

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

2.4 GHZ TRANSCEIVER

MODEL NUMBER: A8520E24A91

FCC ID: X7J-A10051701 IC: 8975A-A10051701

REPORT NUMBER: 10U13533-1, Revision A

ISSUE DATE: DECEMBER 21, 2010

Prepared for ANAREN, INC. 6635 KIRKVILLE ROAD EAST SYRACUSE, NEW YORK, 13057-9600, U.S.A.

Prepared by COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	lssue Date	Revisions	Revised By
	12/06/10	Initial Issue	T. Chan
A	12/21/10	Updated IC Standard	A. Zaffar

Page 2 of 45

TABLE OF CONTENTS

1.	ATT	ATTESTATION OF TEST RESULTS4					
2.	TES	TEST METHODOLOGY					
3.	FAC	ILITIES AND ACCREDITATION	5				
4.	CAL	IBRATION AND UNCERTAINTY	5				
4	.1.	MEASURING INSTRUMENT CALIBRATION	5				
4	.2.	SAMPLE CALCULATION	5				
4	.3.	MEASUREMENT UNCERTAINTY	5				
5.	EQU	IPMENT UNDER TEST	6				
5	.1.	DESCRIPTION OF EUT	6				
5	.2.	MAXIMUM OUTPUT POWER	6				
5	.3.	DESCRIPTION OF AVAILABLE ANTENNAS	6				
5	.4.	SOFTWARE AND FIRMWARE	6				
5	.5.	WORST-CASE CONFIGURATION AND MODE	6				
5	.6.	DESCRIPTION OF TEST SETUP	7				
~	TEO		_				
6.	IES	T AND MEASUREMENT EQUIPMENT	9				
ь. 7.		I AND MEASUREMENT EQUIPMENT1					
-	ANT 7.1.1	ENNA PORT TEST RESULTS	0				
-	ANT 7.1.1 7.1.2	ENNA PORT TEST RESULTS	0 0 3				
-	ANT 7.1.1	ENNA PORT TEST RESULTS 1 6 dB BANDWIDTH 1 99% BANDWIDTH 1 0UTPUT POWER 1	0 0 3 6				
-	ANT 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5	ENNA PORT TEST RESULTS16 dB BANDWIDTH199% BANDWIDTH10UTPUT POWER1AVERAGE POWER1POWER SPECTRAL DENSITY1	0 03 67 8				
-	ANT 7.1.1 7.1.2 7.1.3 7.1.4	ENNA PORT TEST RESULTS16 dB BANDWIDTH12. 99% BANDWIDTH13. OUTPUT POWER14. AVERAGE POWER15. POWER SPECTRAL DENSITY1	0 03 67 8				
-	ANT 7.1.1 7.1.2 7.1.2 7.1.2 7.1.4 7.1.6	ENNA PORT TEST RESULTS16 dB BANDWIDTH199% BANDWIDTH10UTPUT POWER1AVERAGE POWER1POWER SPECTRAL DENSITY1	0 03 67 8				
7 . 8 .	ANT 7.1.1 7.1.2 7.1.2 7.1.2 7.1.2 7.1.2 7.1.2 7.1.6 RAD	ENNA PORT TEST RESULTS16 dB BANDWIDTH199% BANDWIDTH10UTPUT POWER1AVERAGE POWER1POWER SPECTRAL DENSITY1CONDUCTED SPURIOUS EMISSIONS2	0 036781 5				
7. 8.	ANT 7.1.1 7.1.2 7.1.2 7.1.2 7.1.2 7.1.2 7.1.2 7.1.6 RAD	ENNA PORT TEST RESULTS16 dB BANDWIDTH199% BANDWIDTH10UTPUT POWER1AVERAGE POWER1POWER SPECTRAL DENSITY1CONDUCTED SPURIOUS EMISSIONS2IATED TEST RESULTS2	0 0 3 6 7 8 1 5 5				
7. 8. 8	ANT 7.1.1 7.1.2 7.1.2 7.1.2 7.1.2 7.1.2 7.1.6 RAD	ENNA PORT TEST RESULTS16 dB BANDWIDTH199% BANDWIDTH10UTPUT POWER1AVERAGE POWER1AVERAGE POWER1FOWER SPECTRAL DENSITY1CONDUCTED SPURIOUS EMISSIONS2IATED TEST RESULTS2LIMITS AND PROCEDURE2	0 036781 5 6				
7. 8. 8 8 8	ANT 7.1.1 7.1.2 7.1.3 7.1.4 7.1.4 7.1.6 RAD	ENNA PORT TEST RESULTS16 dB BANDWIDTH199% BANDWIDTH10UTPUT POWER1AVERAGE POWER1POWER SPECTRAL DENSITY1CONDUCTED SPURIOUS EMISSIONS2IATED TEST RESULTS2LIMITS AND PROCEDURE2TRANSMITTER ABOVE 1 GHz2	0 036781 5 5 6 1				
7. 8. 8 8 8	ANT 7.1.1 7.1.2 7.1.3 7.1.4 7.1.4 7.1.6 RAD 9.1. 9.2. 9.3. 9.4.	ENNA PORT TEST RESULTS16 dB BANDWIDTH199% BANDWIDTH13. OUTPUT POWER14. AVERAGE POWER15. POWER SPECTRAL DENSITY16. CONDUCTED SPURIOUS EMISSIONS2IATED TEST RESULTS2LIMITS AND PROCEDURE2TRANSMITTER ABOVE 1 GHz3WORST-CASE BELOW 1 GHz3	0 036781 5 5 6 1 4				
7. 8. 8 8 8 8 8 8	ANT 7.1.1 7.1.2 7.	ENNA PORT TEST RESULTS1.6 dB BANDWIDTH1.99% BANDWIDTH1.OUTPUT POWER1.AVERAGE POWER1.AVERAGE POWER1.POWER SPECTRAL DENSITY1.CONDUCTED SPURIOUS EMISSIONS2IATED TEST RESULTS2LIMITS AND PROCEDURE2TRANSMITTER ABOVE 1 GHz3WORST-CASE BELOW 1 GHz3RX SPURIOUS EMISSIONS ABOVE 1 GHz3	0 036781 5 5 6 1 4 5				

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	ANAREN, INC
	6635 KIRKVILLE ROAD
	EAST SYRACUSE, NY, 13057, U.S.A.

- **EUT DESCRIPTION:** 2.4 GHZ TRANSCEIVER
- MODEL: A8520E24A91

SERIAL NUMBER: 51048 (RADIATED) & 91048 (CONDUCTED)

DATE TESTED: DECEMBER 04, 2010

APPLICABLE STANDARDS				
STANDARD	TEST RESULTS			
CFR 47 Part 15 Subpart C	Pass			
INDUSTRY CANADA RSS-210 Issue 8 Annex 8	Pass			
INDUSTRY CANADA RSS-GEN Issue 3	Pass			

Compliance Certification Services, Inc. (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By:

Tested By:

THU CHAN ENGINEERING MANAGER UL CCS menyizh mekenni.

MENGISTU MEKURIA EMC ENGINEER UL CCS

Page 4 of 45

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a 2.4 GHz Transceiver that is manufactured by Anaren, Inc.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Range Mode Modulation Output F		Output Power	Output Power
(MHz)			(dBm)	(mW)
2406 - 2474	DSSS	QPSK	13.91	24.60

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes PCB antenna with maximum peak gains of 2dBi.

5.4. SOFTWARE AND FIRMWARE

The EUT Firmware software installed during testing was v01.03

The test utility software used during testing was A85xx Test Console, V1.0.0.77.

5.5. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as low channel with the highest output power.

Page 6 of 45

5.6. DESCRIPTION OF TEST SETUP

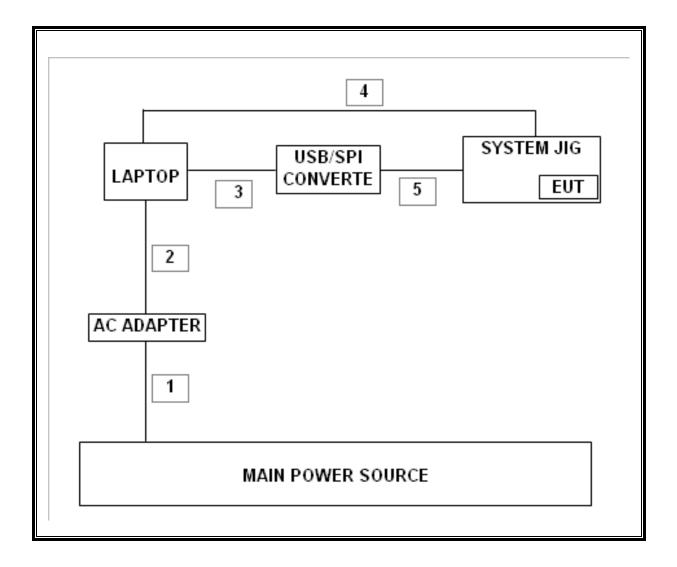
SUPPORT EQUIPMENT

CONDUCTED TEST

PERIPHERAL SUPPORT EQUIPMENT LIST					
Description Manufacturer Model Serial Number				FCC ID	
Laptop	Dell	M4500	5Z2K2M1	DoC	
AC Adapter	Dell	DA130PE1-00	CN-07U012-48661-086-00EF-A04	DoC	
USB/SPI Converter	Total Phase	I^2C/SPI	2237-391864	DoC	
System JIG	Texas Instruments	TAS57XXEVM	1018002327	DoC	

RADIATED TEST

PERIPHERAL SUPPORT EQUIPMENT LIST					
Description	Manufacturer	Model	Serial Number	FCC ID	
Laptop	IBM	T43	L3-BB983	DoC	
AC Adapter	IBM	02K6810	11S02K6810Z123B7514164	DoC	
USB/SPI Converter	Total Phase	I^2C/SPI	2237-392328	DoC	
System JIG	Texas Instruments	TAS57XXEVM	1018002406	DoC	


I/O CABLES

	I/O CABLE LIST						
Cable No.	Port	# of Identica Ports	Connector Type	Cable Type	Cable Length	Remarks	
1	AC	1	US 115V	Un-shiel ded	1.0m	N/A	
2	DC	1	DC	Un-shielded	2.0m	Ferrite at one End	
3	USB	1	USB	Un-shielde d	2.0m	N/A	
4	USB	1	USB	Un-shielded	1.5m	N/A	
5	Data	1	10 Pin	Un-shielde d	0.2m	N/A	

TEST SETUP

The EUT is connected to a host laptop computer via system test board during the tests. Test software exercised the radio card.

SETUP DIAGRAM FOR TESTS

Page 8 of 45

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

	TEST EQUIPMENT LIST					
Description	Manufacturer	Model	Asset	Cal Due		
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	07/12/11		
Antenna, Horn, 18 GHz	EMCO	3115	C00945	06/29/11		
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00885	01/06/11		
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01052	07/14/11		
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	N02481	11/10/11		
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01012	09/03/11		
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01179	08/18/11		
EMI Test Receiver, 30 MHz	R&S	ESHS 20	N02396	05/06/11		
Reject Filter, 2.4-2.5 GHz	Micro-Tronics	BRC13192	N02683	CNR		
Peak Power Meter	Boonton	4541	C01186	03/01/11		
Peak Power Sensor	Boonton	57318	C01202	02/23/11		

Page 9 of 45

7. ANTENNA PORT TEST RESULTS

7.1.1. 6 dB BANDWIDTH

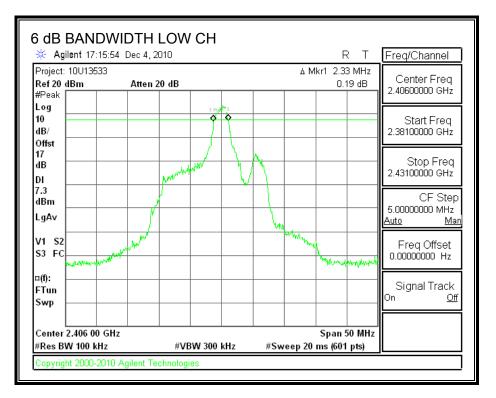
LIMITS

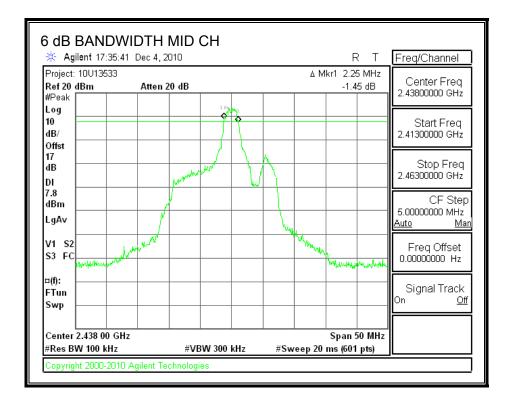
FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

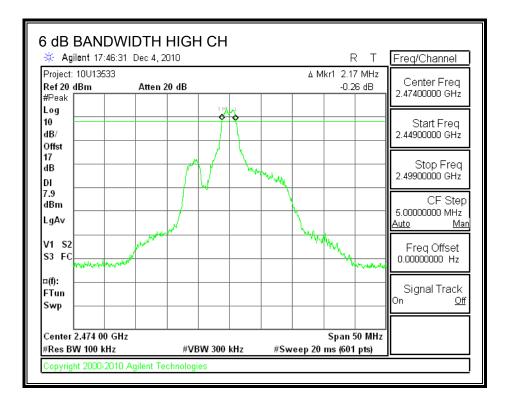
The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.


RESULTS

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(KHz)	(MHz)
Low	2406.0	2330.0	0.5
Middle	2438.0	2250.0	0.5
High	2474.0	2170.0	0.5


Page 10 of 45

6 dB BANDWIDTH

Page 11 of 45

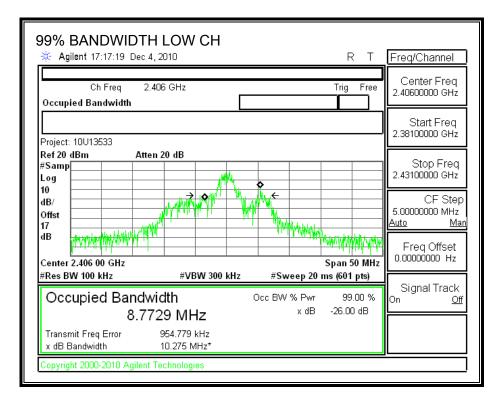
Page 12 of 45

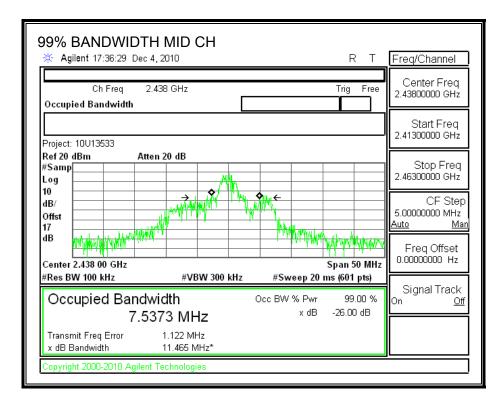
7.1.2. 99% BANDWIDTH

LIMITS

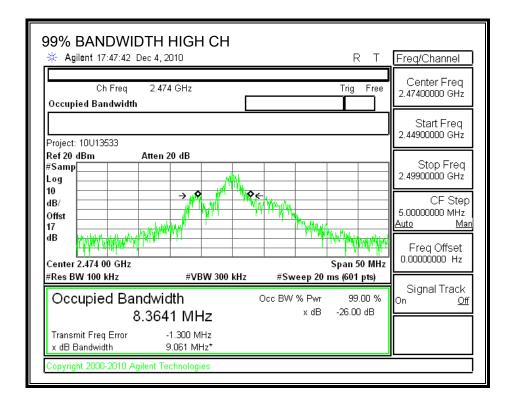
None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.


RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(KHz)
Low	2406.0	8772.9
Middle	2438.0	7537.3
High	2474.0	8364.1


Page 13 of 45

99% BANDWIDTH

Page 14 of 45

Page 15 of 45

7.1.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

Peak power is measured by the power meter.

<u>RESULTS</u>

Channel	Frequency	Output	Limit	Margin
		Power		
	(MHz)	(dBm)	(dBm)	(dB)
Low	2406.0	13.91	30	-16.09
Middle	2438.0	13.75	30	-16.26
High	2474.0	13.62	30	-16.38

Page 16 of 45

7.1.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 17dB was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2406.0	13.333
Middle	2438.0	13.184
High	2474.0	13.008

Page 17 of 45

7.1.5. POWER SPECTRAL DENSITY

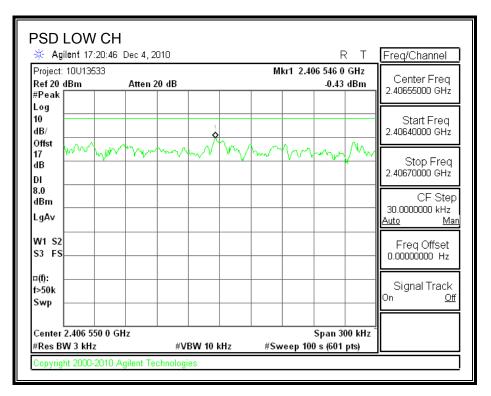
LIMITS

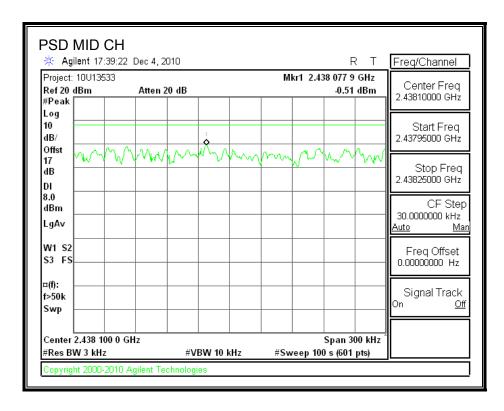
FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE


Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.


<u>RESULTS</u>

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2406.0	-0.43	8	-8.43
Middle	2438.0	-0.51	8	-8.51
High	2474.0	-1.66	8	-9.66

Page 18 of 45

POWER SPECTRAL DENSITY

Page 19 of 45

· •			Dec 4, 2	510					-	<u>}</u>	Freq/Channel
Project: Ref 20 (#Peak			Atten 2	0 dB			M	kr1 2.47	3 541 0 -1.66		Center Freq 2.47355000 GHz
HPeak Log											
10 dB/					1						Start Freq 2.47340000 GHz
Offst 17 dB	M	m	mm	m	m	who	$\sim \sim$	mond	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ww	Stop Freq 2.47370000 GHz
DI 8.0											
dBm											CF Step 30.0000000 kHz
LgAv											<u>Auto Ma</u>
W1 S2 S3 FS											Freq Offset 0.00000000 Hz
¤(f): f>50k											Signal Track
Swp											On <u>Off</u>
 Center	2.473 5	50 0 GH	z						Span 30	00 kHz	

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4701C47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 20 of 45

7.1.6. CONDUCTED SPURIOUS EMISSIONS

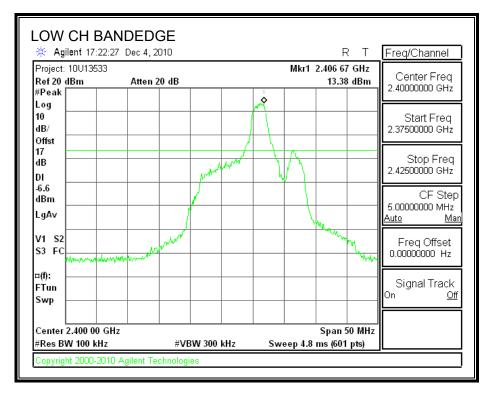
LIMITS

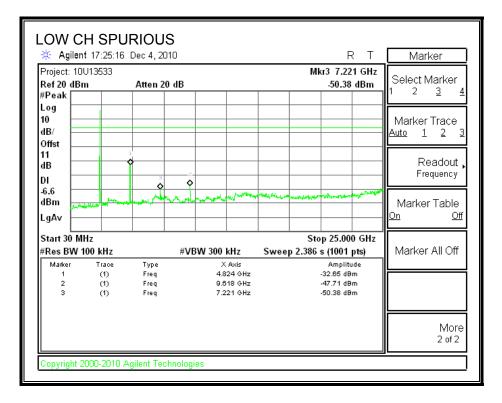
FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

TEST PROCEDURE

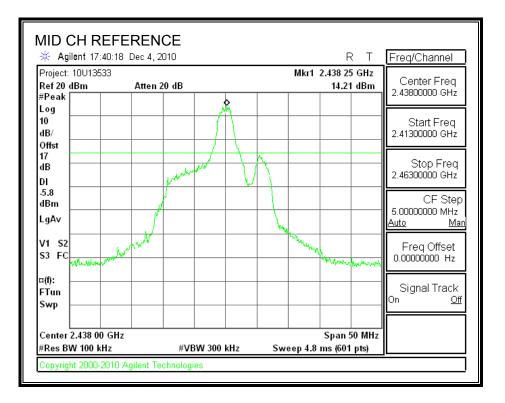

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

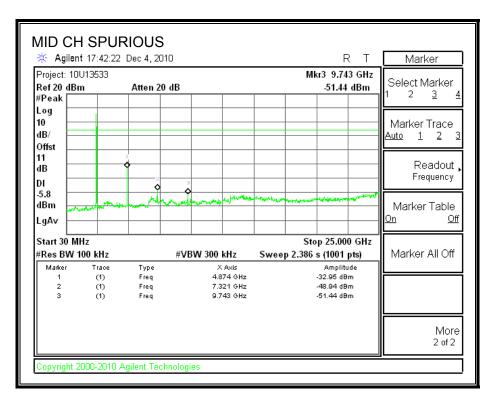

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

Page 21 of 45

RESULTS

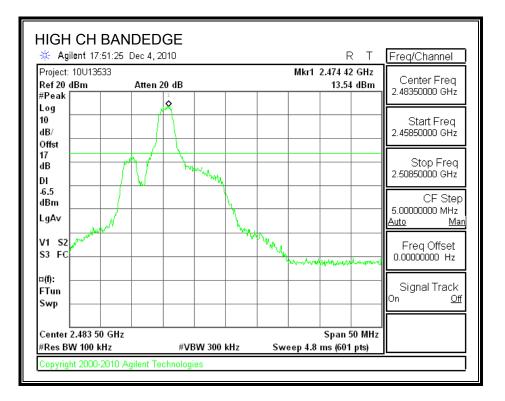
SPURIOUS EMISSIONS, LOW CHANNEL

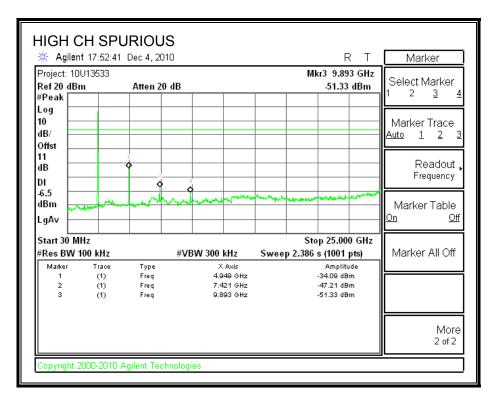




Page 22 of 45

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4701C47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.


SPURIOUS EMISSIONS, MID CHANNEL



Page 23 of 45

SPURIOUS EMISSIONS, HIGH CHANNEL

Page 24 of 45

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

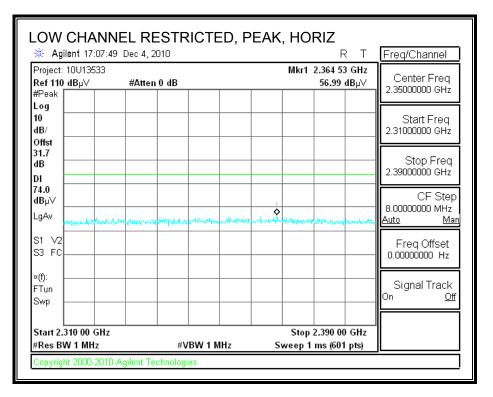
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

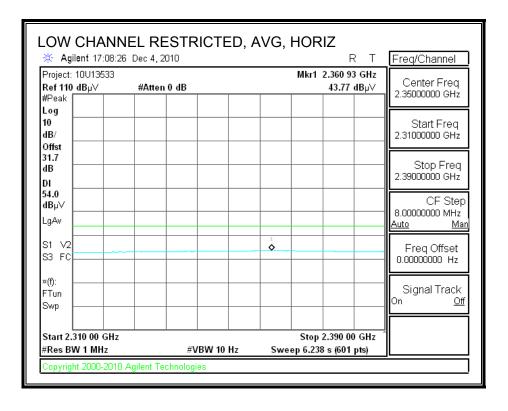
TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

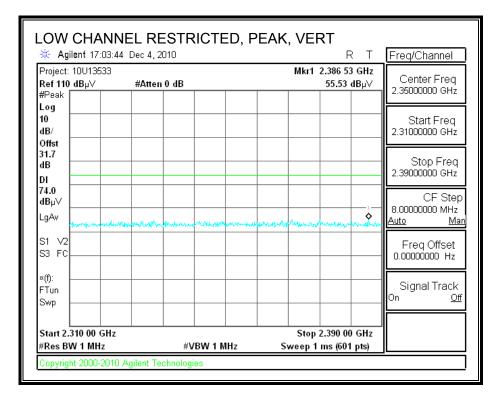
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

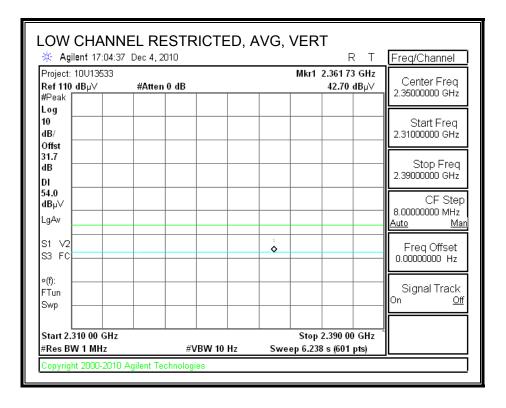

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.


The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each appplicable band.

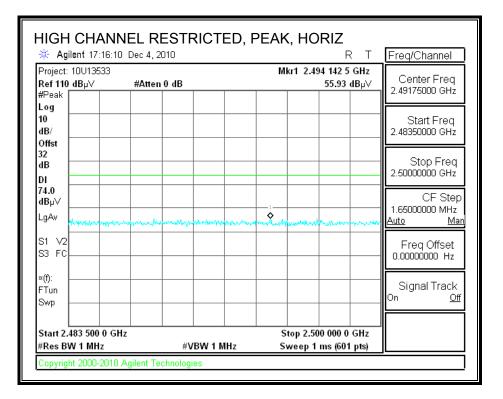
The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

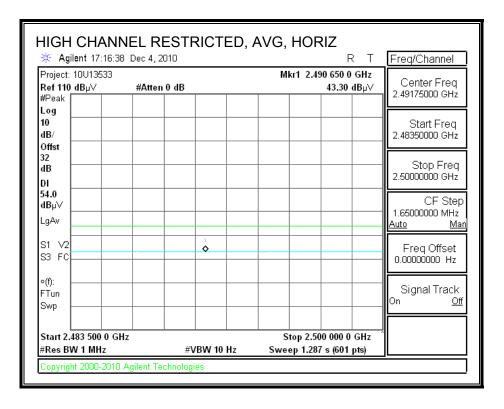
8.2. TRANSMITTER ABOVE 1 GHz


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

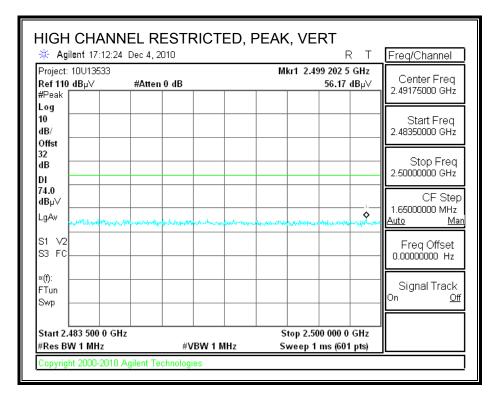


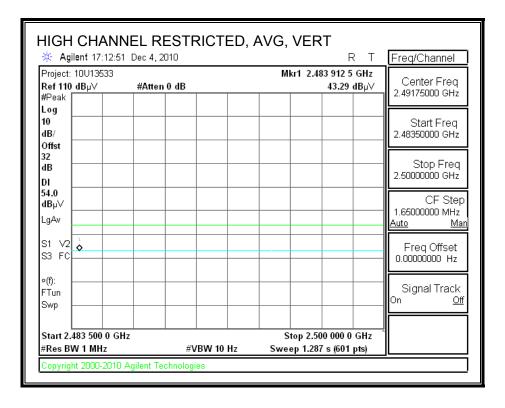
Page 26 of 45


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



Page 27 of 45

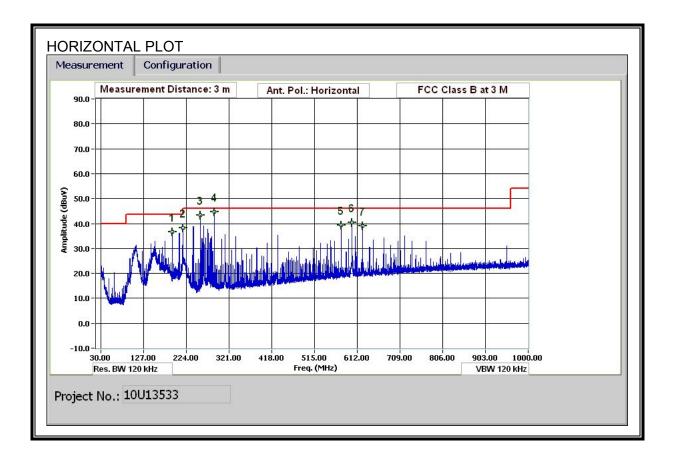

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



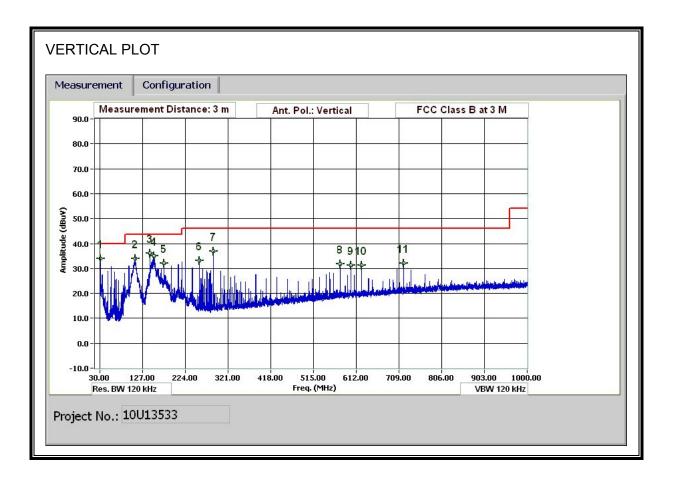
Page 28 of 45

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Page 29 of 45


HARMONICS AND SPURIOUS EMISSIONS

Test Eng	r:	William		g											
Date: Project #		12/04/10 10U1353													
Compan		Anaren													
Fest Targ		CFR 47													
Mode Op	er:	Power S	etting: (D											
	f	Measurer	nent Fre	piency	Amp	Preamp (Jain			Average	Field Stren	gth Limit			
	Dist	Distance	to Anter	una	D Corr	Distance	Corre	ct to 3 me	ters	Peak Fig	eld Strength	Limit			
	Read	Analyzer	-		Avg			trength @		-	vs. Average				
	AF	Antenna			Peak			r Field Stre	ength	Margin	vs. Peak Lii	mit			
	CL	Cable Lo:	55		HPF	High Pas:	; Filte:	r							
f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Ant.High	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	cm	Degree	
Low Ch.			00.6										1000	100.0	
4.812 4.812	3.0 3.0	46.1 43.3	33.0 33.0	5.8 5.8	-36.5 -36.5	0.0 0.0	0.0 0.0	48.5 45.6	74.0 54.0	-25.5 -8.4	V V	P A	153.8 153.8	188.3 188.3	
4.812 12.030	3.0	43.3 35.4	39.0	2.8 9.8	-30.5 -35.4	0.0	0.0	45.0	54.0 74.0	-0.4	v	P P	153.8	234.8	
12.030	3.0	23.5	39.0	9.8	-35.4	0.0	0.0	36.8	54.0	- 17.2	v	A	100.0	234.8	
4.812	3.0	41.9	33.0	5.8	-36.5	0.0	0.0	44.3	74.0	-29.7	H	Р	197.6	278.4	
4.812 12.030	3.0 3.0	36.4 35.5	33.0 39.0	5.8 9.8	-36.5 -35.4	0.0 0.0	0.0	38.8 48.8	54.0 74.0	-15.2	H H	A P	197.6 100.0	278.4 102.4	
12.030 12.030	3.0	35.5 23.6	39.0	9.8 9.8	-35.4 -35.4	0.0	0.0	46.6	74.0 54.0	-47.4	н Н	P A	100.0	102.4	
Mid Ch.				ļ							ļ				
4.876	3.0	45.5	33.1	5.8	-36.5	0.0	0.0	47.9	74.0	-26.1	V	P	100.4	54.0	
4.876 7.314	3.0 3.0	41.9 45.9	33.1 35.3	5.8 7.3	-36.5 -36.2	0.0 0.0	0.0 0.0	44.4 52.3	54.0 74.0	-9.6 -21.7	v v	A P	100.4 200.0	54.0 115.9	
7.314	3.0	34.3	35.3	7.3	-36.2	0.0	0.0	40.7	54.0	-13.3	v	Â	200.0	115.9	
12.190	3.0	37.6	39.0	9.8	-35.4	0.0	0.0	51.0	74.0	- 23.0	V	Р	166.2	288.8	
12.190	3.0	25.4	39.0	9.8	-35.4	0.0	0.0	38.8	54.0	-15.2	V.	A	166.2	288.8	
4.876 4.876	3.0 3.0	42.6 38.0	33.1 33.1	5.8 5.8	-36.5 -36.5	0.0 0.0	0.0	45.1 40.5	74.0 54.0	-29.0 -13.5	H H	P A	102.9 102.9	182.8 182.8	
7.314	3.0	49.8	35.3	7.3	-36.2	0.0	0.0	56.1	74.0	-17.9	H	P	152.4	314.3	
7.314	3.0	38.2	35.3	7.3	-36.2	0.0	0.0	44.5	54.0	- 9.5	H	A	152.4	314.3	
12.190	3.0	36.1	39.0	9.8	-35.4	0.0	0.0	49.5	74.0	-24.5	H	P	129.1	8.8	
12.190	3.0	24.0	39.0	9.8	-35.4	0.0	0.0	37.4	54.0	- 16.6	H	A	129.1	8.8	
High Ch	. 2474 M	Hz		1						1	1		1		
1.948	3.0	45.1	33.2	5.9	-36.5	0.0	0.0	47.7	74.0	- 26.3	V	Р	104.8	171.2	
4.948	3.0	41.2	33.2	5.9	-36.5	0.0	0.0	43.8	54.0	-10.2	V	A	104.8	171.2	
7.422 7.422	3.0 3.0	45.7 34.3	35.5 35.5	7.3 7.3	-36.2 -36.2	0.0 0.0	0.0	52.3 40.9	74.0 54.0	-21.7 -13.1	V V	P A	129.8 129.8	298.2 298.2	
12.370	3.0	38.4	39.0	9.9	-35.4	0.0	0.0	51.9	74.0	-22.1	v V	P	100.5	284.0	
12.370	3.0	25.6	39.0	9.9	-35.4	0.0	0.0	39.1	54.0	-14.9	V	A	100.5	284.0	
4.948	3.0	42.2	33.2	5.9	-36.5	0.0	0.0	44.8	74.0	-29.2	H	P	100.4	186.8	
4.948 7.422	3.0 3.0	37.2 50.7	33.2 35.5	5.9 7.3	-36.5 -36.2	0.0 0.0	0.0	39.8 57.3	54.0 74.0	-14.2 -16.7	H H	A P	100.4 172.1	186.8 316.2	
7.422	3.0	39.2	35.5	7.3	-36.2	0.0	0.0	45.8	54.0	-8.2	H	Ă	172.1	316.2	
12.370	3.0	35.7	39.0	9.9	-35.4	0.0	0.0	49.2	74.0	-24.8	H	Р	170.8	277.3	
12.370	3.0	23.9	39.0	9.9	-35.4	0.0	0.0	37.4	54.0	- 16.6	H	A	170.8	277.3	
Rev. 4.1.3	: 7		:									:	1		
		missions						-							


Page 30 of 45

8.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

Page 31 of 45

Page 32 of 45

VERTICAL AND HORIZONTAL DATA

	-	ency Meas ication Se			t 5m Cha	amber							
Test Engr: Date: Project #: Company: Test Targe Mode Ope	t:	William 12/04/10 10U13533 Anaren FCC CL/ TX MODI	3 ASS B										
	f	Measurem	ent Fremu	ency	Amp	Preamp (hain			Margin	Margin vs.	Limit	
	Dist	Distance t			-	-		to 3 meters		-u-u-Bm			
	Read	Analyzer l		~	Filter	Filter Ins							
	AF	Antenna F			Corr.	Calculate							
	CL	Cable Loss			Limit	Field Stre		-					
f	Dist	Read	AF	CL	Amp	D Corr	Pad	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
MHz	(m)	dBuV	dB/m	dB	பி	dB	dB	dBuV/m		dB	V/H	P/A/QP	110163
32.04	3.0	42.5	19.2	0.5	28.4	0.0	0.0	33.9	40.0	-6.1	v	P	
110.043	3.0	49.6	11.8	1.0	28.3	0.0	0.0	34.0	43.5	-9.5	v	P	
144.005	3.0	50.3	13.0	1.1	28.3	0.0	0.0	36.2	43.5	-7.3	v	P	
152.285	3.0	49.8	12.4	1.1	28.3	0.0	0.0	35.0	43.5	-8.5	V	P	
176.046	3.0	48.7	10.6	1.2	28.2	0.0	0.0	32.2	43.5	-11.3	V	Р	
255.969	3.0	48.1	12.0	1.4	28.2	0.0	0.0	33.3	46.0	-12.7	V	Р	
288.011	3.0	50.6	13.0	1.5	28.1	0.0	0.0	37.0	46.0	- 9.0	V	P	
576.023	3.0	39.3	18.0	2.2	27.6	0.0	0.0	31.9	46.0	-14.1	V	Р	
600.024	3.0	38.1	18.4	2.2	27.5	0.0	0.0	31.2	46.0	-14.8	V	Р	
624.024	3.0	37.8	18.7	2.3	27.4	0.0	0.0	31.4	46.0	-14.6	V	Р	
720.028	3.0	36.9	19.9	2.5	27.2	0.0	0.0	32.0	46.0	-14.0	V	Р	
192.007	3.0	52.2	11.5	1.2	28.2	0.0	0.0	36.7	43.5	-6.8	H	Р	
216.008	3.0	53.4	11.9	1.3	28.2	0.0	0.0	38.4	46.0	-7.6	H	P	
255.969	3.0	58.2	12.0	1.4	28.2	0.0	0.0	43.3	46.0	-2.7	H	P	
	3.0	58.4	13.0	1.5	28.1	0.0	0.0	44.7	46.0	-1.3	H	P	
576.023	3.0	46.8	18.0	2.2	27.6	0.0	0.0	39.4	46.0	-6.6	H	P	
600.024	3.0	47.3	18.4	2.2	27.5	0.0	0.0	40.5	46.0	-5.5	H	P	
624.024	3.0	45.4	18.7	2.3	27.4	0.0	0.0	38.9	46.0	-7.1	H	Р	
Rev. 1.27.0 Note: No c	-	issions we	re detect	ed abo	ve the sy	/stem noi:	se floor	•					

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 33 of 45

8.4. RX SPURIOUS EMISSIONS ABOVE 1 GHz

Configur VIode:			12/4/2010 William Zhuan EUT AND SUI RX MODE		QUIPM	ENT									
н	<u>uipmen</u> orn 1- 5/N: 6717	18GHz		mplifer Aiteq 30			Pre-am	plifer	26-40GH	z	Ho	vrn > 18G	Hz	•	Limit RX RSS 210 +
3' 0	uency Cal cable 2 able 228	2807700		able 22		00	20' cal 20' cab		2807500 07500 <mark>-</mark>		HPF	Re	ject Filte	RB'	<u>Measurements</u> W=VBW=1MHz ge Measurements 1MHz ; VBW=10Hz
f GHz	Dist (m)	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	Fltr dB	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes (V/H)
.092 .400	3.0 3.0	53.4 51.2	35.A 35.D	24.2 25.2	2.5 2.8	-39,4 -38,9	0.0 0.0	0.0 0.0	40.7	22.6 24.1	74 74	54 54	-33.3 -33.7	-31.4 -29.9	H
500	3.0	48.0	33.5	25.9	3.0	-38.6	0.0	0.0	38.2	23.7	74	54	- 35.8	-30.3	Н
092 400	3.0 3.0	61.7 57.8	37.9 38.3	24.2 25.2	2.5 2.8	-39.4 -38.9	0.0 0.0	0.0 0.0	49.0 46.9	25.2 27.4	74 74	54 54	-25.0 -27.1	-28.8 -26.6	v
600	3.0	58.3	39.2	25.9	3.0	-38.6	0.0	0.0	48.6	29.5	74	54	-25.4	-24.5	v
ev. 07.22	f Dist	Measurem Distance to Analyzer R Antenna Fa Cable Loss	eading actor	7		Amp D Corr Avg Peak HPF	Average	Correc Field S ed Peal	ct to 3 mete Strength @ k Field Stre	3 m		Pk Lim Avg Mar	Peak Fiel Margin vs	Field Strengtl d Strength Li . Average Li . Peak Limit	mit mit

Page 34 of 45

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted I	Limit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 "
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

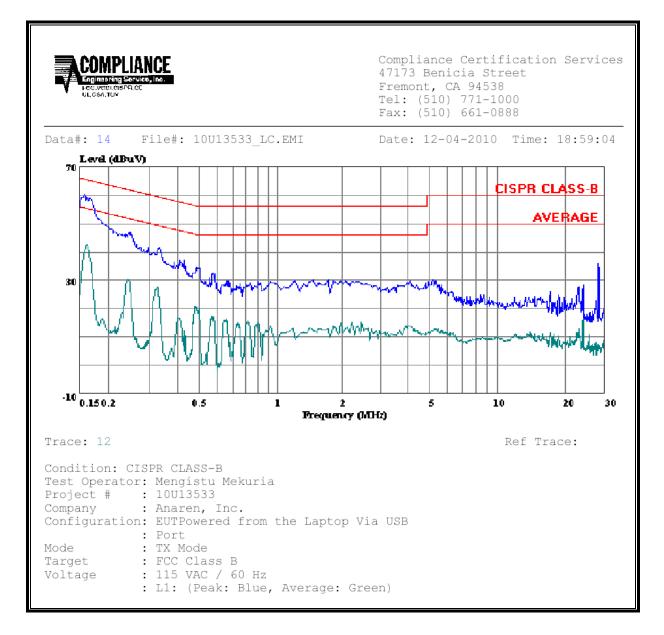
TEST PROCEDURE

ANSI C63.4

RESULTS

Page 35 of 45

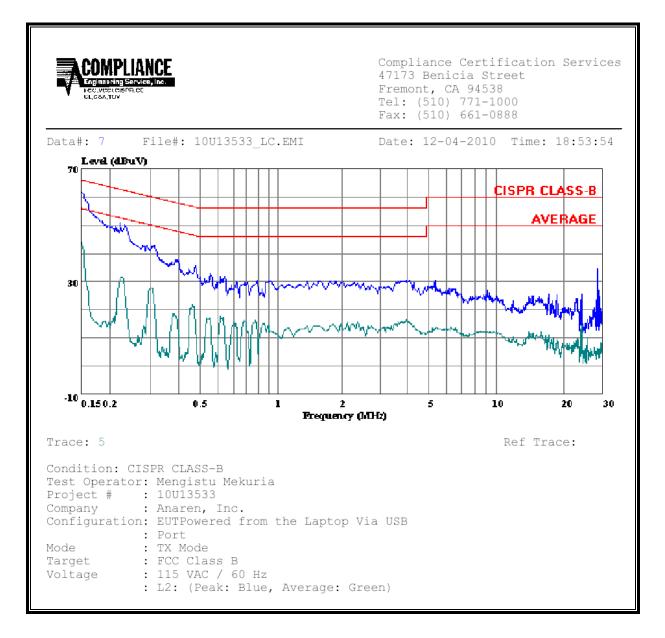
Т


6 WORST EMISSIONS (WORST CASE)

		CONDUC	TED EMISS	IONS D.	ATA (115	VAC 60H	z)		
Freq.		Reading Closs Limit	Limit	EN_B	Marg	Remark			
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2
0.15	61.67		44.09	0.00	66.00	56.00	-4.33	-11.91	L1
0.23	50.15		31.59	0.00	62.38	52.38	-12.23	-20.79	L1
0.31	43.08		27.32	0.00	59.89	49.89	-16.81	-22.57	L1
0.16	60.31		42.52	0.00	65.62	55.62	-5.31	-13.10	L2
0.25	47.30		30.49	0.00	61.79	51.79	-14.49	-21.30	L2
0.33	41.57		27.71	0.00	59.35	49.35	-17.78	-21.64	L2
6 Worst I	Data								

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4701C47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 36 of 45


LINE 1 RESULTS

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 37 of 45

LINE 2 RESULTS

Page 38 of 45

10. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)						
(A) Lim	its for Occupational	l/Controlled Exposu	res							
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/F 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6						
(B) Limits for General Population/Uncontrolled Exposure										
0.3–1.34 1.34–30	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30						

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

	(V/m)	(A/m)	(mW/cm ²)	(minutes)
30–300 300–1500 1500–100.000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

* = Plane-wave equivalent power density NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-tions where a transient through a location where occu-

pational/controlled limits apply provided he or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be ex-posed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

Page 39 of 45

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5

Exposure Limits for Persons Not Classed As RF and Microwave Ex-
posed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 4 Magnetic Field Power Strength; rms Density (A/m) (W/m ²)		5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/f		6
30–300	28	0.073	2*	6
300–1 500	1.585 <i>f</i> ^{0.5}	0.0042f ^{0.5} f/150		6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163 10		616 000 /f ^{1.2}
150 000–300 000	0.158f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

* Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

- 2. A power density of 10 W/m² is equivalent to 1 mW/cm^2 .
- A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

Page 40 of 45

EQUATIONS

Power density is given by:

S = EIRP / (4 * Pi * D^2)

where

S = Power density in W/m² EIRP = Equivalent Isotropic Radiated Power in W D = Separation distance in m

Power density in units of W/m² is converted to units of mWc/m² by dividing by 10.

Distance is given by:

D = SQRT (EIRP / (4 * Pi * S))

where

D = Separation distance in m EIRP = Equivalent Isotropic Radiated Power in W S = Power density in W/m²

For multiple colocated transmitters operating simultaneously in frequency bands where the limit is identical, the total power density is calculated using the total EIRP obtained by summing the Power * Gain product (in linear units) of each transmitter.

Total EIRP = (P1 * G1) + (P2 * G2) + ... + (Pn * Pn)

where

Px = Power of transmitter xGx = Numeric gain of antenna x

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

<u>LIMITS</u>

From FCC §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm²

From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m²

RESULTS

Band	Mode	Separation	Output	Antenna	IC Power	FCC Power
		Distance	Power	Gain	Density	Density
		(m)	(dBm)	(dBi)	(W/m^2)	(mW/cm^2)
2.4 GHz	QPSK	0.20	13.91	2.00	0.08	0.008

Page 42 of 45