

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

2400-2483.5MHZ TRANSCEIVER

MODEL NUMBER: A2541E24A & A2541E24C

FCC ID: X7J-A13022601 IC: 8975A-A13022601

REPORT NUMBER: SR9723856A

ISSUE DATE: 2013-07-04

Prepared for ANAREN, INC 6635 KIRKVILLE ROAD EAST SYRACUSE NY, 13057, U.S.A

Prepared by
UL LLC
1285 WALT WHITMAN RD.
MELVILLE, NY 11747, U.S.A.

TEL: (631) 271-6200 FAX: (877) 854-3577

NVLAP LAB CODE 100255-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	6/12/13	Initial Issue	M. Antola
A	7/04/13	Added section for Duty Cycle	M. Antola

DATE: 2013-07-04

TABLE OF CONTENTS

АТ	TTESTATION OF TEST RESULTS	5
TE	ST METHODOLOGY	6
FA	ACILITIES AND ACCREDITATION	6
CA	ALIBRATION AND UNCERTAINTY	6
4.1.	MEASURING INSTRUMENT CALIBRATION	6
4.2.	SAMPLE CALCULATION	6
4.3.	MEASUREMENT UNCERTAINTY	6
EG	QUIPMENT UNDER TEST	7
5.1.	DESCRIPTION OF EUT	7
5.2.	MAXIMUM OUTPUT POWER	7
5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	7
5. <i>4.</i>	SOFTWARE AND FIRMWARE	7
5.5.	WORST-CASE CONFIGURATION AND MODE	8
5.6.	DESCRIPTION OF TEST SETUP	9
TE	ST AND MEASUREMENT EQUIPMENT1	1
10	N TIME, DUTY CYCLE AND MEASUREMENT METHODS1	3
	N TIME, DUTY CYCLE AND MEASUREMENT METHODS1 NTENNA PORT TEST RESULTS1	
AN 3.1.	NTENNA PORT TEST RESULTS1 GFSK 1Mbps 250kHz MODE1	4
AN 8.1. 8.1	### NTENNA PORT TEST RESULTS	4 4 4
AN 8.1. 8.1 8.1	NTENNA PORT TEST RESULTS1 GFSK 1Mbps 250kHz MODE1	4 4 4 7
8.1. 8.1 8.1 8.1	NTENNA PORT TEST RESULTS GFSK 1Mbps 250kHz MODE 1 1.1. 6 dB BANDWIDTH 1 1.2. 99% BANDWIDTH 1 1.3. OUTPUT POWER 2 1.4. AVERAGE POWER 2	4 4 7 20
AN 8.1. 8.1 8.1 8.1 8.1	NTENNA PORT TEST RESULTS GFSK 1Mbps 250kHz MODE 1 1.1. 6 dB BANDWIDTH 1 1.2. 99% BANDWIDTH 1 1.3. OUTPUT POWER 2 1.4. AVERAGE POWER 2 1.5. POWER SPECTRAL DENSITY 2	4 4 7 0 3 4
8.1. 8.1 8.1 8.1 8.1 8.1	NTENNA PORT TEST RESULTS GFSK 1Mbps 250kHz MODE 1 1.1. 6 dB BANDWIDTH 1 1.2. 99% BANDWIDTH 1 1.3. OUTPUT POWER 2 1.4. AVERAGE POWER 2 1.5. POWER SPECTRAL DENSITY 2 1.6. CONDUCTED SPURIOUS EMISSIONS 2	4 4 7 20 23 24 27
AN 8.1. 8.1 8.1 8.1 8.1 8.2.	NTENNA PORT TEST RESULTS GFSK 1Mbps 250kHz MODE 1 1.1. 6 dB BANDWIDTH 1 1.2. 99% BANDWIDTH 1 1.3. OUTPUT POWER 2 1.4. AVERAGE POWER 2 1.5. POWER SPECTRAL DENSITY 2	4 4 7 20 23 24 27
8.1. 8.1 8.1 8.1 8.1 8.2. 8.2 8.2	NTENNA PORT TEST RESULTS GFSK 1Mbps 250kHz MODE 1 1.1. 6 dB BANDWIDTH 1 1.2. 99% BANDWIDTH 1 1.3. OUTPUT POWER 2 1.4. AVERAGE POWER 2 1.5. POWER SPECTRAL DENSITY 2 1.6. CONDUCTED SPURIOUS EMISSIONS 2 GFSK 1Mbps 160kHz MODE 3 2.1. 6 dB BANDWIDTH 3 2.2. 99% BANDWIDTH 3	4 4 4 7 20 32 4 27 31 134
AN 8.1. 8.1 8.1 8.1 8.2. 8.2 8.2 8.2	NTENNA PORT TEST RESULTS GFSK 1Mbps 250kHz MODE 1 1.1. 6 dB BANDWIDTH 1 1.2. 99% BANDWIDTH 1 1.3. OUTPUT POWER 2 1.4. AVERAGE POWER 2 1.5. POWER SPECTRAL DENSITY 2 1.6. CONDUCTED SPURIOUS EMISSIONS 2 GFSK 1Mbps 160kHz MODE 3 2.1. 6 dB BANDWIDTH 3 2.2. 99% BANDWIDTH 3 2.3. OUTPUT POWER 3	4 4 7 20 32 4 7 31 134 7
AN 3.1. 8.1 8.1 8.1 8.2 8.2 8.2 8.2 8.2 8.2	NTENNA PORT TEST RESULTS GFSK 1Mbps 250kHz MODE 1 1.1. 6 dB BANDWIDTH 1 1.2. 99% BANDWIDTH 1 1.3. OUTPUT POWER 2 1.4. AVERAGE POWER 2 1.5. POWER SPECTRAL DENSITY 2 1.6. CONDUCTED SPURIOUS EMISSIONS 2 GFSK 1Mbps 160kHz MODE 3 2.1. 6 dB BANDWIDTH 3 2.2. 99% BANDWIDTH 3 2.3. OUTPUT POWER 3 2.4. AVERAGE POWER 4 2.5. POWER SPECTRAL DENSITY 4	4 4 4 7 10 3 24 7 31 31 4 37 10 1
AN 8.1. 8.1 8.1 8.1 8.2 8.2 8.2 8.2 8.2 8.2	NTENNA PORT TEST RESULTS GFSK 1Mbps 250kHz MODE 1 1.1. 6 dB BANDWIDTH 1 1.2. 99% BANDWIDTH 1 1.3. OUTPUT POWER 2 1.4. AVERAGE POWER 2 1.5. POWER SPECTRAL DENSITY 2 1.6. CONDUCTED SPURIOUS EMISSIONS 2 GFSK 1Mbps 160kHz MODE 3 2.1. 6 dB BANDWIDTH 3 2.2. 99% BANDWIDTH 3 2.3. OUTPUT POWER 3 2.4. AVERAGE POWER 4 2.5. POWER SPECTRAL DENSITY 4 2.6. CONDUCTED SPURIOUS EMISSIONS 4	4 4 7 0 3 4 7 8 1 4 4 7 10 1 4 4 1 4 4 1 4 4 1 4 4 1 4 4 1 4 4 1 4 4 1 4 4 1 4 4 1 4
AN 3.1. 8.1 8.1 8.2 8.2 8.2 8.2 8.2 8.3 8.3	NTENNA PORT TEST RESULTS 1 GFSK 1Mbps 250kHz MODE 1 1.1. 6 dB BANDWIDTH 1 1.2. 99% BANDWIDTH 1 1.3. OUTPUT POWER 2 1.4. AVERAGE POWER 2 1.5. POWER SPECTRAL DENSITY 2 1.6. CONDUCTED SPURIOUS EMISSIONS 2 2.1. 6 dB BANDWIDTH 3 2.2. 99% BANDWIDTH 3 2.3. OUTPUT POWER 3 2.4. AVERAGE POWER 4 2.5. POWER SPECTRAL DENSITY 4 2.6. CONDUCTED SPURIOUS EMISSIONS 4 GFSK 2Mbps 500kHz MODE 4	4 4 4 7 10 3 24 7 13 14 14 18 14 18
AN 3.1. 8.1 8.1 8.2 8.2 8.2 8.2 8.2 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3	NTENNA PORT TEST RESULTS GFSK 1Mbps 250kHz MODE 1 1.1. 6 dB BANDWIDTH 1 1.2. 99% BANDWIDTH 1 1.3. OUTPUT POWER 2 1.4. AVERAGE POWER 2 1.5. POWER SPECTRAL DENSITY 2 1.6. CONDUCTED SPURIOUS EMISSIONS 2 GFSK 1Mbps 160kHz MODE 3 2.1. 6 dB BANDWIDTH 3 2.2. 99% BANDWIDTH 3 2.3. OUTPUT POWER 3 2.4. AVERAGE POWER 4 2.5. POWER SPECTRAL DENSITY 4 2.6. CONDUCTED SPURIOUS EMISSIONS 4 GFSK 2Mbps 500kHz MODE 4 3.1. 6 dB BANDWIDTH 4	4 44 7 9 3 4 7 8 1 1 4 4 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8
AN 8.1. 8.1. 8.1. 8.2. 8.2. 8.2. 8.2. 8.3. 8.	NTENNA PORT TEST RESULTS 1 GFSK 1Mbps 250kHz MODE 1 1.1. 6 dB BANDWIDTH 1 1.2. 99% BANDWIDTH 1 1.3. OUTPUT POWER 2 1.4. AVERAGE POWER 2 1.5. POWER SPECTRAL DENSITY 2 1.6. CONDUCTED SPURIOUS EMISSIONS 2 2.1. 6 dB BANDWIDTH 3 2.2. 99% BANDWIDTH 3 2.3. OUTPUT POWER 3 2.4. AVERAGE POWER 4 2.5. POWER SPECTRAL DENSITY 4 2.6. CONDUCTED SPURIOUS EMISSIONS 4 GFSK 2Mbps 500kHz MODE 4	4 4 4 7 0 3 4 7 3 1 1 4 7 0 1 4 8 8 1 4 4 8 8 1 4
	TE FA CA 4.1. 4.2. 4.3. EQ 5.1. 5.3. 5.4. 5.5. 5.6.	TEST METHODOLOGY FACILITIES AND ACCREDITATION CALIBRATION AND UNCERTAINTY 4.1. MEASURING INSTRUMENT CALIBRATION 4.2. SAMPLE CALCULATION 4.3. MEASUREMENT UNCERTAINTY. EQUIPMENT UNDER TEST 5.1. DESCRIPTION OF EUT 5.2. MAXIMUM OUTPUT POWER 5.3. DESCRIPTION OF AVAILABLE ANTENNAS 5.4. SOFTWARE AND FIRMWARE 5.5. WORST-CASE CONFIGURATION AND MODE 5.6. DESCRIPTION OF TEST SETUP TEST AND MEASUREMENT EQUIPMENT

DATE: 2013-07-04

	8.3.5.	POWER SPECTRAL DENSITY	
	8.3.6.	CONDUCTED SPURIOUS EMISSIONS	61
	8.4. GF	FSK 2Mbps 320kHz MODE	
	8.4.1.	6 dB BANDWIDTH	
	8.4.2.	99% BANDWIDTH	
	8.4.3.	OUTPUT POWER	
	8.4.4. 8.4.5.	AVERAGE POWER POWER SPECTRAL DENSITY	
	6.4.5. 8.4.6.	CONDUCTED SPURIOUS EMISSIONS	
	0.4.0.	CONDUCTED OF UNIOUS LIMISSIONS	70
9.	RADIA	ATED TEST RESULTS	82
	9.1. LIN	MITS AND PROCEDURE	82
	9.2. TR	RANSMITTER ABOVE 1 GHz – MODEL: A2541E24A	83
	9.2.1.	TX ABOVE 1 GHz FOR GFSK 1Mbps 250kHz MODE I	
	9.2.2.	TX ABOVE 1 GHz FOR GFSK 1Mbps 160kHz MODE I	
	9.2.3.	TX ABOVE 1 GHz FOR GFSK 2Mbps 500kHz MODE I	
	9.2.4.	TX ABOVE 1 GHz FOR GFSK 2Mbps 320kHz MODE I	IN THE 2.4 GHz BAND92
	9.3. TR	RANSMITTER ABOVE 1 GHz – MODEL: A2541E24C	
	9.3.1.	TX ABOVE 1 GHz FOR GFSK 1Mbps 250kHz MODE I	
	9.3.2.	TX ABOVE 1 GHz FOR GFSK 1Mbps 160kHz MODE I	
	9.3.3.	TX ABOVE 1 GHz FOR GFSK 2Mbps 500kHz MODE I	
	9.3.4.	TX ABOVE 1 GHz FOR GFSK 2Mbps 320kHz MODE I	
	9.4. WO	ORST-CASE BELOW 1 GHz	107
10	AC B	POWER LINE CONDUCTED EMISSIONS	400
10	. ACP	TOWER LINE CONDUCTED EMISSIONS	109
44	СЕТІ	TUD DUOTOS	442

REPORT NO: SR9723856A FCC ID: X7J-A13022601

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: ANAREN INC

6635 KIRKVILLE ROAD

EAST SYRACUSE, NY, 13057, USA

EUT DESCRIPTION: 2400-2483.5MHZ TRANSCEIVER

MODEL: A2541E24A & A2541E24C

SERIAL NUMBER: 203 & 204

DATE TESTED: 2013-04-16 to 2013-06-11

APPLICABLE STANDARDS

STANDARD TEST RESULTS

DATE: 2013-07-04

IC: 8975A-A13022601

CFR 47 Part 15 Subpart C Pass

INDUSTRY CANADA RSS-210 Issue 8 Annex 8 Pass

INDUSTRY CANADA RSS-GEN Issue 3 Pass

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL LLC based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Michel Anto

Approved & Released For UL LLC By: Tested By:

Bob DeLisi Mike Antola

WiSE Principal Engineer WiSE Project Lead UL UL

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

DATE: 2013-07-04

IC: 8975A-A13022601

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 1285 Walt Whitman Rd. Melville, NY 11747, USA.

UL Melville is accredited by NVLAP, Laboratory Code 100255-0. The full scope of accreditation can be viewed at http://ts.nist.gov/standards/scopes/1002550.htm.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB
Radiated Emissions, 1-26GHz (worst case, Ground Plane)	± 5.7, k=2 (95%)

Uncertainty figures are valid to a confidence level of 95%.

Laboratories Inc.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a 2.4GHz transceiver that is manufactured by Anaren, Inc. with model numbers A2541E24A and A2541E24C. Models are identical except A2541E24A has an integral printed antenna and A2541E24C has a U.FL connector.

DATE: 2013-07-04

IC: 8975A-A13022601

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Model: A2541E24A					
Frequency Range	Mode	PA_Table	Output Power	Output Power	
(MHz)		Value	(dBm)	(mW)	
		(Hex)			
2402 - 2480	GFSK 2Mbps 500kHz	0xCF	7.96	6.25	
2402 - 2480	GFSK 2Mbps 320kHz	0xCF	7.93	6.21	
2402 - 2480	GFSK 1Mbps 250kHz	0xCF	7.95	6.24	
2402 - 2480	GFSK 1Mbps 160kHz	0xCF	7.99	6.30	
Model: A2541E240					
Frequency Range	Mode	PA_Table	Output Power	Output Power	
(MHz)		Value	(dBm)	(mW)	
		(Hex)			
2402 - 2480	GFSK 2Mbps 500kHz	0xC6	7.46	5.57	
2402 - 2480	GFSK 2Mbps 320kHz	0xC6	7.39	5.48	
2402 - 2480	GFSK 1Mbps 250kHz	0xC6	7.15	5.19	
2402 - 2480	GFSK 1Mbps 160kHz	0xC6	7.23	5.28	

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio of model A2541E24A utilizes an integral PCB antenna, with a maximum gain of 2 dBi.

The radio of model A2541E24C utilizes a monopole antenna, with a maximum gain of 3 dBi.

5.4. SOFTWARE AND FIRMWARE

The EUT driver software installed during testing was rev. 1.0.00.

The test utility software used during testing was CC2541 Certification Test ver. 1.0.

Page 7 of 126

5.5. WORST-CASE CONFIGURATION AND MODE

Conducted antenna port and power line conducted emission tests were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. Radiated emissions tests were performed at the highest output power setting per model (i.e. A2541E24A set to PA_Table value 0xCF, A2541E24C set to PA_Table value 0xC6).

DATE: 2013-07-04

IC: 8975A-A13022601

The fundamental of the EUT was investigated in three orthogonal orientations X, Y, Z.

It was determined that Y orientation was worst-case orientation for Model A2541E24A; therefore, all final radiated testing was performed with the EUT in Y orientation.

It was determined that Z orientation was worst-case orientation for Model A2541E24C; therefore, all final radiated testing was performed with the EUT in Z orientation.

Based on the baseline scan, the worst-case data rates were:

- GFSK 2Mbps 500kHz
- GFSK 1Mbps 250kHz
- GFSK 2Mbps 320kHz
- GFSK 1Mbps 160kHz

All final testing was performed in each of these modes. Other data rates that are also deemed compliant are:

GFSK 250kbps 160kHz

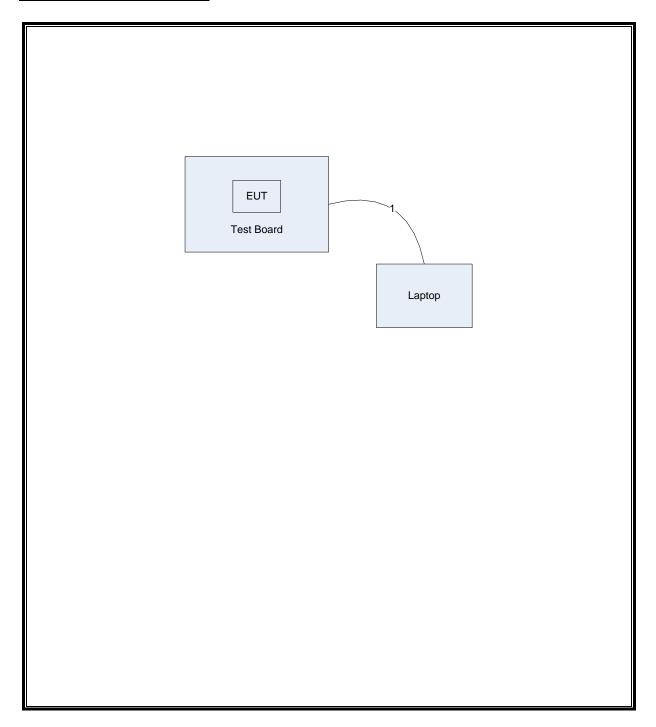
5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List					
Description Manufacturer Model Serial Number FCC ID					
Test Board	Anaren	A253X/A254X	NA	NA	
Laptop	IBM	Thinkpad T43	00045-636-421-009	DoC	

DATE: 2013-07-04

IC: 8975A-A13022601


I/O CABLES

	I/O Cable List					
Cable Port # of identical Connector Cable Type Cable No Type Cable Length (m)						
		•	, · ·			

TEST SETUP

The EUT is installed on a test board which is connected to a laptop computer during the tests. Test software exercised the radio module.

SETUP DIAGRAM FOR TESTS

DATE: 2013-07-04

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

DATE: 2013-07-04

IC: 8975A-A13022601

Radiated Emissions					
Description	Manufacturer	Model	Identifier	Cal Date	Cal Due Date
30-1000MHz					
	Rohde &				
EMI Receiver	Schwarz	ESIB26	ME5B-081	2013-01-29	
Log-P Antenna	Schaffner	UPA6109	44067	2012-05-16	2013-06-30
Bicon Antenna	Schaffner	VBA6106A	43441	2012-11-12	2013-11-12
Switch Driver	HP	11713A	ME7A-627	N/A	N/A
System Controller	Sunol Sciences	SC99V	44396	N/A	N/A
Camera Controller	Panasonic	WV-CU254	44395	N/A	N/A
RF Switch Box	UL	1	44398	N/A	N/A
Measurement Software	UL	Version 9.5	44740	N/A	N/A
Above 1GHz (Band Optimized Sy		VC131011 3.3	144140	14/73	11/7
Above 10112 (Baria Optimized by	Rohde &				
EMI Receiver	Schwarz	ESIB40	34968	2013-01-30	2014-01-31
Horn Antenna (1-2 GHz)	ETS	3161-01 (26°)**	51442	2008-03-28	See * below
Horn Antenna (2-4 GHz)	ETS	3161-02 (22°)**	48107	2007-09-27	See * below
Horn Antenna (4-8 GHz)	ETS	3161-03 (22°)**	48106	2007-09-27	See * below
Horn Antenna (8-12 GHz)	ETS	3160-07 (26°)**	8933	2008-11-24	See * below
Horn Antenna (12-18 GHz)	ETS	3160-08 (26°)**	8932	2007-09-27	See * below
Horn Antenna (18-26.5 GHz)	ETS	3160-09 (27°)**	8947	2007-09-26	See * below
Signal Path Controller	HP	11713A	50250	N/A	N/A
Gain Controller	HP	11713A	50251	N/A	N/A
RF Switch / Preamp Fixture	UL	BOMS1	50249	N/A	N/A
System Controller	UL	BOMS2	50252	N/A	N/A
Measurement Software	UL	Version 9.5	44740	N/A	N/A
Temp/Humidity/Pressure Meter	Cole Parmer	99760-00	4268	2012-12-22	2014-12-22

^{* -} Note: As allowed by the calibration standard ANSI C63.4 Section 4.4.2, standard gain horns need only a one-time calibration. Only if physical damage occurs will the horn antenna require re-calibration.

Gain standard horn antennas (sometimes called standard gain horn antennas) need not be calibrated beyond that which is provided by the manufacturer unless they are damaged or deterioration is suspected, or they are used at a distance closer than $2D^2/\lambda$. Gain standard horn antennas have gains that are fixed by their dimensions and dimensional tolerances.

^{** -} Number in parentheses denotes antenna beam width.

Bench Tests						
Description Manufacturer Model Identifier Cal Date Cal Due Date						
RF Room 1	RF Room 1					
Spectrum Analyzer	Agilent	E4446A	72823	2013-01-29	2014-01-31	
Power Sensor	Rohde & Schwarz	NRP-Z81	73137	2013-01-30	2014-01-31	
Temp/Humidity/Pressure Meter	Cole Parmer	99760-00	4268	2012-12-22	2014-12-22	

Conducted Emissions					
Description	Manufacturer	Model	Identifier	Cal Date	Cal Due Date
Conducted Emissions – GP 1					
	Rohde &				
EMI Receiver	Schwarz	ESCI 7	75141	2013-01-30	2014-01-31
LISN	Solar	9252-50-R-24-BNC	ME5A-636	2013-01-31	2014-01-31
Switch Driver	HP	11713A	44397	N/A	N/A
RF Switch Box	UL	4	44404	N/A	N/A
Measurement Software	UL	Version 9.5	44736	N/A	N/A
Temp/Humidity/Pressure Meter	Cole Parmer	99760-00	43734	2012-03-13	2014-03-13

7. ON TIME, DUTY CYCLE AND MEASUREMENT METHODS

DATE: 2013-07-04

IC: 8975A-A13022601

LIMITS

None; for reporting purposes only.

PROCEDURE

KDB 789033 Zero-Span Spectrum Analyzer Method.

RESULTS

The EUT operates at 100% duty cycle

8. ANTENNA PORT TEST RESULTS

8.1. GFSK 1Mbps 250kHz MODE

8.1.1. 6 dB BANDWIDTH

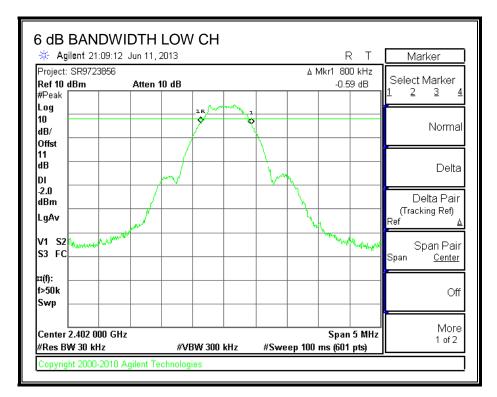
LIMITS

FCC §15.247 (a) (2)

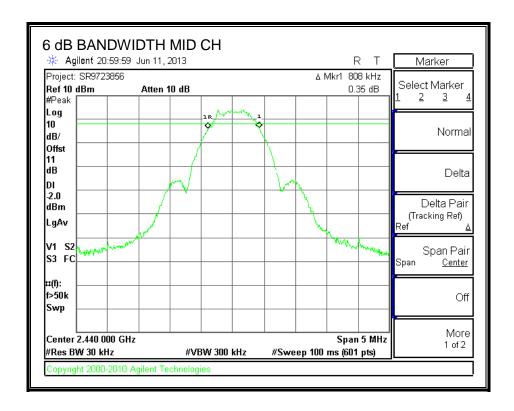
IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 1-5% the EBW and the VBW is set to 3 times the RBW. The sweep time is coupled.

RESULTS


Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.8000	0.5
Middle	2440	0.8080	0.5
High	2480	0.8080	0.5

DATE: 2013-07-04

6 dB BANDWIDTH

DATE: 2013-07-04

Swp

Center 2.480 000 GHz

opyright 2000-2010 Agilent Technologi

#Res BW 30 kHz

#VBW 300 kHz

DATE: 2013-07-04

IC: 8975A-A13022601

More

1 of 2

Span 5 MHz

#Sweep 100 ms (601 pts)

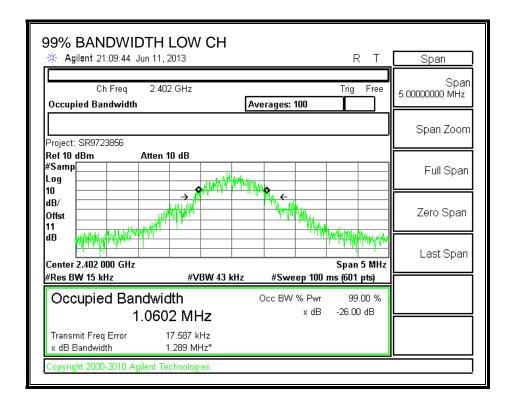
8.1.2. 99% BANDWIDTH

LIMITS

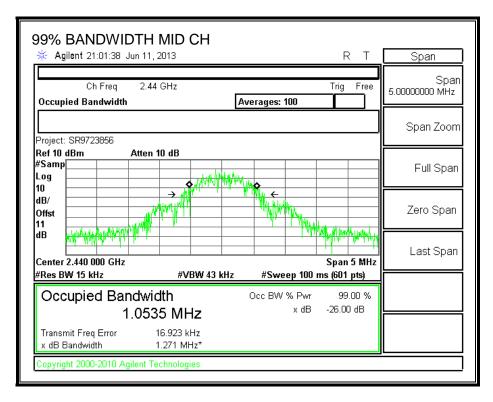
None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth and to 1% of the span. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.


DATE: 2013-07-04

IC: 8975A-A13022601


RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2402	1.0602
Middle	2440	1.0535
High	2480	1.0517

99% BANDWIDTH

DATE: 2013-07-04

#Sweep 100 ms (601 pts)

x dB

99.00 % -26.00 dB

Occ BW % Pwr

#VBW 43 kHz

1.0517 MHz

18.821 kHz

1.274 MHz*

Occupied Bandwidth

Transmit Freq Error

x dB Bandwidth

DATE: 2013-07-04

8.1.3. OUTPUT POWER

LIMITS

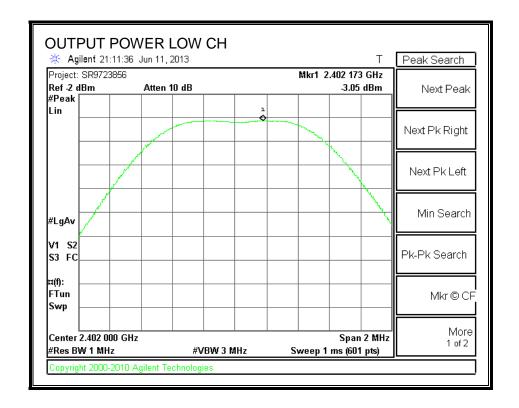
FCC §15.247 (b)

IC RSS-210 A8.4

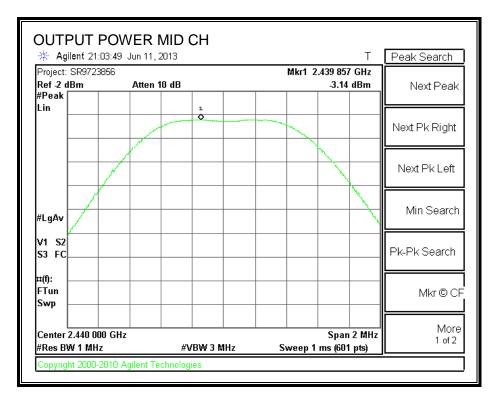
The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

Peak power is measured using the maximum peak conducted output power procedure per section 9.1.1 specified in "558074 D01 DTS Meas Guidance v03" April 8, 2013.


DATE: 2013-07-04

IC: 8975A-A13022601


RESULTS

Channel	Frequency	Peak Power	Offset	Total Peak	Limit	Margin
		Reading		Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2402	-3.05	11.00	7.95	30	-22.050
Middle	2440	-3.14	11.00	7.86	30	-22.140
High	2480	-3.51	11.00	7.49	30	-22.510

OUTPUT POWER

DATE: 2013-07-04

DATE: 2013-07-04

8.1.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

DATE: 2013-07-04

Channel	Frequency (MHz)	AV power (dBm)
Low	2402	7.81
Middle	2440	7.66
High	2480	7.33

8.1.5. POWER SPECTRAL DENSITY

LIMITS

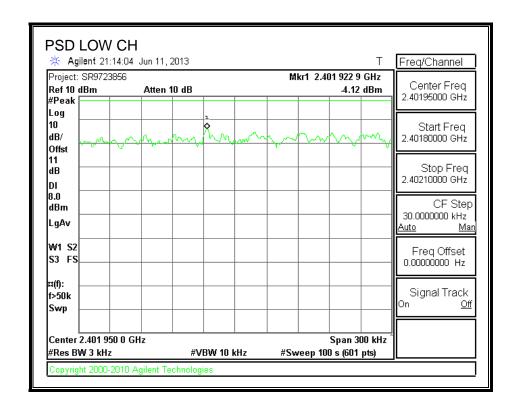
FCC §15.247 (e)

IC RSS-210 A8.2 (b)

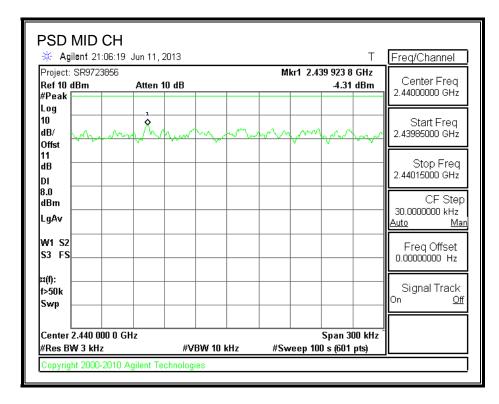
The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

DATE: 2013-07-04

IC: 8975A-A13022601


TEST PROCEDURE

Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option per section 10.2 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", April 8, 2013.


RESULTS

Channel	Frequency (MHz)	PSD (dBm)	Limit (dBm)	Margin (dB)
Low	2402	-4.12	8	-12.12
Middle	2440	-4.31	8	-12.31
High	2480	-4.71	8	-12.71

POWER SPECTRAL DENSITY

DATE: 2013-07-04

DATE: 2013-07-04

8.1.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

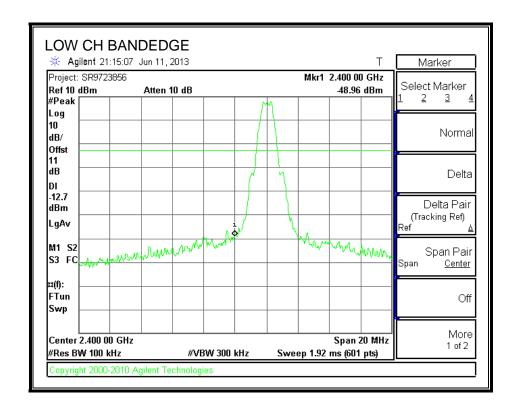
FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

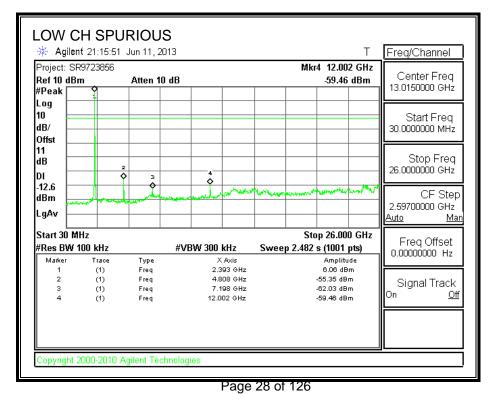
DATE: 2013-07-04

IC: 8975A-A13022601


TEST PROCEDURE

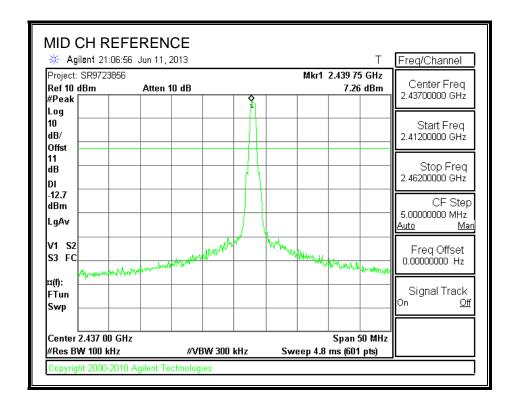
The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

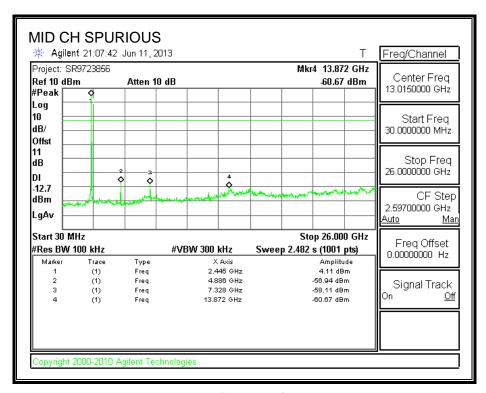
The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

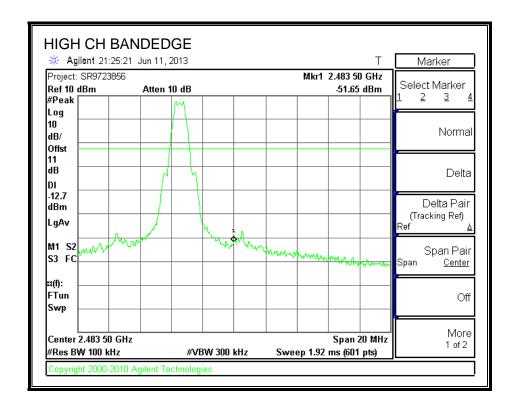
DATE: 2013-07-04


IC: 8975A-A13022601

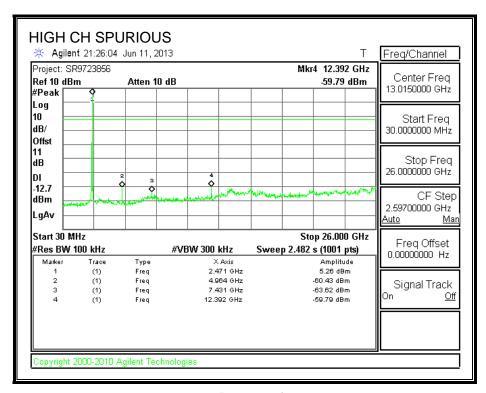

I his report shall not be reproduced except in full, without the written approval of Underwriters

Laboratories Inc.

SPURIOUS EMISSIONS, MID CHANNEL



DATE: 2013-07-04



Page 29 of 126

SPURIOUS EMISSIONS, HIGH CHANNEL

DATE: 2013-07-04

Page 30 of 126

8.2. GFSK 1Mbps 160kHz MODE

8.2.1. 6 dB BANDWIDTH

LIMITS

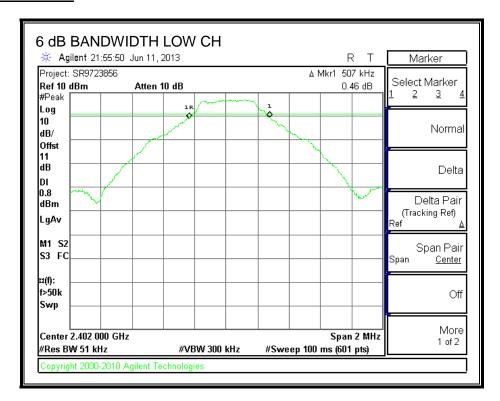
FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

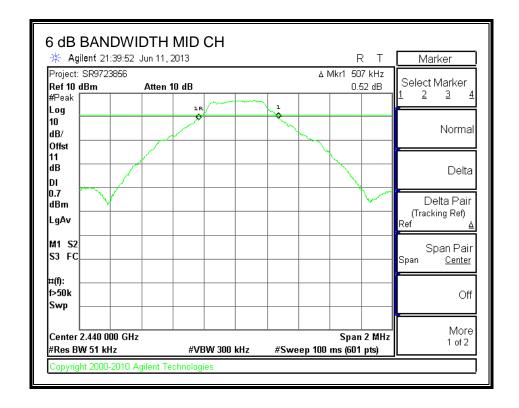
The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 1-5% of the EBW and the VBW is set to 3 times the RBW. The sweep time is coupled.


DATE: 2013-07-04

IC: 8975A-A13022601


RESULTS

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.5070	0.5
Middle	2440	0.5070	0.5
High	2480	0.5070	0.5

6 dB BANDWIDTH

DATE: 2013-07-04

DATE: 2013-07-04

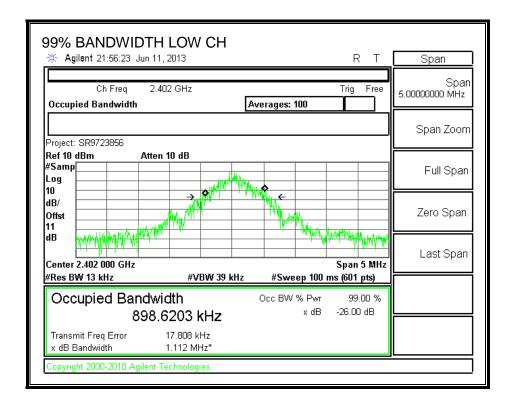
8.2.2. 99% BANDWIDTH

LIMITS

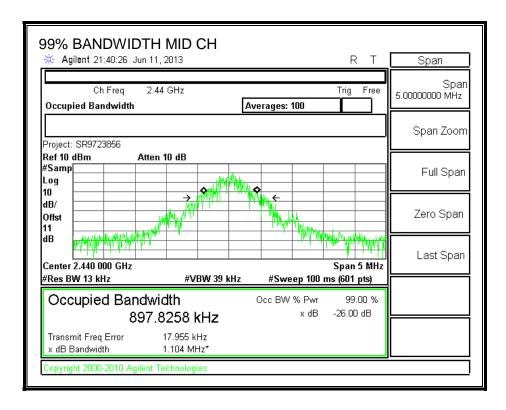
None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth and to 1% of the span. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.


DATE: 2013-07-04

IC: 8975A-A13022601


RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2402	0.8990
Middle	2440	0.8980
High	2480	0.8900

99% BANDWIDTH

DATE: 2013-07-04

DATE: 2013-07-04

8.2.3. OUTPUT POWER

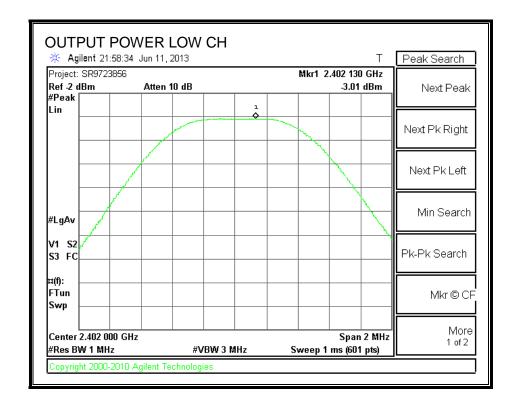
LIMITS

FCC §15.247 (b)

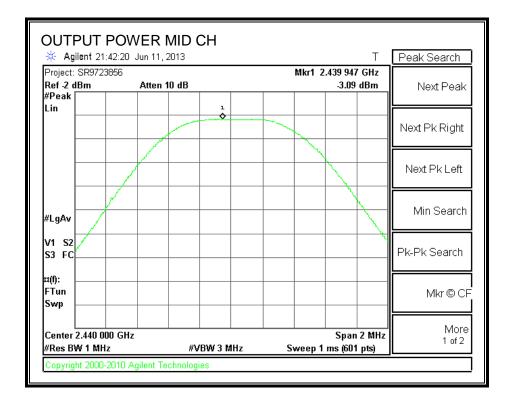
IC RSS-210 A8.4

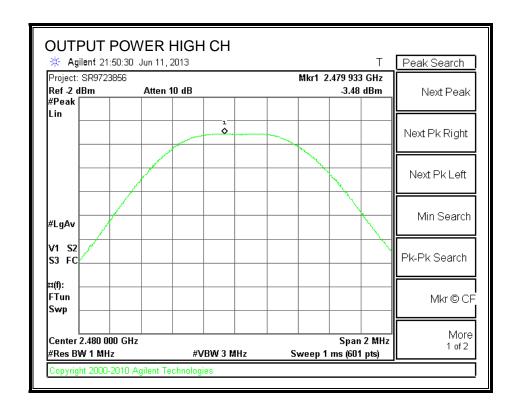
The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE


Peak power is measured using the maximum peak conducted output power procedure per section 9.1.1 specified in "558074 D01 DTS Meas Guidance v03" April 8, 2013.

DATE: 2013-07-04


IC: 8975A-A13022601


Channel	Frequency	Peak Power	Offset	Total Peak	Limit	Margin
		Reading		Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2402	-3.01	11.00	7.99	30	-22.010
Middle	2440	-3.09	11.00	7.91	30	-22.090
High	2480	-3.48	11.00	7.52	30	-22.480

OUTPUT POWER

DATE: 2013-07-04

8.2.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

DATE: 2013-07-04

Channel	Frequency (MHz)	AV power (dBm)
Low	2402	7.82
Middle	2440	7.68
High	2480	7.34

8.2.5. POWER SPECTRAL DENSITY

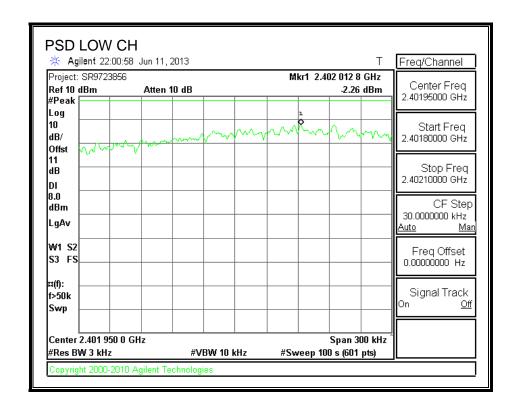
LIMITS

FCC §15.247 (e)

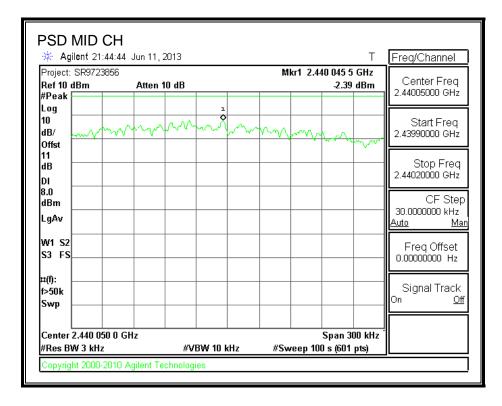
IC RSS-210 A8.2 (b)

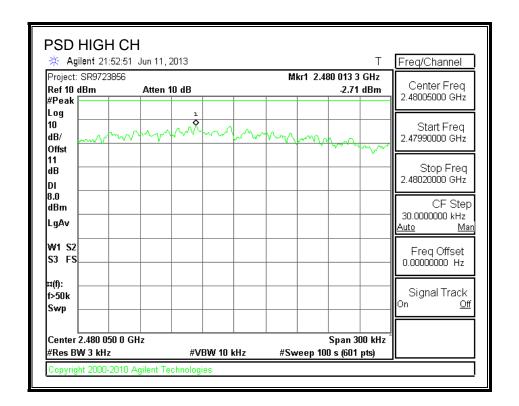
The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

DATE: 2013-07-04


IC: 8975A-A13022601

TEST PROCEDURE


Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option per section 10.2 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", April 8, 2013.


Channel	Frequency (MHz)	PSD (dBm)	Limit (dBm)	Margin (dB)
Low	2402	-2.26	8	-10.26
Middle	2440	-2.39	8	-10.39
High	2480	-2.71	8	-10.71

POWER SPECTRAL DENSITY

DATE: 2013-07-04

8.2.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

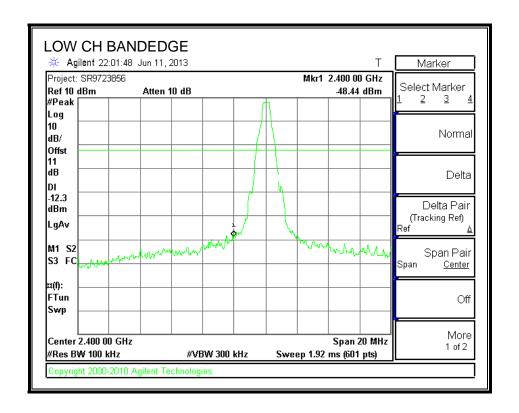
FCC §15.247 (d)

IC RSS-210 A8.5

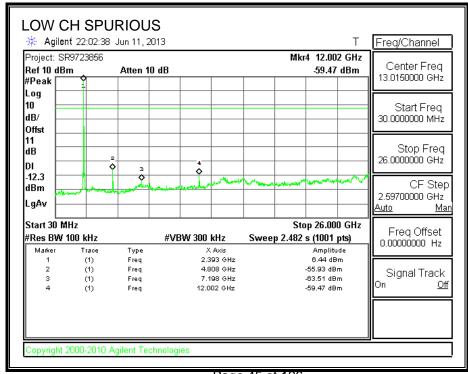
Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

DATE: 2013-07-04

IC: 8975A-A13022601

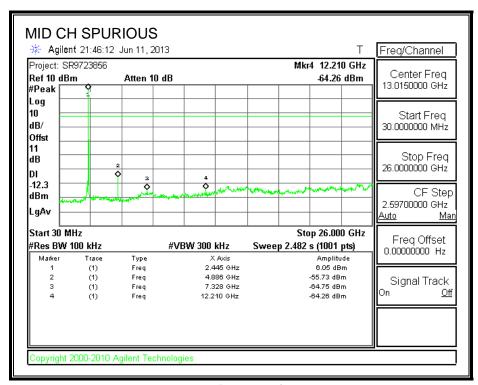

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

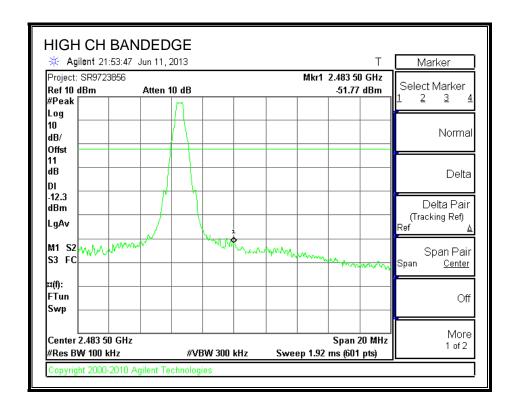

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS

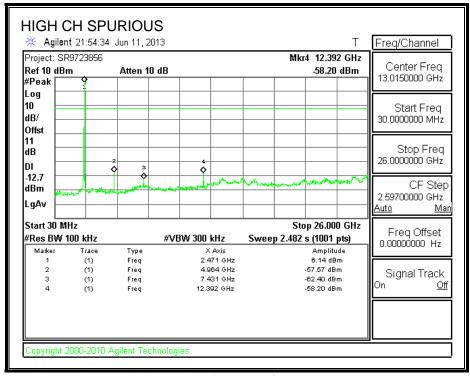

SPURIOUS EMISSIONS, LOW CHANNEL


DATE: 2013-07-04

SPURIOUS EMISSIONS, MID CHANNEL



DATE: 2013-07-04



Page 46 of 126

SPURIOUS EMISSIONS, HIGH CHANNEL

DATE: 2013-07-04

Page 47 of 126

8.3. GFSK 2Mbps 500kHz MODE

8.3.1. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

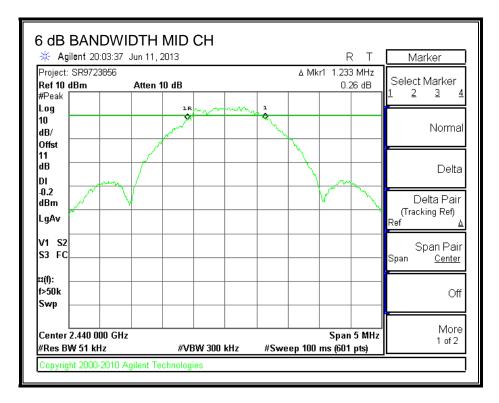
IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 1-5% of the EBW and the VBW is set to 3 times the RBW. The sweep time is coupled.

DATE: 2013-07-04


IC: 8975A-A13022601

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	1.1920	0.5
Middle	2440	1.2330	0.5
High	2480	1.2420	0.5

6 dB BANDWIDTH

DATE: 2013-07-04

#Res BW 51 kHz

opyright 2000-2010 Agilent Technologi

#Sweep 100 ms (601 pts)

#VBW 300 kHz

DATE: 2013-07-04

IC: 8975A-A13022601

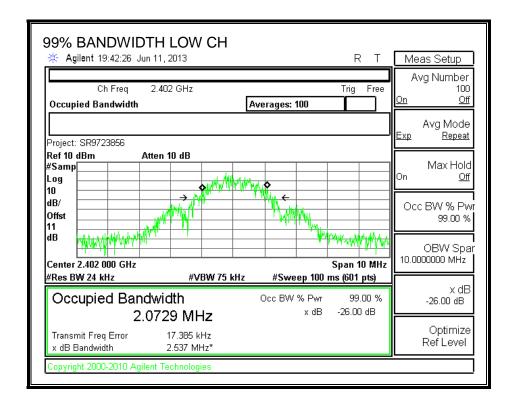
1 of 2

8.3.2. 99% BANDWIDTH

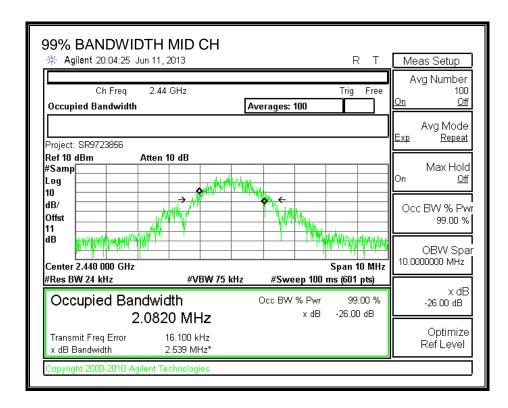
LIMITS

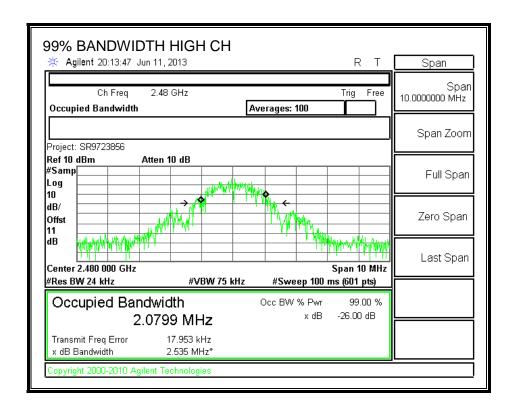
None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth and to 1% of the span. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

DATE: 2013-07-04


IC: 8975A-A13022601


Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2402	2.0729
Middle	2440	2.0820
High	2480	2.0799

99% BANDWIDTH

DATE: 2013-07-04

8.3.3. OUTPUT POWER

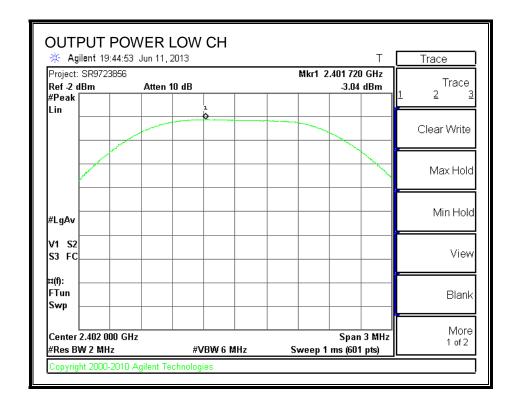
LIMITS

FCC §15.247 (b)

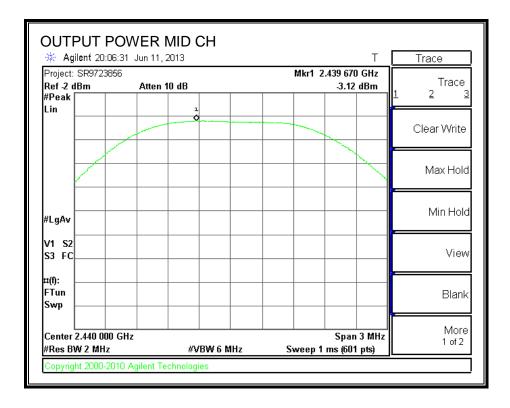
IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE


Peak power is measured using the maximum peak conducted output power procedure per section 9.1.1 specified in "558074 D01 DTS Meas Guidance v03" April 8, 2013.

DATE: 2013-07-04


IC: 8975A-A13022601

Channel	Frequency	Peak Power	Offset	Total Peak	Limit	Margin
		Reading		Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2402	-3.04	11.00	7.96	30	-22.040
Middle	2440	-3.12	11.00	7.88	30	-22.120
High	2480	-3.5	11.00	7.50	30	-22.500

OUTPUT POWER

DATE: 2013-07-04

Page 55 of 126

DATE: 2013-07-04

8.3.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

DATE: 2013-07-04

Channel	Frequency (MHz)	AV power (dBm)
Low	2402	7.75
Middle	2440	7.61
High	2480	7.27

8.3.5. POWER SPECTRAL DENSITY

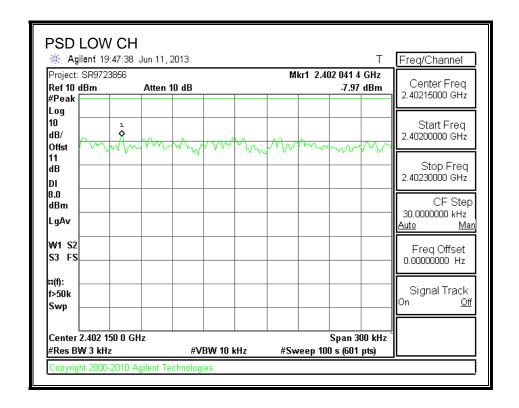
LIMITS

FCC §15.247 (e)

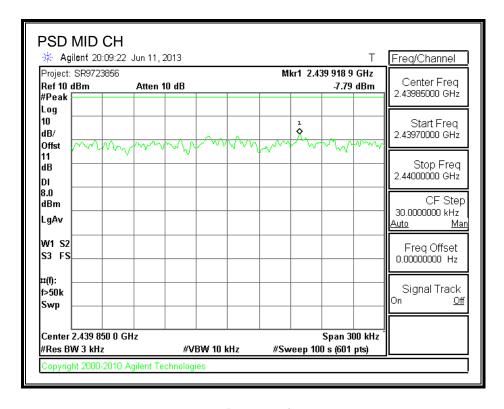
IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

DATE: 2013-07-04


IC: 8975A-A13022601

TEST PROCEDURE


Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option per section 10.2 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", April 8, 2013.

Channel	Frequency	PSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	-7.79	8	-15.79
Middle	2440	-7.79	8	-15.79
High	2480	-8.29	8	-16.29

POWER SPECTRAL DENSITY

DATE: 2013-07-04

Copyright 2000-2010 Agilent Technologies

DATE: 2013-07-04

8.3.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

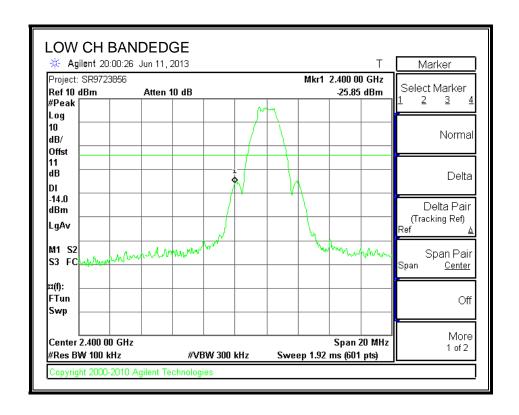
FCC §15.247 (d)

IC RSS-210 A8.5

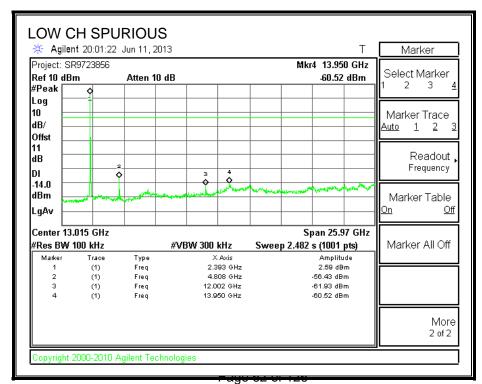
Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

DATE: 2013-07-04

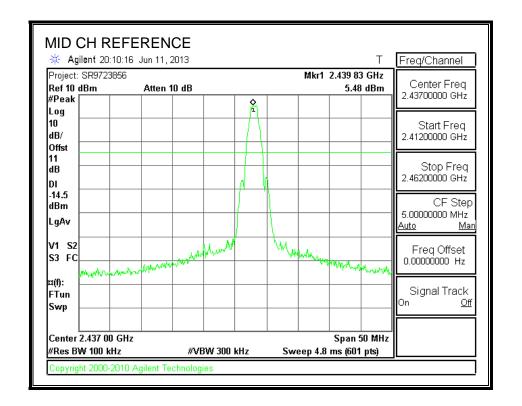
IC: 8975A-A13022601

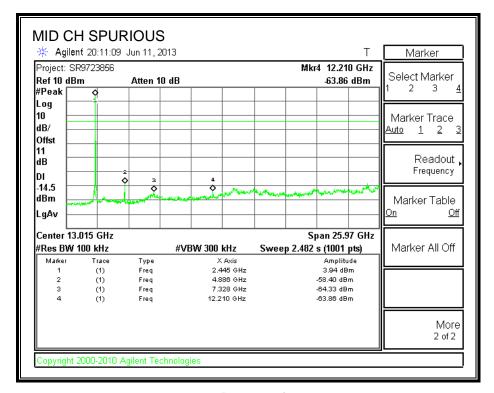

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

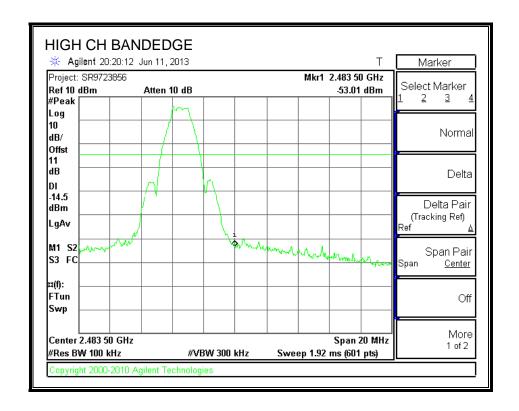

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS

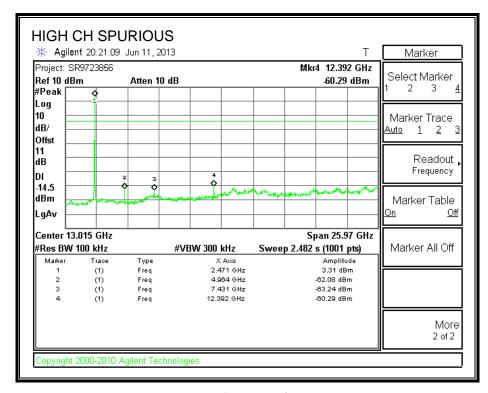

SPURIOUS EMISSIONS, LOW CHANNEL


DATE: 2013-07-04

SPURIOUS EMISSIONS, MID CHANNEL



DATE: 2013-07-04



Page 63 of 126

SPURIOUS EMISSIONS, HIGH CHANNEL

DATE: 2013-07-04

Page 64 of 126

8.4. GFSK 2Mbps 320kHz MODE

8.4.1. 6 dB BANDWIDTH

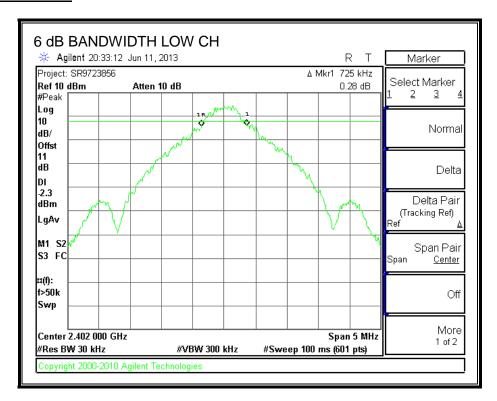
LIMITS

FCC §15.247 (a) (2)

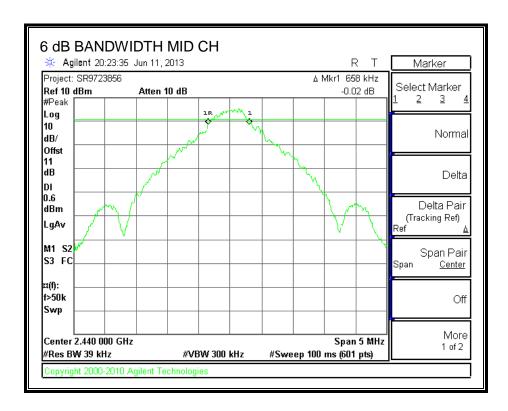
IC RSS-210 A8.2 (a)

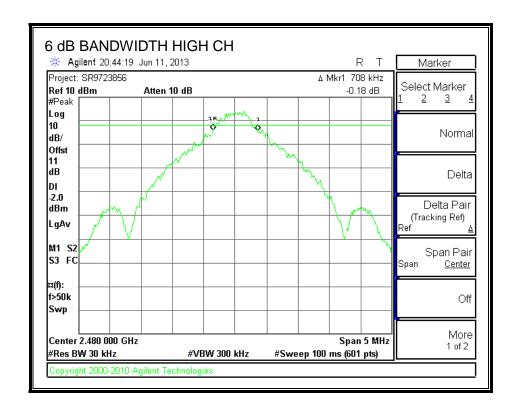
The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 1-5% of the EBW and the VBW is set to 3 times the RBW. The sweep time is coupled.

DATE: 2013-07-04


IC: 8975A-A13022601


Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.7250	0.5
Middle	2440	0.6580	0.5
High	2480	0.7080	0.5

6 dB BANDWIDTH

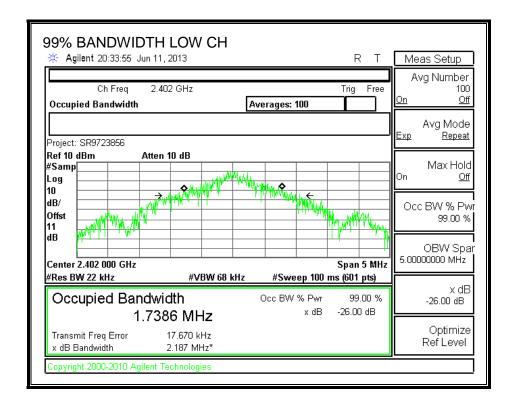
DATE: 2013-07-04

8.4.2. 99% BANDWIDTH

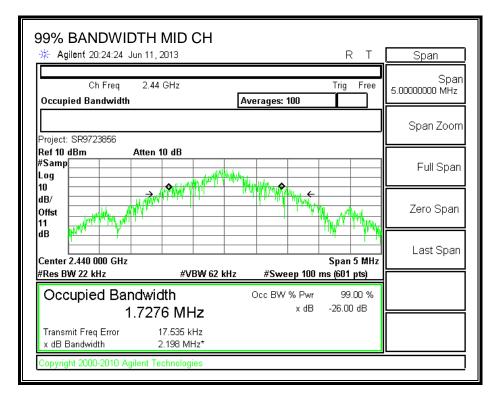
LIMITS

None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth and to 1% of the span. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

DATE: 2013-07-04


IC: 8975A-A13022601

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2402	1.7386
Middle	2440	1.7276
High	2480	1.7372

99% BANDWIDTH

DATE: 2013-07-04

DATE: 2013-07-04

8.4.3. OUTPUT POWER

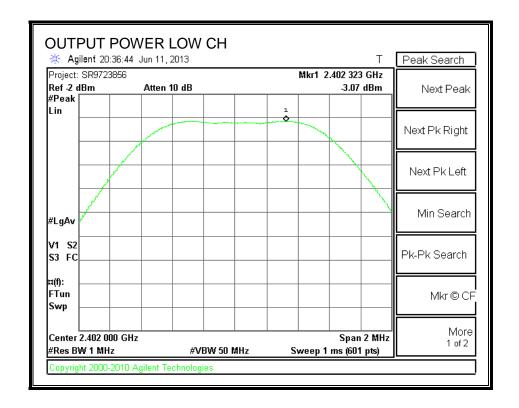
LIMITS

FCC §15.247 (b)

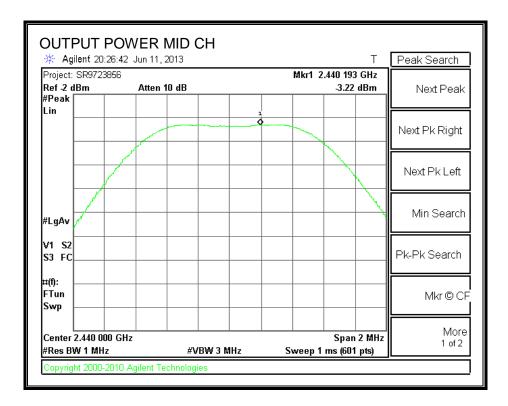
IC RSS-210 A8.4

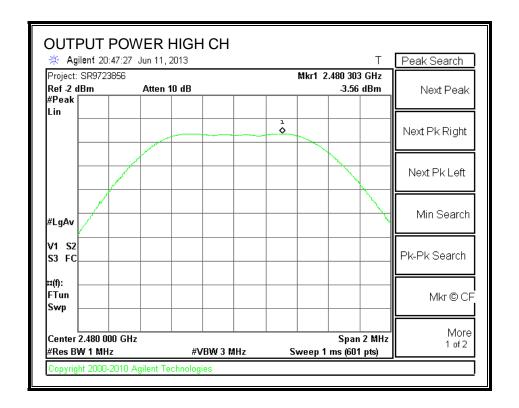
The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE


Peak power is measured using the maximum peak conducted output power procedure per section 9.1.1 specified in "558074 D01 DTS Meas Guidance v03" April 8, 2013.

DATE: 2013-07-04


IC: 8975A-A13022601


Channel	Frequency	Peak Power	Offset	Total Peak	Limit	Margin
		Reading		Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2402	-3.07	11.00	7.93	30	-22.070
Middle	2440	-3.22	11.00	7.78	30	-22.220
High	2480	-3.56	11.00	7.44	30	-22.560

OUTPUT POWER

DATE: 2013-07-04

8.4.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

DATE: 2013-07-04

Channel	Frequency (MHz)	AV power (dBm)
Low	2402	7.8
Middle	2440	7.65
High	2480	7.31

8.4.5. POWER SPECTRAL DENSITY

LIMITS

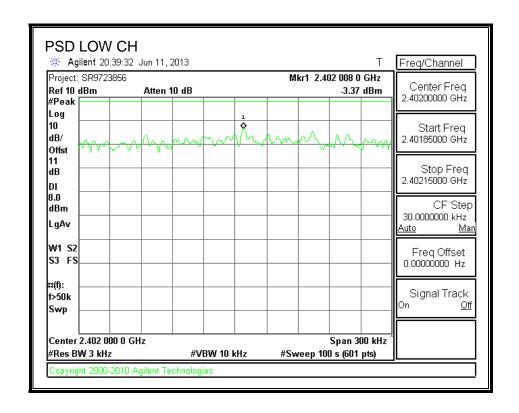
FCC §15.247 (e)

IC RSS-210 A8.2 (b)

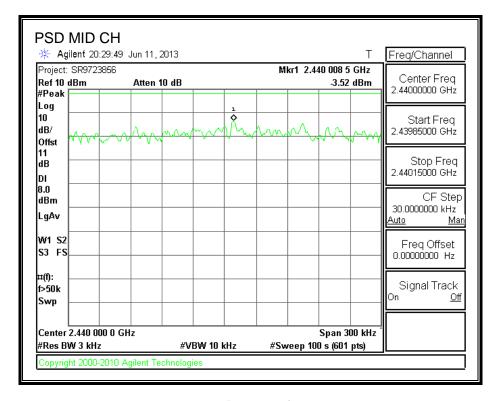
The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

DATE: 2013-07-04

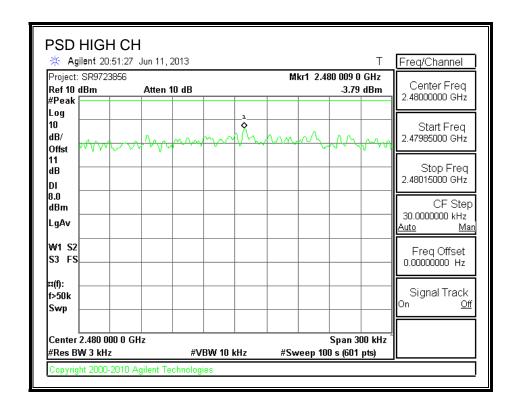
IC: 8975A-A13022601


TEST PROCEDURE

Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option per section 10.2 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", April 8, 2013.


RESULTS

Channel	Frequency (MHz)	PSD (dBm)	Limit (dBm)	Margin (dB)
	(IVITZ)	(ubiii)	(ubili)	(ub)
Low	2402	-3.37	8	-11.37
Middle	2440	-3.52	8	-11.52
High	2480	-3.79	8	-11.79


POWER SPECTRAL DENSITY

DATE: 2013-07-04

Page 76 of 126

8.4.6. CONDUCTED SPURIOUS EMISSIONS

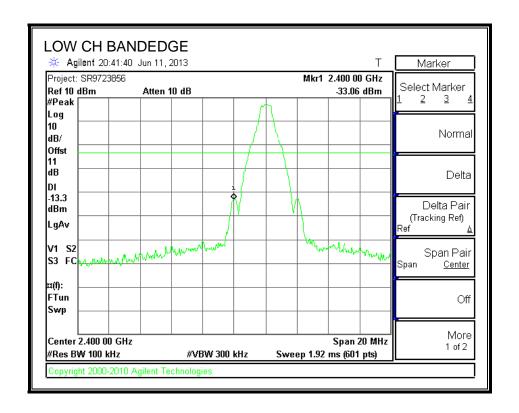
LIMITS

FCC §15.247 (d)

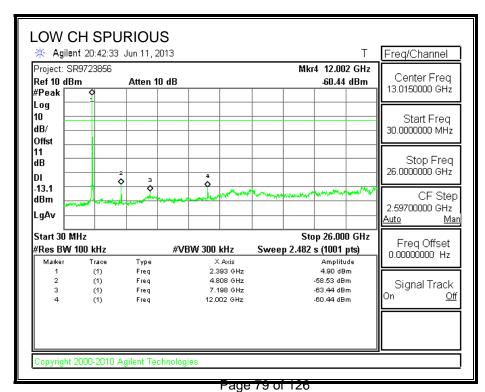
IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

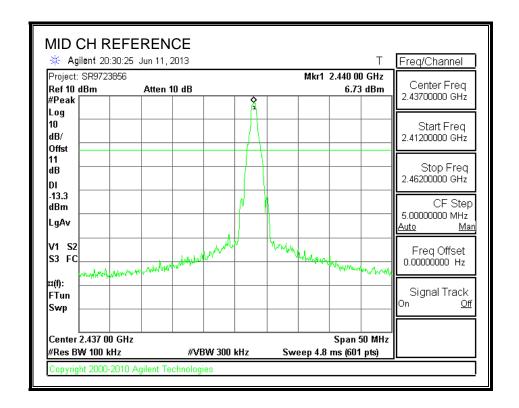
DATE: 2013-07-04

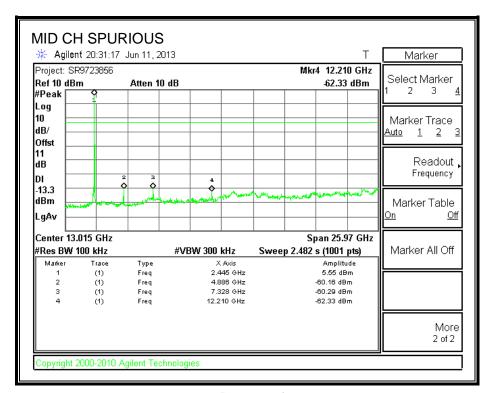

IC: 8975A-A13022601

TEST PROCEDURE

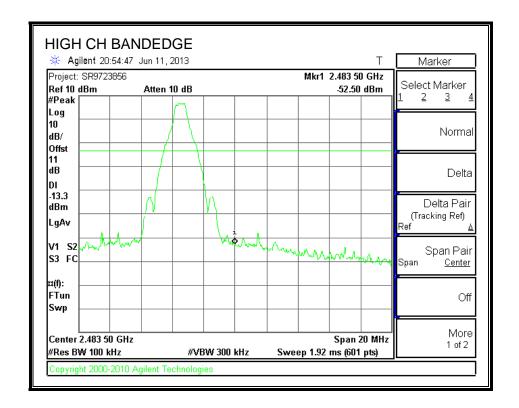

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

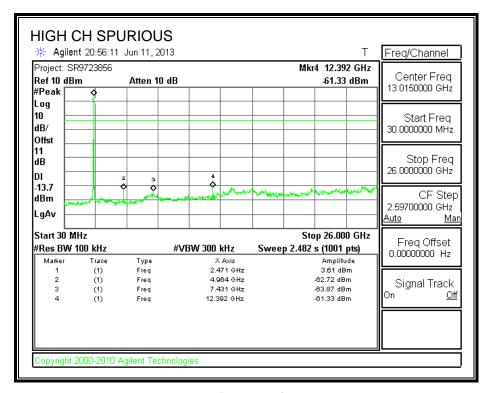

SPURIOUS EMISSIONS, LOW CHANNEL


DATE: 2013-07-04

SPURIOUS EMISSIONS, MID CHANNEL



DATE: 2013-07-04



Page 80 of 126

SPURIOUS EMISSIONS, HIGH CHANNEL

DATE: 2013-07-04

Page 81 of 126

9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

DATE: 2013-07-04

IC: 8975A-A13022601

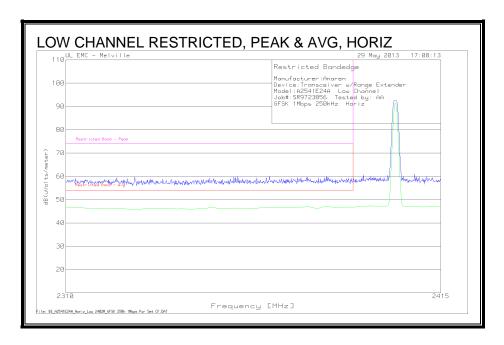
For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

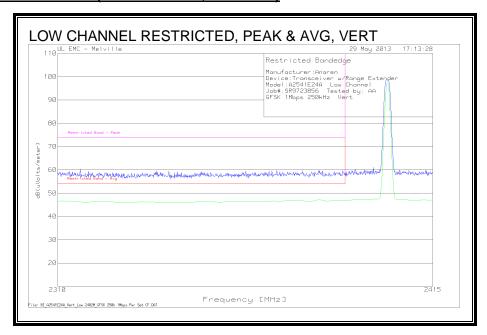
For band edge measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

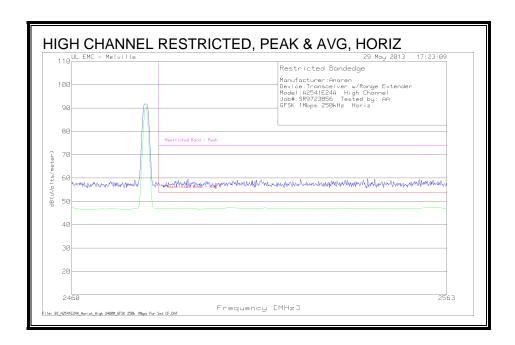
For spurious measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and the RMS Averaging method per KDB 558074 was utilized for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

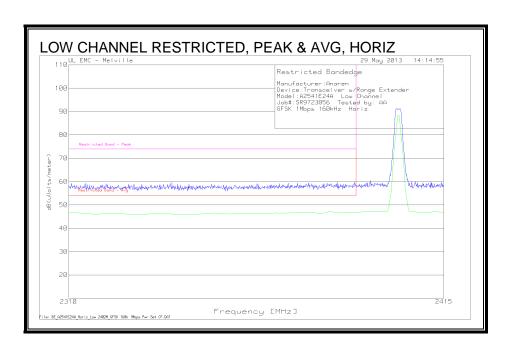

9.2. TRANSMITTER ABOVE 1 GHz – MODEL: A2541E24A

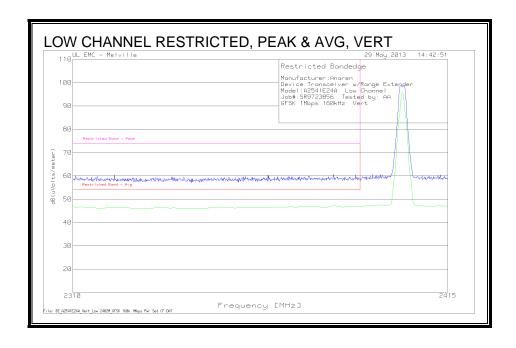

9.2.1. TX ABOVE 1 GHz FOR GFSK 1Mbps 250kHz MODE IN THE 2.4 GHz BAND

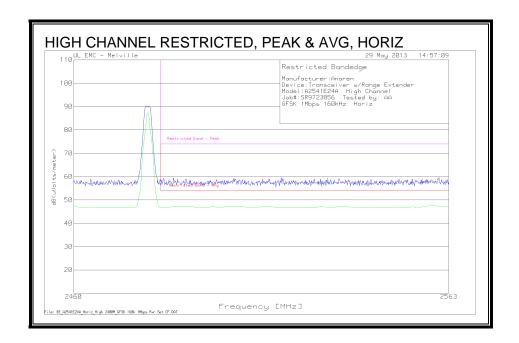

DATE: 2013-07-04


IC: 8975A-A13022601

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

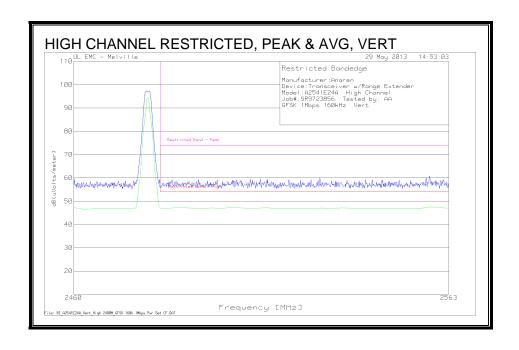

Device:Transcei	ver with Range E	xtender										
Model:A2541E2	4A											
Job#:SR9723856	Tested by: DC/R	M										
GFSK 1Mbps 25												
Low Channel - 24	I02MHz											
Test Frequency	Meter Reading	Detector	AF [dB/m]	BOMS Factor	dB(uVolts/r	FCC Part 15 Subpart C 15.209	Margin (dB)	FCC Part 15 Subpart C Peak	Margin (dB)	Azimuth [Degs]	Height [cm]	Polarit
4803.639	77.7	PK2	27.1	-52.2	52.6	-	-	74	-21.4	291	313	Horz
4804.127	76.93	PK2	27.1	-52.17	51.86	-	-	74	-22.14	10	230	Vert
12011.673	62.21	PK2	37.2	-47.78	51.63	-	-	74	-22.37	283	287	Vert
12011.028	60.78	PK2	37.2	-47.81	50.17	-	-	74	-23.83	248	236	Horz
4804.102	73.58	MAv1	27.1	-52.17	48.51	54	-5.49	-	-	291	313	Horz
4804.113	72.3	MAv1	27.1	-52.17	47.23	54	-6.77	-	-	10	230	Vert
12011.347	52.16	MAv1	37.2	-47.79	41.57	54	-12.43	-	-	283	287	Vert
12009.099	51.48	MAv1	37.2	-47.9	40.78	54	-13.22	-	-	248	236	Horz
Mid Channel - 24	I40MHz											
Test Frequency	Meter Reading		AF [dB/m]	BOMS Factor	dB(uVolts/r	FCC Part 15 Subpart C 15.209	Margin (dB)	FCC Part 15 Subpart C Peak	Margin (dB)	Azimuth [Degs]	Height [cm]	Polarit
4880.2646	78.5	PK2	27.2	-52.12	53.58	-	-	74	-20.42	302		Horz
4880.1907	76.61	PK2	27.2	-52.12	51.69	-	-	74			221	Vert
7319.26	79.68	PK2	28	-51.12	56.56	-	-	74	-17.44	265	102	Vert
7319.28	80.05	PK2	28	-51.12	56.93	-	-	74	-17.07	241	289	Horz
12201.319	61.1	PK2	37.2	-47.38	50.92	-	-	74	-23.08	301	366	Vert
12201.129	59.92	PK2	37.2	-47.37	49.75	-	-	74	-24.25	251	387	Horz
4880.208	74.38	MAv1	27.2	-52.12	49.46	54	-4.54	-	-	302	304	Horz
4879.9788	72.42	MAv1	27.2	-52.12	47.5	54	-6.5	-	-	268	221	Vert
7319.631	75.33	MAv1	28	-51.12	52.21	54	-1.79	-	-	265	102	Vert
7319.49	75.91	MAv1	28	-51.12	52.79	54	-1.21	-	-	241	289	Horz
12201.094	50.39	MAv1	37.2	-47.37	40.22	54	-13.78	-	-	301	366	Vert
12201.182	49.56	MAv1	37.2	-47.38	39.38	54	-14.62	-	-	251	387	Horz
High Channel - 2	480MHz											
Test Frequency					dB(uVolts/r		Margin (dB)		Margin (dB)		[cm]	Polarit
4959.782	78.9		27.3	-51.95		-	-	74				Horz
4959.68	78.74		27.3		54.09		-	74				Vert
7439.4	74.48		28.1				-	74				Horz
7440.502	74.87		28.1		52.1		-	74				Vert
12401.438	59.94		37.2	-47.64	49.5		-	74				Vert
12398.903	58.4		37.2	-47.48	48.12		-	74				Horz
4960.145		MAv1	27.3						-	296		Horz
4960.139	74.74		27.3				-3.9		-	278		Vert
7439.54			28.1	-50.85	46.98		-7.02		-	326		Horz
7439.51		MAv1	28.1	-50.85	47.48		-6.52		-	91		Vert
12398.978	48.89		37.2	-47.49	38.6				-	311		Vert
12398.888	48.87	MAv1	37.2	-47.48	38.59	54	-15.41	-	-	248	120	Horz
PK2 - KDB55807	4 v02 10 2 3 2/8	1.1 Metho	d: Maximu	m Peak								
	74 v02 10.2.3.2/8				70							


9.2.2. TX ABOVE 1 GHz FOR GFSK 1Mbps 160kHz MODE IN THE 2.4 GHz BAND


DATE: 2013-07-04

IC: 8975A-A13022601

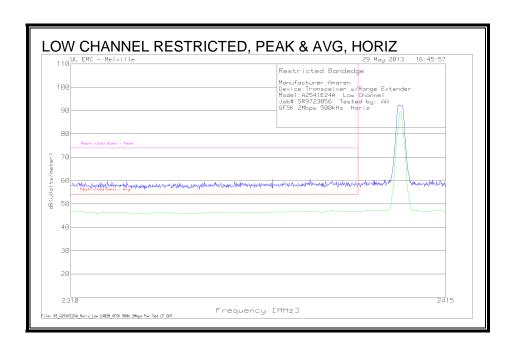
RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

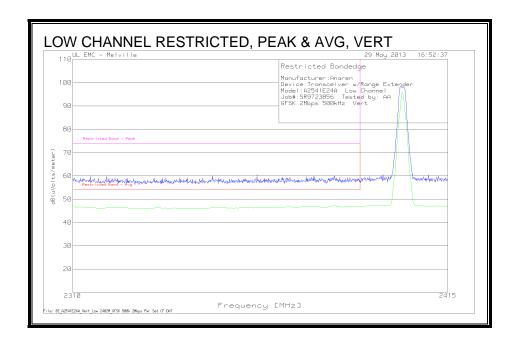


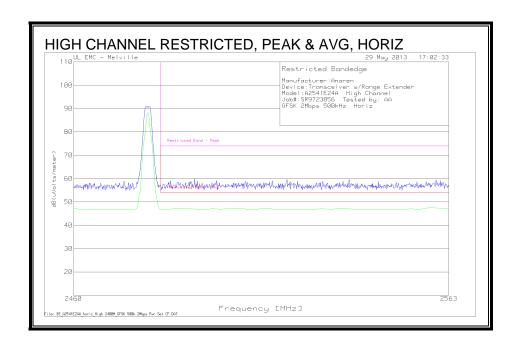
DATE: 2013-07-04

IC: 8975A-A13022601

Device:Transcei	ver with Range E	xtender										
Model:A2541E2	-	xtemoer										
	Tested by: AA/	RM										
GFSK 1Mbps 16												
Low Channel - 24	102MHz											
Test Frequency	Meter Reading	Detector	AF [dB/m]	BOMS Factor	dB(uVolts/r	FCC Part 15 Subpart C 15.209	Margin (dB)	FCC Part 15 Subpart C Peak	Margin (dB)	Azimuth	Height	Polari
4804.303	78.28	PK2	27.1	-52.2	53.22	-	-	74	-20.78	283	284	Horz
4804.1227	75.54	PK2	27.1	-52.2	50.47	-		74	-23.53	265	202	Vert
12010.785	62.4	PK2	37.2	-47.8	51.78		-	74	-22.22	243	357	Horz
12010.887	62.45	PK2	37.2	-47.8	51.83	-	-	74	-22.17	296	263	Vert
4804.044	75.11	MAv1	27.1	-52.2	50.04	54	-3.96	-	-	283	284	Horz
4804.0135	71.66		27.1		46.59	54	-7.41	-	-	265		Vert
12010.716		MAv1		-47.8	42.57	54		-	_	243		Horz
12010.704	52.58			-47.8	41.96	54		-	-	296		Vert
Mid Channel - 24	140MHz											
				BOMS Factor		FCC Part 15 Subpart C		FCC Part 15 Subpart C		Azimuth	_	
	Meter Reading		AF [dB/m]		dB(uVolts/r	15.209	Margin (dB)	Peak	Margin (dB)	[Degs]	[cm]	Polar
4879.8577	78.3		27.2	-52.1	53.38	-	-	74	-20.62	300		Horz
4879.7695	76.32	PK2	27.2	-52.1	51.4	-	-	74	-22.6	261	269	Vert
7318.5611	79	PK2	28	-52.3	54.66	-	-	74	-19.34	242	298	Horz
7318.7013	80.43	PK2	28	-52.3	56.09	-	-	74	-17.91	94	187	Vert
12199.65	61.14	PK2	37.2	-47.3	51.06	-	-	74	-22.94	237	326	Horz
12200.002	60.97	PK2	37.2	-47.3	50.87	-	-	74	-23.13	299	302	Vert
4880.0811	75.1	MAv1	27.2	-52.1	50.18	54	-3.82	-	-	300	363	Horz
4879.995	72.74	MAv1	27.2	-52.1	47.82	54	-6.18	-	-	261	269	Vert
7318.7916	74.09	MAv1	28	-52.3	49.75	54	-4.25	-	-	242	298	Horz
7318.7714	74.56	MAv1	28	-52.3	50.22	54	-3.78	-	-	94	187	Vert
12199.411	49.98	MAv1	37.2	-47.3	39.91	54	-14.09	-	-	237	326	Horz
12200.498	50.19	MAv1	37.2	-47.3	40.06	54	-13.94	-	-	299	302	Vert
High Channel - 2	480MHz											
		.	45 (ID / 1	BOMS Factor	10/ 1/ 1/	FCC Part 15 Subpart C		FCC Part 15 Subpart C		Azimuth	_	
4960.2866	Meter Reading 79.12			-51.9	dB(uVolts/r 54.48	15.209	Margin (dB)	Реак 74	Margin (dB) -19.52	[Degs]	[cm]	Polar Horz
4959.9038	79.12		27.3	-51.9 -52	54.48	-	-	74	-19.52 -20.55	258		Vert
							-					
7441.4329			28.1				-		-22.81			
7441.3728				-52.1		-	-	74		273		Horz
12399.699				-47.5			-	74 74				Horz
12400.878				-47.6			1 07	/4	-23.61	298		Vert
4960.0872		MAv1	27.3			54		-	-	300		Horz
4960.1814		MAv1		-51.9		54				258		Vert
7441.2626		MAv1		-52.1		54			-	92		Vert
7441.3427		MAv1		-52.1		54			-	273		Horz
12399.586		MAv1		-47.5		54			-	247		Horz
12400.747	50.24	MAv1	37.2	-47.6	39.84	54	-14.16	-	-	298	326	Vert
PK2 - KDB55807	4 v02 10.2.3.2/8	.1.1 Metho	d: Maximu	m Peak								
	74 v02 10.2.3.2				A							


Page 88 of 126


9.2.3. TX ABOVE 1 GHz FOR GFSK 2Mbps 500kHz MODE IN THE 2.4 GHz BAND


DATE: 2013-07-04

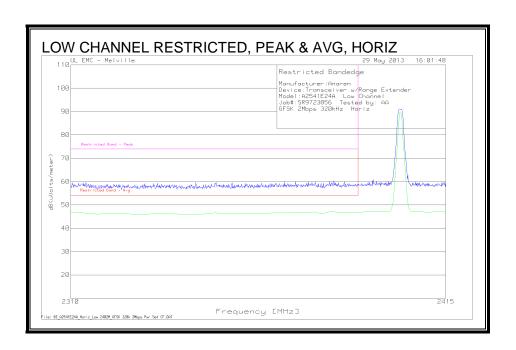

IC: 8975A-A13022601

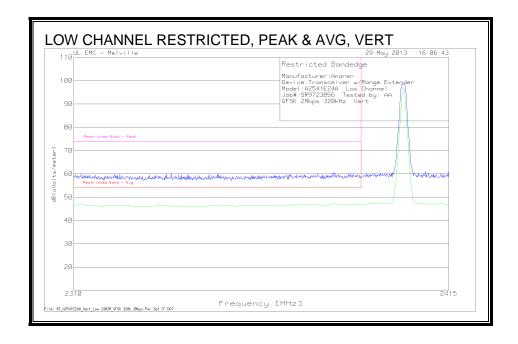
RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

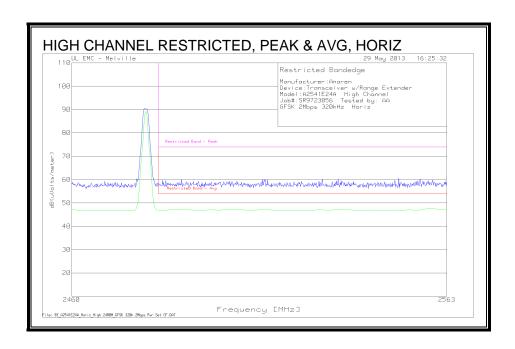
	ver with Range E	xtender										
Model:A2541E2												
	Tested by: AA/	RM										
GFSK 2Mbps 50	0kHz											
Low Channel - 24	102MHz											
				BOMS		FCC Part 15		FCC Part 15				
				Factor		Subpart C		Subpart C		Azimuth	_	
	Meter Reading				dB(uVolts/r	15.209	Margin (dB)		Margin (dB)		[cm]	Polari
4804.08	69.53		27.1		44.46	-	-	74				Horz
4804.1165	75.84			-52.2	50.77	-	-	74				Vert
12012.413	61.06	PK2	37.2	-47.7	50.52	-	-	74				Vert
12007.811	60.68	PK2	37.2	-48	49.92	-	-	74	-24.08	250	200	Horz
4804.1315	62.09	MAv1	27.1	-52.2	37.02	54	-16.98	-	-	360	350	Horz
4804.083	70.17	MAv1	27.1	-52.2	45.1	54	-8.9	-	-	11	345	Vert
12012.41	50.91	MAv1	37.2	-47.7	40.37	54	-13.63	-	-	281	377	Vert
12007.776	50.05	MAv1	37.2	-48	39.29	54	-14.71	-	-	250	200	Horz
Mid Channel - 24	140MHz											
				BOMS		FCC Part 15		FCC Part 15				
				Factor		Subpart C		Subpart C		Azimuth	Height	
Test Frequency	Meter Reading	Detector	AF [dB/m]	[dB]	dB(uVolts/r	15.209	Margin (dB)	Peak	Margin (dB)	[Degs]	[cm]	Polari
4879.9769	77.49	PK2	27.2	-52.1	52.57	-	-	74	-21.43	290	359	Horz
4880.05	74.61	PK2	27.2	-52.1	49.69	-	-	74	-24.31	248	178	Vert
7318.62	81.4	PK2	28	-51.1	58.27	-	-	74	-15.73	222	386	Horz
7318.66	73.83	PK2	28	-51.1	50.7	-	-	74	-23.3	121	386	Vert
9758.2008	66.01	PK2	33.2	-48.5	50.74	-	-	74	-23.26	309	398	Horz
9758.3311	61.86	PK2	33.2	-48.5	46.58	-	-	74	-27.42	360	246	Vert
4880.0257	72.04	MAv1	27.2	-52.1	47.12	54	-6.88	-	-	290	359	Horz
4880.0934	68.78	MAv1	27.2	-52.1	43.86	54	-10.14	-	-	248	178	Vert
7318.94	76.5	MAv1		-51.1	53.38	54	-0.62	-	-	222	386	Horz
7318.85	68.2	MAv1	28	-51.1	45.08	54		-	-	121	386	Vert
9758.2209		MAv1	33.2		42.47	54		-	-	309		Horz
9758.3386		MAv1		-48.5	36.22	54		-	-	360		Vert
High Channel - 2	480MHz											
<u>.</u>												
				BOMS Factor		FCC Part 15 Subpart C		FCC Part 15 Subpart C		Azimuth	Height	
Test Frequency	Meter Reading	Detector	AF [dB/m]	[dB]	dB(uVolts/r	15.209	Margin (dB)	Peak	Margin (dB)	[Degs]	[cm]	Polari
4960.912	78.58	PK2	27.3	-51.9	53.97	-	-	74	-20.03	303	391	Horz
4959.8	76.18	PK2	27.3	-52	51.53	-	-	74	-22.47	262	283	Vert
7438.557	75.96	PK2	28.1	-50.8	53.25	-	-	74	-20.75	304	387	Horz
7438.577		PK2	28.1	-50.8			-	74				Vert
4960.626		MAv1		-51.9			-5.06	-	-	303		Horz
4959.424		MAv1	27.3				-8.14	-	-	262	283	Vert
7438.848		MAv1		-50.8		54			-	304		Horz
7441.272		MAv1		-50.9		54			-	81		Vert
PK2 - KDB55807	4 v02 10.2.3.2/8	.1.1 Metho	d: Maximu	m Peak								

DATE: 2013-07-04

IC: 8975A-A13022601


This report shall not be reproduced except in full, without the written approval of Underwriters Laboratories Inc.

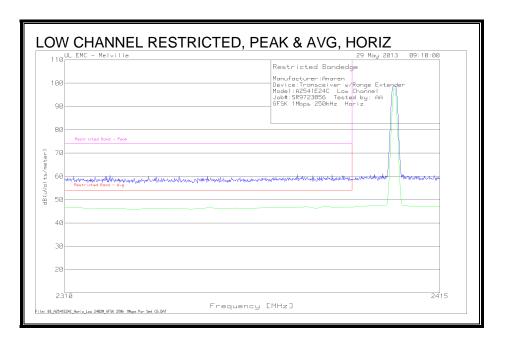

9.2.4. TX ABOVE 1 GHz FOR GFSK 2Mbps 320kHz MODE IN THE 2.4 GHz BAND


DATE: 2013-07-04

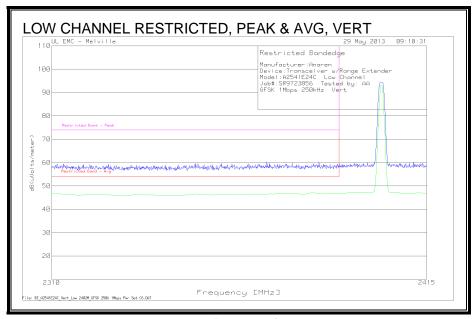
IC: 8975A-A13022601

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

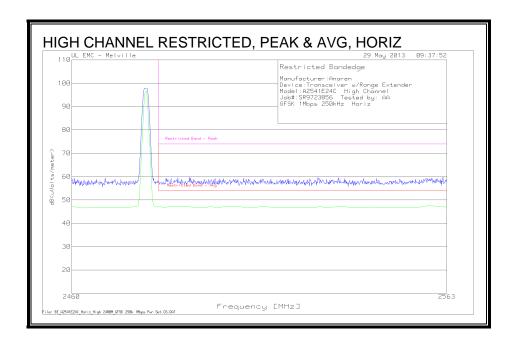
Device:Transcei	ver with Range E	xtender										
Model:A2541E2												
	Tested by: AA/	RM										
GFSK 2Mbps 32		NIVI										
OTOK ZWIDPS 32	OKITE											
Low Channel - 24	102MHz											
				BOMS		FCC Part 15		FCC Part 15				
				Factor		Subpart C		Subpart C		Azimuth	_	
	Meter Reading		AF [dB/m]	[dB]	dB(uVolts/r	15.209	Margin (dB)		Margin (dB)	[Degs]	[cm]	Polari
4803.98	77.56	PK2	27.1	-52.2	52.48	-	-	74	-21.52	310	368	Horz
4804.06	72.9	PK2	27.1	-52.2	47.83	-	-	74	-26.17	155	249	Vert
12008.583	61.55	PK2	37.2	-47.9	50.82	-	-	74	-23.18	285	222	Vert
12008.681	60.79	PK2	37.2	-47.9	50.07	-	-	74	-23.93	249	113	Horz
4804.145	73.44	MAv1	27.1	-52.2	48.37	54	-5.63	-	-	310	368	Horz
4804.075	67.74	MAv1	27.1	-52.2	42.67	54	-11.33	-	-	155	249	Vert
12008.885	51.75	MAv1	37.2	-47.9	41.04	54	-12.96	-	-	285	222	Vert
12008.604	50.33		37.2			54	-14.39	-	-	249		Horz
Mid Channel - 24	140MHz											
Graffiler * Z												
				BOMS		FCC Part 15		FCC Part 15				
				Factor		Subpart C		Subpart C		Azimuth	Height	
Test Frequency	Meter Reading	Detector	AF [dB/m]	[dB]	dB(uVolts/r		Margin (dB)	Peak	Margin (dB)	[Degs]	[cm]	Polari
4880.15	77.68		27.2	-52.1			-	74	-21.24			Horz
4879.679	75.9		27.2		50.98	_	-	74	-23.02	267		Vert
7319.198	79.44		28			_	-	74	-17.68			Vert
7320.821	79.89		28			-		74	-17.05			Horz
4880.055	73.74		27.2	-51.1	48.82	- 54	-5.18	- /4	-17.25	310		Horz
4879.945	71.58		27.2	-52.1		54	-7.34			267		Vert
7319.308	74.38			-52.1		54	-7.34	-		278		Vert
								-	-			
7319.128	75.17	MAV1	28	-51.1	52.05	54	-1.95	-	-	239	288	Horz
High Channel - 2	480MHz											
				BOMS		FCC Part 15		FCC Part 15				
				Factor		Subpart C		Subpart C		Azimuth	Height	
Test Frequency	Meter Reading	Detector	AF [dB/m]		dB(uVolts/r		Margin (dB)		Margin (dB)		[cm]	Polarit
4959.549	78.42		27.3	-52				74	-20.23	308		Horz
4959.865	77.54		27.3	-52			-	74	-20.23			Vert
7438.998	77.54		28.1			-		74	-21.11			Horz
7439.138	75.42			-50.8		-		74	-22.92			Vert
12401.543				-47.7		-		74	-21.31	312		Vert
	58.96					-	_	74	-25.49			
12400.11	60.73			-47.6			- 4.05		-23.63	236		Horz
4959.995	74.59			-52					-	308		Horz
4959.998		MAv1		-52					-	251		Vert
7439.389		MAv1		-50.8					-	331		Horz
7439.348		MAv1		-50.8					-	76		Vert
12401.493	48.66	MAv1		-47.6		54	-15.78	-	-	312	350	Vert
12398.657	48.99	MAv1	37.2	-47.5	38.72	54	-15.28	-	-	236	241	Horz
BV2 VDDEE003	4,02102727	1 1 1 1 1	d Maria	m Deel								
FKZ-KUB5580/	4 v02 10.2.3.2/8				Average							


9.3. TRANSMITTER ABOVE 1 GHz – MODEL: A2541E24C

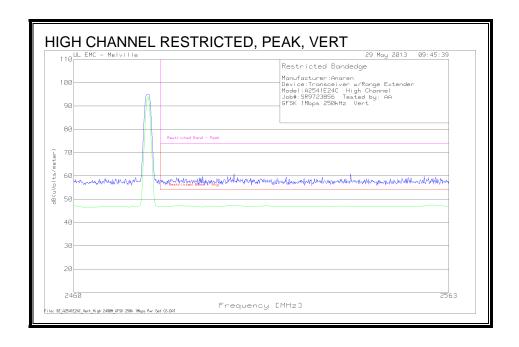
9.3.1. TX ABOVE 1 GHz FOR GFSK 1Mbps 250kHz MODE IN THE 2.4 GHz BAND


DATE: 2013-07-04

IC: 8975A-A13022601


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

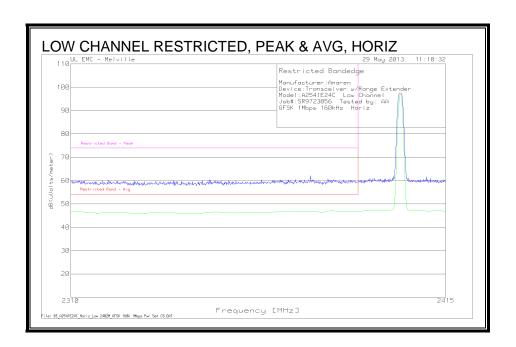
RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

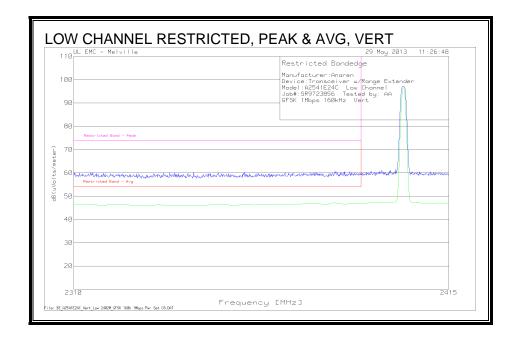


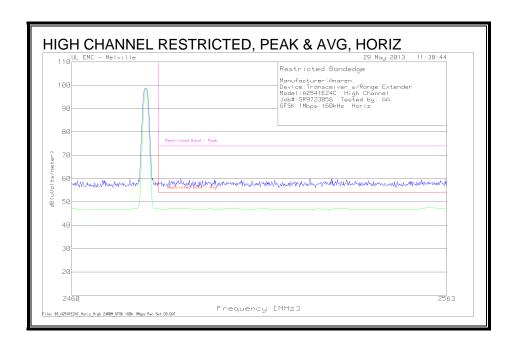
Page 95 of 126

DATE: 2013-07-04

IC: 8975A-A13022601

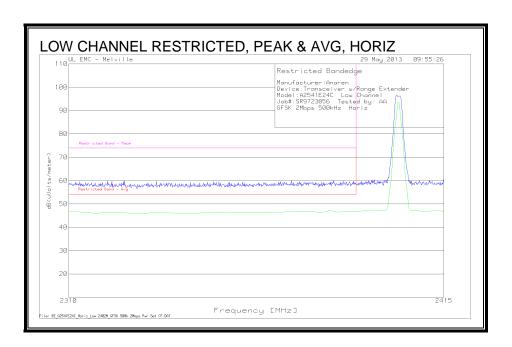

Device:Transcei	ver with Range E	xtender										
Model:A2541E2	4C											
Job#:SR9723856	Tested by: AA/	RM										
GFSK 1Mbps 25	0kHz											
Low Channel - 24	I02MHz											
Test Frequency	Meter Reading	Detector	AF [dR/m]	BOMS Factor	dB(uVolts/r	FCC Part 15 Subpart C	Margin (dB)	FCC Part 15 Subpart C	Margin (dB)	Azimuth	_	Polari
4804.24	79.95		27.1			-	-	74		268		Horz
4804.64	81.65			-52.2			-	74	-17.39	222		Vert
4803.98		MAv1		-52.1		- 54		- /4	-17.55	268		Horz
								-				
4803.94	78.33	MAV1	27.1	-52.2	53.25	54	-0.75	-	-	222	1/2	Vert
Mid Channel - 24	I40MHz											
				BOMS Factor		FCC Part 15 Subpart C		FCC Part 15 Subpart C		Azimuth	_	
	Meter Reading				dB(uVolts/r		Margin (dB)		Margin (dB)		[cm]	Polari
4880.551	73.31		27.2	-43.7	56.8	-	-	74		354		Horz
4879.709	71.87		27.2		55.36	-	-	74	-18.64	240		Vert
7319.36	80.31		28		57.19	-	-	74	-16.81	92		Horz
7319.24	79.34		28		56.22	-	-	74	-17.78	327		Vert
12201.193	59.86		37.2			-	-	74	-24.32	317		Vert
12199.369	58.87		37.2			-	-	74	-25.19	143		Horz
4880.195	69.51	MAv1		-43.7	53	54		-	-	354		Horz
4879.924	67.27	MAv1	27.2	-43.7	50.76	54		-	-	240		Vert
7319.41	76.05	MAv1	28		52.93	54		-	-	92	225	Horz
7319.47		MAv1	28		51.93	54		-	-	327		Vert
12201.208		MAv1		-47.4		54		-	-	317		Vert
12201.378	48.15	MAv1	37.2	-47.4	37.96	54	-16.04	-	-	143	130	Horz
High Channel - 2	480MHz											
				BOMS		FCC Part 15		FCC Part 15				
				Factor		Subpart C		Subpart C		Azimuth	Height	
Test Frequency	Meter Reading	Detector	AF [dB/m]	[dB]	dB(uVolts/r		Margin (dB)		Margin (dB)		[cm]	Polarit
4960.461	71.67		27.3			54		-	-18.73	357		Horz
4960.416	72.01	PK2	27.3	-43.7	55.61	54	-	-	-18.39	29	317	Vert
7439.23	75.54	PK2	28.1	-50.8	52.8	54	-	-	-21.2	292	380	Vert
7439.591	76.44	PK2	28.1	-50.9	53.69	54	-	-	-20.31	6	305	Horz
12399.289	59.08	PK2	37.2	-47.5	48.78	54	-	-	-25.22	327	344	Vert
12401.403	59.83	PK2	37.2	-47.6	49.39	54	-	-	-24.61	227	312	Horz
4959.835	67.22	MAv1	27.3	-43.7	50.8	54	-3.2	74	-	-	220	Horz
4959.79	67.42	MAv1		-43.7		54	-3	74	-	-	317	Vert
7440.69	70.93	MAv1	28.1	-50.9	48.16	54	-5.84	74	-	-	380	Vert
7440.563	71.81	MAv1	28.1	-50.9	49.04	54	-4.96	74	-	-	305	Horz
12398.733	49.12	MAv1	37.2	-47.5	38.85	54	-15.15	74	-	-	344	Vert
12398.928		MAv1		-47.5		54		74		-		Horz
PK2 - KDB55807	4 v02 10.2.3.2/8	.1.1 Metho	d: Maximu	m Peak								

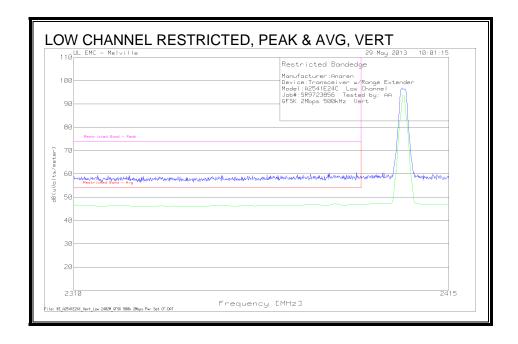

9.3.2. TX ABOVE 1 GHz FOR GFSK 1Mbps 160kHz MODE IN THE 2.4 GHz BAND

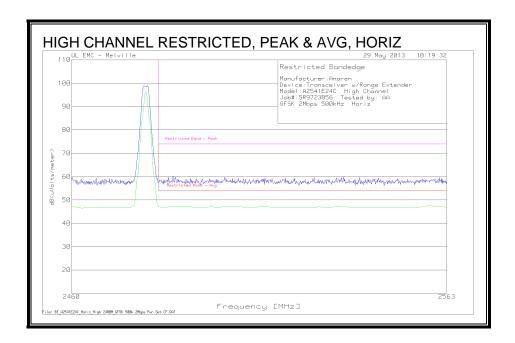

DATE: 2013-07-04

IC: 8975A-A13022601

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

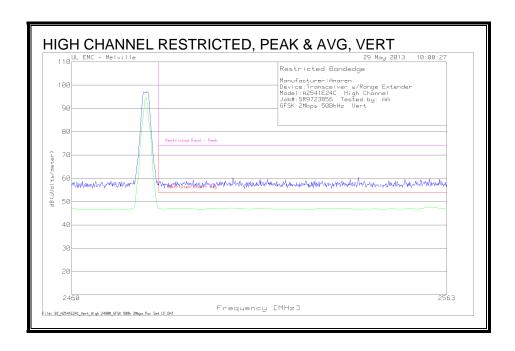

Manufacturer:A	ver with Range E	vtandar										
Model:A2541E2		render										
	Tested by: AA/	RM										
GFSK 1Mbps 16		1141										
or or Twipps 10	ON IE											
Low Channel - 24	102MHz											
				BOMS		FCC Part 15		FCC Part 15				
				Factor		Subpart C		Subpart C		Azimuth	Height	
Test Frequency	Meter Reading	Detector	AF [dB/m]	[dB]	dB(uVolts/r	15.209	Margin (dB)	Peak	Margin (dB)	[Degs]	[cm]	Polar
4803.92	81.09	PK2	27.1	-52.2	56.01	-	-	74	-17.99	232	135	Vert
4804.32	79.14	PK2	27.1	-52.2	54.08			74	-19.92	270	189	Horz
4804.09	78.81	MAv1	27.1	-52.2	53.74	54	-0.26	-	-	232	135	Vert
4804.029	76.69	MAv1	27.1	-52.2	51.62	54	-2.38	-	-	270	189	Horz
Mid Channel - 2	140MHz											
				BOMS		FCC Part 15		FCC Part 15				
				Factor		Subpart C		Subpart C		Azimuth	Height	
Test Frequency	Meter Reading	Detector	AF [dB/m]	[dB]	dB(uVolts/r	15.209	Margin (dB)	Peak	Margin (dB)	[Degs]	[cm]	Polar
4879.68	79.77	PK2	27.2	-52.1	54.85	-	-	74	-19.15	230	131	Vert
4880.08	77.89	PK2	27.2	-52.1	52.97	-	-	74	-21.03	307	243	Horz
7319.722	79.27	PK2	28	-51.1	56.15	-	-	74	-17.85	81	250	Horz
7320.443	79.51	PK2		-51.1	56.38	-	-	74	-17.62	338	382	Vert
12200.92	59.2	PK2	37.2	-47.4	49.04	-	-	74	-24.96	249	291	Horz
12199.818	59.21	PK2	37.2	-47.3	49.12	-	-	74	-24.88	38	259	Vert
4880.02	77.36	MAv1	27.2	-52.1	52.44	54	-1.56	-	-	230	131	Vert
4879.98	75.5	MAv1	27.2	-52.1	50.58	54	-3.42	-	-	307	243	Horz
7319.832	76.18	MAv1	28	-51.1	53.06	54	-0.94	-	-	81	250	Horz
7320.172	76.45	MAv1	28	-51.1	53.33	54	-0.67	-	-	338	382	Vert
12199.54	49.64	MAv1	37.2	-47.3	39.57	54	-14.43	-	-	249	291	Horz
12199.608	50.01	MAv1	37.2	-47.3	39.93	54	-14.07	-	-	38	259	Vert
High Channel - 2	480MHz											
				BOMS		FCC Part 15		FCC Part 15				
_				Factor		Subpart C		Subpart C		Azimuth	_	
	Meter Reading				dB(uVolts/r		Margin (dB)		Margin (dB)		[cm]	Polar
4959.96			27.3	-52	52.78		-	74				Vert
4960.06			27.3		52.37		-	74				Horz
7439.461				-50.8	54.81		-	74				Vert
7439.621				-50.9	54.85		-	74		_		Horz
12400.32	59.66			-47.6	49.29		-	74				Horz
12400.6	58.88			-47.6	48.49		-	74				Vert
4959.98			27.3		50.48	54		-	-	255		Vert
4960.05		MAv1	27.3		49.59				-	308		Horz
7440.192		MAv1		-50.9	51.31	54			-	286		Vert
7440.172				-50.9	51.5				-	8		Horz
12399.46		MAv1		-47.5	40.19				-	238		Horz
12400.71	49.21	MAv1	37.2	-47.6	38.82	54	-15.18	-	-	13	139	Vert
DVA VDSEESSE	400.40.0.0.5.5.5	4 4 5 5 7	4.14- 1	_ n. ·								
	4 v02 10.2.3.2/8 074 v02 10.2.3.2/											


9.3.3. TX ABOVE 1 GHz FOR GFSK 2Mbps 500kHz MODE IN THE 2.4 GHz BAND


DATE: 2013-07-04

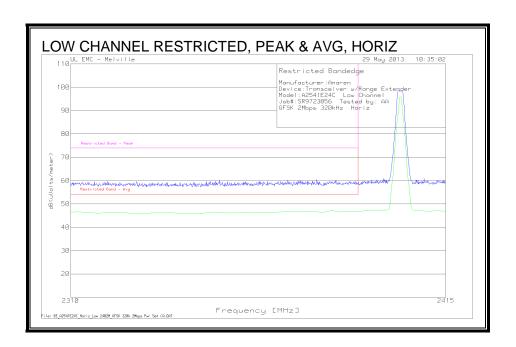
IC: 8975A-A13022601

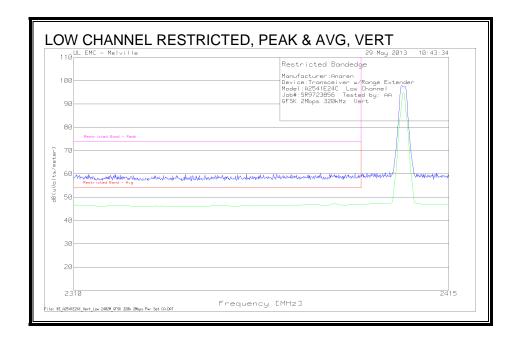
RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

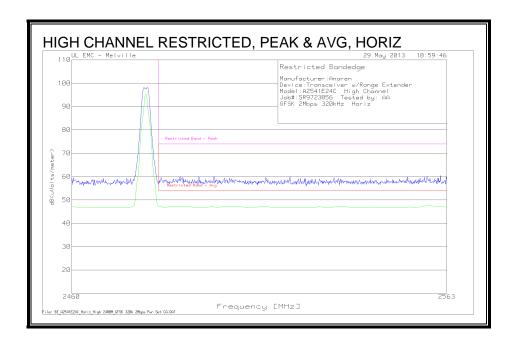


DATE: 2013-07-04

IC: 8975A-A13022601

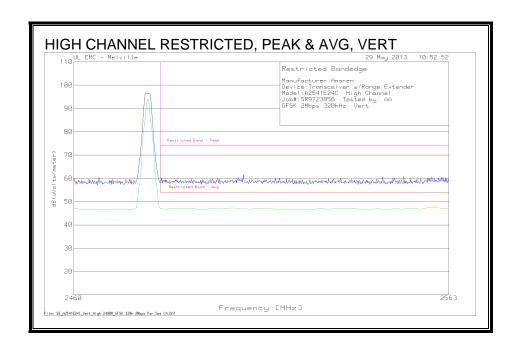

Manufacturer:A		unned										
Device:Transcei Model:A2541E2	iver with Range B	xtender										
	5 Tested by: AA/	DM										
GFSK 2Mbps 50		DIVI										
arak ziviops so	JOKHZ											
Low Channel - 2	402MHz											
				BOMS		FCC Part 15		FCC Part 15				
				Factor		Subpart C		Subpart C		Azimuth	Height	
Test Frequency	Meter Reading	Detector	AF [dB/m]	[dB]	dB(uVolts/r		Margin (dB)		Margin (dB)		[cm]	Polari
4804.836	_			-52.1			-	74				Vert
4804.91				-52.1				74				Horz
12000.86			37.2				-	74				Horz
12009.069				-47.9			-	74				Vert
4804.734		MAv1		-52.1					- 23.31	286		Vert
4804.684				-52.1		54		-	-	299		Horz
12007.793			37.2			54			-	247		Horz
12007.733			37.2			54		-	-	252		Vert
12007.051	51.16	IVIAVI	37.2	-+0	40.4	54	-13.6	-	-	252	230	vert
Mid Channel - 2	440MHz											
a chamier 2												
				BOMS		FCC Part 15		FCC Part 15				
				Factor		Subpart C		Subpart C		Azimuth	Haight	
Tast Fraguancy	Meter Reading	Detector	AF [dB/m]		dB(uVolts/r		Margin (dB)		Margin (dB)		[cm]	Polar
4879.12	_			-52.1		-	- Iviaigin (ub)	74				Vert
4879.112				-52.1			-	74		303		Horz
7318.592				-52.1				74				Vert
7318.592				-51.1 -51.2	57.98		-	74				Horz
/321.418 4879.194		MAv1		-51.2 -52.1				- /4	-15.96	302		Vert
						54		-	-	302		
4879.33				-52.1		54			-			Horz
7318.923				-51.1		54 54		-	-	347 101		Vert
7318.783	/6.65	MAV1	28	-51.1	53.53	54	-0.47	-	-	101	287	Horz
High Channel - 2	400MU-											
nigii Cilalinei - 2	400IVINZ											
				BOMS		FCC Part 15		FCC Part 15				
				Factor		Subpart C		Subpart C		Azimuth	Haight	
Tast Fraguancy	Meter Reading	Detector	AE [dB/m]		dB(uVolts/r		Margin (dB)		Margin (dB)		[cm]	Polari
7438.88	_			-50.8			Iviai giii (ub)	74				Vert
4959.088			27.3				-	74				Vert
4959.088			27.3				-	74				Horz
7438.65				-50.8				74				Horz
7441.375				-50.8				74		_		Vert
12402.37				-47.7		-	-	74				Vert
4959.359		MAv1	27.3						-	294		Vert
4960.71		MAv1		-51.9					-	328		Horz
7438.91		MAv1		-50.8					-	5		Horz
12398		MAv1		-47.4					-	134		Horz
12402.27		MAv1		-47.7					-	134		Horz
12402.27	49.82	MAv1	37.2	-47.7	39.33	54	-14.67	-	-	263	219	Vert
	4 v02 10.2.3.2/8	1.1 Metho	d: Maximu	m Peak								


9.3.4. TX ABOVE 1 GHz FOR GFSK 2Mbps 320kHz MODE IN THE 2.4 GHz BAND


DATE: 2013-07-04

IC: 8975A-A13022601

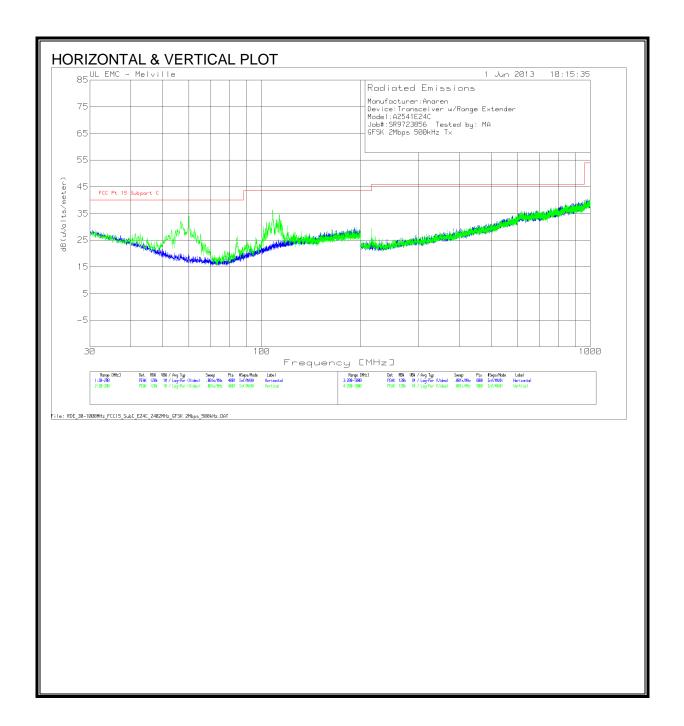
RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)



DATE: 2013-07-04

IC: 8975A-A13022601

DATE: 2013-07-04 IC: 8975A-A13022601


HARMONICS AND SPURIOUS EMISSIONS

4804.56 80.47 PK2 27.1 -52.1 55.43 74 -18.57 302 309 Horz 4804.681 80.49 PK2 27.1 -52.1 55.46 74 -18.57 302 260 Vert 4804.14 77.69 MAv1 27.1 -52.2 52.62 54 -1.38 302 309 Horz 4804.01 77.18 MAv1 27.1 -52.2 52.11 54 -1.89 302 260 Vert Mid Channel - 2440MHz BOMS FCC Part 15 Subpart C FCC Part 15 Subpart C Azimuth Height	Manufacturer:A		utand										
			xtender										
FCC Part 15			DNA										
BOMS Factor Subpart C Margin (d8) Peak			NIVI										
Roman	arak zivibps sz	UKHZ											
Factor Fequency Meter Reading Detector AF [dB/m] [dB/m] Factor A804.56 80.47 PK2 27.1 52.1 55.43	Low Channel - 24	I02MHz											
Factor Fequency Meter Reading Detector AF [dB/m] [dB/m] Factor A804.56 80.47 PK2 27.1 52.1 55.43													
Test Frequency Meter Reading Detector AF [d8]/m [d8] color 15.21 55.43													
4804.56 80.47 PK2 27.1 -52.1 55.43 - 74 -18.57 302 309 Horz 4804.651 80.49 PK2 27.1 -52.1 55.46 - 77 -18.14 302 260 Vert 4804.14 77.69 Mav1 27.1 -52.2 52.62 54 -1.38 - 302 209 Horz 4804.01 77.18 Mav1 27.1 -52.2 52.51 54 -1.89 - 302 209 Horz 4804.01 77.18 Mav1 27.1 -52.2 52.11 54 -1.89 - 302 260 Vert Mid Channel - 2440MHz BOMS FCC Part 15 Subpart C Margin (d8) Peak Margin (d8) Pe												_	
## 4804.681													Polari
A804.14							-	-					
## A804.01 77.18 MAV1 27.1 -52.2 52.11 54 -1.89 - - 302 260 Vert ## Mid Channel - 2440MHz							-	-	74	-18.54			
BOMS									-	-			
BOMS FCC Part 15 Subpart C Subpart	4804.01	77.18	MAv1	27.1	-52.2	52.11	54	-1.89	-	-	302	260	Vert
BOMS FCC Part 15 Subpart C Subpart													
Mater Reading Detector AF [dB/m] [dB] dB(UVOITs/n 15.209 Margin (dB) Peak Margin (dB) Degs] [cm] Polar A879.407 R8.94 PK2 27.2 -52.1 55.51 74 -18.49 308 245 Horz 7319.111 R8.93 PK2 28 -51.1 57.81 74 -16.19 R6 248 Horz 7319.131 79.72 PK2 28 -51.1 57.81 74 -16.19 R6 248 Horz 12198.27 60.38 PK2 37.2 47.2 50.38 74 -16.49 R6 248 Horz 12201.817 59.73 PK2 37.2 47.4 49.52 74 -24.48 236 153 Horz 4879.588 77.87 MAv1 27.2 -52.1 55.09 54 -3.03 308 245 Horz 7319.301 75.24 MAv1 28 -51.1 53.12 54 -0.88 - 325 326 Vert 12201.04 49.67 MAv1 28 -51.1 51.9 54 -2.1 219 379 Vert 12201.04 49.67 MAv1 37.2 -47.4 38.22 54 -15.78 325 326 Vert 12201.727 48.43 MAv1 37.2 -47.4 38.22 54 -15.78 325 326 Vert 12201.727 48.43 MAv1 37.2 -47.4 38.22 54 -15.78 236 153 Horz Height	Wild Channel - 24	140MHz											
Mater Reading Detector AF [dB/m] [dB] dB(UVOITS/n 15.209 Margin (dB) Peak Margin (dB) Degs] [cm] Polar A879.467 78.99 PK2 27.2 -52.1 55.51 74 -18.49 308 245 Horz 7319.111 80.93 PK2 28 -51.1 57.81 74 -16.19 86 248 Horz 7319.131 79.72 PK2 28 -51.1 57.81 74 -16.19 86 248 Horz 7319.131 79.72 PK2 37.2 47.2 50.38 74 -16.19 360 245 Horz 74.19.93 308 2					BOMS		FCC Part 15		FCC Part 15				
Test Frequency Meter Reading Detector AF [dB/m] [dB] dB(uVolts/r 15.209 Margin (dB) Peak Margin (dB) [Degs] [cm] Polar 4879.467 80.43 PK2 27.2 -52.1 55.51											Azimuth	Height	
4879.407 80.43 PK2 27.2 -52.1 55.51 74 -18.49 308 245 Horz 4879.467 78.99 PK2 27.2 -52.1 54.07 74 -19.93 308 245 Vert 7319.111 80.93 PK2 28 -51.1 57.81 74 -16.19 86 248 Horz 7319.131 79.72 PK2 28 -51.1 56.6 74 -17.4 219 379 Vert 12198.27 60.38 PK2 37.2 -47.4 50.38 74 -23.62 325 326 Vert 12201.817 59.73 PK2 37.2 -47.4 49.52 74 -24.48 236 153 Horz 4879.958 77.37 MAv1 27.2 -52.1 50.97 54 -3.03 308 245 Vert 7319.301 76.24 MAv1 28 -51.1 53.12 54 -0.88 86 248 Horz 7319.301 75.02 MAv1 28 -51.1 51.9 54 -2.1 219 379 Vert 12201.04 49.67 MAv1 37.2 -47.4 39.5 54 -14.5 32.6 2 325 326 Vert 12201.777 48.43 MAv1 37.2 -47.4 39.5 54 -15.78 325 326 Vert 12201.777 48.43 MAv1 37.2 -47.4 38.22 54 -15.78 236 153 Horz High Channel - 2480MHz BOMS Factor (dB)	Test Frequency	Meter Reading	Detector	AF [dB/m]		dB(uVolts/r		Margin (dR)		Margin (dR)		_	Polari
4879.467													
7319.111 80.93 PK2 28 -51.1 57.81 -		78.99	PK2	27.2	-52.1								
7319.131									74				
12198.27									74				
12201.817								-					
4879.958									74				Horz
High Channel - 2480MHz		77.37	MAv1				54	-1.55			308		
7319.301 76.24 MAv1 28 -51.1 53.12 54 -0.88 86 248 Horz 7319.361 75.02 MAv1 28 -51.1 51.9 54 -2.1 219 379 Vert 12201.04 49.67 MAv1 37.2 -47.4 39.5 54 -14.5 325 326 Vert 12201.727 48.43 MAv1 37.2 -47.4 38.22 54 -15.78 236 153 Horz High Channel - 2480MHz Test Frequency Meter Reading Detector AF [dB/m] [dB] dB[uVolts/r] 15.209 Margin (dB) Peak Margin (dB) [Degs] [cm] Polar 4959.56 78.83 PK2 27.3 -52 54.18 74 -19.82 312 205 Horz 4959.42 79.69 PK2 27.3 -52 55.03 74 -18.97 294 366 Vert 7439.18 77.01 PK2 28.1 -50.8 54.28 74 -19.72 289 381 Vert 7439.28 77.89 PK2 28.1 -50.8 55.15 74 -18.85 8 306 Horz 12398.48 59.67 PK2 37.2 -47.5 48.63 74 -25.37 45 316 Vert 12398.48 59.67 PK2 37.2 -47.5 49.42 74 -24.58 193 207 Horz 4959.71 76.49 MAv1 27.3 -51.9 50.84 54 -3.16 312 205 Horz 7440.633 72.16 MAv1 28.1 -50.9 49.39 54 -4.61 - 289 381 Vert 7440.73 72.98 MAv1 37.2 -47.6 39.09 54 -14.91 193 207 Horz 12401.43 49.58 MAv1 37.2 -47.6 39.09 54 -14.91 193 207 Horz 12401.476 49.53 MAv1 37.2 -47.6 39.09 54 -14.91 193 207 Horz 12401.476 49.53 MAv1 37.2 -47.6 39.09 54 -14.91 193 207 Horz													
7319.361 75.02 MAv1 28 -51.1 51.9 54 -2.1 219 379 Vert 12201.04 49.67 MAv1 37.2 -47.4 39.5 54 -14.5 325 326 Vert 12201.727 48.43 MAv1 37.2 -47.4 38.22 54 -15.78 236 153 Horz High Channel - 2480MHz BOMS Factor Factor BOMS Fa	7319.301			28	-51.1		54			-	86		
12201.04	7319.361	75.02	MAv1	28	-51.1	51.9	54	-2.1		-	219	379	Vert
High Channel - 2480MHz BoMS Factor GldB Gl	12201.04					39.5	54	-14.5	-	_	325	326	Vert
BOMS FCC Part 15 Subpart C Azimuth Height Subpart C Margin (dB) Detector AF [dB/m] [dB] dB(uVolts/r 15.209 Margin (dB) Peak Margin (dB) Degs [cm] Polar	12201.727	48.43	MAv1	37.2	-47.4	38.22	54	-15.78	-	-	236	153	Horz
Factor Factor Subpart C Subpart C Subpart C Factor F	High Channel - 2	480MHz											
Factor Factor Factor Subpart C Subpart C Subpart C Peak Margin (dB) Degs [cm] Polar Po					ROMS		FCC Part 15		FCC Part 15				
Test Frequency Meter Reading Detector AF [dB/m] [dB] dB(uVolts/r 15.209 Margin (dB) Peak Margin (dB) [Degs] [cm] Polar 4959.56 78.83 PK2 27.3 -52 54.18 74 -19.82 312 205 Horz 4959.42 79.69 PK2 27.3 -52 55.03 74 -18.97 294 366 Vert 7439.18 77.01 PK2 28.1 -50.8 54.28 74 -19.72 289 381 Vert 7439.28 77.89 PK2 28.1 -50.8 55.15 74 -18.85 8 306 Horz 12398.36 58.88 PK2 37.2 -47.5 48.63 74 -25.37 45 316 Vert 12398.48 59.67 PK2 37.2 -47.5 49.42 74 -24.58 193 207 Horz 4960.14 75.48 MAv1 27.3 -51.9 50.84 54 -3.16 21.4 September 24959.771 76.49 MAv1 27.3 -52 51.84 54 -2.16 22.94 366 Vert 7440.633 72.16 MAv1 28.1 -50.9 49.39 54 -4.61 28.9 381 Vert 7440.773 72.98 MAv1 28.1 -50.9 50.21 54 -3.79 8 306 Horz 12401.43 49.58 MAv1 37.2 -47.6 39.09 54 -14.91 193 207 Horz 1401.476 49.53 MAv1 37.2 -47.6 39.09 54 -14.91 193 207 Horz 1401.476											Azimuth	Hajeht	
4959.56 78.83 PK2 27.3 -52 54.18 - - 74 -19.82 312 205 Horz 4959.42 79.69 PK2 27.3 -52 55.03 - - 74 -18.97 294 366 Vert 7439.18 77.01 PK2 28.1 -50.8 54.28 - - 74 -19.72 289 381 Vert 7439.28 77.89 PK2 28.1 -50.8 55.15 - - 74 -18.85 8 306 Horz 12398.36 58.88 PK2 37.2 -47.5 48.63 - - 74 -25.37 45 316 Vert 12398.48 59.67 PK2 37.2 -47.5 49.42 - - 74 -24.58 193 207 Horz 4959.771 76.49 MAv1 27.3 -51.9 50.84 54 -3.16 - - 312 205 Horz 7440.633 72.16 MAv1 28.1 -5	Test Frequency	Meter Reading	Detector	AF [dB/m]		dB(uVolte/e		Margin (dg)		Margin (dg)		_	Polari
4959.42 79.69 PK2 27.3 -52 55.03 74 -18.97 294 366 Vert 7439.18 77.01 PK2 28.1 -50.8 54.28 74 -19.72 289 381 Vert 7439.28 77.89 PK2 28.1 -50.8 55.15 74 -18.85 8 306 Horz 12398.36 58.88 PK2 37.2 -47.5 48.63 74 -25.37 45 316 Vert 12398.48 59.67 PK2 37.2 -47.5 49.42 74 -24.58 193 207 Horz 4960.14 75.48 MAv1 27.3 -51.9 50.84 54 -3.16 312 205 Horz 4959.771 76.49 MAv1 27.3 -52 51.84 54 -2.16 294 366 Vert 7440.633 72.16 MAv1 28.1 -50.9 49.39 54 -4.61 289 381 Vert 7440.773 72.98 MAv1 28.1 -50.9 50.21 54 -3.79 8 306 Horz 12401.43 49.58 MAv1 37.2 -47.6 39.14 54 -14.86 45 316 Vert 12401.476 49.53 MAv1 37.2 -47.6 39.09 54 -14.91 193 207 Horz							-						
7439.18 77.01 PK2 28.1 -50.8 54.28 - - 74 -19.72 289 381 Vert 7439.28 77.89 PK2 28.1 -50.8 55.15 - - 74 -18.85 8 306 Horz 12398.36 58.88 PK2 37.2 -47.5 48.63 - - 74 -25.37 45 316 Vert 12398.48 59.67 PK2 37.2 -47.5 49.42 - - 74 -24.58 193 207 Horz 4960.14 75.48 MAv1 27.3 -51.9 50.84 54 -3.16 - - 312 205 Horz 4959.771 76.49 MAv1 27.3 -52 51.84 54 -2.16 - - 294 366 Vert 7440.633 72.16 MAv1 28.1 -50.9 50.21 54 -3.79 - -							_	_					
7439.28 77.89 PK2 28.1 -50.8 55.15 - - 74 -18.85 8 306 Horz 12398.36 58.88 PK2 37.2 -47.5 48.63 - - 74 -25.37 45 316 Vert 12398.48 59.67 PK2 37.2 -47.5 49.42 - - 74 -24.58 193 207 Horz 4960.14 75.48 MAv1 27.3 -51.9 50.84 54 -3.16 - - 312 205 Horz 4959.771 76.49 MAv1 27.3 -52 51.84 54 -2.16 - - 294 366 Vert 7440.633 72.16 MAv1 28.1 -50.9 49.39 54 -4.61 - - 289 381 Vert 7440.773 72.98 MAv1 28.1 -50.9 50.21 54 -3.79 - -													
12398.36 58.88 PK2 37.2 -47.5 48.63 74 -25.37 45 316 Vert 12398.48 59.67 PK2 37.2 -47.5 49.42 74 -24.58 193 207 Horz 4960.14 75.48 MAv1 27.3 -51.9 50.84 54 -3.16 312 205 Horz 4959.771 76.49 MAv1 27.3 -52 51.84 54 -2.16 294 366 Vert 7440.633 72.16 MAv1 28.1 -50.9 49.39 54 -4.61 289 381 Vert 7440.773 72.98 MAv1 28.1 -50.9 50.21 54 -3.79 8 306 Horz 12401.43 49.58 MAv1 37.2 -47.6 39.14 54 -14.86 45 316 Vert 12401.476 49.53 MAv1 37.2 -47.6 39.09 54 -14.91 193 207 Horz													
12398.48 59.67 PK2 37.2 -47.5 49.42 74 -24.58 193 207 Horz 4960.14 75.48 MAv1 27.3 -51.9 50.84 54 -3.16 312 205 Horz 4959.771 76.49 MAv1 27.3 -52 51.84 54 -2.16 294 366 Vert 7440.633 72.16 MAv1 28.1 -50.9 49.39 54 -4.61 289 381 Vert 7440.773 72.98 MAv1 28.1 -50.9 50.21 54 -3.79 8 306 Horz 12401.43 49.58 MAv1 37.2 -47.6 39.14 54 -14.86 45 316 Vert 12401.476 49.53 MAv1 37.2 -47.6 39.09 54 -14.91 193 207 Horz											_		
4960.14 75.48 MAv1 27.3 -51.9 50.84 54 -3.16 - - 312 205 Horz 4959.771 76.49 MAv1 27.3 -52 51.84 54 -2.16 - - 294 366 Vert 7440.633 72.16 MAv1 28.1 -50.9 49.39 54 -4.61 - - 289 381 Vert 7440.773 72.98 MAv1 28.1 -50.9 50.21 54 -3.79 - - 8 306 Horz 12401.43 49.58 MAv1 37.2 -47.6 39.14 54 -14.86 - - 45 316 Vert 12401.476 49.53 MAv1 37.2 -47.6 39.09 54 -14.91 - - 193 207 Horz							-	-					
4959.771 76.49 MAv1 27.3 -52 51.84 54 -2.16 - - 294 366 Vert 7440.633 72.16 MAv1 28.1 -50.9 49.39 54 -4.61 - - 289 381 Vert 7440.773 72.98 MAv1 28.1 -50.9 50.21 54 -3.79 - - 8 306 Horz 12401.43 49.58 MAv1 37.2 -47.6 39.14 54 -14.86 - - 45 316 Vert 12401.476 49.53 MAv1 37.2 -47.6 39.09 54 -14.91 - - 193 207 Horz							54	-3.16					
7440.633 72.16 MAv1 28.1 -50.9 49.39 54 -4.61 289 381 Vert 7440.773 72.98 MAv1 28.1 -50.9 50.21 54 -3.79 8 306 Horz 12401.43 49.58 MAv1 37.2 -47.6 39.14 54 -14.86 45 316 Vert 12401.476 49.53 MAv1 37.2 -47.6 39.09 54 -14.91 193 207 Horz													
7440.773 72.98 MAv1 28.1 -50.9 50.21 54 -3.79 8 306 Horz 12401.43 49.58 MAv1 37.2 -47.6 39.14 54 -14.86 45 316 Vert 12401.476 49.53 MAv1 37.2 -47.6 39.09 54 -14.91 - 193 207 Horz										-			
12401.43 49.58 MAv1 37.2 -47.6 39.14 54 -14.86 45 316 Vert 12401.476 49.53 MAv1 37.2 -47.6 39.09 54 -14.91 193 207 Horz													
12401.476 49.53 MAv1 37.2 -47.6 39.09 54 -14.91 193 207 Horz										-			
PK2 - KDB558074 v02 10.2.3.2/8.1.1 Method: Maximum Peak													
PK2 - KDB558074 v02 10.2.3.2/8.1.1 Method: Maximum Peak													
	PK2 - KDB55807	4 v02 10.2.3.2/8	.1.1 Metho	d: Maximu	m Peak								

9.4. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

DATE: 2013-07-04

Device:Transceiver w/Range Extender
Model:A2541E24C Job#:SR9723856 Tested by: MA GFSK 2Mbps 500kHz Tx GFSK 2Mbps 500kHz Tx GFSK 2Mbps 500kHz Tx AF-54 GL-3M FCC Pt 15 Azimuth Height PcC Pt Pt Pt Pt PcC PcC Pt PcC
GFSK 2Mbps 500kHz Tx Vertical 30 - 200MHz AF-54 GL-3M GB(uVolts/meter) FCC Pt 15 Subpart C Azimuth Height GB(Degs) Po 60.0198 23.24 QP 6.9 0.1 30.24 40 -9.76 241 113 Ve Ve 56.705 20.38 QP 7.5 0.2 28.08 40 -11.92 298 121 Ve Ve 107.9675 18.97 QP 12.1 0.4 31.47 43.5 -12.03 88 131 Ve 113.216 16.5 QP 12.8 0.4 29.7 43.5 -13.8 83 106 Ve Ve 103.471 15.07 QP 11.4 0.4 26.87 43.5 -16.63 158 104 Ve Ve 53.273 13.75 QP 8.6 0.1 22.45 40 -17.55 209 117 Ve
Vertical 30 - 200MHz AF-54 GL-3M AF-54 GL-3M AF-54 GB-3M AF-54 GB
AF-54 GL-3M B(uVolts/meter) FCC Pt 15 Azimuth Height Po G0.0198 23.24 QP 6.9 0.1 30.24 40 -9.76 241 113 Ve G0.0198 23.24 QP 7.5 0.2 28.08 40 -11.92 298 121 Ve G0.0197 G0.0198
AF-54 GL-3M AF-54 GL-3
Test Frequency Meter Reading Detector [dB/m] [dB] dB(uVolts/meter) Subpart C Margin (dB) [Degs] [cm] Po 60.0198 23.24 QP 6.9 0.1 30.24 40 -9.76 241 113 Ve 56.705 20.38 QP 7.5 0.2 28.08 40 -11.92 298 121 Ve 107.9675 18.97 QP 12.1 0.4 31.47 43.5 -12.03 88 131 Ve 113.216 16.5 QP 12.8 0.4 29.7 43.5 -13.8 83 106 Ve 103.471 15.07 QP 11.4 0.4 26.87 43.5 -16.63 158 104 Ve 53.273 13.75 QP 8.6 0.1 22.45 40 -17.55 209 117 Ve
60.0198 23.24 QP 6.9 0.1 30.24 40 -9.76 241 113 Ve 56.705 20.38 QP 7.5 0.2 28.08 40 -11.92 298 121 Ve 107.9675 18.97 QP 12.1 0.4 31.47 43.5 -12.03 88 131 Ve 113.216 16.5 QP 12.8 0.4 29.7 43.5 -13.8 83 106 Ve 103.471 15.07 QP 11.4 0.4 26.87 43.5 -16.63 158 104 Ve 53.273 13.75 QP 8.6 0.1 22.45 40 -17.55 209 117 Ve
107.9675 18.97 QP 12.1 0.4 31.47 43.5 -12.03 88 131 Ve 113.216 16.5 QP 12.8 0.4 29.7 43.5 -13.8 83 106 Ve 103.471 15.07 QP 11.4 0.4 26.87 43.5 -16.63 158 104 Ve 53.273 13.75 QP 8.6 0.1 22.45 40 -17.55 209 117 Ve
113.216 16.5 QP 12.8 0.4 29.7 43.5 -13.8 83 106 Ve 103.471 15.07 QP 11.4 0.4 26.87 43.5 -16.63 158 104 Ve 53.273 13.75 QP 8.6 0.1 22.45 40 -17.55 209 117 Ve
103.471 15.07 QP 11.4 0.4 26.87 43.5 -16.63 158 104 Ve 53.273 13.75 QP 8.6 0.1 22.45 40 -17.55 209 117 Ve
53.273 13.75 QP 8.6 0.1 22.45 40 -17.55 209 117 Ve
QP - Quasi-Peak detector
QP - Quasi-Peak detector
QP - Quasi-Peak detector

DATE: 2013-07-04

10. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted Limit (dBuV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56 *	56 to 46 *	
0.5-5	56	46	
5-30	60	50	

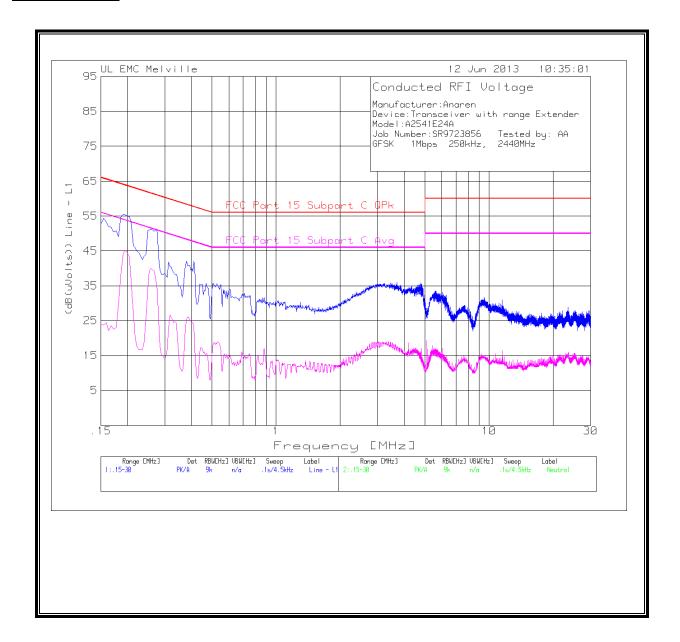
DATE: 2013-07-04

IC: 8975A-A13022601

TEST PROCEDURE

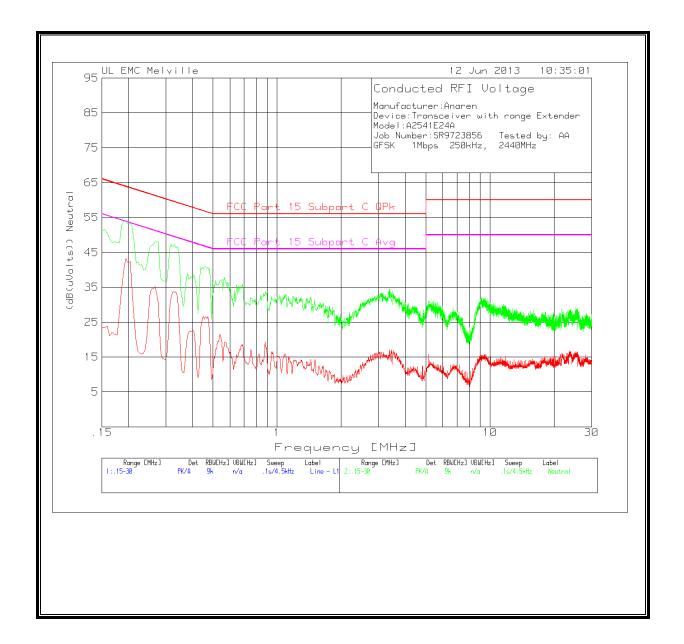
ANSI C63.4

Decreases with the logarithm of the frequency.


RESULTS

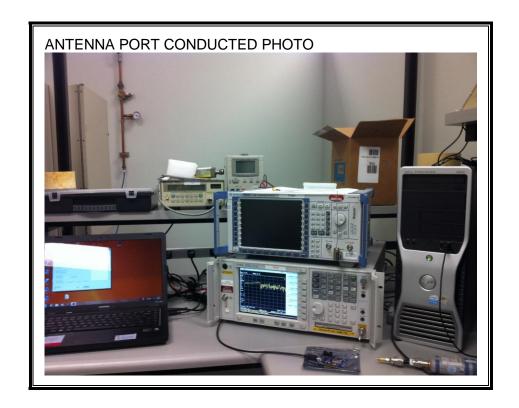
6 WORST EMISSIONS

Manufacturer: A	naren							
Device:Transce	iver with range E	xtender						
Model:A2541E2	4A							
Job Number:SRS	9723856 Tested	by: AA						
GFSK 1Mbps 2	50kHz, 2440MHz							
Line - L1 .15 - 30	MHz							
			5A636 L1		FCC Part 15		FCC Part 15	
Test Frequency	Meter Reading	Detector	(dB)	(dB(uVolts))	Subpart C QPk	Margin	Subpart C Avg	Margin
0.19275	45.34	PK	10	55.34	63.9			
0.26025	41.06	PK	10	51.06	61.4	-10.34	-	
0.3795	32.07	PK	10	42.07	58.3	-16.23	-	
0.411	32.07	PK	10	42.07	57.6	-15.53	-	
3.354	25.12	PK	10.1	35.22	56	-20.78	-	
4.7895	25.64	PK	10.2	35.84	56	-20.16	-	
0.19275	35.18	Av	10	45.18	-	-	53.9	-8.72
0.26025	29.63	Av	10	39.63	-	-	51.4	-11.77
0.3795	15.35	Av	10	25.35	-	-	48.3	-22.99
0.411	13.33	Av	10	23.33	_	-	47.6	-24.27
3.354	7.91	Av	10.1	18.01	_	-	46	-27.99
4.7895	4.78	Av	10.2	14.98	-	-	46	-31.02
Neutral .15 - 30								
Neutral.15-30	IVITZ		5A636					
			L4Neut		FCC Part 15		FCC Part 15	
T F	Manage Bandina	D-11		(-ID(-)/-Is-V				
	Meter Reading				Subpart C QPk		Subpart C Avg	Margin
0.1905	44.05		10	54.05	64		-	
0.276	37.97		10	47.97		-12.93	-	
0.3165	37.21		10	47.21		-12.59	-	
0.4605	31.07		10	41.07		-15.63	-	
3.417	23.44		10.2	33.64		-22.36	-	
5.4015		PK	10.2	31.2	60		-	43.55
0.1905	30.34		10	40.34	-	-		-13.66
0.276	20.36		10	30.36		-	50.9	
0.3165	21.97		10	31.97	-	-		-17.83
0.4605	16.49		10	26.49	-	-	46.7	
3.417	5.53		10.2	15.73	-	-	46	
5.4015	2.43	Av	10.2	12.63	-	-	50	-37.37
PK - Peak detec	tor							

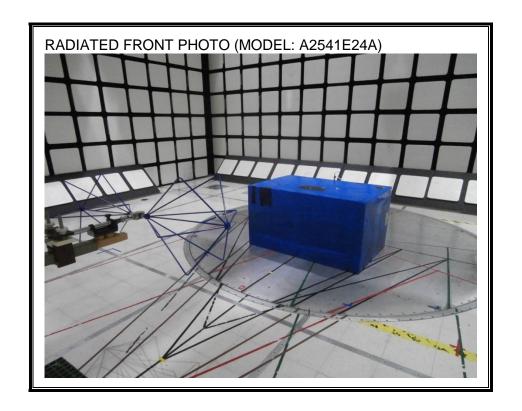

DATE: 2013-07-04

LINE 1 RESULTS

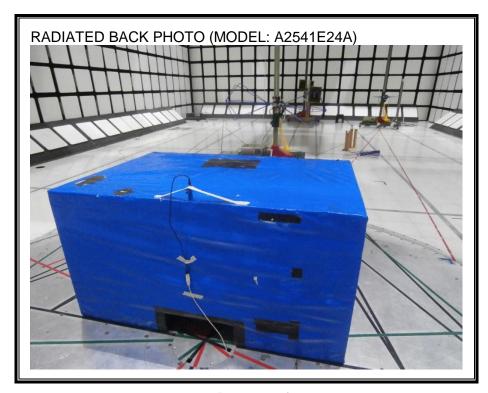
DATE: 2013-07-04


LINE 2 RESULTS

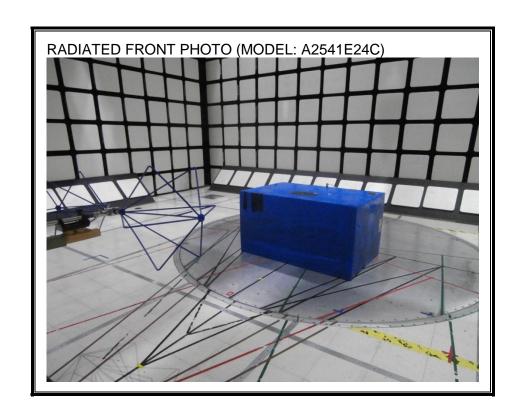
DATE: 2013-07-04

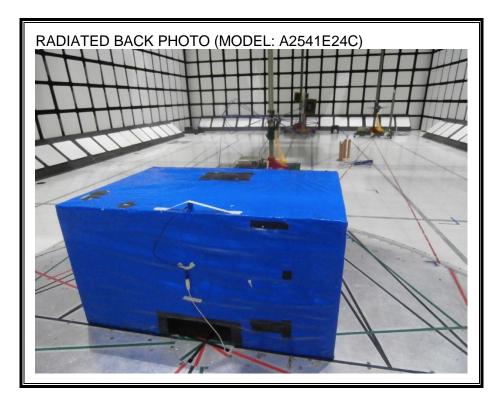

11. SETUP PHOTOS

ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP

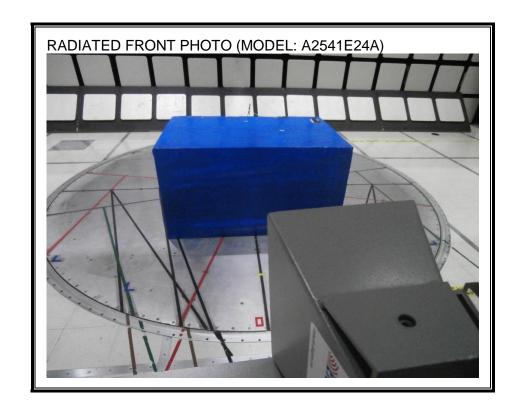


DATE: 2013-07-04

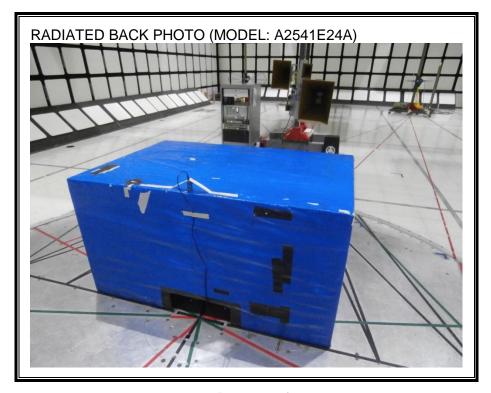

RADIATED RF MEASUREMENT SETUP (BELOW 1 GHz)

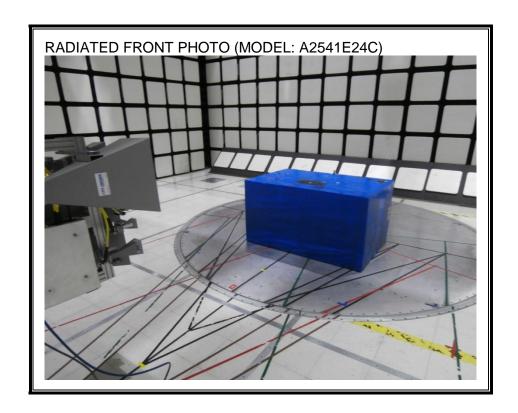


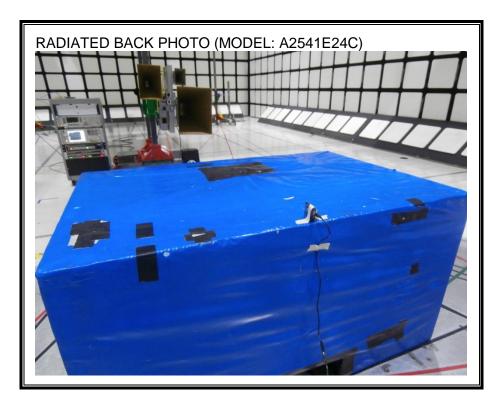
DATE: 2013-07-04



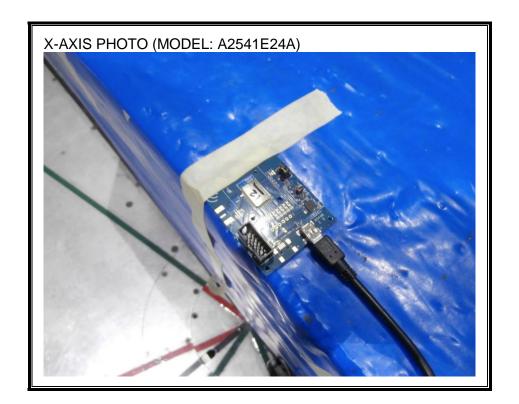
Page 114 of 126



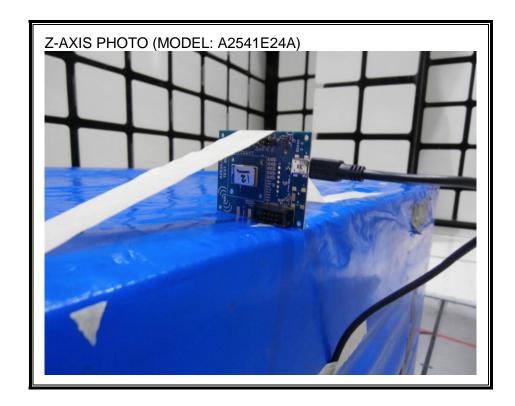

RADIATED RF MEASUREMENT SETUP (ABOVE 1 GHz)

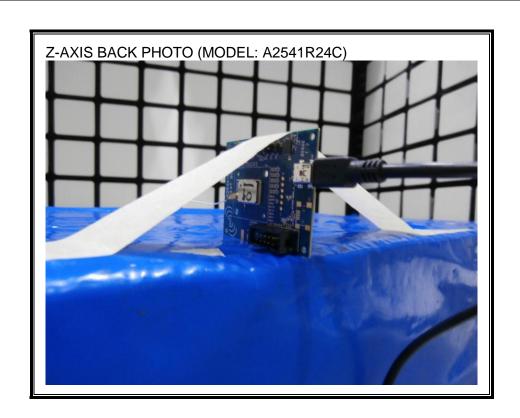


DATE: 2013-07-04

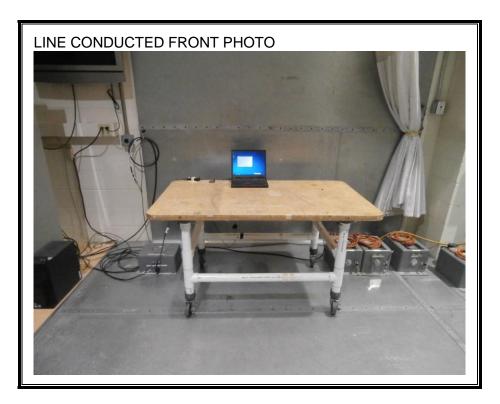


Page 116 of 126





RADIATED RF MEASUREMENT SETUP FOR PORTABLE CONFIGURATION



DATE: 2013-07-04

POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP

DATE: 2013-07-04

IC: 8975A-A13022601

Page 124 of 126

END OF REPORT

DATE: 2013-07-04