Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$
S=\frac{P G}{4 \pi R^{2}}
$$

where: $\mathrm{S}=$ power density
$\mathrm{P}=$ power input to the antenna
$\mathrm{G}=$ power gain of the antenna in the direction of interest relative to isotropic
$\mathrm{R}=$ distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal:	29.02	(dBm)
Maximum peak output power at antenna input terminal:	798.0	(mW)
Antenna gain(typical):	0	(dBi)
Maximum antenna gain:	1.000	(numeric)
Prediction distance:	20	(cm)
Sourse Based Time Average Duty Cycle:	100	(\%)
Prediction frequency:	1880	(MHz)
MPE limit for uncontrolled exposure at prediction frequency:	1.000	$\left(\mathrm{mW} / \mathrm{cm}^{\wedge} 2\right)$
Power density at prediction frequency:	0.15876	$\left(\mathrm{mW} / \mathrm{cm}^{\wedge} 2\right)$
Power density at prediction frequency:	1.5876	(W/m^2)
Margin of Compliance:	7.99	(dB)

