -40.854 dBm -40.854 dBm								
0.00					Center Freq 20.500000000 GHz			
-10.0				-16,07 dBm	Start Freq 16.000000000 GHz			
-30.0				1	Stop Fred 25.000000000 GHz			
-50.0	den filozofia (n. 1990) 1999 - Angelander Marke, ander ander Marken angelander 1999 - Angelander ander and	and an other of the start is the start of th	ala sekin kana aya kata a aya sa kuta a sa kuta a sa		CF Step 900.000000 MHz <u>Auto</u> Mar			
-70.0					Freq Offset 0 Hz			
Start 16.000 GHz #Res BW 100 kHz	#VBW 3(D0 kHz	Sweep 1	Stop 25.000 GHz 361 ms (40001 pts)				

🗊 Agilent Spectrum Analyzer - Swe	pt SA						
(X/RL 50Ω	4	C SENSE:INT	ALIGNAUTO	03:32:52 PM Dec 29, 2014	Frequency		
Start Freq 30.000000 I	MHz RF PNO: Fast 😱	HZ Avg Ty PNO: Fast Trig: Free Run Avg Hol		TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency		
	IFGain:Low	ain:Low #Atten: 30 dB Ext Gain: -2.00 dB Delig With With					
10 dB/div Ref 10.00 dB	Mkr1 69.988 MHz 0.00 dBm -38.019 dBm						
LUg	- f 1 - 1				Contra Franc		
0.00					Center Freq		
0.00					515.000000 MHZ		
-10.0				-14.20 dBm	OtertErre		
					Start Freq		
-20.0					30.000000 MH2		
-30.0					01-1- C-1-1		
-40.0					1.000000000 GHz		
					CE Stan		
-50.0	and and many contracting a stream	n f. yl	International States of the solar states	مريد بريد المراجع المانية المراجع المر المراجع المراجع	97.000000 MHz Auto Man		
-PDID show	and a substantial state of the	alasta bi contrati de las		1.000			
-70.0			1		Freq Offset		
-80.0							
Start 30.0 MHz	#\/B\W	200 645	Swaap 0	Stop 1.0000 GHz			
	#VDVV	JUU NEL	owceh a	a.a ma (4000 i pis)			
			ankibb				

Channel 19 (30MHz-1GHz)- GFSK

Channel 19 (1GHz-8GHz)- GFSK

								zer - Swept SA	ectrum Analyz	Agilent Sp
Frequency	MDec 29, 2014	03:20:38 F	ALIGNAUTO	Avg Typ	ENSE:INT	c se	Hz	000000 G	50 Ω	RL tart Fre
Salet.		TYI	>10/10 -2.00 dB	Avg Hold Ext Gain:	e Run 30 dB	Trig: Fre #Atten: 3	PNO: Fast 🖵 IFGain:Low	Input: RF	iq nooo	tert i i i
Auto Tune	00 GHz 24 dBm	4.879 4 -46.9	Mkr1					00 dBm	Ref 10.0	0 dB/div
Center Fred 4.500000000 GH:					-					0.00
Start Free 1.000000000 GH	-14.20 dBm									20.0
Stop Free 8.000000000 GH:										30.0
CF Stej 700.000000 MH <u>Auto</u> Ma	i ^{de} l'arte de la la constante en la constante a perso pres	a a falla a fan gan de	and from the second			iel en jedens kodel Genegeten og det m			a j L - g L , g J , g , g , g , g , g , g , g , g ,	50.0 50.0
Freq Offse 0 H										70.0
	000 GHz	Stop 8							00 GH7	30.0
	0001 pts)	69 ms (4	Sweep 6		z	300 kHz	#VBW		100 kHz	Res BN
			STATUS						_	SG

								Swept SA	m Analyzer	Agilent Spectr
Frequency	MDec 29, 2014	03:19:42 F	LIGNAUTO		ENSE:INT	C SE	A	1	0Ω	RL
12.127	Avg Type: Log-Pwr TRACE 1 2 3 4 5 6 Avg Hold>10/10 TYPE MUMANAW Ext Gain: -2.00 dB DET P N N N N		Trig: Free Run #Atten: 30 dB		IZ PNO: Fast 😱 FGain:Low	0000 GF nput: RF I	8.00000	art Freq		
Auto Tun	Mkr1 13.377 8 GHz 10 dB/div Ref 10.00 dBm -49.292 dBm									
Center Fred 12.000000000 GH:										9 00
Start Free	-14.20 dBm					_				.0
8.00000000 GH	1									.0
Stop Free 16.000000000 GH										.0
CF Step	damark a the search		ومناولة الاستارين الطوري			2011				.0
800.000000 MH: <u>Auto</u> Mar	1.0-10-000-000		astin an alla nada	a togge sold to a finally just		n el recenter nete-antiketette		A DATE OF THE OWNER		I.O.
Freq Offse 0 Hi										.0
							-			.0
	.000 GHz 0001 pts)	Stôp 16 65 ms (4	weep 7	4	z	300 kHz	#VBW		GHZ 0 kHz	art 8.000 tes BW 10
			STATUS		-	-				

Channel 19 (8GHz-16GHz)- GFSK

Channel 19 (16GHz-25GHz)- GFSK

AC SENSE	Avg Type	ALIGNAUTO	03:21:28 PM Dec 29, 2014 TRACE 1 2 3 4 5 6	Frequency				
Input: RF PN0: Fast Inguit: RF PN0: Fast Ext Gain: -2.00 dB DET P NNNNN IFGain:Low #Atten: 30 dB Ext Gain: -2.00 dB DET P NNNNN Mkr1 24.885 925 GHz 10 dB/div Ref 10.00 dBm -41.370 dBm								
				Center Fred 20.500000000 GH;				
			-14.20 dBm	Start Free 16.000000000 GH2				
				Stop Free 25.000000000 GH;				
210	a da an an Shing a Lan an Anna an Bhailte Roa Bhailte An Anna an Anna an Anna an Anna Anna A	a la fal a la anti-la na canada da anti-la anti-		CF Step 900.000000 MH: <u>Auto</u> Mar				
				Freq Offse 0 H				
#VBW 300 kHz		Sweep 86	Stop 25.000 GHz 1 ms (40001 pts)					
	AC SENSE PNO: Fast Trig: Free R #Atten: 30 dB	AC SENSEINT Avg Type PNO: Fast Trig: Free Run #Atten: 30 dB Ext Gain: -	AC SENSE:INT ALIGNAUTO FLZ PNO: Fast Trig: Free Run #Atten: 30 dB Arg Type: Log-Pwr AvglHold>10/10 Ext Gain: 2.00 dB Mkr1 24 Mkr1 24 Mkr1 24 Mkr1 24 Mkr1 24 Mkr1 24 Mkr2 4 Mkr2	AC SENSEINT ALIGNAUTO 03:21:28 PMObe: 29,2014 PNO: Fast Trig: Free Run FGain:Low #Atten: 30 dB Avg Type: Log-Pwr AvgHold>10/10 Ext Gain: 2:00 dB BVR Mkr1 24.8855 925 GHz -41.370 dBm				

Product	SkyCaddie		
Test Item	RF antenna conducted test		
Test Mode	Mode 2: Transmit (Power by Adapter)		
Date of Test	2014/12/29	Test Site	SR7

Channel 39 (30MHz-1GHz)- GFSK

Agilent Spectrum	Analyzer - Swept SA								
Start Freq 3	0.000000 MH;	Z BNO: Foot	c SEN] Tria: Free	Run	Avg Type AvgIHold:	ALIGNAUTO : Log-Pwr >10/10	03:25:43 PMI TRACE TYPE	Dec 29, 2014 1 2 3 4 5 6 MWWWWWW	Frequency
10 dB/div Ref 10.00 dBm #Atten: 30 dB Ext Gain: -2.00 dB DETIP NNNNN -37.652 dBm								Auto Tune	
0.00									Center Freq 515.000000 MHz
-10.0								-12.61 dBm	Start Freq 30.000000 MHz
-30.0									Stop Freq 1.000000000 GHz
-50.0	lan si fasi dana di wa di kana sa sa sa	e de sa la ser de la desta de ser	ال شاريع وين التركي المركز ويعرف التركي	an dar (di Alika). Mangalar	ha da garana ka data da yan ka a Mana ayan ayan da kana mana	a da siyaladi si kudandar A da siyaladi si kudandar	fals (alapa) a cala linde andi na calaman persona da p	silis Langesta an ang ing ap	CF Step 97.000000 MHz <u>Auto</u> Man
-70.0									Freq Offset 0 Hz
Start 30.0 MH #Res BW 100	lz kHz	#VBW	300 kHz			Sweep 9:	Stop 1.00 3.3 ms (40)	000 GHz 001 pts)	

Channel 39 (1GHz-8GHz)- GFSK

🗊 Agilent Spectrum Analyzer - Swept SA						
M RL 50 Ω Start Freq 1.000000000 GHz	AC SENSEJINT	ALIGNAUTO Avg Type: Log-Pwr AvgIHold:>10(10	03:24:46 PM Dec 29, 2014 TRACE 1 2 3 4 5 6 TYPE MIMAMM	Frequency		
Input: RI- PNO: Fast U IFGain:Low	#Atten: 30 dB	Ext Gain: -2.00 dB	DET P NNNNN	Auto Tupe		
10 dB/div Ref 10.00 dBm	Mkr1 4.959 900 GHz -48.304 dBm					
	1	-1 -1		Center Freq		
0.00				4.500000000 GHz		
-10.0			-12.61 dBm	01-15-1-1		
-20.0				1.000000000 GHz		
-30.0				Stop Freq		
-40.0				8.000000000 GHz		
	↓			05.04		
-50.0 -60.0	the strength of the strength o	a y y a covera bay y story era o sa covera positiva na destructiva. A y seconda a covera transfer ana descana da transfer da covera da covera da covera da covera da covera da cov	ale and a second s	700.000000 MHz Auto Man		
-70.0				Freq Offset		
-80.0				0 12		
Start 1.000 GHz #Res BW 100 kHz #VB	W 300 kHz	Sweep 6	Stop 8.000 GHz 69 ms (40001 pts)			
MSG		STATUS	(pro)			

					-			Swept SA	um Analyzer -	Agilent Spect
Frequency	MDec 29, 2014	03:23:44 P	ALIGNAUTO		NSE:INT	ic se	A		50 Q	RL
	Avg Type: Log-Pwr TRACE 12 34 5 6 rig: Free Run Avg Holds 10/10 TVPE M WAXAWAW Atten: 30 dB Ext Gain: -2.00 dB DET P NNNN		Trig: Free #Atten: 30	10: Fast 😱 Jain:Low	put: RF PM IFG	8.00000	art Freq			
Auto Tun	Mkr1 14.793 0 GHz 10 dB/div Ref 10.00 dBm -48.847 dBm									
Center Fred 12.000000000 GHz						11				.00.
Start Free	-12.61 dBm			-						J.O
8.000000000 GHz										
Stop Free 16.00000000 GHz						· · · · ·				
CE Ster	1	● ¹					1		1. 1.	10
800.000000 MH2 Auto Mar			a and a second sec	- Contraction (Contraction)	lah jang salah la	ini sahinini Masayar	ng di telahan nakar Mati telahan nakar		Ballinian and State	0.0 1
Freq Offse 0 Hi										0.0
										<u></u>
	.000 GHz 0001 pts)	Stop 16 765 ms (4	Sweep 7	4		300 kHz	#VBW		GHz 10 kHz	tart 8.000 Res BW 1
	line of the second s	s	STATUS							3

Channel 39 (8GHz-16GHz)- GFSK

Channel 39 (16GHz-25GHz)- GFSK

🗊 Agilent Spectrum Analyzer - Swept SA								
M RL 50Ω Start Freq 16.000000000 G	HZ SENS	Avg Type	ALIGNAUTO	03:23:01 PMDec 29, 2014 TRACE 1 2 3 4 5 6	Frequency			
IPGain: Low #Atten: 30 dB Ext Gain: -2.00 dB DETP NNNNN IFGain:Low #Atten: 30 dB Ext Gain: -2.00 dB - DETP NNNNN Mkr1 24.844 075 GHz -41.186 dBm								
	1 - 11				Center Freq 20.500000000 GHz			
-10.0				-12,61 dBm	Start Free 16.00000000 GHz			
-30.0				4	Stop Fred 25.000000000 GH;			
-50.0	n her her stand and her stand her	en en el for de partie en el formen el fo In en el formen el form	l yez, ya la kata ta tik da gana yezh yezh yezh yezh yezh yezh yezh yezh		CF Step 900.000000 MH Auto Mar			
-70.0					Freq Offse 0 H:			
Start 16.000 GHz #Res BW 100 kHz	#VBW 300 kHz		Sweep 80	Stop 25.000 GHz 51 ms (40001 pts)				

6. Band Edge

6.1. Test Equipment

The following test equipments are used during the test:

Band Edge / CB1

Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
Double Ridged Guide	Schwarzback	BBHA 9120	D743	2015/02/12
Horn Antenna				
Spectrum Analyzer	Agilent	E4440A	MY46187335	2015/01/12
k Type Cable	Huber Suhner	Sucoflex 102	25623/2	2015/02/10

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.

6.2. Test Setup

RF Radiated Measurement:

6.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

6.4. Test Procedure

The EUT was setup according to ANSI C63.10 and tested according to DTS test procedure of KDB558074 V03R02 for compliance to FCC 47CFR 15.247 requirements.

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10 on radiated measurement.

6.5. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247

6.6. Test Result

Site : CB1	Time : 2014/12/26 - 17:16
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1 FCC EFS 1-18G-1 0901 - HORIZONTAL	Power : AC 120V / 60Hz
EUT : SkvCaddie	Note : Mode 2: Transmit (Power by Adapter)
	GFSK-2402MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	30.411	22.928	53.339	-20.661	74.000	PEAK
2		2349.500	30.821	24.772	55.593	-18.407	74.000	PEAK
3		2390.000	31.241	22.108	53.349	-20.651	74.000	PEAK
4	*	2402.300	31.369	63.907	95.275	21.275	74.000	PEAK
5		2483.500	31.980	23.399	55.378	-18.622	74.000	PEAK
6		2499.300	31.937	25.406	57.343	-16.657	74.000	PEAK
7		2500.000	31.934	23.088	55.023	-18.977	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

Site : CB1	Time : 2014/12/26 - 17:17
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V / 60Hz
EUT : SkyCaddie	Note : Mode 2: Transmit (Power by Adapter)_
	GFSK-2402MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	30.411	11.899	42.310	-11.690	54.000	AVERAGE
2		2389.800	31.239	12.127	43.366	-10.634	54.000	AVERAGE
3		2390.000	31.241	12.144	43.385	-10.615	54.000	AVERAGE
4	*	2402.000	31.365	44.554	75.919	21.919	54.000	AVERAGE
5		2483.500	31.980	12.337	44.316	-9.684	54.000	AVERAGE
6		2483.900	31.978	12.312	44.290	-9.710	54.000	AVERAGE
7		2500.000	31.934	12.336	44.271	-9.729	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

Site : CB1	Time : 2014/12/26 - 17:22
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V / 60Hz
EUT : SkyCaddie	Note : Mode 2: Transmit (Power by Adapter)_
	GFSK-2402MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	30.411	22.433	52.844	-21.156	74.000	PEAK
2		2389.700	31.238	25.035	56.273	-17.727	74.000	PEAK
3		2390.000	31.241	22.857	54.098	-19.902	74.000	PEAK
4	*	2402.200	31.367	68.881	100.248	26.248	74.000	PEAK
5		2483.500	31.980	23.719	55.698	-18.302	74.000	PEAK
6		2490.200	31.962	25.050	57.011	-16.989	74.000	PEAK
7		2500.000	31.934	23.238	55.173	-18.827	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

Site : CB1	Time : 2014/12/26 - 17:24
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V / 60Hz
EUT : SkyCaddie	Note : Mode 2: Transmit (Power by Adapter)_
	GFSK-2402MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	30.411	11.900	42.311	-11.689	54.000	AVERAGE
2		2389.500	31.236	12.122	43.358	-10.642	54.000	AVERAGE
3		2390.000	31.241	12.125	43.366	-10.634	54.000	AVERAGE
4	*	2402.000	31.365	47.730	79.095	25.095	54.000	AVERAGE
5		2483.500	31.979	12.319	44.298	-9.702	54.000	AVERAGE
6		2483.900	31.978	12.307	44.285	-9.715	54.000	AVERAGE
7		2500.000	31.934	12.310	44.245	-9.755	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

Site : CB1	Time : 2014/12/26 - 17:27
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V / 60Hz
EUT : SkyCaddie	Note : Mode 2: Transmit (Power by
	Adapter)_GFSK-2480MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	30.411	23.865	54.276	-19.724	74.000	PEAK
2		2369.000	31.024	25.974	56.997	-17.003	74.000	PEAK
3		2390.000	31.241	23.399	54.640	-19.360	74.000	PEAK
4	*	2479.800	31.989	68.835	100.825	26.825	74.000	PEAK
5		2483.500	31.980	25.154	57.133	-16.867	74.000	PEAK
6		2496.600	31.944	26.175	58.119	-15.881	74.000	PEAK
7		2500.000	31.934	23.610	55.545	-18.455	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

Site : CB1	Time : 2014/12/26 - 17:28
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V / 60Hz
EUT : SkyCaddie	Note : Mode 2: Transmit (Power by
	Adapter)_GFSK-2480MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	30.411	11.924	42.335	-11.665	54.000	AVERAGE
2		2376.200	31.098	13.275	44.373	-9.627	54.000	AVERAGE
3		2390.000	31.241	12.127	43.368	-10.632	54.000	AVERAGE
4	*	2480.000	31.989	48.058	80.047	26.047	54.000	AVERAGE
5		2483.500	31.980	13.158	45.137	-8.863	54.000	AVERAGE
6		2483.900	31.978	12.713	44.691	-9.309	54.000	AVERAGE
7		2500.000	31.934	12.339	44.274	-9.726	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

Site : CB1	Time : 2014/12/26 - 17:32
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V / 60Hz
EUT : SkyCaddie	Note : Mode 2: Transmit (Power by Adapter)_
	GFSK-2480MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	30.411	23.232	53.643	-20.357	74.000	PEAK
2		2375.600	31.091	25.255	56.347	-17.653	74.000	PEAK
3		2390.000	31.241	22.938	54.179	-19.821	74.000	PEAK
4	*	2479.700	31.989	68.475	100.465	26.465	74.000	PEAK
5		2483.500	31.980	23.622	55.601	-18.399	74.000	PEAK
6		2484.500	31.977	25.600	57.577	-16.423	74.000	PEAK
7		2500.000	31.934	23.028	54.963	-19.037	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

Site : CB1	Time : 2014/12/26 - 17:33
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V / 60Hz
EUT : SkyCaddie	Note : Mode 2: Transmit (Power by Adapter)_
	GFSK-2480MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	30.411	11.919	42.330	-11.670	54.000	AVERAGE
2		2389.800	31.239	12.142	43.381	-10.619	54.000	AVERAGE
3		2390.000	31.241	12.171	43.412	-10.588	54.000	AVERAGE
4	*	2480.000	31.989	47.848	79.837	25.837	54.000	AVERAGE
5		2483.500	31.980	13.152	45.131	-8.869	54.000	AVERAGE
6		2483.900	31.978	12.673	44.651	-9.349	54.000	AVERAGE
7		2500.000	31.934	12.325	44.260	-9.740	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

7. Occupied Bandwidth

7.1. Test Equipment

The following test equipment is used during the test:

Occupied Bandwidth / SR

Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
Spectrum Analyzer	Agilent	N9010A-EXA	US47140172	2015/07/14

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.

7.2. Test Setup

7.3. Limits

The 6 dB bandwidth must be greater than 500 kHz.

7.4. Test Procedures

The EUT was setup according to ANSI C63.10; tested according to DTS test procedure of KDB558074 V03R02 for compliance to FCC 47CFR 15.247 requirements. Set RBW = 1% of EBW, Span greater than RBW.

7.5. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247

7.6. Test Result

Product	SkyCaddie		
Test Item	Occupied Bandwidth		
Test Mode	Mode 2: Transmit (Power by Adapter)		
Date of Test	2014/12/29	Test Site	SR7

GFSK

Channel No.	Frequency (MHz)	Measure Level (MHz)	Limit (MHz)	Result
00	2402	0.695	≧0.5	Pass
19	2440	0.701	≧0.5	Pass
39	2480	0.701	≧0.5	Pass

🗊 Agilent Spectr	um Analyzer - Occupie	d BW	-					
M L 50 Ω Ac Center Freq 2.402000000 GHz Ac Input: RF #IFGain:Low #IFGain:Low			SENSE:IN Center Freq: 2. Trig: Free Run #Atten: 30 dB	402000000 GHz Avg Hol Ext Gair	ALIGNAUTO d:>100/100 a:-2.00 dB	04:21:57 Radio Sto Radio De	PMDec 29,2014 I: None vice: BTS	Freq / Channel
10 dB/div Log	Ref 30 dBm		1			1	-	1
20 10								Center Freq 2.402000000 GHz
-10								
-20					1	~		1
-40 -50 -50				_				
-60					1			CF Step
Center 2.40 #Res BW 1	02 GHz 00 kHz		#VBW 3	00 kHz		Sp Sw	oan 3 MHz eep 1 ms	300.000 kHz <u>Auto</u> Man
Occupied Bandwidth 1 0512 Mi			Total Power 10. -			8 dBm		
Transmi	t Freg Error	1.574 kl	.– Нг ОВ	W Power	9	9.00 %		
x dB Bai	ndwidth	695.2 kl	Hz x d	В	-6	.00 dB		
MSG					STATU	5		

🗊 Agilent Spec	trum Analyzer - Occupied	BW						E	
Center Fr	eq 2.440000000 Input: RF	GHz Cer Trig #IFGain:Low #At	SENSE:INT hter Freq: 2.4400 g: Free Run ten: 30 dB	000000 GHz Avg Hold Ext Gain:	ALIGNAUTO > 100/100 -2.00 dB	Radio Std Radio Dev	PMDec 29, 2014 I: None vice: BTS	Freq / Cha	nnel
10 dB/div Log	Ref 30 dBm		-		1	1			-
20 10								Cente 2.44000000	r Freq 00 GHz
-10									
-20		4	-			~			
-30					-	1 h	~~~~		
-50			11						
-00								CF 300.0	Step
Center 2. #Res BW	44 GHz 100 kHz		#VBW 300	kHz		Sp Sw(eep 1 ms	Auto	Man
Occup	Occupied Bandwidth		Total	Power	ower 12.43				
	1.0	0532 MHz							
Transn	nit Freq Error	-1606 Hz	OBW	Power	99	9.00 %			
x dB B	andwidth	701.9 kHz	x dB		-6.	00 dB			
MSG					STATUS	1	4		

🗊 Agilent Spect	rum Analyzer - Occupie	d BW				
Center Fre	50 Ω eq 2.480000000 Input: RF	O GHz Cent #IFGain:Low #Atte	SENSE:INT er Freq: 2.480000000 GHz Free Run Avg Ho n: 30 dB Ext Gai	ALIGNAUTO 04:2 Radio Id:>100/100 n: -2.00 dB Radio	4:08 PMDec 29, 2014 • Std: None • Device: BTS	Freq / Channel
10 dB/div	Ref 30 dBm		T T		-	·
20						Center Freq 2.480000000 GHz
0	- 1					
-10						
-30	~~~					
-40		1-1-1 (I)			man	
-50					_	
-60						CF Step
Center 2.4 #Res BW	8 GHz 100 kHz		¢VBW 300 kHz	· · · · ·	Span 3 MHz Sweep 1 ms	300.000 kHz <u>Auto</u> Man
Occupi	ied Bandwidt	h	Total Power	13.98 dBr	n	
	1.	0622 MHz				
Transm	it Freq Error	-2311 Hz	OBW Power	99.00	%	
x dB Ba	ndwidth	701.6 kHz	x dB	-6.00 d	в	
MSG				STATUS		

8. Power Density

8.1. Test Equipment

The following test equipment is used during the test:

Power Density / SR7

Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
Spectrum Analyzer	Agilent	N9010A-EXA	US47140172	2015/07/14

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.

8.2. Test Setup

8.3. Limits

The peak power spectral density conducted from the intentional radiated to the antenna shall not be greater than +8dBm in any 3kHz band during any time interval of continuous transmission.

8.4. Test Procedures

The EUT was setup according to ANSI C63.10; tested according to DTS test procedure of KDB558074 V03R02 for compliance to FCC 47CFR 15.247 requirements.

8.5. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247

8.6. Uncertainty

The measurement uncertainty is defined as ±1.27dB.

8.7. Test Result

Product	SkyCaddie					
Test Item	Power Density					
Test Mode	Mode 2: Transmit (Power by Adapter)					
Date of Test	2014/12/29	Test Site	SR7			

Channel No.	Frequency	Measurement	Limit	Result	
Channel No.	(MHz)	(dBm)	(dBm)		
0	2402	-5.619	≦8	Pass	
19	2440	-3.644	≦8	Pass	
39	2480	-2.046	≦8	Pass	

🚺 Agilent Spectrum Analyzer - Swe	pt SA					
Center Freq 2.402000	000 GHz	Tria: Free Run	ALIGNAUTO Avg Type: Log-Pwr AvgIHold:>100/100	04:18:37 PM Dec 29, 2014 TRACE 1 2 3 4 5 6 TYPE M MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Frequency	
10 dB/div Ref 10.00 dB	Input: RF PNO: Far Trig: Free Run Avgproid > 100/100 PETP NNNNN IFGain:Low #Atten: 30 dB Ext Gain: -2.00 dB PETP NNNNN Mkr1 2.401 961 9 GHz -5.619 dBm					
0.00					Center Freq 2.402000000 GHz	
-10.0	- Mark	A AAP Ware Aborder We	Mayna		Start Freq 2.400500000 GHz	
-30.0 -40.0	And Market		han ha	hor hall have a second se	Stop Freq 2.403500000 GHz	
-50.0 -60.0			Υ.	Many	CF Step 300.000 kHz <u>Auto</u> Man	
-70.0					Freq Offset 0 Hz	
Center 2.402000 GHz #Res BW 10 kHz	#VBW	30 kHz	Sweep 2	Span 3.000 MHz 9.3 ms (10001 pts)		
MSG	STATUS					

							e vuide	the second s	
14							owept SA	ectrum Analyzer - S	🗊 Agilent Sp
Ereduered	4:16:42 PM Dec 29, 2014	0 04:16	ALIGN AUTC		SENSE:INT	AC		50 Q	RL
N Prequency	TRACE 123456 TYPE MWWWWW DET P N N N N N	r	pe: Log-Pwr ld:>100/100 n: -2.00 dB	Avg T Avg Ho Ext Ga	Free Run h: 30 dB	Z D:Far C Tri	DOODOO GH	req 2.4800	Center I
Iz Auto Tune n	9 807 1 GHz -2.046 dBm	2.479	Mkr1 3				IBm	Ref 10.00 c	10 dB/div
I Destroyed									Log
Center Freq 2.48000000 GHz				-	*0	•			0.00
		_		Mr.	man Monnya	MM			-10.0
Start Freq 2.478500000 GHz			hyi	Www					-20.0
Stop Freq 2.481500000 GHz	4	Anny	Marin				WWW	Mrs Annon	-30.0
M CF Step 300.000 kHz <u>Auto</u> Man	White Marken	μ.						- V V	-50.0
Freq Offset									-70.0
									-80.0
lz s)	pan 3.000 MHz ms (10001 pts)	Spa 29.3 m	Sweep		z	#VBW 30		480000 GHz 10 kHz	Center 2 #Res BW
	STATUS					MSG			