

FCC Part 1 Subpart I FCC Part 2 Subpart J INDUSTRY CANADA RSS 102 ISSUE 3

RF EXPOSURE REPORT

FOR

2400-2483.5MHZ TRANSCEIVER

MODEL NUMBER: A2541R24A & A2541R24C

FCC ID: X7J-A12062101 IC: 8975A-A12062101

REPORT NUMBER: SR9723856

ISSUE DATE: 2013-05-21

Prepared for ANAREN, INC 6635 KIRKVILLE ROAD EAST SYRACUSE NY, 13057, U.S.A

Prepared by
UL LLC
1285 WALT WHITMAN RD.
MELVILLE, NY 11747, U.S.A.
TEL: (631) 271-6200
FAX: (877) 854-3577

Revision History

Rev.	Issue Date	Revisions	Revised By
	5/21/13	Initial Issue	M. Antola

TABLE OF CONTENTS

1.	ΑT	TESTATION OF TEST RESULTS	4
2.	TES	ST METHODOLOGY	5
3.	REI	FERENCES	5
		CILITIES AND ACCREDITATION	
5.	MA	XIMUM PERMISSIBLE RF EXPOSURE	6
	5.1.	FCC RULES	6
	5.2.	IC RULES	7
	5.3.	EQUATIONS	8
	5.4.	LIMITS AND IC EXEMPTION	9
6.	RF	EXPOSURE RESULTS	10

DATE: 2013-05-21

IC: 8975A-A12062101

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: ANAREN INC

6635 KIRKVILLE ROAD

EAST SYRACUSE, NY, 13057, USA

EUT DESCRIPTION: 2400-2483.5MHZ TRANSCEIVER

MODEL: A2541R24A & A2541R24C

SERIAL NUMBER: 01 & 06

DATE TESTED: 2013-04-16 to 2013-04-24

APPLICABLE STANDARDS

STANDARD TEST RESULTS

FCC PART 1 SUBPART I & PART 2 SUBPART J Pass

INDUSTRY CANADA RSS 102 ISSUE 3 Pass

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL LLC based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By: Calculated By:

Bob DeLisi

WiSE Principal Engineer

UL

Mike Antola

WiSE Project Lead

Mirled 12

UL

2. TEST METHODOLOGY

All calculations were made in accordance with FCC OET Bulletin 65 Edition 97-01 and IC Safety Code 6.

3. REFERENCES

All measurements were made as documented in test report UL Document SR9723856 - A2541R24A_C FCC IC Report for operation in the 2.4 GHz band.

Output power, Duty cycle and Antenna gain data is excerpted from the applicable test reports.

4. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 1285 Walt Whitman Rd. Melville, NY 11747, USA.

UL Melville is accredited by NVLAP, Laboratory Code 100255-0. The full scope of accreditation can be viewed at http://ts.nist.gov/standards/scopes/1002550.htm.

5. MAXIMUM PERMISSIBLE RF EXPOSURE

5.1. **FCC RULES**

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m) Power density (mW/cm²)		Averaging time (minutes)						
(A) Lim	(A) Limits for Occupational/Controlled Exposures									
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6						
(B) Limits	for General Populati	on/Uncontrolled Exp	posure							
0.3–1.34 1.34–30	614 824 <i>f</i> f	1.63 2.19/f	*(100) *(180/f²)	30 30						

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

* = Plane-wave equivalent power density

NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure.

exposure or can not exercise control over their exposure.

5.2. IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

DATE: 2013-05-21

IC: 8975A-A12062101

Table 5
Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/ <i>f</i>		6
30–300	28	0.073	2*	6
300–1 500	1.585 $f^{0.5}$	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000–300 000	0.158f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

^{*} Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

2. A power density of 10 W/m² is equivalent to 1 mW/cm².

 A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

5.3. EQUATIONS

POWER DENSITY

Power density is given by:

 $S = EIRP / (4 * Pi * D^2)$

Where

S = Power density in mW/cm^2 EIRP = Equivalent Isotropic Radiated Power in mW D = Separation distance in cm

Power density in units of mW/cm² is converted to units of W/m² by multiplying by 10.

DATE: 2013-05-21

IC: 8975A-A12062101

DISTANCE

Distance is given by:

D = SQRT (EIRP / (4 * Pi * S))

Where

D = Separation distance in cm EIRP = Equivalent Isotropic Radiated Power in mW S = Power density in mW/cm²

SOURCE-BASED DUTY CYCLE

Where applicable (for example, multi-slot cell phone applications) a duty cycle factor may be applied.

Source-based time-averaged EIRP = (DC / 100) * EIRP

Where

DC = Duty Cycle in %, as applicable EIRP = Equivalent Isotropic Radiated Power in W

5.4. LIMITS AND IC EXEMPTION

FIXED LIMITS

For operation in the PCS band, the 2.4 GHz band and the 5 GHz bands:

From FCC §1.1310 Table 1 (B), the maximum value of $S = 1.0 \text{ mW/cm}^2$ From IC Safety Code 6, Section 2.2 Table 5 Column 4, $S = 10 \text{ W/m}^2$

INDUSTRY CANADA EXEMPTION

RSS-102 Clause 2.5.2 RF exposure evaluation is required if the separation distance between the user and the device's radiating element is greater than 20 cm, except when the device operates as follows:

•below 1.5 GHz and the maximum e.i.r.p. of the device is equal to or less than 2.5 W;

•at or above 1.5 GHz and the maximum e.i.r.p. of the device is equal to or less than 5 W.

6. RF EXPOSURE RESULTS

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

Single Chain and non-colocated transmitters									
Band	Mode	Separation	Output	Antenna	Duty	EIRP	FCC Power	IC Power	
		Distance	Power	Gain	Cycle		Density	Density	
		(cm)	(dBm)	(dBi)	(%)	(mW)	(mW/cm^2)	(W/m^2)	
2.4 GHz	BLE	20	2.50	3.00	100.0	3.5	0.001	0.01	

SAR Exclusion for Portable Devices

Distances less than or equal to 50mm

Antenna	Tx Type	Frequency (MHz)	quency Output power ^{Note} _{2,4}		2 4		Separation distance (mm) ^{Note 1, 4}	SAR Exclusion Value Note 3, 4	SAR Exclusion Threshold
			dBm	mW			1-g SAR		
Monopole	BLE	2480	2.5	2	0	0.6	3		

Note 1: For distances < 5mm, a distance of 5mm is used to determine SAR exclusion. For distances < 50mm the calculation must yield a value <= 3.0 to exclude that position from body or head SAR and <=7.5 for Extremities

Note 2: Output power is the maximum rated power (including tune-up or manufacturing tolerances) and includes source-based averaging.

Note 3: If the antenna separation distance is > 50mm then the threshold power value is calculated.

Note 4: Formulas round separation distance to nearest mm and power to nearest mW before determining if SAR is excluded.

NOTE: Based on the above results, it is determined that the module can be used for both Portable and Mobile applications.

END OF REPORT