

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

2400 - 2483.5 MHZ TRANSCEIVER

MODEL NUMBER: A2530R24A AND A2530R24C*

FCC ID: X7J-A11113001 IC: 8975A-A11113001

REPORT NUMBER: 12U14281-2, Revision C

ISSUE DATE: APRIL 19, 2012

Prepared for
ANAREN, INC.
6635 KIRKVILLE ROAD
EAST SYRACUSE, NEW YORK 13057-9600, U.S.A.

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

*For model differences, please refer to details under section 5.2

Revision History

DATE: APRIL 19, 2012

IC: 8975A-A11113001

Rev.	Issue Date	Revisions	Revised By
	03/06/12	Initial Issue	F. Ibrahim
A	03/28/12	Revised EUT description. Corrected Table error on Section 5.7	A. Zaffar
В	04/09/12	Added 18-26 GHz horn antenna to test equipment list F. Ibrahir	
С	04/19/12	Updated section 5.3	F. Ibrahim

TABLE OF CONTENTS

1. AT	TESTATION OF TEST RESULTS	5
2. TE	ST METHODOLOGY	6
3. FA	ACILITIES AND ACCREDITATION	6
4. C	ALIBRATION AND UNCERTAINTY	6
4.1.	MEASURING INSTRUMENT CALIBRATION	6
4.2.	SAMPLE CALCULATION	6
4.3.	MEASUREMENT UNCERTAINTY	6
5. EG	QUIPMENT UNDER TEST	7
5.1.	DESCRIPTION OF EUT	7
5.2.	MANUFACTURER'S DESCRIPTION OF MODEL DIFFERENCES	7
5.3.	MAXIMUM OUTPUT POWER	7
5.4.	DESCRIPTION OF AVAILABLE ANTENNAS	7
5.5.	SOFTWARE AND FIRMWARE	7
5.6.	WORST-CASE CONFIGURATION AND MODE	8
5.7.	DESCRIPTION OF TEST SETUP	9
6. TE	ST AND MEASUREMENT EQUIPMENT	11
7. AN	NTENNA PORT TEST RESULTS	12
7.1.	6 dB BANDWIDTH	12
7.2.	99% BANDWIDTH	15
7.3.	OUTPUT POWER	18
7.4.	AVERAGE POWER	21
7.5.	POWER SPECTRAL DENSITY	22
7.6.	CONDUCTED SPURIOUS EMISSIONS	25
8. RA	ADIATED TEST RESULTS	29
8.1.	LIMITS AND PROCEDURE	29
8.2.	TRANSMITTER ABOVE 1 GHz	30
_	2.1. TX ABOVE 1 GHz IN THE 2.4 GHz BAND with PCB Antenna	
_	2.2. TX ABOVE 1 GHz IN THE 2.4 GHz BAND with External Antenna	
8.3. 8.3	RECEIVER ABOVE 1 GHz	
	3.2. RECEIVER ABOVE 1 GHz with External Antenna	
8.4.		
_	4.1. WORST-CASE BELOW 1 GHz with PCB Antenna	
0	Page 3 of 66	

9.	AC F	POWER LINE CONDUCTED EMISSIONS	49
10.	M	AXIMUM PERMISSIBLE EXPOSURE	53
11.	SE	TUP PHOTOS	57
1	1.1.	ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP	57
1	1.2.	RADIATED RF MEASUREMENT SETUP	58
1	1.3.	RADIATED RF MEASUREMENT SETUP FOR PORTABLE CONFIGURATION	60
1	1.4.	POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP	66

REPORT NO: 12U14281-2C FCC ID: X7J-A11113001

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: ANAREN, INC.

6635 KIRKVILLE ROAD

EAST SYRACUSE, NY 13057-9600, U.S.A.

DATE: APRIL 19, 2012

IC: 8975A-A11113001

EUT DESCRIPTION: 2400 – 2483.5 MHZ TRANSCEIVER

MODEL: A2530R24A and A2530R24C

SERIAL NUMBER: UNIT 1 and UNIT2

DATE TESTED: FEBRUARY 13-20, 2012

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C Pass

INDUSTRY CANADA RSS-210 Issue 8 Annex 8 Pass

INDUSTRY CANADA RSS-GEN Issue 3 Pass

Compliance Certification Services (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By: Tested By:

FRANK IBRAHIM EMC SUPERVISOR

UL CCS

THANH NGUYEN EMC ENGINEER

Moulton guym

UL CCS

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

DATE: APRIL 19, 2012

IC: 8975A-A11113001

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a 2.4 GHz transceiver that is manufactured by Anaren, Inc.

5.2. MANUFACTURER'S DESCRIPTION OF MODEL DIFFERENCES

DATE: APRIL 19, 2012

IC: 8975A-A11113001

A2530R24A and A2530R24C are Identical, except that A2530R24C has a U.FL connector, and A2530R24A has an integral printed antenna.

5.3. MAXIMUM OUTPUT POWER

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2403 – 2480	DSSS – OQPSK	2.23	1.67

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

The Module A2530R24A utilizes a PCB antenna, with a maximum gain of 2 dBi. The Module A2530R24C utilizes a Monopole antenna, with a maximum gain of 3 dBi.

5.5. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was 1.0.00

The EUT driver software installed during testing was CC2530 FCC Test Software, Ver. 1.0

The test utility software used during testing was SmartRF Studio 7, rev. 1.7.0

REPORT NO: 12U14281-2C DATE: APRIL 19, 2012 FCC ID: X7J-A11113001 IC: 8975A-A11113001

5.6. WORST-CASE CONFIGURATION AND MODE

EUT is a portable device, therefore, an investigation of worst-case orientation was conducted and it was found the X orientation (flat on test card) is worst-case; final testing was performed with the EUT in X orientation.

Radiated emissions and power line conducted emissions were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

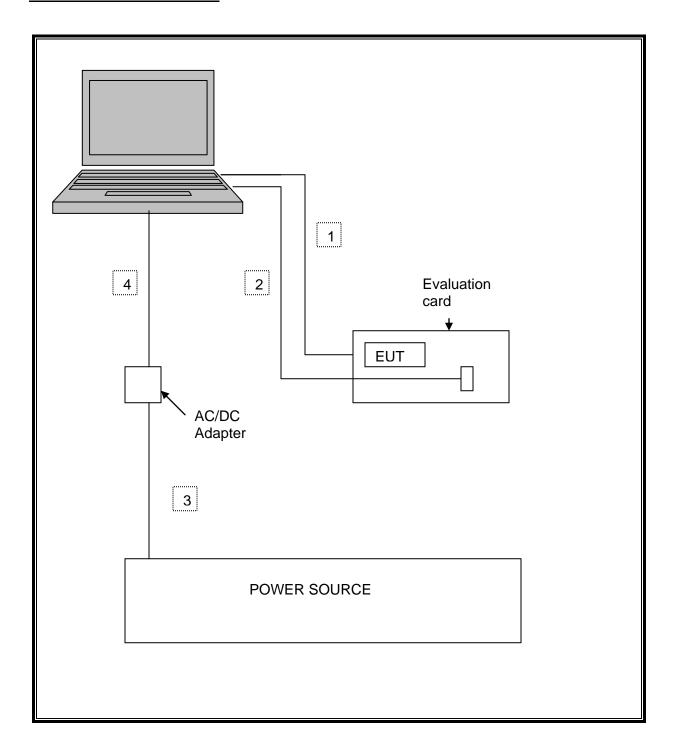
The EUT has a single modulation, which is DSSS-OQPSK, and the data rate is 250 kB/s.

REPORT NO: 12U14281-2C DATE: APRIL 19, 2012 FCC ID: X7J-A11113001 IC: 8975A-A11113001

5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST						
Description Manufacturer Model Serial Number FCC ID						
Laptop	IBM	T43 Think Pad	L3-B8983	DoC		
Smart RF TrxEB	Texas Instrument	REV 1.5.0	0x03CC	N/A		
Evaluation Board	Anaren, Inc.	A253XE24AXX	N/A	N/A		


I/O CABLES

	I/O CABLE LIST						
Cable No.		# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks	
1	USB	1	USB	Shielded	1.5m		
2	6 Pin	1	TTI232R-3V3	Unshielded	1.5m		
3	AC	1	USA120V	Unshielded	1.5m		
4	DC	1	DC Plug	Unshielded	1.2m		

TEST SETUP

The EUT is installed in an Evaluation board connected to the laptop computer during the tests. Test software exercised the radio card.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

DATE: APRIL 19, 2012

IC: 8975A-A11113001

	Test Equipment List					
Description	Manufacturer	Model	Asset	Cal Date	Cal Due	
Preamplifier, 26.5 GHz	Agilent/HP	8449B	C01052	06/13/11	06/13/12	
Preamplifier, 1300 MHz	Agilent/HP	8447D	C01048	07/16/11	07/16/12	
BiLog Antenna	ETS	3117	C01005	07/25/11	07/25/12	
Antenna, Horn, 18 GHz	EMCO	3115	C00945	06/26/11	06/26/12	
PSA	Agilent	E4440A	T129	04/28/11	04/28/12	
Power meter	Agilent	E4416A	PPM8	03/22/11	03/22/12	
Power Sensor	Agilent	E9327A	T233	03/22/11	03/22/12	
LISN 30 MHz	FCC	LISN-50/250- 25-2	N02625	11/15/11	11/15/12	
LISN, 10 kHz~30 MHz	Solar	8012-50-R- 24-BNC	N02481	11/16/11	11/16/12	
EM Test Receiver	R&S	ESC17	10000741	07/02/11	07/02/12	
Antenna Horn 18-26GHz	ARA	MWH-1826/B	C00980	08/06/11	10/06/12	

7. ANTENNA PORT TEST RESULTS

7.1. 6 dB BANDWIDTH

LIMITS

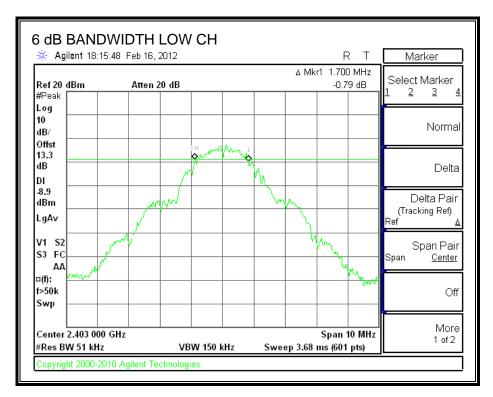
FCC §15.247 (a) (2)

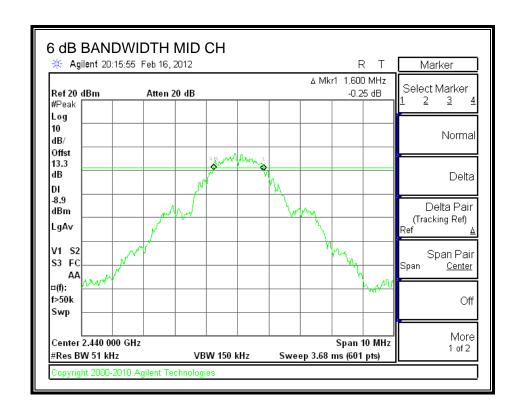
IC RSS-210 A8.2 (a)

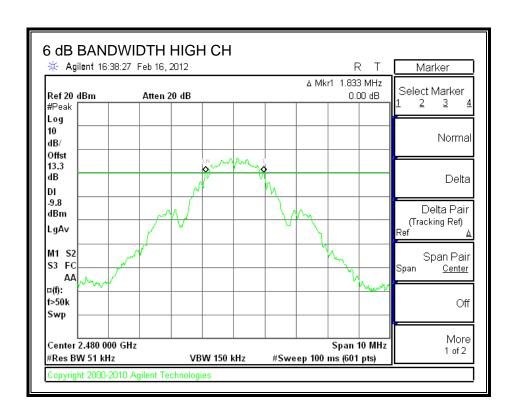
The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

KDB 558074-D01; Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247, dated 01/18/2012.


DATE: APRIL 19, 2012


IC: 8975A-A11113001


RESULTS

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2403	1.700	0.5
Middle	2440	1.600	0.5
High	2480	1.833	0.5

6 dB BANDWIDTH

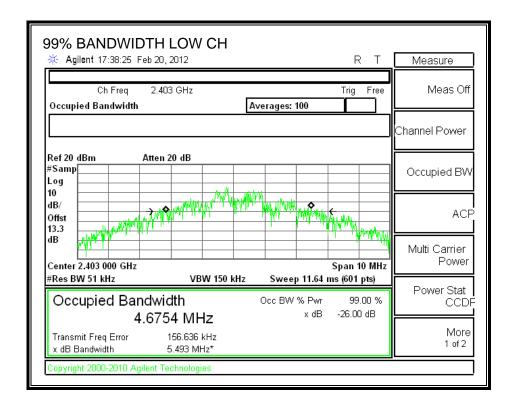
7.2. 99% BANDWIDTH

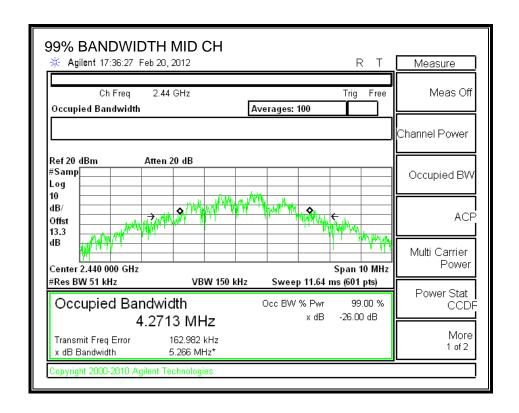
LIMITS

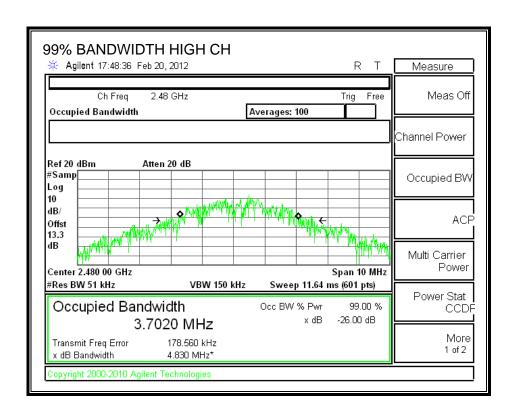
None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.


DATE: APRIL 19, 2012


IC: 8975A-A11113001


RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2403	4.6754
Middle	2440	4.2713
High	2480	3.7020

99% BANDWIDTH

7.3. OUTPUT POWER

LIMITS

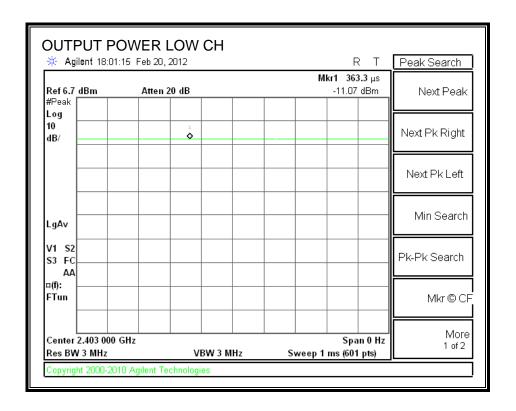
FCC §15.247 (b)

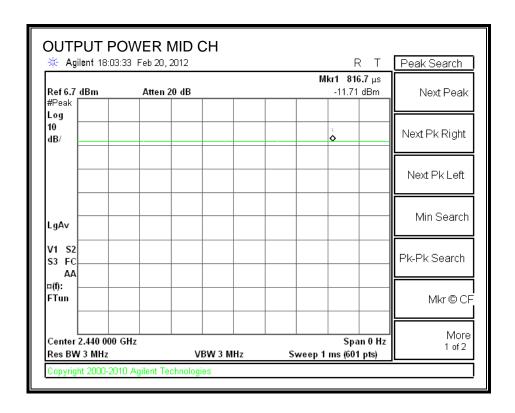
IC RSS-210 A8.4

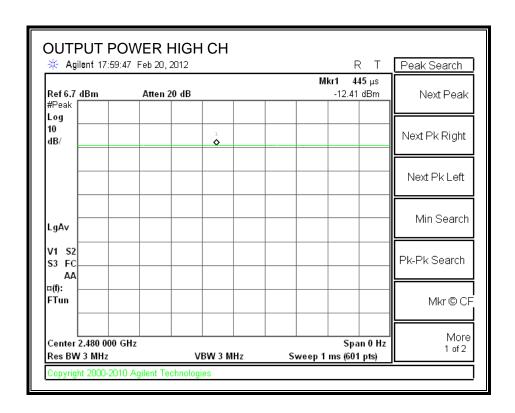
The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

KDB 558074-D01; Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247, dated 01/18/2012.


DATE: APRIL 19, 2012


IC: 8975A-A11113001


RESULTS

Channel	Frequency	Peak Power	Attenuator and	Output	Limit	Margin
		Reading	Cable Offset	Power		
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)
Low	2403	-11.07	13.3	2.23	30	-27.77
Middle	2440	-11.71	13.3	1.59	30	-28.41
High	2480	-12.41	13.3	0.89	30	-29.11

OUTPUT POWER

7.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 10.7 dB (including 10 dB pad and 0.7 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

DATE: APRIL 19, 2012

IC: 8975A-A11113001

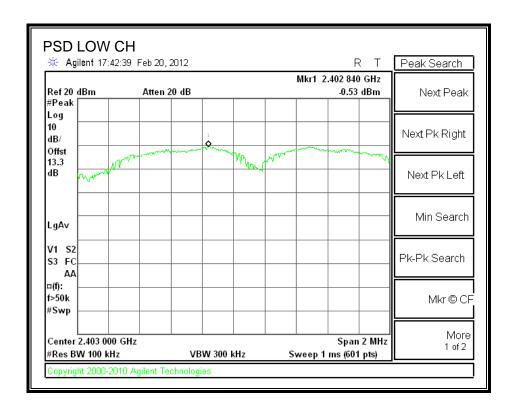
Channel	Frequency	Power
	(MHz)	(dBm)
Low	2403	1.75
Middle	2440	1.25
High	2480	0.72

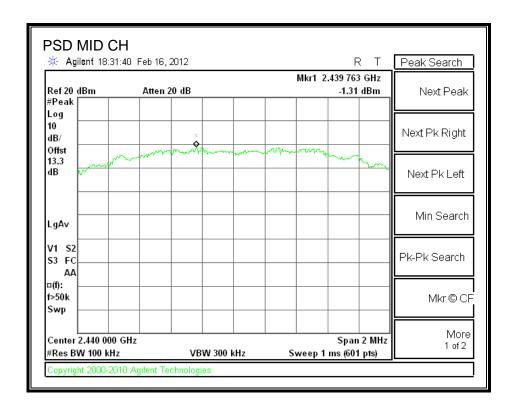
7.5. POWER SPECTRAL DENSITY

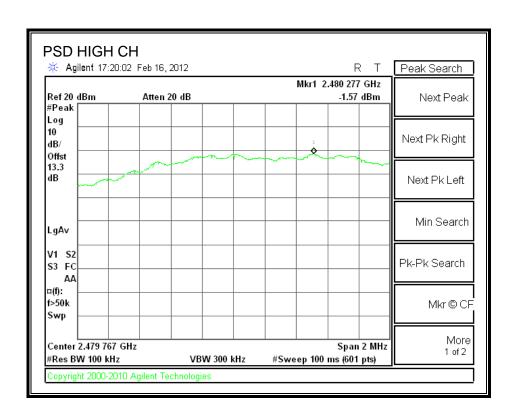
LIMITS

FCC §15.247 (e)

IC RSS-210 A8.2 (b)


TEST PROCEDURE


KDB 558074-D01; Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247, dated 01/18/2012.


RESULTS

Channel	Frequency	Meter Reading	10log(3/100)	PSD	Limit	Margin
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)
Low	2403	-0.53	-15.20	-15.73	8	-23.73
Middle	2440	-1.31	-15.20	-16.51	8	-24.51
High	2480	-1.57	-15.20	-16.77	8	-24.77

POWER SPECTRAL DENSITY

7.6. CONDUCTED SPURIOUS EMISSIONS

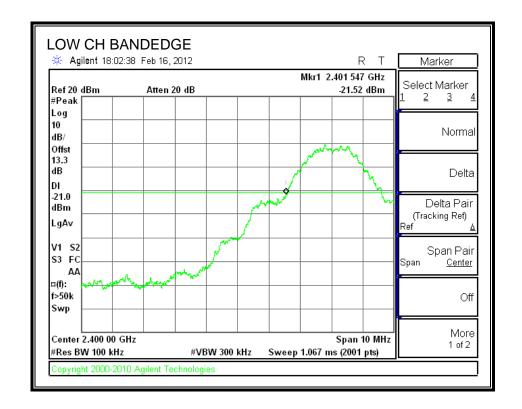
LIMITS

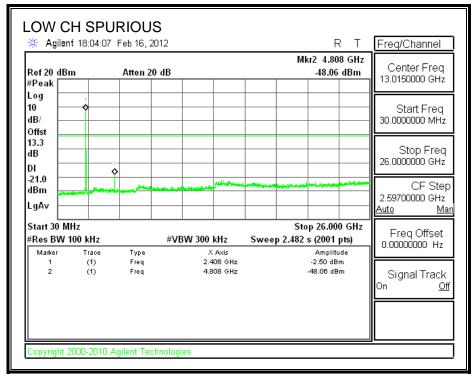
FCC §15.247 (d)

IC RSS-210 A8.5

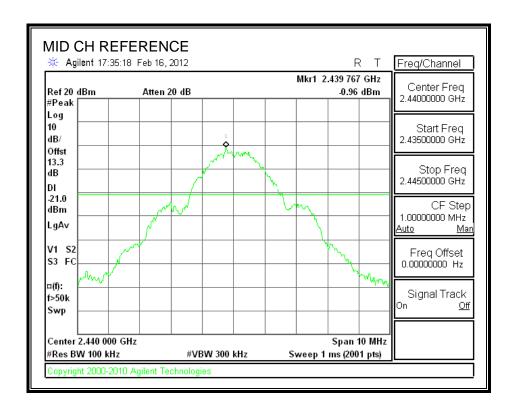
Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

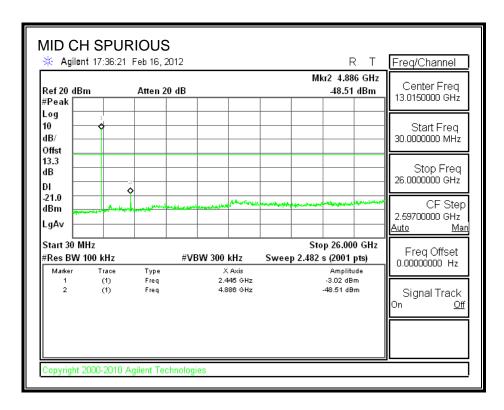
DATE: APRIL 19, 2012

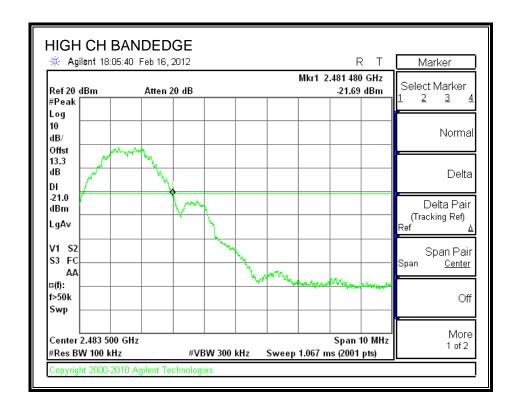

IC: 8975A-A11113001

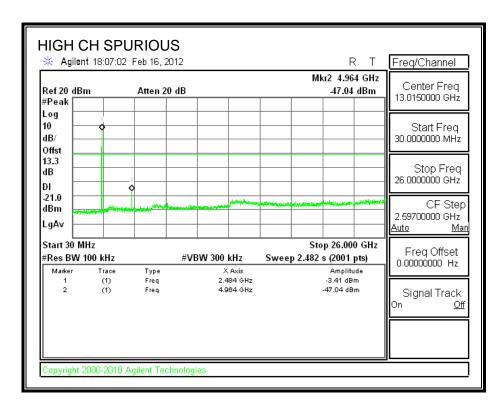

TEST PROCEDURE

KDB 558074-D01; Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247, dated 01/18/2012.


RESULTS


SPURIOUS EMISSIONS, LOW CHANNEL




SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

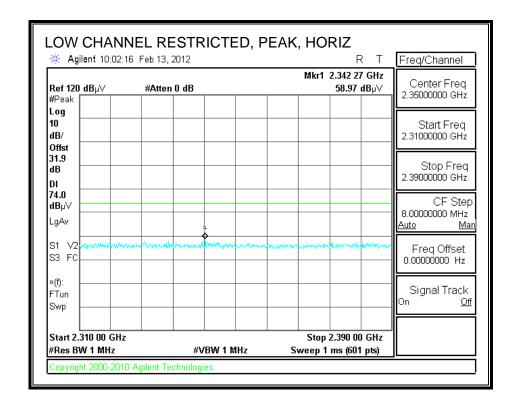
DATE: APRIL 19, 2012

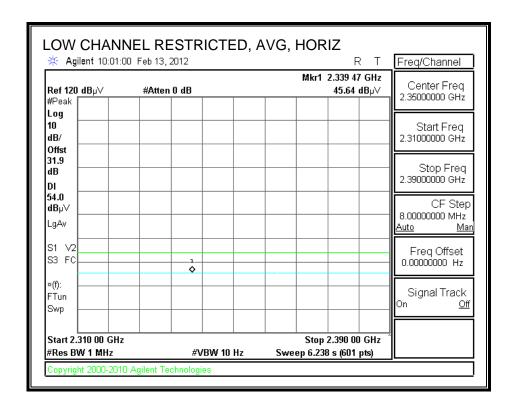
IC: 8975A-A11113001

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

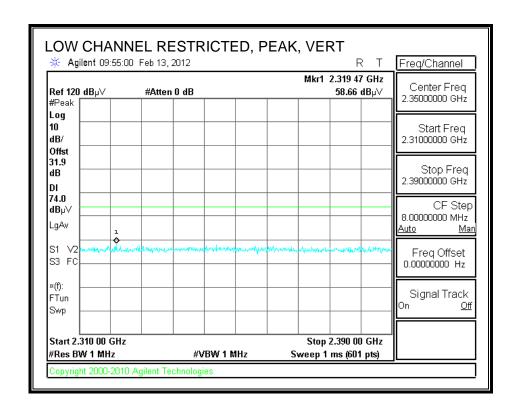
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

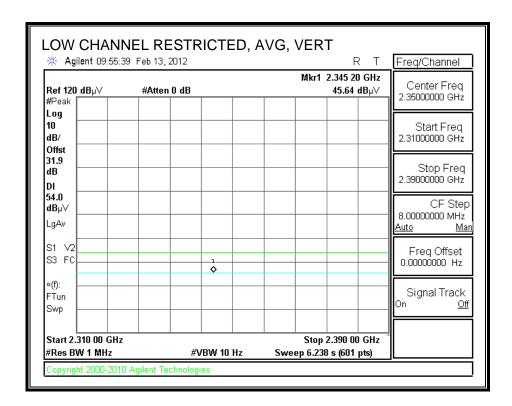
The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

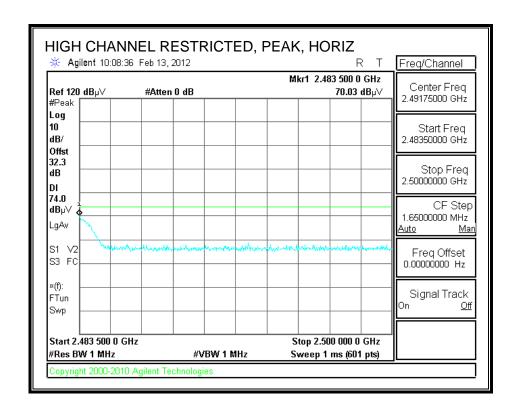

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

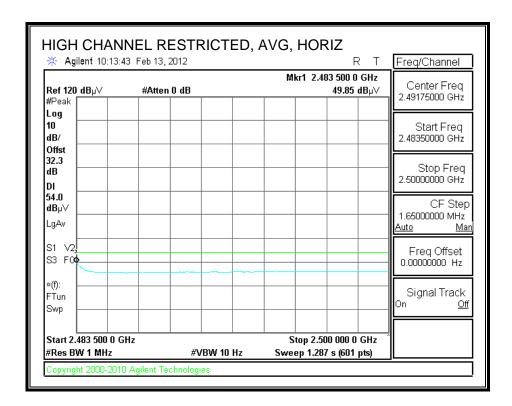

FAX: (510) 661-0888

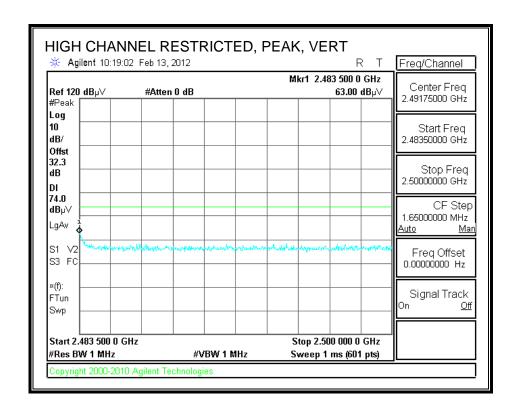
8.2. TRANSMITTER ABOVE 1 GHz

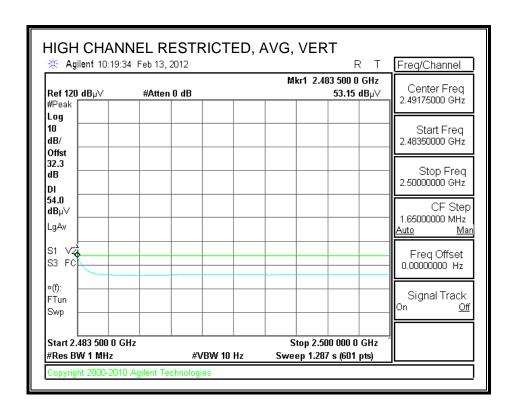

8.2.1. TX ABOVE 1 GHz IN THE 2.4 GHz BAND with PCB Antenna

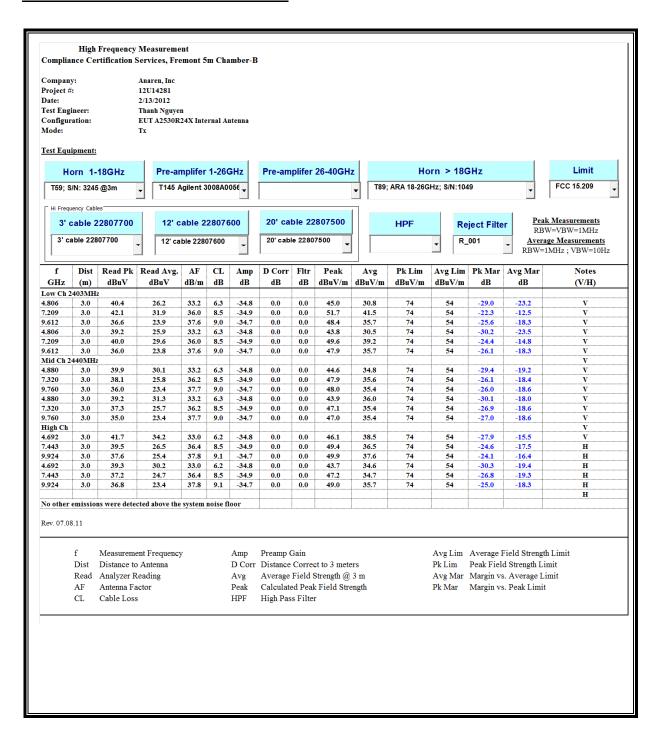

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL) PCB ANTENNA



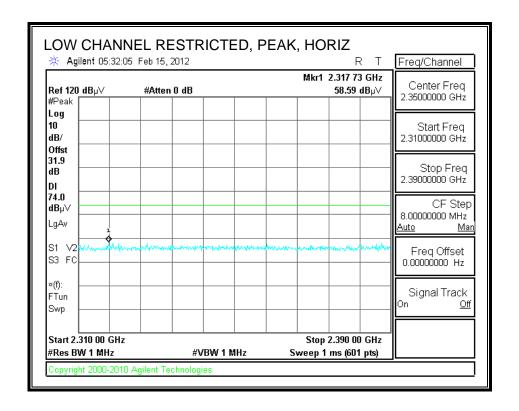

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

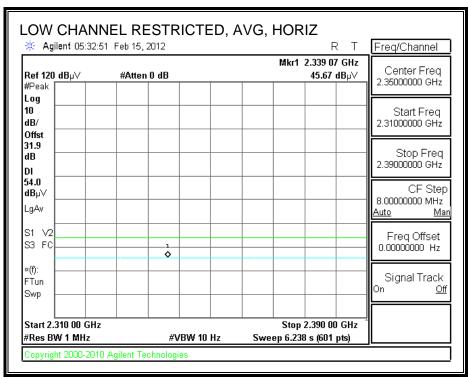


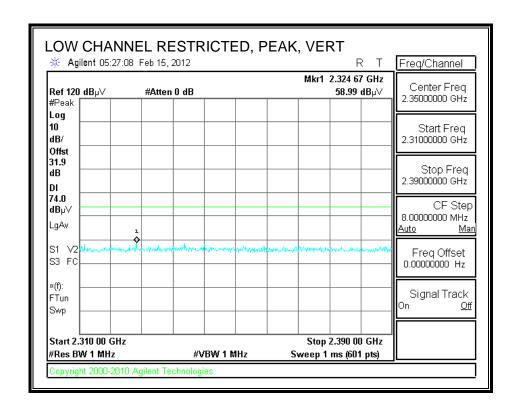

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



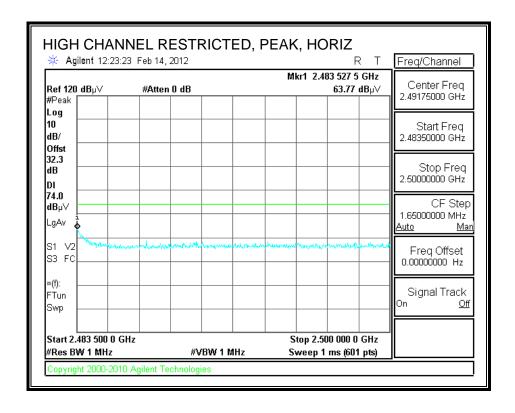
RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

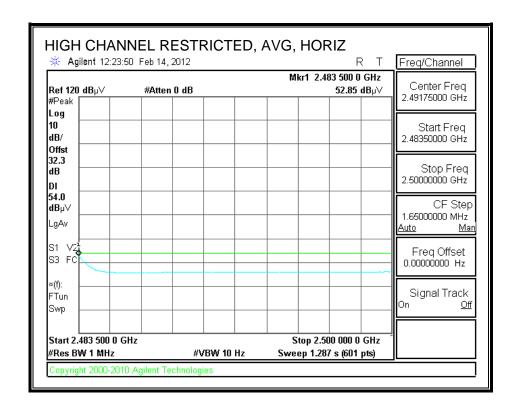


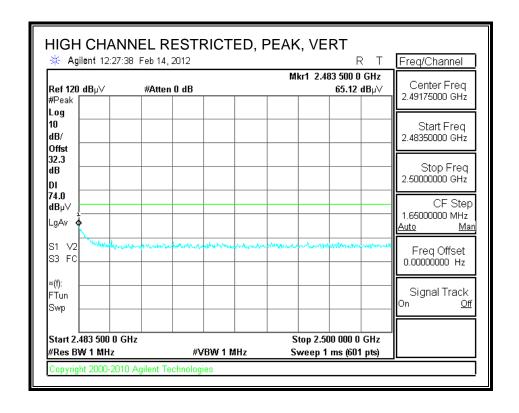

HARMONICS AND SPURIOUS EMISSIONS

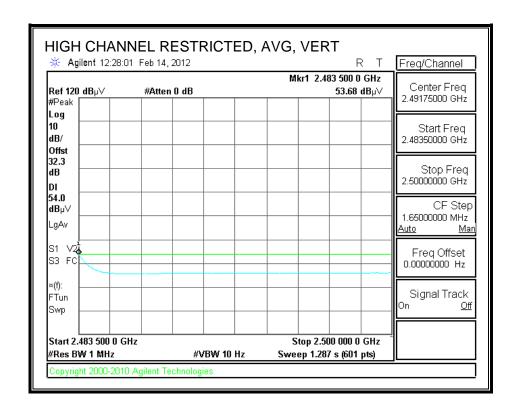

8.2.2. TX ABOVE 1 GHz IN THE 2.4 GHz BAND with External Antenna

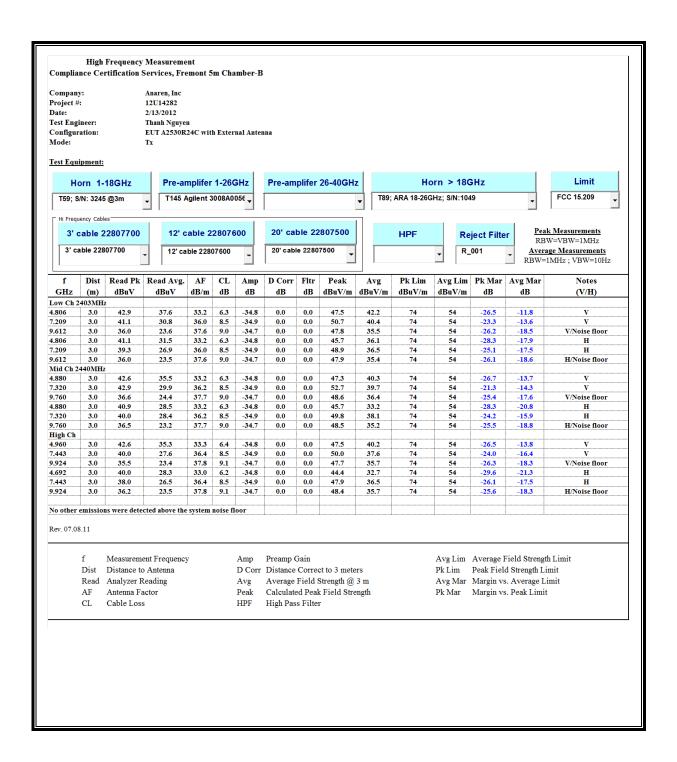
RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)



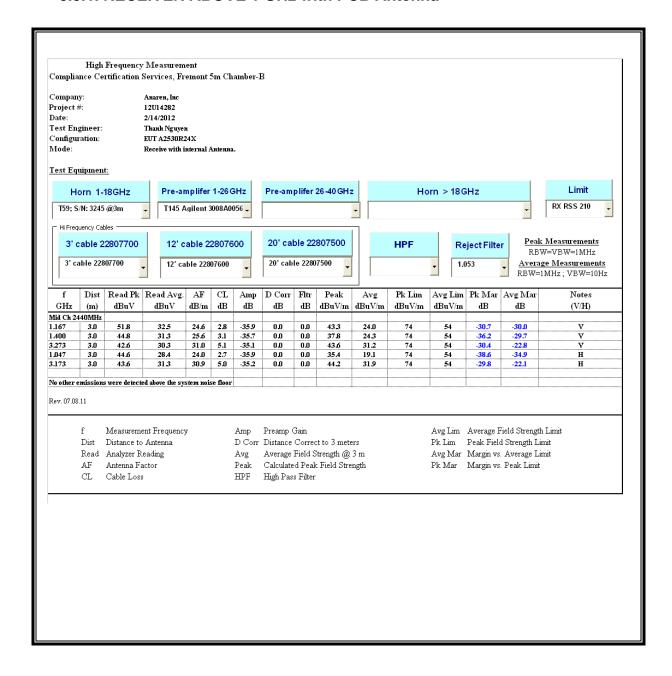

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)


RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

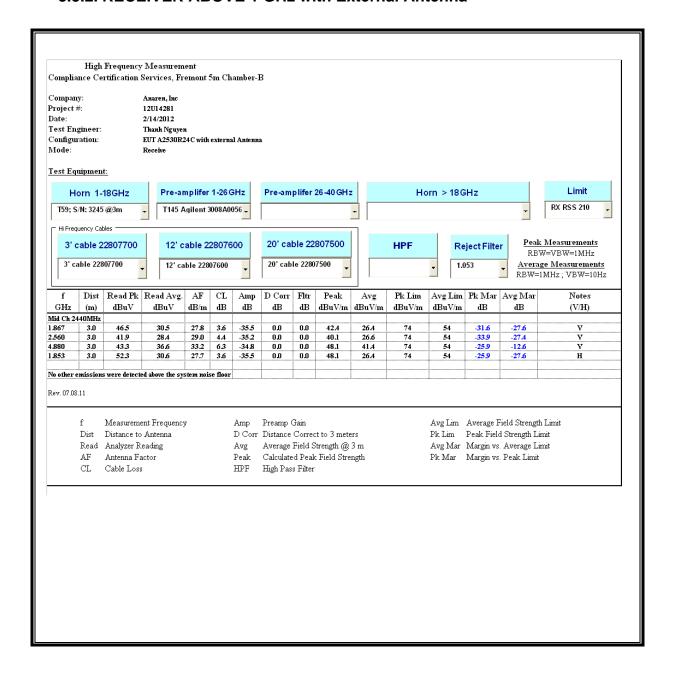



FAX: (510) 661-0888

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)



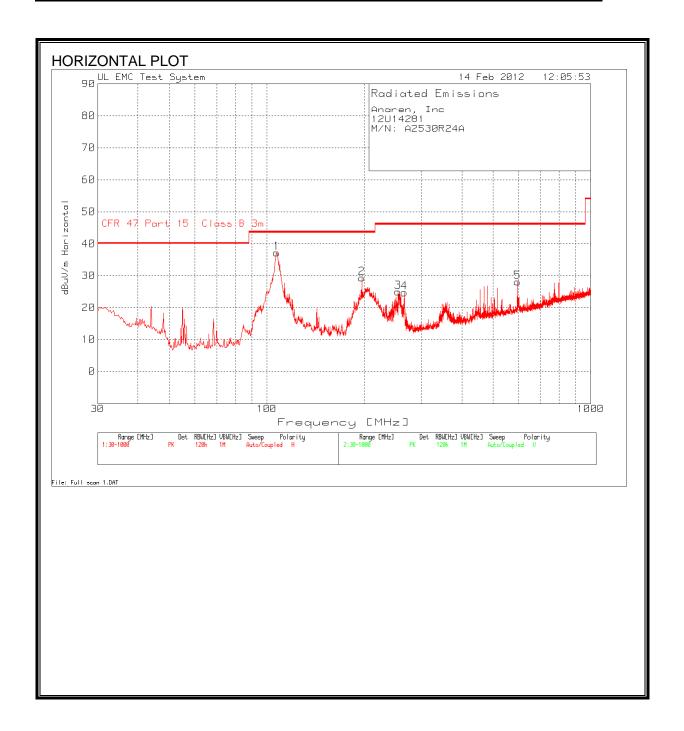
HARMONICS AND SPURIOUS EMISSIONS


RECEIVER ABOVE 1 GHz 8.3.

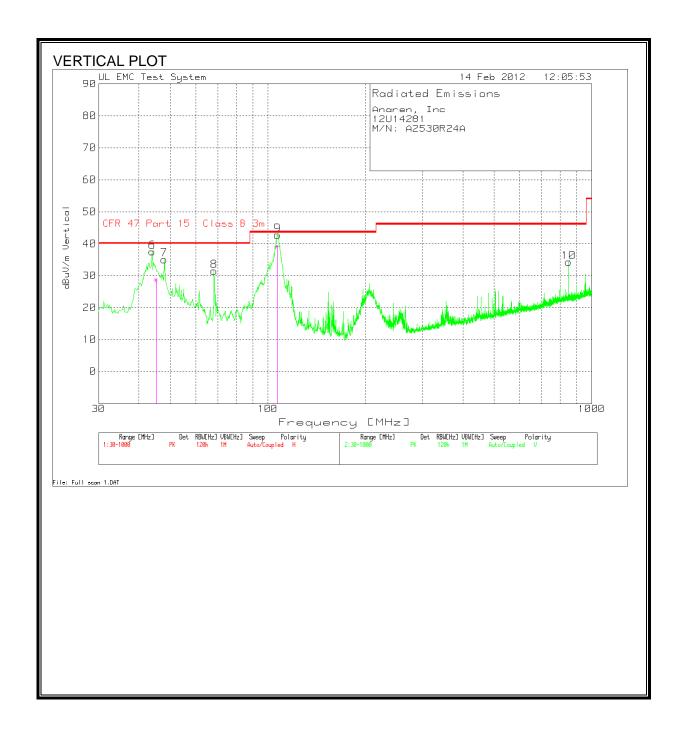
8.3.1. RECEIVER ABOVE 1 GHz with PCB Antenna

DATE: APRIL 19, 2012

8.3.2. RECEIVER ABOVE 1 GHz with External Antenna



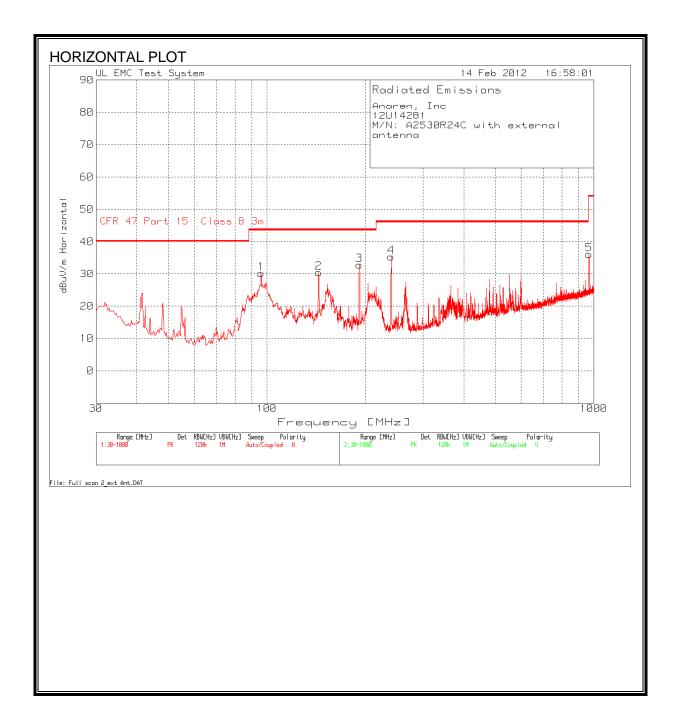
DATE: APRIL 19, 2012


8.4. **WORST-CASE BELOW 1 GHz**

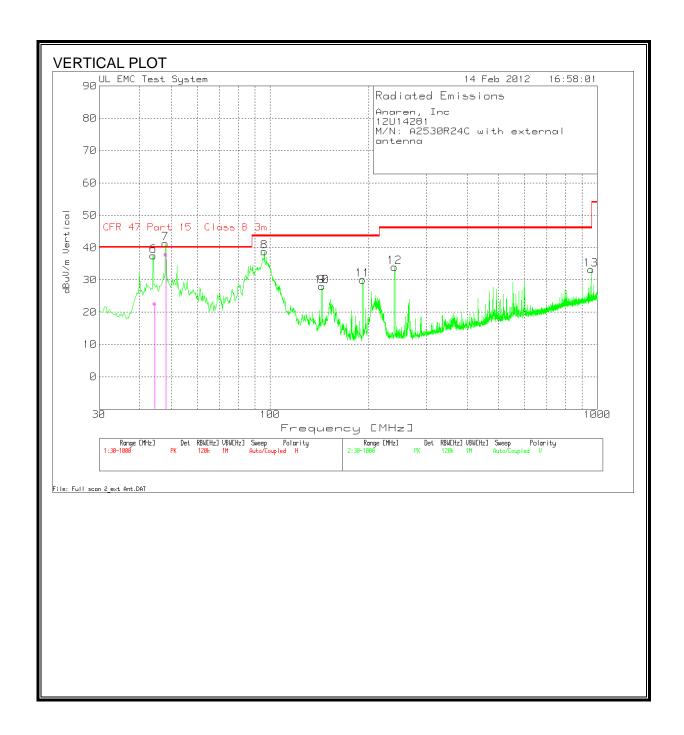
8.4.1. WORST-CASE BELOW 1 GHz with PCB Antenna

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)


EMI DATA

Anaren, Ir	ıc								
12U14281	00044								
M/N: A253	UKZ4A								
Range 1 30) - 1000MH	7							
Test	Meter	Detector	Pre-Amp	Antenna	Corrected	CFR 47	Margin	Height	Polarity
Frequency			Gain+cbl		Reading	Class B	,	[cm]	
			Loss			Limit		•	
107.1503	54.24	PK	-28.5	11.4	37.14	43.5	-6.36	300	Horz
196.5128	45.24	PK	-27.6	11.7	29.34	43.5	-14.16	200	Horz
254.0847	40.19	PK	-27.1	11.9	24.99	46	-21.01	100	Horz
265.9093	39.4	PK	-27	12.3	24.7	46	-21.3	100	Horz
593.8949	36.55	PK	-26.7	18.2	28.05	46	-17.95	100	Horz
Range 2 30									
Test	Meter	Detector	Pre-Amp		Corrected		Margin	Height	Polarity
Frequency	Reading		Gain+cbl	Factor	Reading	Class B		[cm]	
			Loss		dBuV/m	Limit			
43.9568			-29.1	11.7		40			Vert
45.2029	46.77	-	-29.1	10.9		40			Vert
	54.88	PK	-29.1	9.3		40			Vert
47.8337					31.46	40	-8.54	300	Vert
68.1875	52.16	PK	-28.9						
68.1875 107.1503	52.16 59.84	PK PK	-28.5	11.4	42.74	43.5	-0.76	100	Vert
68.1875	52.16	PK PK QP		11.4	42.74	43.5	-0.76	100 111	
68.1875 107.1503	52.16 59.84	PK PK	-28.5	11.4	42.74	43.5	-0.76	100	٧


DATE: APRIL 19, 2012

8.4.1. WORST-CASE BELOW 1 GHz with External Antenna

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

EMI DATA

12U14281									
M/N: A25	30R24C wit	th externa	al						
antenna									
Range 1 3	0 - 1000MH	Iz							
Test	Meter	Detector	PreAmp	Antenna	Value	CFR 47	Margin	Height [cm]	Polari
Frequency	Reading		Gain	Factors	(dBuV/m)	Part 15			
				[dB]		Limit			
95.9073	49.77	PK	-28.6	9	30.17	43.5	-13.33		Horz
143.9808	45.52	PK	-28.1	13	30.42		-13.08		Horz
191.8605			-27.7	11.3	32.8				Horz
239.9341	50.81	PK	-27.3	11.8	35.31	46	-10.69	100	Horz
966.6587	38.15	PK	-24.3	22.2	36.05	54	-17.95	200	Horz
Range 1 3	0 - 1000MH								
Test		Detector	PreAmp	Antenna	Value	CFR 47	Margin	Height [cm]	Polar
Frequency	Reading		Gain	Factors	(dBuV/m)				
				[dB]		Limit			
	54.01	PK	-29.1		37.51	40			Vert
43.9568					00.50	40	-17.47	340	Vert
44.4064	40.23	QP	-29.1		22.53			 	
44.4064 47.8337	40.23 61.1	QP PK	-29.1	9.3	41.3	40	1.3		Vert
44.4064 47.8337 48.006	40.23 61.1 57.66	QP PK QP	-29.1 -29.1	9.3 9.2	41.3 37.76	40 40	1.3 -2.24	201	Vert
44.4064 47.8337 48.006 95.9073	40.23 61.1 57.66 58.42	QP PK QP PK	-29.1 -29.1 -28.6	9.3 9.2 9	41.3 37.76 38.82	40 40 43.5	1.3 -2.24 -4.68	201 100	Vert Vert
44.4064 47.8337 48.006 95.9073 143.9808	40.23 61.1 57.66 58.42 43.18	PK PK PK PK	-29.1 -29.1 -28.6 -28.1	9.3 9.2 9 13	41.3 37.76 38.82 28.08	40 40 43.5 43.5	1.3 -2.24 -4.68 -15.42	201 100 200	Vert Vert Vert
44.4064 47.8337 48.006 95.9073 143.9808 143.9808	40.23 61.1 57.66 58.42 43.18 43.18	QP PK QP PK PK PK	-29.1 -29.1 -28.6 -28.1 -28.1	9.3 9.2 9 13	41.3 37.76 38.82 28.08 28.08	40 40 43.5 43.5 43.5	1.3 -2.24 -4.68 -15.42 -15.42	201 100 200 200	Vert Vert Vert
44.4064 47.8337 48.006 95.9073 143.9808 143.9808 191.8605	40.23 61.1 57.66 58.42 43.18 43.18 46.45	QP PK QP PK PK PK PK	-29.1 -29.1 -28.6 -28.1 -28.1 -27.7	9.3 9.2 9 13 13 11.3	41.3 37.76 38.82 28.08 28.08 30.05	40 40 43.5 43.5 43.5 43.5	1.3 -2.24 -4.68 -15.42 -15.42 -13.45	201 100 200 200 200 100	Vert Vert Vert Vert
44.4064 47.8337 48.006 95.9073 143.9808 143.9808	40.23 61.1 57.66 58.42 43.18 43.18 46.45 49.47	PK PK PK PK PK PK PK	-29.1 -29.1 -28.6 -28.1 -28.1	9.3 9.2 9 13 13 11.3 11.8	41.3 37.76 38.82 28.08 28.08 30.05	40 40 43.5 43.5 43.5 43.5 43.6	1.3 -2.24 -4.68 -15.42 -15.42 -13.45 -12.03	201 100 200 200 100 100	Vert Vert Vert

DATE: APRIL 19, 2012

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

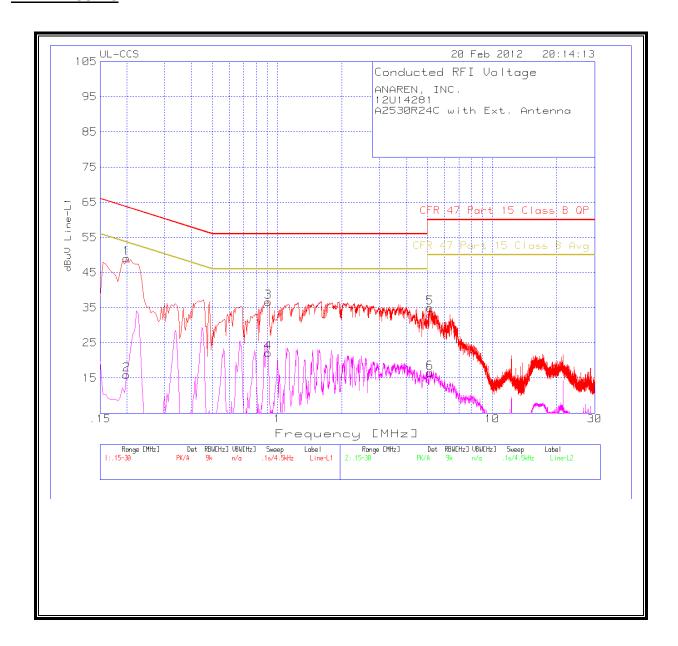
Frequency of Emission (MHz)	Conducted I	Limit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 °	56 to 46 *
0.5-5	56	46
5-30	60	50

DATE: APRIL 19, 2012

IC: 8975A-A11113001

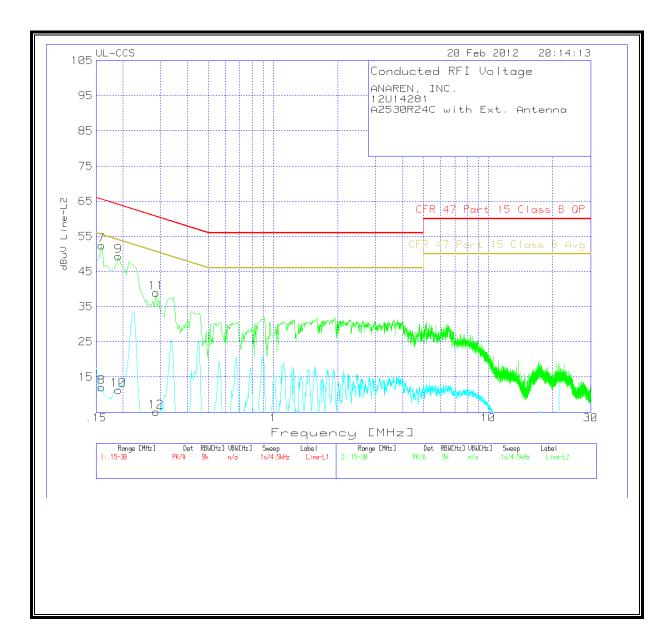
TEST PROCEDURE

ANSI C63.4


Decreases with the logarithm of the frequency.

RESULTS

6 WORST EMISSIONS


ANAREN, 12U14281									
	C with Ext.	Antenna							
ine-L1 .1	5 - 30MHz								
Test Freq. (MHz)	Meter Reading (dBuV)	Detector Type	LISN Factor [dB]	Path Loss (dB)	Corrected Reading (dBuV)	Class B Quasi- peak	Quasi- Peak Margin	Class B Average Limit	Averag Margir
0.1995	48.98	PK	0.1	0	49.08	63.6	-14.52		
0.1995	15.83	Av	0.1	0	15.93	63.6	-47.67	53.6	-37.
0.9105	36.55	PK	0.1	0	36.65	56	-19.35		
0.9105	22.02	Av	0.1	0	22.12	56	-33.88	46	-23.
5.127	34.8	PK	0.1	0.1	35	60	-25		
5.127	16.28	Av	0.1	0.1	16.48	60	-43.52	50	-33.
.ine-L2 .1	5 - 30MHz								
Test Freq. (MHz)	Meter Reading (dBuV)	Detector Type	LISN Factor [dB]	Path Loss (dB)	Corrected Reading (dBuV)	Class B Quasi- peak	Quasi- Peak Margin	Class B Average Limit	Averag Margi
0.159	52.29	PK	0.1	0	52.39	65.5	-13.11		
0.159	11.99	Av	0.1	0	12.09	65.5	-53.41	55.5	-43.
0.1905	49.23	PK	0.1	0	49.33	64	-14.67		
0.1905	11.21	Av	0.1	0	11.31	64	-52.69	54	-42.
0.285	38.83	PK	0.1	0	38.93	60.7	-21.77		
0.285	5.02	Av	0.1	0	5.12	60.7	-55.58	50.7	-45.

LINE 1 RESULTS

TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

LINE 2 RESULTS

10. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	I/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f2) 1.0 f/300	6 6 6 6
,	for General Populati	on/Uncontrolled Ex	posure	
0.3–1.34	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

f = frequency in MHz

* = Plane-wave equivalent power density

NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their
employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure.

Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for

exposure or can not exercise control over their exposure.

DATE: APRIL 19, 2012

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

DATE: APRIL 19, 2012

IC: 8975A-A11113001

Table 5
Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/f		6
30–300	28	0.073	2*	6
300–1 500	1.585 $f^{0.5}$	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000–300 000	0.158f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

^{*} Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

2. A power density of 10 W/m² is equivalent to 1 mW/cm².

 A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG). REPORT NO: 12U14281-2C FCC ID: X7J-A11113001

EQUATIONS

Power density is given by:

$$S = EIRP / (4 * Pi * D^2)$$

where

 $S = Power density in W/m^2$

EIRP = Equivalent Isotropic Radiated Power in W

D = Separation distance in m

Power density in units of W/m^2 is converted to units of mWc/m^2 by dividing by 10.

DATE: APRIL 19, 2012

IC: 8975A-A11113001

Distance is given by:

$$D = SQRT (EIRP / (4 * Pi * S))$$

where

D = Separation distance in m

EIRP = Equivalent Isotropic Radiated Power in W

 $S = Power density in W/m^2$

For multiple colocated transmitters operating simultaneously in frequency bands where the limit is identical, the total power density is calculated using the total EIRP obtained by summing the Power * Gain product (in linear units) of each transmitter.

Total EIRP =
$$(P1 * G1) + (P2 * G2) + ... + (Pn * Pn)$$

where

Px = Power of transmitter x

Gx = Numeric gain of antenna x

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

LIMITS

From FCC $\S1.1310$ Table 1 (B), the maximum value of S = 1.0 mW/cm²

From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m^2

REPORT NO: 12U14281-2C DATE: APRIL 19, 2012 FCC ID: X7J-A11113001 IC: 8975A-A11113001

RESULTS

Band	Mode	Separation	Output	Antenna	IC Power	FCC Power
		Distance	AV Power	Gain	Density	Density
		(m)	(dBm)	(dBi)	(W/m^2)	(mW/cm^2)