

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

2400 – 2483.5 MHZ TRANSCEIVER

MODEL NUMBER: A8520E24A91 and A8520E24C91*

FCC ID: X7J-A10051702 IC: 8975A-A10051702

REPORT NUMBER: 11U13980-1, Revision A

ISSUE DATE: FEBRUARY 8, 2012

Prepared for
ANAREN, INC.
6635 KIRKVILLE ROAD
EAST SYRACUSE, NEW YORK, 13057-9600, U.S.A.

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS)
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

*For model differences please refer to details under section 5.2

NVLAP LAB CODE 200065-0

REPORT NO: 11U13980-1A FCC ID: X7J-A10051702

Revision History

DATE: FEBRUARY 8, 2012

IC: 8975A-A10051702

Rev.	Issue Date	Revisions	Revised By
	01/04/12	Initial Issue	F. Ibrahim
Α	02/08/12	Revised typos on report and updated description for Maximum Output power	A. Zaffar

TABLE OF CONTENTS

1. /	ATTESTATION OF TEST RESULTS	4
2.	TEST METHODOLOGY	5
3. I	FACILITIES AND ACCREDITATION	5
4. (CALIBRATION AND UNCERTAINTY	5
4.1		
4.2	2. SAMPLE CALCULATION	5
4.3	3. MEASUREMENT UNCERTAINTY	6
5. I	EQUIPMENT UNDER TEST	7
5.1	1. DESCRIPTION OF EUT	7
5.2	2. MANUFACTURER'S DESCRIPTION OF MODEL DIFFERENCES	7
5.3	3. MAXIMUM OUTPUT POWER	7
5.4	4. DESCRIPTION OF AVAILABLE ANTENNAS	7
5.5	5. SOFTWARE AND FIRMWARE	7
5.6	6. WORST-CASE CONFIGURATION AND MODE	7
5.7	7. DESCRIPTION OF TEST SETUP	8
6.	TEST AND MEASUREMENT EQUIPMENT	10
7.	ANTENNA PORT TEST RESULTS	11
- - -	7.1.1. 6 dB BANDWIDTH	14 17 18
8. I	RADIATED TEST RESULTS	26
8.1	1. LIMITS AND PROCEDURE	26
8.2	2. TRANSMITTER ABOVE 1 GHz	27
8.3	3. WORST-CASE BELOW 1 GHz	34
8.4	4. RX SPURIOUS EMISSIONS ABOVE 1 GHz	37
9. /	AC POWER LINE CONDUCTED EMISSIONS	38
10.	MAXIMUM PERMISSIBLE EXPOSURE	42
11	SETUP PHOTOS	46

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: ANAREN, INC

6635 KIRKVILLE ROAD

EAST SYRACUSE, NY, 13057, U.S.A.

EUT DESCRIPTION: 2400 – 2483.5 MHZ TRANSCEIVER

MODEL: A8520E24A91 and A8520E24C91

SERIAL NUMBER: Unit 01

DATE TESTED: OCTOBER 05 - DECEMBER 16, 2011

APPLICABLE STANDARDS

STANDARD

STANDARD

TEST RESULTS

CFR 47 Part 15 Subpart C

INDUSTRY CANADA RSS-210 Issue 8 Annex 8

INDUSTRY CANADA RSS-GEN Issue 3

Pass

Compliance Certification Services, Inc. (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By:

FRANK IBRAHIM EMC SUPERVISOR UL CCS Tested By:
William Shu

WILLIAM ZHUANG EMC ENGINEER

UL CCS

REPORT NO: 11U13980-1A FCC ID: X7J-A10051702

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

DATE: FEBRUARY 8, 2012

IC: 8975A-A10051702

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA and at 1285 Walt Whitman Rd, Melville, NY 11747.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

UL Melville is accredited by NVLAP, Laboratory Code 100255-0.

Harmonics for mid and high channels were performed at UL Melville location, all other test items were performed at UL Fremont location as covered in this report.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) - Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

UL Fremont

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

UL Melville

Test	Uncertainty
Conducted Emissions	± 3.3, k=2
Radiated Emissions, 30-200MHz, Horizontal	± 3.1, k=2
Radiated Emissions, 30-200MHz, Vertical	± 3.2, k=2
Radiated Emissions, 200-1000MHz, Horizontal	± 3.3, k=2
Radiated Emissions, 200-1000MHz, Vertical	± 4.0, k=2

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a 2.4 GHz transceiver that is manufactured by Anaren, Inc.

5.2. MANUFACTURER'S DESCRIPTION OF MODEL DIFFERENCES

A8520E24A91 and A8520E24C91 are Identical, except A8520E24C91 has a U.FL connector, and A8520E24A91 has an integral printed antenna.

5.3. MAXIMUM OUTPUT POWER

The selected transmitter maximum output power setting is 'level 4', at which the measured peak conducted output power is as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2406 - 2474	QPSK	19.92	98.17

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes PCB antenna with maximum peak gains of 2dBi.

5.5. SOFTWARE AND FIRMWARE

The EUT Firmware software installed during testing was v 1.0.3

The test utility software used during testing was 8520 Engineering Software, V1.0.0.99.

5.6. WORST-CASE CONFIGURATION AND MODE

EUT is a portable device, therefore, an investigation for worst-case orientation was conducted and it was found the Y orientation is worst-case; final testing was performed with the EUT in Y orientation.

Radiated emissions and power line conducted emissions were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The EUT has a single modulation, which is QPSK.

5.7. DESCRIPTION OF TEST SETUP

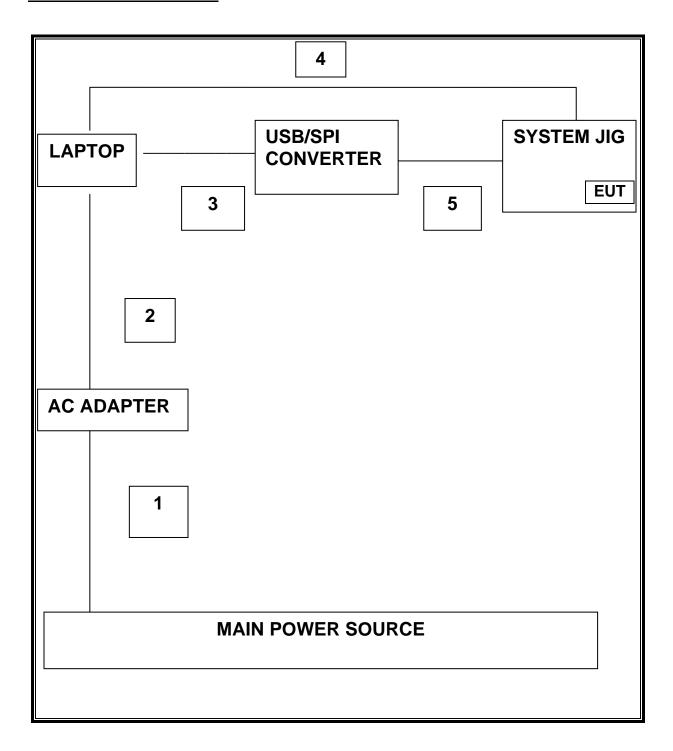
SUPPORT EQUIPMENT

CONDUCTED TEST

PERIPHERAL SUPPORT EQUIPMENT LIST						
Description Manufacturer Model Serial Number FCC ID						
Laptop	Dell	M4500	5Z2K2M1	DoC		
AC Adapter	Dell	DA130PE1-00	CN-07U012-48661-086-00EF-A04	DoC		
USB/SPI Converter	Total Phase	I^2C/SPI	2237-391864	DoC		
System JIG	Texas Instruments	TAS57XXEVM	1018002327	DoC		

RADIATED TEST

PERIPHER AL SUPPORT EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	FCC ID		
Laptop	IBM	T43	L3-BB983	DoC		
AC Adapter	IBM	02K6810	11S02K6810Z123B7514164	DoC		
USB/SPI Converter	Total Phase	I^2C/SPI	2237-392328	DoC		
System JIG	Texas Instruments	TAS57XXEVM	1018002406	DoC		


I/O CABLES

	I/O CABLE LIST							
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks		
1	AC	1	US 115V	Un-shielded	1.0m	N/A		
2	DC	1	DC	Un-shielded	2.0m	Ferrite at one End		
3	USB	1	USB	Un-shielded	2.0m	N/A		
4	USB	1	USB	Un-shielded	1.5m	N/A		
5	Data	1	10 Pin	Un-shielded	0.2m	N/A		

TEST SETUP

The EUT is connected to a host laptop computer via system test board during the tests. Test software exercised the radio card.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

UL FREMONT

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Asset	Cal Due		
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	07/12/12		
Antenna, Horn, 18 GHz	EMCO	3115	C00945	06/29/12		
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00885	01/06/12		
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01052	07/14/12		
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	N02481	11/10/12		
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01012	09/03/12		
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01179	08/18/12		
EMI Test Receiver, 30 MHz	R&S	ESHS 20	N02396	05/06/12		
Reject Filter, 2.4-2.5 GHz	Micro-Tronics	BRC13192	N02683	CNR		
Peak Power Meter	Boonton	4541	C01186	03/01/12		
Peak Power Sensor	Boonton	57318	C01202	02/23/12		
Antenna, Horn, 26 GHz	ARA	MWH-1826/B	C00589	07/28/12		

UL MELVILLE

Test Equipment Used								
Description	Manufacturer	Model	Identifier	Cal Date	Cal Due Date			
Above 1GHz (Band Optimized S	Above 1GHz (Band Optimized System)							
Spectrum Analyzer	Agilent	E4446A	72823	2011-07-26	2012-07-26			
Horn Antenna (1-2 GHz)	ETS	3161-01	51442	2008-03-28	See * below			
Horn Antenna (2-4 GHz)	ETS	3161-02	48107	2007-09-27	See * below			
Horn Antenna (4-8 GHz)	ETS	3161-03	48106	2007-09-27	See * below			
Horn Antenna (8-12 GHz)	ETS	3160-07	8933	2008-11-24	See * below			
Horn Antenna (12-18 GHz)	ETS	3160-08	8932	2007-09-27	See * below			
Horn Antenna (18-26.5 GHz)	ETS	3160-09	8947	2007-09-26	See * below			
Signal Path Controller	HP	11713A	50250	N/A	N/A			
Gain Controller	HP	11713A	50251	N/A	N/A			
RF Switch / Preamp Fixture	UL	BOMS1	50249	N/A	N/A			
System Controller	UL	BOMS2	50252	N/A	N/A			
Measurement Software	UL	Version 9.3	44740	N/A	N/A			
Temp/Humidity/Pressure Meter	Cole Parmer	99760-00	4268	2010-12-07	2012-12-07			

^{* -} Note: As allowed by the calibration standard ANSI C63.4 Section 4.4.2, standard gain horns need only a one-time calibration. Only if physical damage occurs will the horn antenna require re-calibration.

^{*} Gain standard horn antennas (sometimes called standard gain horn antennas) need not be calibrated beyond that which is provided by the manufacturer unless they are damaged or deterioration is suspected, or they are used at a distance closer than $2D^2/\lambda$. Gain standard horn antennas have gains that are fixed by their dimensions and dimensional tolerances.

7. ANTENNA PORT TEST RESULTS

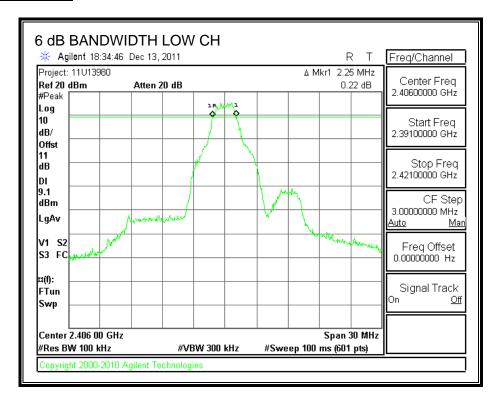
7.1.1. 6 dB BANDWIDTH

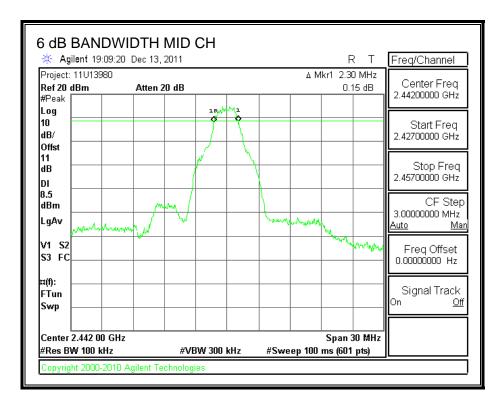
LIMITS

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.


TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.


RESULTS

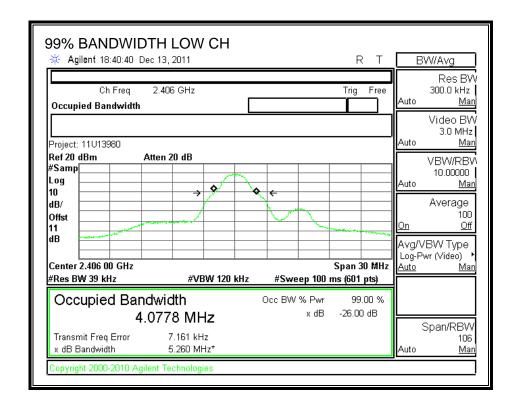
Channel	Frequency 6 dB Bandwidth		Minimum Limit
	(MHz)	(KHz)	(kHz)
Low	2406.0	2250.0	500.0
Middle	2442.0	2300.0	500.0
High	2474.0	2200.0	500.0

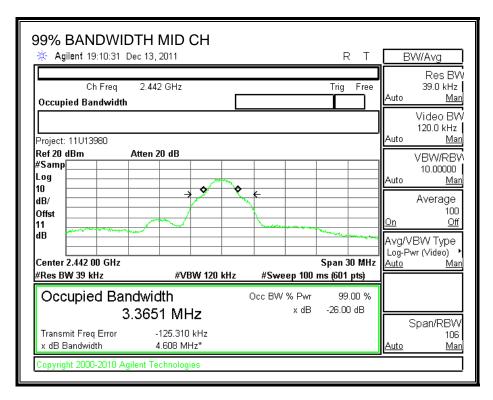
6 dB BANDWIDTH

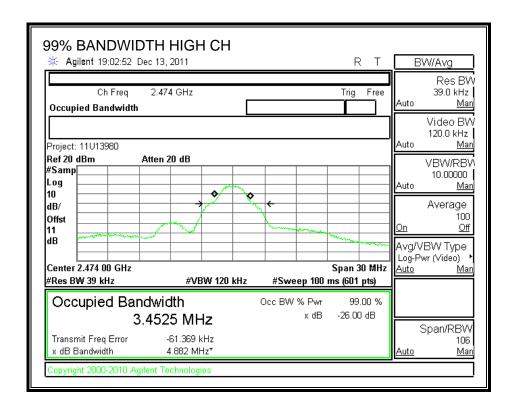
7.1.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.


TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.


RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(KHz)
Low	2406.0	4077.8
Middle	2442.0	3365.1
High	2474.0	3452.5

99% BANDWIDTH

7.1.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

Peak power is measured by the power meter.

RESULTS

Channel	Frequency	Output	Limit	Margin
		Power		
	(MHz)	(dBm)	(dBm)	(dB)
Low	2406.0	19.92	30	-10.08
Middle	2442.0	19.35	30	-10.65
High	2474.0	18.66	30	-11.34

7.1.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11 dB was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2406.0	17.71
Middle	2442.0	17.24
High	2474.0	16.69

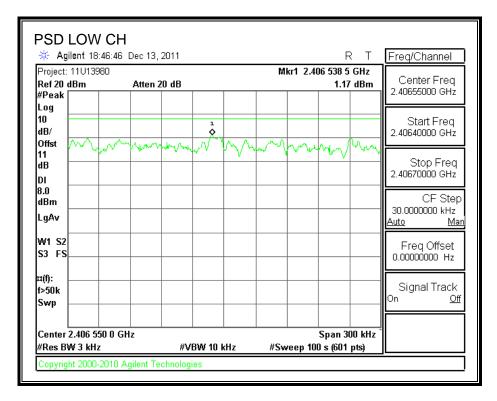
7.1.5. POWER SPECTRAL DENSITY

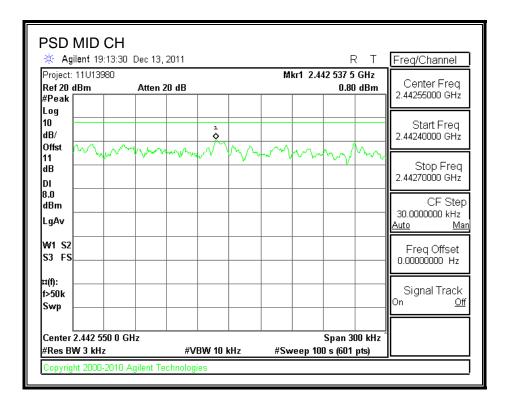
LIMITS

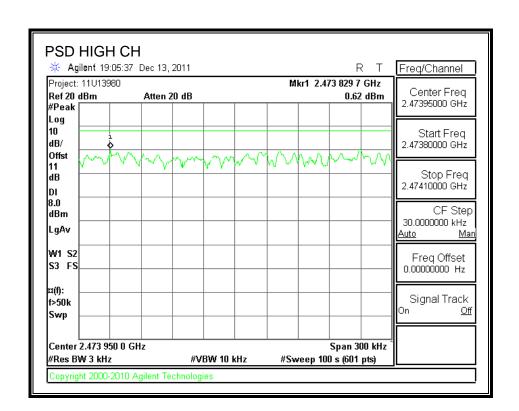
FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


TEST PROCEDURE


Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.


RESULTS

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2406.0	1.17	8	-6.83
Middle	2442.0	0.80	8	-7.20
High	2474.0	0.62	8	-7.38

POWER SPECTRAL DENSITY

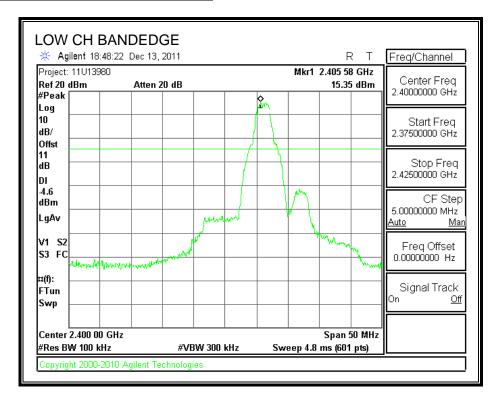
7.1.6. CONDUCTED SPURIOUS EMISSIONS

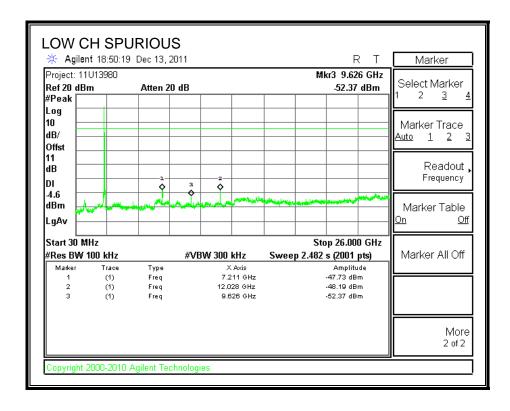
LIMITS

FCC §15.247 (d)

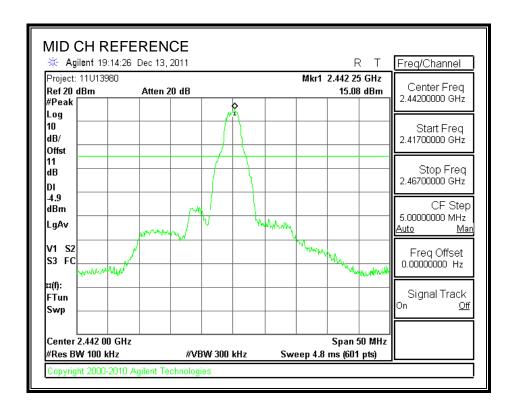
IC RSS-210 A8.5

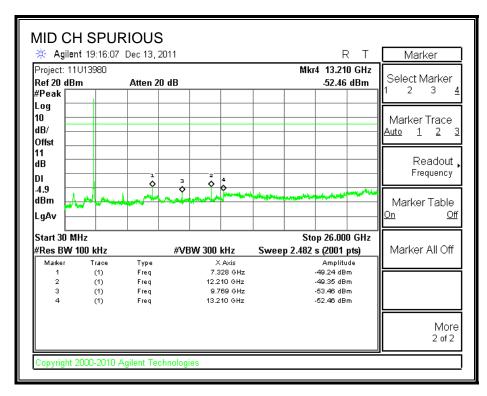
Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

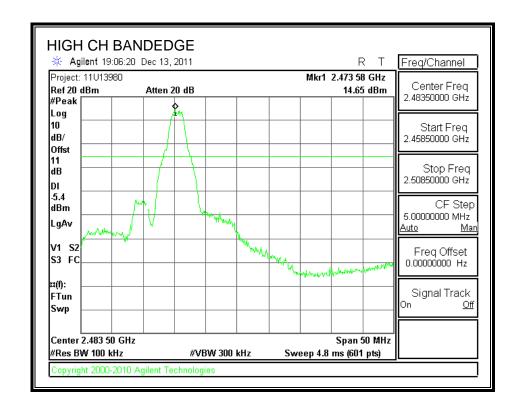

TEST PROCEDURE

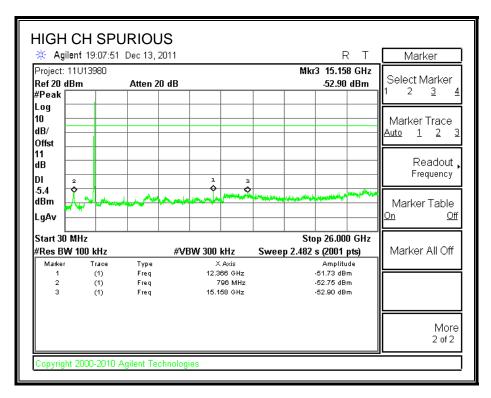

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


RESULTS


SPURIOUS EMISSIONS, LOW CHANNEL




SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

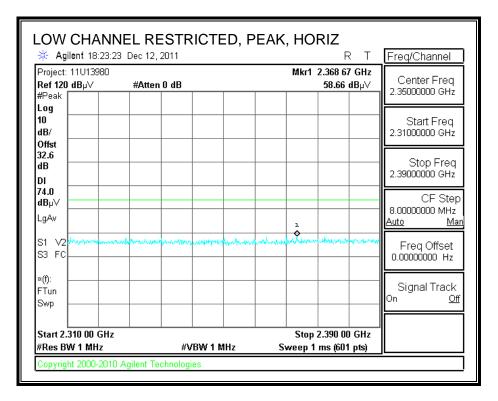
IC RSS-GEN Clause 6 (Receiver)

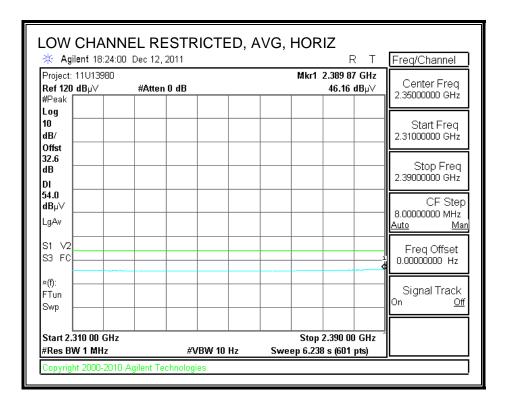
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

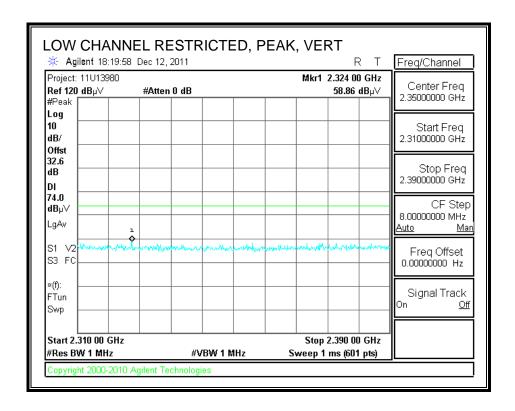
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

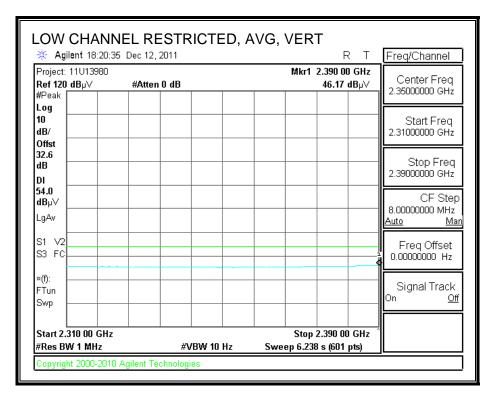
For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

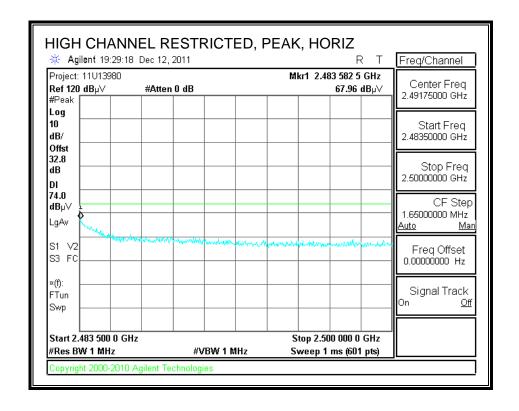

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

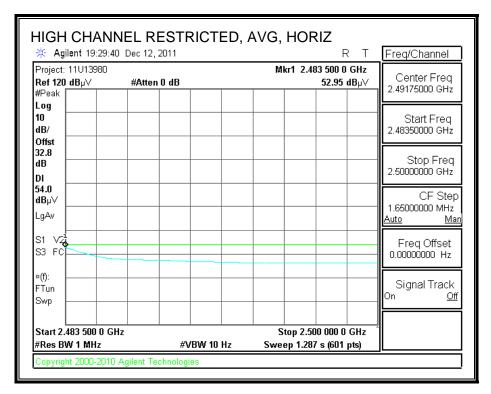

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

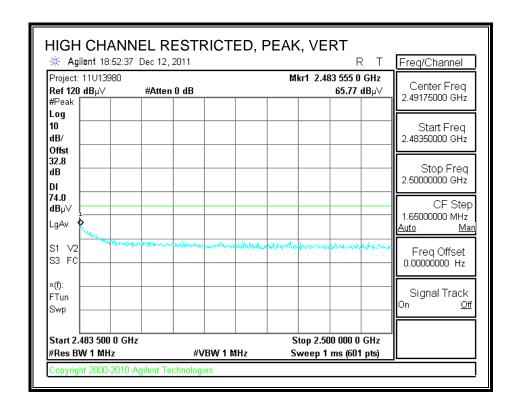
The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

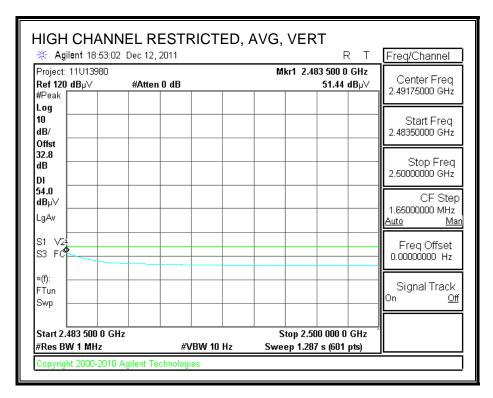

8.2. TRANSMITTER ABOVE 1 GHz


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)




RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)




RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

HARMONICS AND SPURIOUS EMISSIONS

Low Ch.

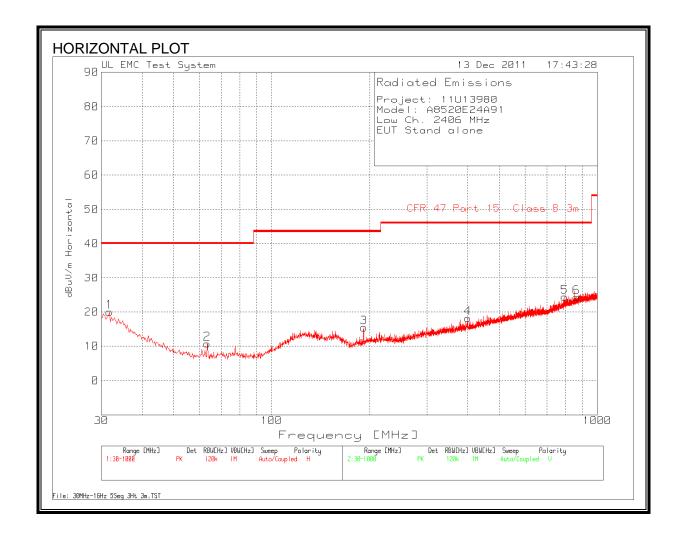
High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang Date: 12/12/11 Project #: 11U13980 Company: Anaren Test Target: FCC B Mode Oper: QPSK, Pwr set 4

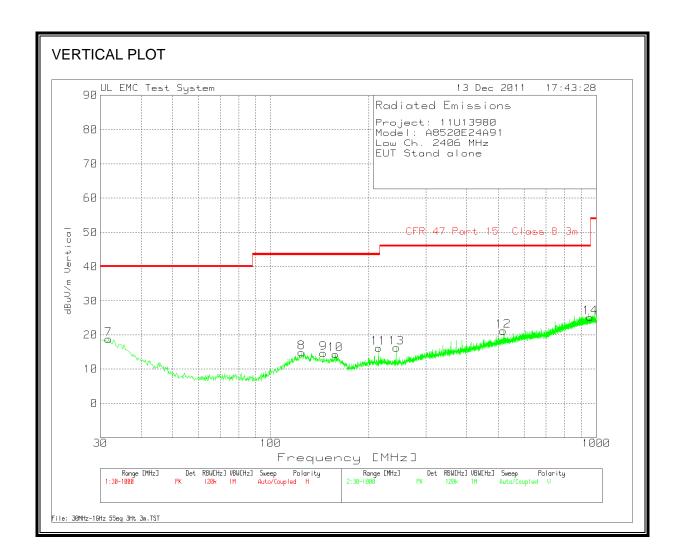
> Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
> AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
> CL Cable Loss HPF High Pass Filter

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Ant.High	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dΒ	dBuV/m	dBuV/m	dB	V/H	P/A/QP	cm	Degree	
Low Ch.	2406 MI	Ηz													
4.812	3.0	51.2	33.1	6.8	-34.8	0.0	0.0	56.3	74.0	-17.7	V	P	98.0	160.0	
4.812	3.0	41.5	33.1	6.8	-34.8	0.0	0.0	46.6	54.0	-7.4	V	A	98.0	160.0	
4.812	3.0	53.5	33.1	6.8	-34.8	0.0	0.0	58.5	74.0	-15.5	H	P	98.0	292.0	
4.812	3.0	44.2	33.1	6.8	-34.8	0.0	0.0	49.2	54.0	-4.8	H	A	98.0	292.0	
12.030	3.0	40.8	39.4	11.9	-32.5	0.0	0.0	59.6	74.0	-14.4	H	P	144.0	315.0	
12.030	3.0	27.3	39.4	11.9	-32.5	0.0	0.0	46.1	54.0	-7.9	H	A	144.0	315.0	
12.030	3.0	40.8	39.4	11.9	-32.5	0.0	0.0	59.6	74.0	-14.4	V	P	117.0	307.0	
12.030	3.0	28.2	39.4	11.9	-32.5	0.0	0.0	47.0	54.0	-7.0	V	A	117.0	307.0	


Rev. 4.1.2.7

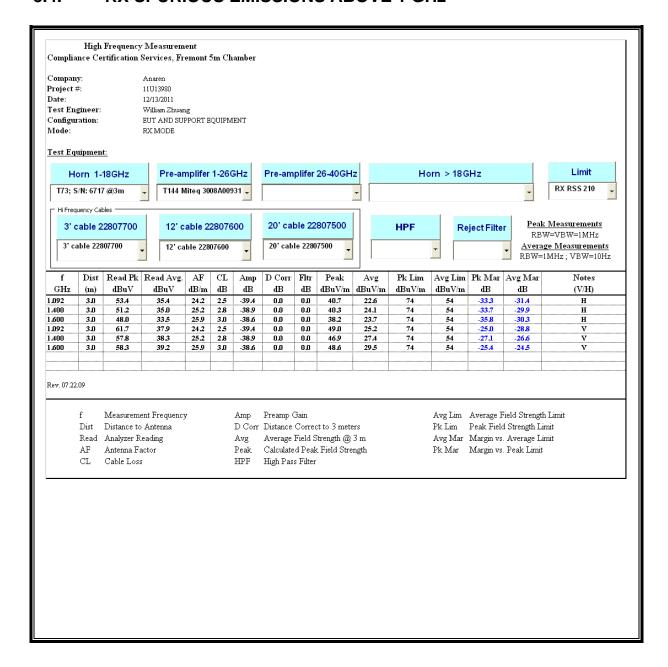
Note: No other emissions were detected above the system noise floor.

	hann	C.										
Anaren	01101											
Model: A8520E												
Xmitter Module		annei										
Job#: 11U1470												
Tested by: MA												
Horizontal 4000	- 8000MI	Hz										
	Meter		AF-48106			FCC Part 15		FCC Part 15		Azimuth		
est Frequency						Subpart C 15.209	Margin					
4878.0547			27.2				42.44		-16.28			Horz
4878.0547			27.2				-13.44		00.70		232	
4882.0166			27.2				4 70		-20.79			Horz
4882.0166 7317.0781			21.2	-52.53 -51.92			-1.78		4.04	2		Horz
7317.0781			28				-3.53		-4.01			Horz Horz
1311.0101	14.39	LgAv	20	-51.92	50.47	54	-3.53				301	HUIZ
lorizontal 8000	- 12000N	ИHz										
	Meter		AF-8933	BOMS		FCC Part 15		FCC Part 15		Azimuth	Height	
est Frequency		Detector			dB[uVolte/motor]	Subpart C 15.209						
9753.7578			33.2				wargiil		-20.46			Horz
9753.7578			33.2				-15.88		-20.40	321		Horz
3133.1310	54.04	Lynv	33.2	-43.1Z	30.12	54	-13.00			JZI	313	11012
Horizontal 1200	0 - 18000	MHz										
			AE 0000	DOME		E00 D-+: 45		E00 D- : 45		A	11-1-1-1	
	Meter	D-4:	AF-8932		ADIMA (FCC Part 15		FCC Part 15	NA	Azimuth		Dalade
est Frequency						Subpart C 15.209	Margin					
12189.172			37.2				40.77		-17.45			Horz
12189.172			37.2				-13.77		04.70	172		Horz
14632.452			37.3				40.74		-21.72			Horz
14632.452	47.1	LgAv	37.3	-49.14	35.26	54	-18.74			68	336	Horz
/ertical 4000 - 8	3000MHz											
	Meter		AF-48106			FCC Part 15		FCC Part 15		Azimuth		
est Frequency	Reading	Detector	[dB]	Factor [dB]	dB[uVolts/meter]	Subpart C 15.209	Margin	Subpart C Peak	Margin	[Degs]	[cm]	Polarity
4878.015	76.76	PK	27.5	-52.52					-22.26			Vert
4878.015			27.5				-19.25			7		Vert
4881.993			27.5						-27.32			Vert
4881.993			27.5				-9.62			74		Vert
7317.092				-51.92					-13.14		118	
7317.092	65.39	LgAv	27.9	-51.92	41.37	54	-12.63			146	118	Vert
/ertical 8000 - 1	12000MH	Z										
	Meter		AF-8933			FCC Part 15		FCC Part 15		Azimuth		
est Frequency						Subpart C 15.209	Margin					
	69.17			-49.12			-15.67		-20.75			Vert
9/53.6	54.25	LgAV	33.2	-49.12	38.33	54	-15.6/			48	103	Vert
/ertical 12000 -	18000M	Hz										
	Meter		AF-8932		IDEAL IS A	FCC Part 15		FCC Part 15		Azimuth		D
est Frequency						Subpart C 15.209	Margin					
12189.22			37.3				0.00		-12.72			Vert
12189.22		LgAv	37.3				-8.92		00.40	114		Vert
14632.96			37.3				20.00		-26.16	142 142		Vert
14632.96	44.98	LgAv	37.3	-49.14	33.14	54	-20.86			142	307	Vert
PK - Peak deter												
QP - Quasi-Pea												
.nAv - Linear Av												
gAv - Log Aver		ctor										
Av - Average de												
CAV - CISPR A		etector										
RMS - RMS det		L										
CRMS - CISPR				lid Channel.T								


Anaren												
Model: A8520E2	24A91											
Xmitter Module -	High Cha	annel										
Job#: 11U14706												
Tested by: MA												
•												
Horizontal 4000 -	8000MH	Z										
	Meter		AF-48106	BOMS		FCC Part 15		FCC Part 15		Azimuth	Height	
Test Frequency	Reading	Detector	[dB]	Factor [dB]	dB[uVolts/meter]	Subpart C 15.209	Margin	Subpart C Peak	Margin	[Deas]	[cm]	Polarity
4941.9938			27.3						-20.19			Horz
4941.9938			27.3			54	-1.24			360	280	Horz
4948.932			27.3					74	-21.79	20	333	Horz
4948.932			27.3	-52.59	40.18	54	-13.82			20	333	Horz
7418.832			28.1						-3.88	34	351	Horz
7418.832			28.1				-3.54		0.00	34		Horz
		-g	20.1	01.22	55.15		0.01					
Horizontal 8000 -	12000M	- 17										
	Meter		AF-8933	BOMS		FCC Part 15		FCC Part 15		Azimuth	Heiaht	
					dB[uVolts/meter]	Subpart C 15.209						Polarity
	69.73		33						-20.44			Horz
	54.73		33				-15.44		20.74	0		Horz
3033.42	54.15	-9" "	33	70.11	30.30	34	.5.44				323	
Horizontal 12000	- 180001	ИНи										
Eomai 12000	100001	12										
	Meter		AF-8932	BOMS		FCC Part 15		FCC Part 15		Azimuth	Height	
		Detector			dB[u\/olte/meter]	Subpart C 15.209	Margin		Margin			Dolarity
12367.59			37.2				ivialyiii		-15.39			Horz
12367.59			37.2				-12.24		-13.33	307		Horz
14841.328			37.3				-12.24		-24.72			Horz
14841.328			37.3				-20.61		-24.12	313		Horz
14041.320	43.12	LyAv	31.3	-43.03	33.33	34	-20.01			313	101	11012
Vertical 4000 - 8	0000411-											
vertical 4000 - o	UUUIVINZ											
	Meter		AF-48106	ROMS		FCC Part 15		FCC Part 15		Azimuth	Hojaht	
Test Frequency		Dotoctor			dB[u\/olto/motor]	Subpart C 15.209	Margin		Margin			Dolority
4941.9675			27.5				iviaryiii		-24.18			Vert
4941.9675			27.5				-5.64		-24.10	199		Vert
4948.804			27.5				-5.04		-26.02			Vert
4948.804			27.5				-18.1		-20.02	181		Vert
7418.844			27.3				-10.1	74	-8.7			Vert
7418.844			28				-8.24		-0.1	57		Vert
7410.044	00.30	LgAv	20	-51.22	45.76	34	-0.24			31	203	veit
/ertical 8000 - 1	2000###=											
vertical 0000 - 1.	ZUUUIVIITIZ											
	Meter		AF-8933	BOME		FCC Part 15		FCC Part 15		Azimuth	Hojakt	
					dR[u\/olto/mot1	Subpart C 15.209						Dolority
9895.44			33				iviargin		-17.87			Vert
	57.43		33				-12.74		-17.07	77		Vert
3033.44	51.45	LyAv	33	-43.17	41.20	54	-12.14			- 11	211	vell
/ertical 12000 -	18000014	7										
vertical 12000 -	10000IVIII	_										
	Motor		AF-8932	ROMS		FCC Part 15		FCC Part 15		Azimuth	Hojakt	
Foot Erominer:	Meter	Dotostas			dD[u\/olt=/t1		Marrie		Marris	Azimuth		Dolorite
Test Frequency						Subpart C 15.209	iviargin					
12369.25	74.18		37.3				7.40		-11.37	72 72		Vert
12369.25	58.06	LgAv	37.3	-48.85	46.51	54	-7.49			12	179	Vert
OL Doel det	tor											
PK - Peak detec												
QP - Quasi-Peak												
nAv - Linear Ave												
_gAv - Log Avera		or										
Av - Average det												
CAV - CISPR A		tector										
RMS - RMS dete												
CRMS - CISPR F	Otob 2MC	ction										

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

DATE: FEBRUARY 8, 2012


IC: 8975A-A10051702

VERTICAL AND HORIZONTAL DATA

VERTICAL	_ AND H	ORIZON	TAL DAT	·A					
Project: 11U	J13980								
Model: A852									
Low Ch. 240									
EUT Stand									
201 Oland	410110								
Range: 1 30	- 1000MHz								
Test Frequency	Meter Reading	Detector	25MHz- 1GHz Chambr 3m Amplified [dB]	3m Bilog T185 below 1GHz.TXT [dB]	dBuV/m	CFR 47 Part 15 Class B 3m	Margin	Height [cm]	Polarity
31.7446	28.4	PK	-27.5	19.1	20	40	-20	99	Horz
63.4383	29.94	PK	-27.2	8	10.74	40	-29.26	251	Horz
191.8605	29.96	PK	-25.9	11.4	15.46	43.5	-28.04	99	Horz
400.8253	28.78	PK	-25.6	15	18.18	46	-27.82	251	Horz
793.749	28.24	PK	-24.6	20.7	24.34	46	-21.66	251	Horz
863.1455	26.97	PK	-24.3	21.6	24.27	46	-21.73	176	Horz
Range: 2 30	- 1000MHz								
Test Frequency	Meter Reading	Detector	25MHz- 1GHz Chambr 3m Amplified [dB]	3m Bilog T185 below 1GHz.TXT [dB]	dBuV/m	CFR 47 Part 15 Class B 3m	Margin	Height [cm]	Polarity
31.7446	27.17	PK	-27.5	19.1	18.77	40	-21.23	101	Vert
124.4025	27.26	PK	-26.5	14.1	14.86	43.5	-28.64	101	Vert
145.1439	28.14	PK	-26.4	12.9	14.64	43.5	-28.86	101	Vert
158.1315	27.43	PK	-26.2	13.1	14.33	43.5	-29.17	175	Vert
214.5404	29.97	PK	-25.7	11.9	16.17	43.5	-27.33	250	Vert
518.2954	29.94	PK	-25.9	17.1	21.14	46	-24.86	101	Vert
243.4233	29.95	PK	-25.5	11.8	16.25	46	-29.75	175	Vert
958.5172	26.27	PK	-23.6	22.4	25.07	46	-20.93	250	Vert

8.4. RX SPURIOUS EMISSIONS ABOVE 1 GHz

DATE: FEBRUARY 8, 2012

IC: 8975A-A10051702

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

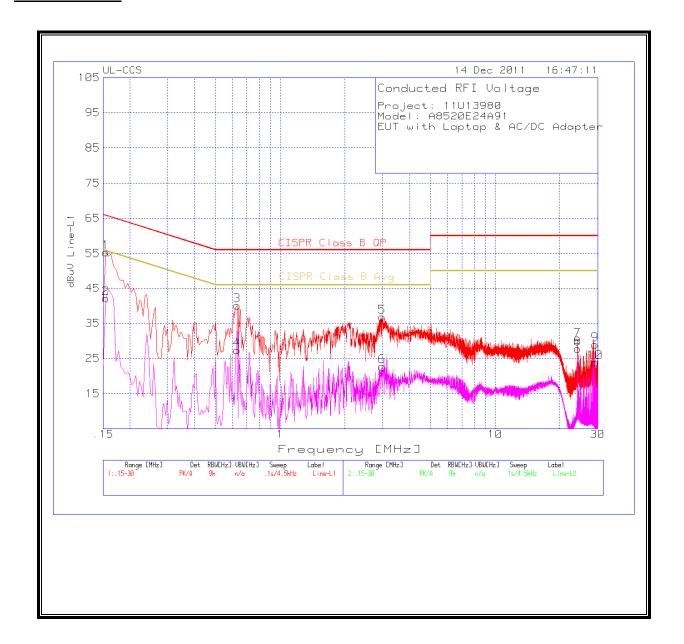
RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56 *	56 to 46 *			
0.5-5	56	46			
5-30	60	50			

DATE: FEBRUARY 8, 2012

IC: 8975A-A10051702

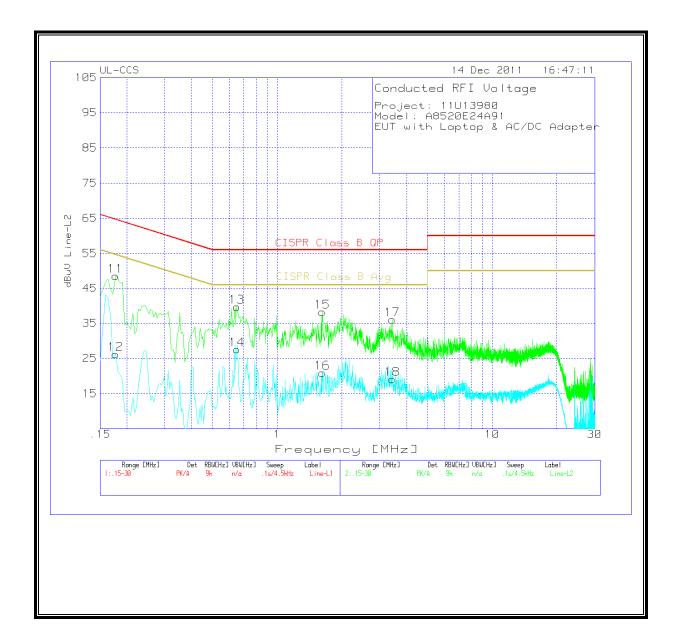
TEST PROCEDURE


ANSI C63.4

Decreases with the logarithm of the frequency.

RESULTS

6 WORST EMISSIONS (WORST CASE)


Project: 11	U13980								
Model: A85									
		/DC Adapt	er						
Line-L1 .15	- 30MHz								
Test Frequency	Meter Reading	Detector	T24 IL L1.TXT [dB]	LC Cables 1&3.TXT [dB]	dBu∨	CISPR Class B QP	Margin	CISPR Class B Avg	Margin
0.1545	55.23	PK	0.1	0	55.33	65.8	-10.47	-	-
0.1545	41.95	Αv	0.1	0	42.05	-	-	55.8	-13.75
0.6315	39.89	PK	0.1	0	39.99	56	-16.01	-	-
0.6315	27.27	Αv	0.1	0	27.37	-	-	46	-18.63
2.976	36.6	PK	0.1	0.1	36.8	56	-19.2	-	-
2.976	22.51	Αv	0.1	0.1	22.71	-	-	46	-23.29
24.1935	29.48	PK	0.4	0.3	30.18	60	-29.82	-	-
24.1935	27.04	Av	0.4	0.3	27.74	-	-	50	-22.26
29.23575	28.14	PK	0.5	0.3	28.94	60	-31.06	-	-
29.23575	23.06	Av	0.5	0.3	23.86	-	-	50	-26.14
Line-L2 .15	- 30MHz								
Test Frequency	Meter Reading	Detector	T24 IL L2.TXT [dB]	LC Cables 2&3.TXT [dB]	dBu∨	CISPR Class B QP	Margin	CISPR Class B Avg	Margin
0.177	48.52	PK	0.1	0	48.62	64.6	-15.98	-	-
0.177	26.03	Αv	0.1	0	26.13	-	-	54.6	-28.47
0.6495	39.48	PK	0.1	0	39.58	56	-16.42	-	-
0.6495	27.43	Av	0.1	0	27.53	-	-	46	-18.47
1.6215	37.98	PK	0.1	0.1	38.18	56	-17.82	-	-
1.6215	20.66	Av	0.1	0.1	20.86	-	-	46	-25.14
3.4305	35.77	PK	0.1	0.1	35.97	56	-20.03	-	-
3.4305	18.88	Av	0.1	0.1	19.08	-	-	46	-26.92
Project: 11									
Model: A85									
EUT with L	aptop & AC	:/DC Adapt	er						

DATE: FEBRUARY 8, 2012

IC: 8975A-A10051702

LINE 2 RESULTS

DATE: FEBRUARY 8, 2012

IC: 8975A-A10051702

TEL: (510) 771-1000

10. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	strength strength Power density			
(A) Lim	nits for Occupational	/Controlled Exposu	res		
0.3–3.0 3.0–30 30–300 300–1500	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300	6 6 6	
1500–100,000			1/300	6	
(B) Limits	for General Populati	on/Uncontrolled Exp	oosure		
0.3–1.34	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30	

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

f = frequency in MHz

* = Plane-wave equivalent power density

NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposured or the potential for exposure or can part exercise control over their exposure.

exposure or can not exercise control over their exposure.

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5
Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/f		6
30–300	28	0.073	2*	6
300–1 500	1.585 $f^{0.5}$	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000–300 000	0.158f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

^{*} Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

2. A power density of 10 W/m² is equivalent to 1 mW/cm².

 A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

EQUATIONS

Power density is given by:

$$S = EIRP / (4 * Pi * D^2)$$

where

S = Power density in W/m^2

EIRP = Equivalent Isotropic Radiated Power in W

D = Separation distance in m

Power density in units of W/m^2 is converted to units of mWc/m^2 by dividing by 10.

Distance is given by:

$$D = SQRT (EIRP / (4 * Pi * S))$$

where

D = Separation distance in m

EIRP = Equivalent Isotropic Radiated Power in W

 $S = Power density in W/m^2$

For multiple colocated transmitters operating simultaneously in frequency bands where the limit is identical, the total power density is calculated using the total EIRP obtained by summing the Power * Gain product (in linear units) of each transmitter.

Total EIRP =
$$(P1 * G1) + (P2 * G2) + ... + (Pn * Pn)$$

where

Px = Power of transmitter x

Gx = Numeric gain of antenna x

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

LIMITS

From FCC $\S1.1310$ Table 1 (B), the maximum value of S = 1.0 mW/cm²

From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m^2

RESULTS

Band	Mode	Separation	Output	Antenna	IC Power	FCC Power
		Distance	AV Power	Gain	Density	Density
		(m)	(dBm)	(dBi)	(W/m^2)	(mW/cm^2)