

S24517PT

w/36" pig-tail cable

Dual Band MIMO

Point to Point

2.4-2.5 / 5.15-5.9 GHz

VSWR

Port to Port Isolation

www.lairdtech.com

Radiation Patterns Port 1 (V-Pol)

Radiation Patterns (2.4 GHz)

 $\frac{\text{H-Plane}}{\text{Gain} = 6.28 \text{ dBi}}$ Beam Width = 91.38 deg

<u>E-Plane</u> Peak Gain Angle = 9 deg Beam Width = 71.01 deg

www.lairdtech.com

Laird TECHNOLOGIES*

Radiation Patterns (2.45 GHz)

 $\frac{\text{H-Plane}}{\text{Gain} = 6.65 \text{ dBi}}$ Beam Width = 90.80 deg

<u>E-Plane</u> Peak Gain Angle = 8 deg Beam Width = 68.87 deg

www.lairdtech.com

Laird TECHNOLOGIES®

Radiation Patterns (2.5 GHz)

 $\frac{\text{H-Plane}}{\text{Gain} = 6.55 \text{ dBi}}$ Beam Width = 90.88 deg

 $\frac{\text{E-Plane}}{\text{Peak Gain Angle}} = 4 \text{ deg}$ Beam Width = 68.93 deg

www.lairdtech.com

Laird TECHNOLOGIES*

Radiation Patterns (5.15 GHz)

 $\frac{\text{H-Plane}}{\text{Gain} = 8.66 \text{ dBi}}$ Beam Width = 49.23 deg

<u>E-Plane</u> Peak Gain Angle = 2 deg Beam Width = 48.30 deg

www.lairdtech.com

Laird TECHNOLOGIES*

Radiation Patterns (5.47 GHz)

 $\frac{\text{H-Plane}}{\text{Gain} = 8.76 \text{ dBi}}$ Beam Width = 52.70 deg

<u>E-Plane</u> Peak Gain Angle = 2 deg Beam Width = 57.48 deg

www.lairdtech.com

Laird TECHNOLOGIES*

Radiation Patterns (5.9 GHz)

 $\frac{\text{H-Plane}}{\text{Gain} = 8.84 \text{ dBi}}$ Beam Width = 52.63 deg

<u>E-Plane</u> Peak Gain Angle = 12 deg Beam Width = 52.44 deg

www.lairdtech.com

Laird TECHNOLOGIES®

Radiation Patterns Port 2 (H-Pol)

Radiation Patterns (2.4 GHz)

 $\frac{\text{H-Plane}}{\text{Gain} = 6.58 \text{ dBi}}$ Beam Width = 80.57 deg

<u>E-Plane</u> Peak Gain Angle = 12 deg Beam Width = 64.60 deg

www.lairdtech.com

Laird TECHNOLOGIES®

Radiation Patterns (2.45 GHz)

 $\frac{\text{H-Plane}}{\text{Gain} = 6.67 \text{ dBi}}$ Beam Width = 79.70 deg

<u>E-Plane</u> Peak Gain Angle = 354 deg Beam Width = 63.39 deg

www.lairdtech.com

Laird TECHNOLOGIES*

Radiation Patterns (2.5 GHz)

 $\frac{\text{H-Plane}}{\text{Gain} = 6.75 \text{ dBi}}$ Beam Width = 76.76 deg

<u>E-Plane</u> Peak Gain Angle = 357 deg Beam Width = 63.32 deg

www.lairdtech.com

Laird TECHNOLOGIES*

Radiation Patterns (5.15 GHz)

 $\frac{\text{H-Plane}}{\text{Gain} = 7.68 \text{ dBi}}$ Beam Width = 51.21 deg

<u>E-Plane</u> Peak Gain Angle = 359 deg Beam Width = 55.28 deg

www.lairdtech.com

Laird TECHNOLOGIES*

Radiation Patterns (5.47 GHz)

 $\frac{\text{H-Plane}}{\text{Gain} = 7.54 \text{ dBi}}$ Beam Width = 54.16 deg

<u>E-Plane</u> Peak Gain Angle = 2 deg Beam Width = 57.71 deg

www.lairdtech.com

Laird TECHNOLOGIES*

Radiation Patterns (5.9 GHz)

 $\frac{\text{H-Plane}}{\text{Gain} = 7.65 \text{ dBi}}$ Beam Width = 53.07 deg

<u>E-Plane</u> Peak Gain Angle = 353 deg Beam Width = 52.38 deg

www.lairdtech.com

Laird TECHNOLOGIES*

Radiation Patterns Port 3 (V-Pol)

Radiation Patterns (2.4 GHz)

 $\frac{\text{H-Plane}}{\text{Gain} = 7.03 \text{ dBi}}$ Beam Width = 77.16 deg

<u>E-Plane</u> Peak Gain Angle = 10 deg Beam Width = 63.33 deg

www.lairdtech.com

Laird TECHNOLOGIES*

Radiation Patterns (2.45 GHz)

 $\frac{\text{H-Plane}}{\text{Gain} = 6.99 \text{ dBi}}$ Beam Width = 79.25 deg

<u>E-Plane</u> Peak Gain Angle = 355 deg Beam Width = 62.45 deg

www.lairdtech.com

Laird TECHNOLOGIES*

Radiation Patterns (2.5 GHz)

 $\frac{\text{H-Plane}}{\text{Gain} = 7.13 \text{ dBi}}$ Beam Width = 76.76 deg

<u>E-Plane</u> Peak Gain Angle = 357 deg Beam Width = 63.97 deg

www.lairdtech.com

Laird TECHNOLOGIES*

Radiation Patterns (5.15 GHz)

 $\frac{\text{H-Plane}}{\text{Gain} = 8.66 \text{ dBi}}$ Beam Width = 49.23 deg

<u>E-Plane</u> Peak Gain Angle = 0 deg Beam Width = 53.67 deg

www.lairdtech.com

Laird TECHNOLOGIES*

Radiation Patterns (5.47 GHz)

 $\frac{\text{H-Plane}}{\text{Gain} = 8.76 \text{ dBi}}$ Beam Width = 52.70 deg

<u>E-Plane</u> Peak Gain Angle = 3 deg Beam Width = 57.66 deg

www.lairdtech.com

Laird TECHNOLOGIES*

Radiation Patterns (5.9 GHz)

 $\frac{\text{H-Plane}}{\text{Gain} = 8.76 \text{ dBi}}$ Beam Width = 52.70 deg

<u>E-Plane</u> Peak Gain Angle = 353 deg Beam Width = 52.48 deg

www.lairdtech.com

Laird TECHNOLOGIES*

Data Summary

Standard	Standard Measured		d
Peak Gain	P1 (V-Pol)	P2 (H-Pol)	P3 (V-Pol)
2.4 - 2.5 GHz (dBi)	6.65	6.75	7.13
5.15 - 5.9 GHz (dBi)	8.84	7.68	8.76
H- Plane 3 dB Beam Width			
2.4 - 2.5 GHz (deg)	91.02	79.01	77.72
5.15 - 5.9 GHz (deg)	51.52	52.81	51.54
E-Plane 3 dB Beam Width			
2.4 – 2.5 GHz (deg)	69.60	63.77	63.24
5.15 – 5.9 GHz (deg)	52.74	55.12	54.60
VSWR (Max)			
2.4-2.5 GHz 2:1	1.50	1.43	1.35
5.15-5.9 GHz 2:1	1.68	1.60	1.58
Port to Port Isolation (Max)			
2.4-2.5 GHz	-33.13	-38.80	-40.25
5.15-5.9 GHz	-48.80	-54.50	-58.68

Test Equipment Summary (VSWR)

Analyzer

- •Agilent E5071B network analyzer
- •Maximum frequency range: 300 kHz 8.5 GHz
- Calibration certified annually (system)
- Calibrated per OSL standard (test)

Testing Chamber

- •36"H x 36"W x 34"D
- •Absorber material: Pyramid 2"W x 2"L x 5"H / division

www.lairdtech.com

Test Equipment Summary (Radiation Patterns)

Testing Chamber:

- Test chamber is a single axis, single source system comprising a network analyzer, positioner / controller and tapered anechoic chamber. The system is calibrated prior to each test. All components are calibrated annually as required.
- Dimensions:
 - 8.8 meters from face of source to DUT center of rotation
 - 72" center of height above floor