

EMC Test Report Application for Grant of Equipment Authorization Class II Permissive Change/Reassessment Industry Canada RSS-Gen Issue 3 / RSS 210 Issue 8 FCC Part 15, Subpart E

Model: WLAN AP8120

IC CERTIFICATION #: 3794G-AP8120

FCC ID: X7CAP8120

APPLICANT: Avaya

4655 Great America Parkway

Santa Clara, CA 95054

TEST SITE(S): Elliott Laboratories

41039 Boyce Road.

Fremont, CA. 94538-2435

IC SITE REGISTRATION #: 2845B-3; 2845B-4, 2845B-5, 2845B-7

REPORT DATE: August 5, 2011

FINAL TEST DATES: February 4, 8, 9, 14, and May 31, and June 6,

and July 14, 18, 20, 21, 2011

TOTAL NUMBER OF PAGES: 65

PROGRAM MGR /

TECHNICAL REVIEWER:

Mark E Hill (Staff Engineer QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

Testing Cert #2016.01

Elliott Laboratories is accredited by the A2LA, certificate number 2016.01, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

REVISION HISTORY

Rev#	Date	Comments	Modified
			By
-	03-22-2011	First release	
1	06-21-2011	Updated with revised data from additional testing	MEH
2	08-05-2011	Updated with revised data due to revision in the	MEH
		Laird antenna gain values. Removal of the CDD	
		mode, addition of the STBC mode for the external	
		antenna option. New data for internal antenna	
		version of the product operating in STBC mode	
		(20MHz only)	

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	4
STATEMENT OF COMPLIANCE	6
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
UNII / LELAN DEVICES	7
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERALOTHER EUT DETAILS	
ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTSEUT OPERATION	
TEST SITEGENERAL INFORMATION	
RADIATED EMISSIONS CONSIDERATIONS	13
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	14
INSTRUMENT CONTROL COMPUTER	14
FILTERS/ATTENUATORS	
ANTENNASANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
RADIATED EMISSIONS	16
CONDUCTED EMISSIONS FROM ANTENNA PORT	
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONSGENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
FCC 15.407 (A) OUTPUT POWER LIMITS	21
OUTPUT POWER LIMITS -LELAN DEVICES	21
SPURIOUS EMISSIONS LIMITS –UNII AND LELAN DEVICES	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONSSAMPLE CALCULATIONS - RADIATED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONSSAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	
END OF REPORT	
1/	

SCOPE

An electromagnetic emissions test has been performed on the Avaya model WLAN AP8120, pursuant to the following rules:

Industry Canada RSS-Gen Issue 3

RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment"

FCC Part 15, Subpart E requirements for UNII Devices (using FCC DA 02-2138, August 30, 2002)

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 FCC UNII test procedure 2002-08 DA-02-2138, August 2002

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Avaya model WLAN AP8120 complied with the requirements of the following regulations:

RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15, Subpart E requirements for UNII Devices

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Avaya model WLAN AP8120 and therefore apply only to the tested sample. The sample was selected and prepared by Vipin Naik of Avaya.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

UNII / LELAN DEVICES

Operation in the 5.15 – 5.25 GHz Band (external antenna option)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.407(e)		Indoor operation only	Refer to user's manual	N/A	Complies
15.407(a) (2)		26dB Bandwidth	Change would not affect previous results		
15.407 (a) (1)	A9.2(1)	Output Power	802.11a 13.4 dBm (0.015 W) EIRP = 0.161 W 802.11n 20MHz (STBC) 13.4 dBm 22.1 mW EIRP = 0.162 W 802.11n n40MHz (STBC) 13.3 dBm 21.5 mW EIRP = 0.162 W	17dBm	Complies
15.407 (a) (1)	-		802.11a 1.2 dBm/MHz	4 dBm/MHz	Complies
-	A9.5 (2)	Power Spectral Density	802.11n 20MHz (STBC) 1.1 dBm/MHz 802.11n n40MHz (STBC) -2.3dBm/MHz	5 dBm/MHz	Complies

Note 1: EIRP calculated using antenna gain of 8.7 dBi for the highest EIRP system multi-point system.

Operation in the 5.15 – 5.25 GHz Band (internal antenna option)

Operation in the 5.15 – 5.25 GHz Band (internal antenna option)								
FC0 Rule l	_	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result		
15.40′	` /		26dB Bandwidth	Change would	not affect previous resu	lts		
15.407		A9.2(1)	Output Power	802.11n 20MHz (STBC) 13.4 dBm 22.0 mW EIRP = 0.085 W	17dBm	Complies		
15.407	7 (a))	-	Power Spectral	802.11n 20MHz (STBC)	4 dBm/MHz	Complies		
-		A9.5 (2)	Density	1.0 dBm/MHz	5 dBm/MHz	Complies		

Note 1: EIRP calculated using antenna gain of 5.91 dBi for the highest EIRP system multi-point system.

Requirements for all U-NII/LELAN bands

Requirements for an U-NH/LELAN bands						
FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result	
15.407	A9.5a	Modulation	Change would not affect previous results		lts	
15.407(b) (5) / 15.209	A9.3	Spurious Emissions below 1GHz	No emissions detected	Defer to mage 22	Complies	
15.407(b) (5) / 15.209	A9.3	Spurious Emissions above 1GHz	53.8dBµV/m @ 5150.0MHz (-0.2dB)	Refer to page 22	Complies	
15.407(a)(6)	-	Peak Excursion Ratio	Change would not affect previous results			
	A9.5 (3)	Channel Selection	Spurious emissions tested at outermost channels in each band	Device was tested on the top, bottom	N/A	
15		Channel Selection	Measurements on three channels in each band	and center channels in each band	Complies	
15.407 (c)	A9.5(4)	Operation in the absence of information to transmit	Change would not affect previous results			
15.407 (g)	A9.5 (5)	Frequency Stability	Change would not affect previous results			
	A9.9g	User Manual information	Change would	not affect previous resu	lts	

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	System uses reverse SMA connectors	Unique or integral antenna required	Complies
15.207	RSS GEN Table 2	AC Conducted Emissions	Change would	not affect previous resu	ılts
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	32.7dBμV/m @ 1062.5MHz (-21.3dB)	Refer to page 20	Complies
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in RF Exposure Exhibit, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual	Refer to User's Manual	Statement required regarding non-interference	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual	Refer to User's Manual	Statement for products with detachable antenna	Complies
-	RSP 100 RSS GEN 4.4.1	99% Bandwidth	Change would	not affect previous resu	lts

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	± 0.52 dB
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	± 0.7 dB
Conducted emission of transmitter	dBm	25 to 26500 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 26500 MHz	$\pm 0.7 \text{ dB}$
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field strength)	dBμV/m	25 to 1000 MHz 1000 to 40000 MHz	± 3.6 dB ± 6.0 dB
Conducted Emissions (AC Power)	dΒμV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Avaya model WLAN AP8120 is a 802.11abgn wireless router/access point that is designed to wireless connectivity for enterprise network systems. The EUT can be tabletop or wall mounted in normal operation. During testing, the EUT was treated as tabletop, and rotated thru different orientation to simulate wall mounting, as noted. The EUT is powered via a POE connection.

The sample was received on February 4, 2011 and tested on February 4, 8, 9, 14, and May 31, and June 6, and July 14, 18, 20, 21, 2011. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Avaya	WLAN AP8120	802.11abgn AP	Prototype	X7CAP8120

OTHER EUT DETAILS

The following EUT details should be noted: The EUT contains 2 abgn radio modules. One module is used for 2.4GHz operation and one module is used for 5GHz operation. Simultaneous transmission is possible, but never in the same band at the same time. The device supports 2x3 MIMO operation.

The WLAN AP8120 is a modified version of the WLAN AP 8120, approved under the same FCC ID. The internal antenna was removed and 6 reverse SMA connectors were mounted on the enclosure to allow for connection of external antennas.

ANTENNA SYSTEM

There are two external antennas to be included in this permissive change.

1) Laird, S24517PT, 3x3 Dual-Band Panel Antenna:

Peak Gain (dBi)	P1 (V-Pol)	P2 (H-Pol)	P3 (V-Pol)
2.4 - 2.5 GHz	6.65	6.75	7.13
5.15 - 5.35 GHz	8.66	7.68	8.66
5.5 GHz	8.76	7.54	8.76
5.9 GHz	8.84	7.65	8.76

2) Tyco, 1513461-1, 6 Element Mimo Antenna, 5.41dBi @ 2..4GHz, 5.91dBi @ 5.15GHz, 4.53dBi @ 5.35GHz, 5.55dBi @ 5.5GHz, 5.09dBi @ 5.725GHz.

The Tyco antenna is the same antenna that was originally mounted in the WLAN AP 8120. It has been repacked as an external antenna. DFS testing was performed using the Tyco antenna.

ENCLOSURE

The EUT outer enclosure is primarily constructed of metal. It measures approximately 23.5 cm wide by 15 cm deep by 5.5 cm high.

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Dell	Inspiron 1501	Laptop	-	-
-	-	USB to Serial	-	-
		Adapter		

The following equipment was used as remote support equipment for emissions testing:

Company	Model	Description	Serial Number	FCC ID
PowerDsine	PowerDsine	POE Injector	D094565000005	-
	9001G	-	8BA00	

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected		Cable(s)	
Port	То	Description	Shielded or Unshielded	Length(m)
POE	POE Injector	CAT-5	Unshielded	5
Serial Port	USB-to-Serial Adatpter to Laptop	CAT-5 to Serial	Unshielded	6

EUT OPERATION

During testing, the EUT was configured to transmit continuously on the noted channel. Data rate was set to 1Mbs for 802.11b mode and 6Mbs for 802.11g. For MIMO mode testing, please refer to the actual data for the MCS setting.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registratio	Location		
Site	FCC Canada		Location	
Chamber 3	769238	2845B-3		
Chamber 4	211948	2845B-4	41039 Boyce Road	
Chamber 5	211948	2845B-5	Fremont,	
Chamber 7	A2LA	2845B-7	CA 94538-2435	
Chamber /	accreditation	2043D-7		

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Ouasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

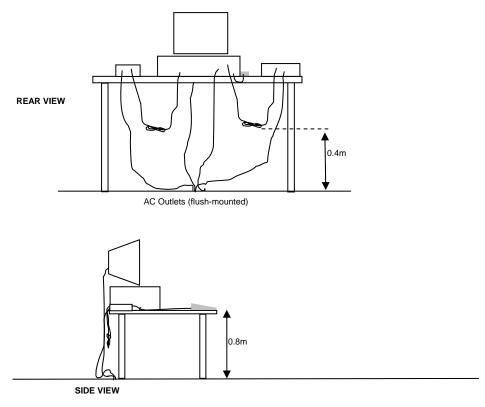
INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

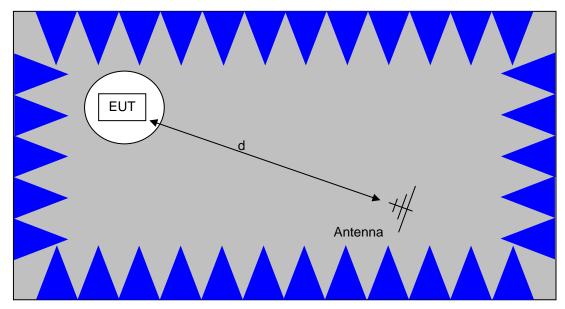
TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

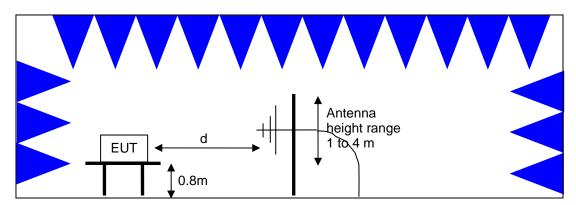

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

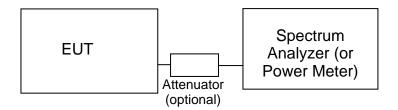
Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and Elliott's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density	
5150 - 5250	50mW (17 dBm)	4 dBm/MHz	
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz	
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz	

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

The peak excursion envelope is limited to 13dB.

OUTPUT POWER LIMITS -LELAN DEVICES

The table below shows the limits for output power and output power density defined by RSS 210. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency	Output Power	Power Spectral
(MHz)		Density
5150 - 5250	200mW (23 dBm) eirp	10 dBm/MHz eirp
5250 - 5350	250 mW (24 dBm) ² 1W (30dBm) eirp	11 dBm/MHz
5470 – 5725	250 mW (24 dBm) ³ 1W (30dBm) eirp	11 dBm/MHz
5725 – 5825	1 Watts (30 dBm) 4W eirp	17 dBm/MHz

In addition, the power spectral density limit shall be reduced by 1dB for every dB the highest power spectral density exceeds the "average" power spectral density) by more than 3dB. The "average" power spectral density is determined by dividing the output power by $10\log(EBW)$ where EBW is the 99% power bandwidth.

Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

² If EIRP exceeds 500mW the device must employ TPC

³ If EIRP exceeds 500mW the device must employ TPC

SPURIOUS EMISSIONS LIMITS -UNII and LELAN DEVICES

The spurious emissions limits for signals below 1GHz are the FCC/RSS-GEN general limits. For emissions above 1GHz, signals in restricted bands are subject to the FCC/RSS GEN general limits. All other signals have a limit of –27dBm/MHz, which is a field strength of 68.3dBuV/m/MHz at a distance of 3m. This is an average limit so the peak value of the emission may not exceed –7dBm/MHz (88.3dBuV/m/MHz at a distance of 3m). For devices operating in the 5725-5850Mhz bands under the LELAN/UNII rules, the limit within 10Mhz of the allocated band is increased to –17dBm/MHz.

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 R_r = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_{c} = Corrected Reading in dBuV/m L_{s} = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

$$E = \frac{1000000 \sqrt{30 P}}{d}$$
 microvolts per meter

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Test Report Reissue Date: August 5, 2011

Appendix A Test Equipment Calibration Data

Radiated Emissions.	1000 - 18,000 MHz, 09-Feb-11			
Manufacturer Hewlett Packard	<u>Description</u> Microwave Preamplifier, 1- 26.5GHz	<u>Model</u> 8449B	Asset # 263	<u>Cal Due</u> 12/8/2011
EMCO	Antenna, Horn, 1-18GHz	3115	868	6/8/2012
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	4/14/2011
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	11/2/2011
Radiated Emissions,	1000-18,000 MHz, 09-Feb-11			
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	263	12/8/2011
EMCO	Antenna, Horn, 1-18 GHz	3115	786	12/11/2011
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT	8564E (84125C)	1393	4/14/2011
	(SA40) Blue			
Radiated Emissions,	1000 - 18,000 MHz, 9-Feb-11			
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
Hewlett Packard	High Pass filter, 8.2 GHz (Red System)	P/N 84300-80039 (84125C)	1152	9/3/2011
EMCO	Antenna, Horn, 1-18 GHz (SA40-	3115	1386	9/21/2012
	Blu)			
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	11/2/2011
Micro-Tronics	Band Reject Filter, 5470-5725 MHz	BRC50704-02	1681	5/25/2011
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	1729	9/3/2011
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	1771	8/26/2011
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	2199	2/11/2011
Radiated Emissions	30 - 18,000 MHz, 01-Jun-11			
Manufacturer	<u>Description</u>	Model	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	263	12/8/2011
EMCO	Antenna, Horn, 1-18 GHz	3115	487	7/6/2012
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	7/12/2011
Hewlett Packard	High Pass filter, 8.2 GHz	P/N 84300-80039	1156	6/25/2011
Micro-Tronics	Band Reject Filter, 5725-5875	BRC50705-02	1682	3/23/2012
	MHz	DD0=0=00 00	4=00	0/0/0044
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	1729	9/3/2011
Radio Antenna Port (I	Power and PSD), 18-Jul-11			
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
Agilent	PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	E4446A	2139	1/26/2012
	-,,,			

Page 24 File: R82354 Rev 2

Report Date: March 22, 2011 Reissue Date: August 5, 2011

	,000 - 18,000 MHz, 18-Jul-11			
<u>Manufacturer</u>	<u>Description</u>	Model 0.4.40B	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	263	12/8/2011
EMCO	Antenna, Horn, 1-18 GHz	3115	487	7/6/2012
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	8/12/2011
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	11/2/2011
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	1729	9/3/2011
TX Spurious and RF P				
<u>Manufacturer</u>	<u>Description</u>	Model	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	785	5/18/2012
Hewlett Packard	High Pass filter, 8.2 GHz (Red System)	P/N 84300-80039 (84125C)	1152	9/3/2011
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	9/21/2012
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	8/14/2011
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	1729	9/3/2011
Agilent	PSA, Spectrum Analyzer,	E4446A	2139	1/26/2012
	(installed options, 111, 115, 123, 1DS, B7J, HYX,			
Radiated Emissions, 1	,000 - 18,000MHz, 21-Jul-11			
<u>Manufacturer</u>	Description	<u>Model</u>	Asset #	Cal Due
Manufacturer Hewlett Packard	<u>Description</u> Microwave Preamplifier, 1- 26.5GHz	8449B	785	5/18/2012
Manufacturer Hewlett Packard Hewlett Packard	<u>Description</u> Microwave Preamplifier, 1- 26.5GHz High Pass filter, 8.2 GHz (Red System)	8449B P/N 84300-80039 (84125C)	785 1152	5/18/2012 9/3/2011
Manufacturer Hewlett Packard	<u>Description</u> Microwave Preamplifier, 1- 26.5GHz High Pass filter, 8.2 GHz (Red	8449B P/N 84300-80039	785	5/18/2012
Manufacturer Hewlett Packard Hewlett Packard	<u>Description</u> Microwave Preamplifier, 1- 26.5GHz High Pass filter, 8.2 GHz (Red System) Antenna, Horn, 1-18 GHz (SA40-	8449B P/N 84300-80039 (84125C)	785 1152	5/18/2012 9/3/2011
Manufacturer Hewlett Packard Hewlett Packard EMCO	<u>Description</u> Microwave Preamplifier, 1- 26.5GHz High Pass filter, 8.2 GHz (Red System) Antenna, Horn, 1-18 GHz (SA40- Blu) SpecAn 9 kHz - 40 GHz, FT	8449B P/N 84300-80039 (84125C) 3115	785 1152 1386	5/18/2012 9/3/2011 9/21/2012
Manufacturer Hewlett Packard Hewlett Packard EMCO Hewlett Packard Micro-Tronics Radiated Emissions, 3	Description Microwave Preamplifier, 1- 26.5GHz High Pass filter, 8.2 GHz (Red System) Antenna, Horn, 1-18 GHz (SA40-Blu) SpecAn 9 kHz - 40 GHz, FT (SA40) Blue Band Reject Filter, 5150-5350 MHz 0 - 18,000 MHz, 21-Jul-11	8449B P/N 84300-80039 (84125C) 3115 8564E (84125C) BRC50703-02	785 1152 1386 1393 1729	5/18/2012 9/3/2011 9/21/2012 8/14/2011 9/3/2011
Manufacturer Hewlett Packard Hewlett Packard EMCO Hewlett Packard Micro-Tronics Radiated Emissions, 3 Manufacturer	Description Microwave Preamplifier, 1- 26.5GHz High Pass filter, 8.2 GHz (Red System) Antenna, Horn, 1-18 GHz (SA40-Blu) SpecAn 9 kHz - 40 GHz, FT (SA40) Blue Band Reject Filter, 5150-5350 MHz 0 - 18,000 MHz, 21-Jul-11 Description	8449B P/N 84300-80039 (84125C) 3115 8564E (84125C) BRC50703-02	785 1152 1386 1393 1729	5/18/2012 9/3/2011 9/21/2012 8/14/2011 9/3/2011
Manufacturer Hewlett Packard Hewlett Packard EMCO Hewlett Packard Micro-Tronics Radiated Emissions, 3 Manufacturer Hewlett Packard	Description Microwave Preamplifier, 1- 26.5GHz High Pass filter, 8.2 GHz (Red System) Antenna, Horn, 1-18 GHz (SA40-Blu) SpecAn 9 kHz - 40 GHz, FT (SA40) Blue Band Reject Filter, 5150-5350 MHz 0 - 18,000 MHz, 21-Jul-11 Description Microwave Preamplifier, 1- 26.5GHz	8449B P/N 84300-80039 (84125C) 3115 8564E (84125C) BRC50703-02 Model 8449B	785 1152 1386 1393 1729 Asset # 785	5/18/2012 9/3/2011 9/21/2012 8/14/2011 9/3/2011 <u>Cal Due</u> 5/18/2012
Manufacturer Hewlett Packard Hewlett Packard EMCO Hewlett Packard Micro-Tronics Radiated Emissions, 3 Manufacturer	Description Microwave Preamplifier, 1- 26.5GHz High Pass filter, 8.2 GHz (Red System) Antenna, Horn, 1-18 GHz (SA40-Blu) SpecAn 9 kHz - 40 GHz, FT (SA40) Blue Band Reject Filter, 5150-5350 MHz 0 - 18,000 MHz, 21-Jul-11 Description Microwave Preamplifier, 1-	8449B P/N 84300-80039 (84125C) 3115 8564E (84125C) BRC50703-02	785 1152 1386 1393 1729	5/18/2012 9/3/2011 9/21/2012 8/14/2011 9/3/2011
Manufacturer Hewlett Packard Hewlett Packard EMCO Hewlett Packard Micro-Tronics Radiated Emissions, 3 Manufacturer Hewlett Packard	Description Microwave Preamplifier, 1- 26.5GHz High Pass filter, 8.2 GHz (Red System) Antenna, Horn, 1-18 GHz (SA40-Blu) SpecAn 9 kHz - 40 GHz, FT (SA40) Blue Band Reject Filter, 5150-5350 MHz 0 - 18,000 MHz, 21-Jul-11 Description Microwave Preamplifier, 1- 26.5GHz High Pass filter, 8.2 GHz (Red	R449B P/N 84300-80039 (84125C) 3115 8564E (84125C) BRC50703-02 Model 8449B P/N 84300-80039	785 1152 1386 1393 1729 Asset # 785	5/18/2012 9/3/2011 9/21/2012 8/14/2011 9/3/2011 <u>Cal Due</u> 5/18/2012
Manufacturer Hewlett Packard Hewlett Packard EMCO Hewlett Packard Micro-Tronics Radiated Emissions, 3 Manufacturer Hewlett Packard Hewlett Packard	Description Microwave Preamplifier, 1- 26.5GHz High Pass filter, 8.2 GHz (Red System) Antenna, Horn, 1-18 GHz (SA40-Blu) SpecAn 9 kHz - 40 GHz, FT (SA40) Blue Band Reject Filter, 5150-5350 MHz 0 - 18,000 MHz, 21-Jul-11 Description Microwave Preamplifier, 1- 26.5GHz High Pass filter, 8.2 GHz (Red System) Antenna, Horn, 1-18 GHz (SA40-	R449B P/N 84300-80039 (84125C) 3115 8564E (84125C) BRC50703-02 Model 8449B P/N 84300-80039 (84125C)	785 1152 1386 1393 1729 Asset # 785 1152	5/18/2012 9/3/2011 9/21/2012 8/14/2011 9/3/2011 <u>Cal Due</u> 5/18/2012 9/3/2011

Page 25 File: R82354 Rev 2

Appendix B Test Data

T82013 Pages 27 – 54 T84008 Pages 55 - 64

Ellio Ellio	tt Frompany	El	MC Test Data
Client:	Avaya	Job Number:	J81820
Model:	AP 8120 with 2 external Antenna (Class II Permissive	T-Log Number:	T82013
	change)	Account Manager:	Christine
Contact:	Vipin Naik		-
Emissions Standard(s):	FCC 15.247	Class:	В
Immunity Standard(s):	-	Environment:	-

For The

Avaya

Model

AP 8120 with 2 external Antenna (Class II Permissive change)

Date of Last Test: 7/25/2011

Ol! I	Avenue	Lala Nicosala au	101020
Client:	Avaya	Job Number:	J81820
Model:	AP 8120 with 2 external Antenna (Class II Permissive change)	T-Log Number:	T82013
	AF 6120 Will 2 external Africania (Class II Fermissive Change)	Account Manager:	Christine
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Config Change: Console port no cabled EUT Voltage: POE

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 21 °C

Rel. Humidity: 38 %

Summary of Results

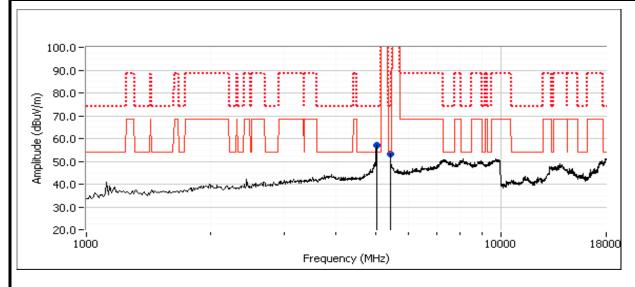
Run #	Mode	Channel	Power Setting	Test Pe	erformed	Limit	Result / Margin
	802.11n20	5150-5250 Low	-		Band Edge at MHz	15.209	48.0dBµV/m @ 5144.4MHz (-6.0dB)
1	802.11n20	5150-5250 Low	-		Emissions, 3 GHz	FCC 15.209 / 15 E	53.4dBµV/m @ 5023.2MHz (-0.6dB)
	802.11n20	5150-5250 Center	-		d Emissions, 18 GHz FCC 15.209 / 15 E	FCC 15.209 / 15 E	49.4dBµV/m @ 5032.6MHz (-4.6dB)
	802.11n20	5150-5250 High	-		Emissions, 3 GHz	FCC 15.209 / 15 E	46.4dBµV/m @ 5415.4MHz (-7.6dB)
	802.11n40	5150-5250 Low	-		Band Edge at MHz	15.209	53.8dBµV/m @ 5150.0MHz (-0.2dB)
3	3 802.11n40	5150-5250 Low	-		Emissions, 3 GHz	FCC 15.209 / 15 E	52.1dBµV/m @ 10380.9MHz (-16.2dB)
	802.11n40	5150-5250 High	-		Emissions, 3 GHz	FCC 15.209 / 15 E	37.0dBµV/m @ 1125.0MHz (-17.0dB)

C	Elliott An AVES company	EM	C Test Data
	nt: Avaya	Job Number:	J81820
Mod	el: AP 8120 with 2 external Antenna (Class II Permissive change)	T-Log Number:	T82013
		Account Manager:	Christine
	ct: Vipin Naik rd: FCC 15.247	Class:	NI/A
No modifi Deviation	ations Made During Testing cations were made to the EUT during testing ons From The Standard ions were made from the requirements of the standard.		
Test No A near	tes field scan showed no emissions above 18GHz. No radio related emissions		
Note 1:	For emissions in restricted bands, the limit of 15.209 was used which refer emissions outside of the restricted bands the limit is -27dBm/MHz expressions.		
Note 2:	required is the same measurement method used to determine the in-ba (RB=1MHz, VB>1MHz). Pavg indicates that the power averaging met emissions outside of the restricted bands. PK indicates that a peak me	and power spectral density or a hod of measurement was use	a peak measurement

An DES company					
Client:	Avaya	Job Number:	J81820		
Model:	AP 8120 with 2 external Antenna (Class II Permissive change)	T-Log Number:	T82013		
	AF 0120 With 2 external Africania (Class II Fermissive Change)	Account Manager:	Christine		
Contact:	Vipin Naik				
Standard:	FCC 15.247	Class:	N/A		

Run #1, Radiated Spurious Emissions, 1,000 - 18,000 MHz. Operation in the 5150-5250 MHz Band, 802.11n20 STBC

Date of Test: 7/18/2011 Test Location: FT Chamber #4

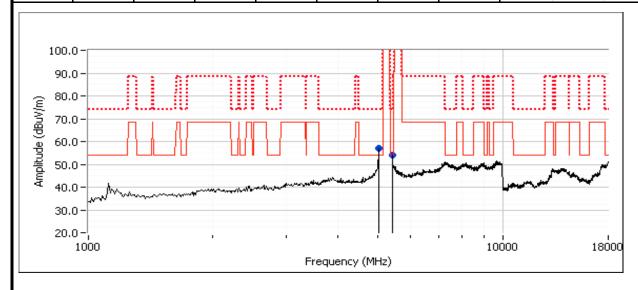

Test Engineer: David Bare

Run #1a: Low Channel

5150 MHz Band Edge Signal Radiated Field Strength

J I JU IVII IZ D	130 Miliz Band Edge Signal Kadiated Fleid Strength									
Frequency	Level	Pol	FCC 15.209		Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5144.370	48.0	V	54.0	-6.0	AVG	326	1.0	POS; RB 1 MHz; VB: 10 Hz		
5142.890	59.2	V	74.0	-14.8	PK	326	1.0	POS; RB 1 MHz; VB: 10 MHz		
5147.920	46.5	Н	54.0	-7.5	AVG	334	1.1	POS; RB 1 MHz; VB: 10 Hz		
5145.050	58.2	Н	74.0	-15.8	PK	334	1.1	POS: RB 1 MHz: VB: 10 MHz		

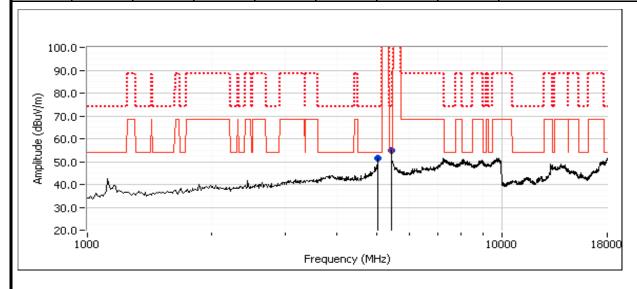
Frequency	Level	Pol	15.209 / 15E		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5023.210	53.4	Н	54.0	-0.6	AVG	338	1.1	RB 1 MHz;VB 10 Hz;Pk
5024.350	64.5	Н	74.0	-9.5	PK	338	1.1	RB 1 MHz;VB 3 MHz;Pk
5416.360	45.2	V	54.0	-8.8	AVG	325	1.3	RB 1 MHz;VB 10 Hz;Pk
5415.450	56.0	V	74.0	-18.0	PK	325	1.3	RB 1 MHz;VB 3 MHz;Pk



	All Diggs Company		
Client:	Avaya	Job Number:	J81820
Model	AP 8120 with 2 external Antenna (Class II Permissive change)	T-Log Number:	T82013
Model.	AF 0120 With 2 external Africania (Class II Fermissive Change)	Account Manager:	Christine
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #1b: Center Channel

Frequency	Level	Pol	15.209 / 15E		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5032.600	49.4	Н	54.0	-4.6	AVG	338	1.1	RB 1 MHz;VB 10 Hz;Pk
5032.870	59.9	Н	74.0	-14.1	PK	338	1.1	RB 1 MHz;VB 3 MHz;Pk
5418.450	45.1	Н	54.0	-8.9	AVG	320	1.1	RB 1 MHz;VB 10 Hz;Pk
5415.940	56.8	Н	74.0	-17.2	PK	320	1.1	RB 1 MHz;VB 3 MHz;Pk



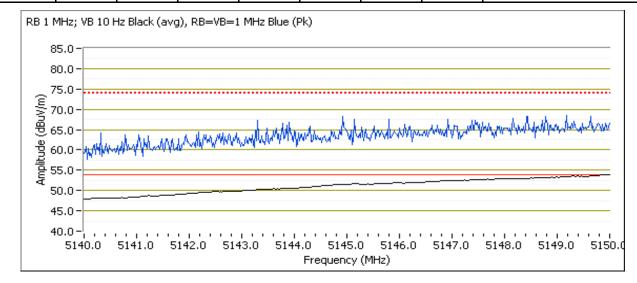
Client:	Avaya	Job Number:	J81820
Madalı	AP 8120 with 2 external Antenna (Class II Permissive change)	T-Log Number:	T82013
Model.	AP 6120 With 2 external Africania (Class ii Pernissive Change)	Account Manager:	Christine
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #1c: High Channel

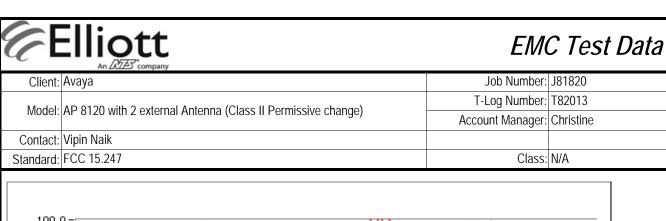
Frequency	Level	Pol	15.209 / 15E		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5415.420	46.4	Н	54.0	-7.6	AVG	334	1.1	RB 1 MHz;VB 10 Hz;Pk
5415.750	58.1	Н	74.0	-15.9	PK	334	1.1	RB 1 MHz;VB 3 MHz;Pk
5039.920	44.2	Н	54.0	-9.8	AVG	334	1.1	RB 1 MHz;VB 10 Hz;Pk
5038.460	55.4	Н	74.0	-18.6	PK	334	1.1	RB 1 MHz;VB 3 MHz;Pk

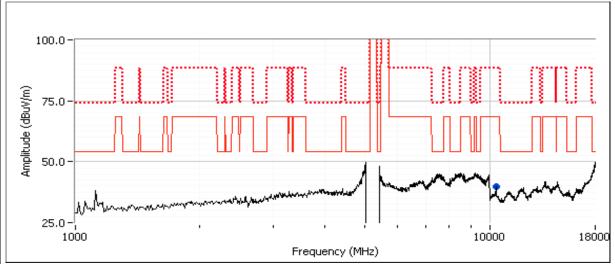
	741 2023 Company		
Client:	Avaya	Job Number:	J81820
Madalı	AP 8120 with 2 external Antenna (Class II Permissive change)	T-Log Number:	T82013
woder.	AP 6120 Will 2 external Affertia (Class II Perfilssive Change)	Account Manager:	Christine
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #3, Radiated Spurious Emissions, 1,000 - 18,000 MHz. Operation in the 5150-5250 MHz Band, 802.11n40 STBC

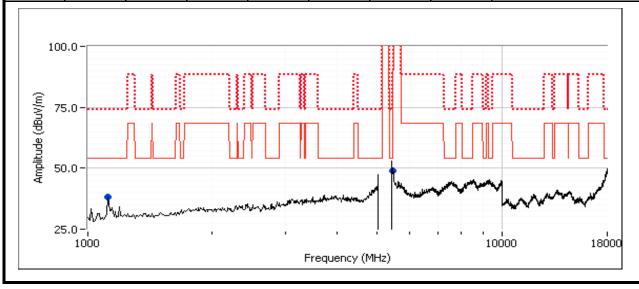

Date of Test: 7/19/2011 Test Location: FT chamber #3

Test Engineer: Mehran Birgani


Run #3a: Low Channel


5150 MHz Restricted Band Edge Signal Radiated Field Strength

O TOO WITTE TO	Too Will Restricted Band Eage Signal Radiated Flord Strength										
Frequency	Level	Pol	FCC 15.209		Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
5150.000	53.8	Н	54.0	-0.2	AVG	330	1.0	POS; RB 1 MHz; VB: 10 Hz			
5148.180	69.1	Н	74.0	-4.9	PK	330	1.0	POS; RB 1 MHz; VB: 10 MHz			


Frequency	Level	Pol	15.209 / 15E		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
10374.030	52.2	V	68.3	-16.1	PK	120	1.0	RB 1 MHz;VB 3 MHz;Pk
10380.900	52.1	Н	68.3	-16.2	PK	129	1.0	RB 1 MHz;VB 3 MHz;Pk

Run #3b: High Channel
Spurious Radiated Emissions:

Frequency	Level	Pol	15.209 / 15E		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5419.660	45.7	Н	54.0	-8.3	AVG	168	1.0	RB 1 MHz;VB 10 Hz;Pk
1125.000	37.0	Н	54.0	-17.0	AVG	0	1.0	RB 1 MHz;VB 10 Hz;Pk
5419.600	56.9	Н	74.0	-17.1	PK	168	1.0	RB 1 MHz;VB 3 MHz;Pk
1125.020	42.8	Н	74.0	-31.2	PK	0	1.0	RB 1 MHz;VB 3 MHz;Pk

	An 2022 Company		
Client:	Avaya	Job Number:	J81820
Madalı	AP 8120 with 2 external Antenna (Class II Permissive change)	T-Log Number:	T82013
woder.	AP 6120 With 2 external Africanna (Class II Permissive Change)	Account Manager:	Christine
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

RSS-210 (LELAN) and FCC 15.407(UNII) **Antenna Port Measurements** Power and PSD - STBC Operation

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Config. Used: 3 Date of Test: 7/18/2011 Config Change: None Test Engineer: David Bare Test Location: FT EMC Lab #4 EUT Voltage: POE

Summary of Results

Sample 2011-2606

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Power, 5150 - 5250MHz	15.407(a) (1), (2)	Dacc	802.11n 20MHz: 22.1 mW 802.11n n40MHz: 21.5 mW
1	PSD, 5150 - 5250MHz	15.407(a) (1), (2)	Pacc	802.11n 20MHz: 1.1 dBm/MHz 802.11n n40MHz: -2.3 dBm/MHz
1	26dB Bandwidth	15.407 (Information only)	-	> 20MHz for all modes
1	99% Bandwidth	RSS 210 (Information only)	_	802.11n 20MHz: 18.1 MHz 802.11n n40MHz: 36.6 MHz

An ZAZES company			
Client:	Avaya	Job Number:	J81820
Model:	AP 8120 with 2 external Antenna (Class II Permissive change)	T-Log Number:	T82013
		Account Manager:	Christine
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions:

Temperature: 22 °C Rel. Humidity: 41 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Test Notes

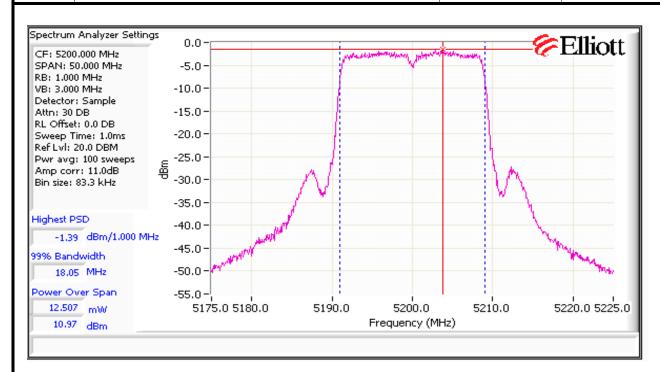
STBC mode, non coherent, MCS 0 used for all tests.

- = measurement from original testing
- = power reduced due to radiated bandedge

Note 1:	Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was not continuous but the analyzer was configured with a gated sweep such that the analyzer was only sweeping when the device was transmitting) and power integration over 50 or 100 MHz (method 1 of DA-02-2138A1).
Note 2:	Measured using the same analyzer settings used for output power.
Note 3:	the measured value exceeds the average by more than 3dB.
Note 4:	99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB
	For MIMO systems the total output power and total PSD are calculated from the sum of the powers of the individual chains (in linear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operating mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determine the limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain and power on each chain. If the signals are coherent then the effective antenna gain is the sum (in linear terms) of the gains for each chain and the EIRP is the product of the effective gain and total power.

	An ZAZZZ Company		
Client:	Avaya	Job Number:	J81820
Madal	AP 8120 with 2 external Antenna (Class II Permissive change)	T-Log Number:	T82013
Model.	AF 0120 With 2 external Africania (Class II Fermissive Change)	Account Manager:	Christine
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #1: Bandwidth, Output Power and Power Spectral Density - MIMO Systems


MIMO Device - 5150-5250 MHz Band

NOTE - total power can not exceed 13.5dBm (0.022W)

			Chain 1	Chain 2	Chain 3	Coherent	Effective ⁵	EIRP (mW)	EIRP (dBm)	
	Antenna	a Gain (dBi):	8.66	8.66		No	8.7	162.3	22.1	1
Power										4
Frequency	Software	26dB BW	Measure	d Output Po	wer ¹ dBm	To	otal	Limit (dDms)	Max Power	Doos or Fall
(MHz)	Setting	(MHz)	Chain 1	Chain 2	Chain 3	mW	dBm	Limit (dBm)	(W)	Pass or Fail
20MHz Mod	le				•	•	•	•	•	•
5180	-	21.8	10.9	9.8		21.8	13.4	14.3		PASS
5200	-	21.8	11.0	9.8		22.1	13.4	14.3	0.022	PASS
5240	-	21.5	11.0	9.6		21.7	13.4	14.3		PASS
40MHz Mod	<i>le</i>									
5190	-	39.5	9.9	9.1		17.9	12.5	14.3	0.021	PASS
5230	-	41.2	10.5	10.1		21.5	13.3	14.3	0.021	PASS
PSD										
Frequency	99% ⁴	Total	Р	SD ² dBm/Mł	Ηz	Tota	IPSD	Liı	mit	Pass or Fail
(MHz)	BW	Power	Chain 1	Chain 2	Chain 3	mW/MHz	dBm/MHz	FCC	RSS 210 ³	Pass of Fall
20MHz Mod	de									
5180	18.1	13.4	-1.2	-2.7		1.3	1.1	1.3	1.3	PASS
5200	18.1	13.4	-1.4	-2.7		1.3	1.0	1.3	1.3	PASS
5240	18.1	13.4	-1.7	-2.9		1.2	0.8	1.3	1.3	PASS
40MHz Mod	le									
5190	36.6	12.5	-5.9	-6.6		0.5	-3.2	1.3	1.3	PASS
5230	36.4	13.3	-5.3	-5.4		0.6	-2.3	1.3	1.3	PASS

Client:	Avaya	Job Number:	J81820
Madal	AP 8120 with 2 external Antenna (Class II Permissive change)	T-Log Number:	T82013
wouer.	AF 0120 With 2 external Africania (Class II Fermissive Change)	Account Manager:	Christine
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

1	All Diggs Company		
Client:	Avaya	Job Number:	J81820
Madal	AP 8120 with 2 external Antenna (Class II Permissive change)	T-Log Number:	T82013
Model.	AF 0120 With 2 external Africania (Class II Fermissive Change)	Account Manager:	Christine
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

RSS-210 (LELAN) and FCC 15.407(UNII) Antenna Port Measurements Power, PSD, Peak Excursion, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions: Temperature: 18-23 °C Rel. Humidity: 30-40 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Notes

Highlighted line items indicate power was reduced from the original filing. Non-highlighted items represent data from the original filing with the EIRP calculated using the new antenenna gain.

Power measurements were performed using the same method as the original filing.

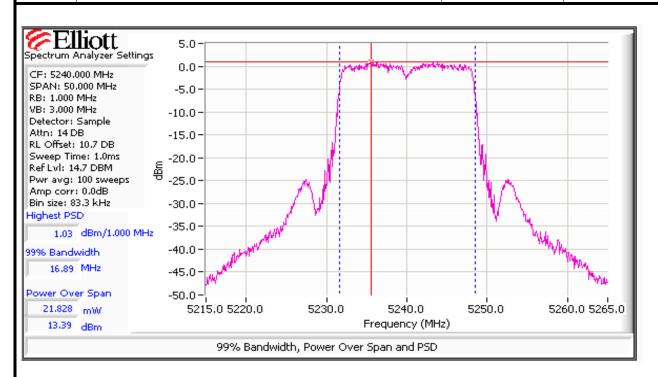
Any measurements for MIMO are for CDD operation

	Ellic	Dtt As company			EMO	C Test Data
	Avaya				Job Number:	J81820
Modol:	ΛD 9120 with	h 2 external Antenna (Class II Permi	esivo chango)	T-I	Log Number:	T82013
Model.	AF 0120 WIL	ii 2 external Antenna (Class II Fermi	ssive change)	Accou	unt Manager:	Christine
	Vipin Naik					
Standard:	FCC 15.247			Class: N/A		
	of Result			1	In	
	of Result	S Test Performed	Limit	Pass / Fail	Result / Març	gin
	in #		Limit 15.407(a) (1), (2)	Pass / Fail		gin 4dBm (0.022W)

	All Date Company		
Client:	Avaya	Job Number:	J81820
Madalı	AP 8120 with 2 external Antenna (Class II Permissive change)	T-Log Number:	T82013
Model.	AF 6120 Will 2 external Africania (Class II Fermissive Change)	Account Manager:	Christine
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Date of Test: 7/14/2011 Config. Used: 1
Test Engineer: Mark Hill Config Change: None
Test Location: FT Lab #4 EUT Voltage: POE

Run #1: Bandwidth, Output Power and Power Spectral Density - Single Chain Systems - 802.11a


	Antenna	Gain ⁵ (dBi):	8.66		EIRP:	160.7	mW	22.1	dBm	
Frequency	Software	` ′	lwidth		wer ^{1,5} dBm	Power		SD ^{2,5} dBm/M		Result
(MHz)	Setting	26dB	99% ⁴	Measured	Limit	(Watts)	Measured	FCC Limit	RSS Limit ³	
5180	-	20.0	16.9	13.2	14.3	0.021	1.2	1.3	1.3	Pass
5200		21.7	16.9	13.2	14.3	0.021	1.0	1.3	1.3	Pass
5240		21.1	16.9	13.4	14.3	0.022	1.0	1.3	1.3	Pass
Note:	Highlighed it	tems indicate	e power was	reduced from	the integral	antenna con	figuration for	use with the	new antenna	as. Non
Note.	highlighted r	measuremen	ts were taker	n from origina	al testing (J78	3065).				

Moto	Highlighed items indicate power was reduced from the integral antenna configuration for use with the new antennas. Non
note:	Highlighed items indicate power was reduced from the integral antenna configuration for use with the new antennas. Non highlighted measurements were taken from original testing (J78065).
	RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was not continuous but the analyzer
Note 1:	was configured with a gated sweep such that the analyzer was only sweeping when the device was transmitting) and power
	integration over 50 MHz
Note 2:	Measured using the same analyzer settings used for output power.
Note 2:	For RSS-210 the limit for the 5150 - 5250 MHz band accounts for the antenna gain as the maximum eirp allowed is
Note 2:	For RSS-210 the limit for the 5150 - 5250 MHz band accounts for the antenna gain as the maximum eirp allowed is
Note 2:	

Note 4: 99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB

	An ZAZZZ Company		
Client:	Avaya	Job Number:	J81820
Madal	AP 8120 with 2 external Antenna (Class II Permissive change)	T-Log Number:	T82013
wouei.	AP 6120 With 2 external Afficentia (Class II Permissive Change)	Account Manager:	Christine
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

	Elliott An 公公 company	EMC Test Data		
Client:	Avaya	Job Number:	J81820	
Model	AD 9130 with 2 outernal Antonna (Class II Dormissive change)	T-Log Number:	T82013	
Model.	AP 8120 with 2 external Antenna (Class II Permissive change)	Account Manager:	Christine	
Contact:	Vipin Naik			
Standard:	FCC 15.247	Class:	N/A	

RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located outside the chamber.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

12-17 °C

Rel. Humidity: 30-50 %

Temperature:

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Spurious emissions testing performed for the worst case OFDM mode from the original filing for each band. Bandedge measurements performed for all modes.

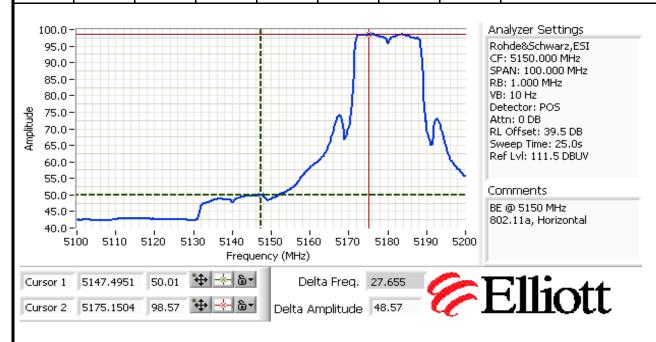
A near field scan showed no emissions above 18GHz. No radio related emissions were detected below 1GHz.

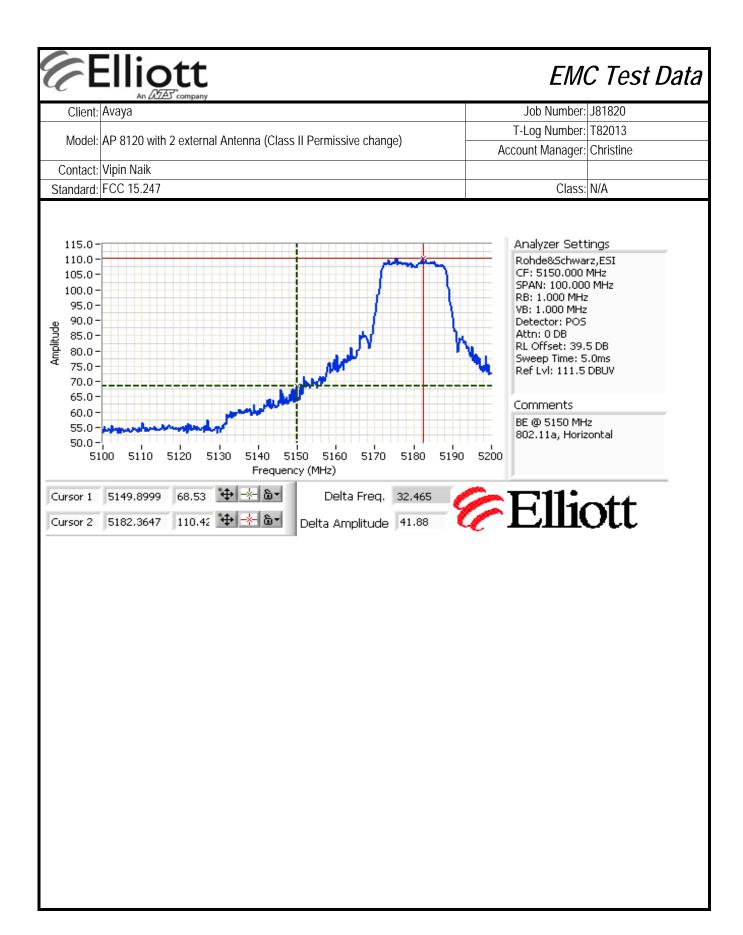
Prior to testing, the output power was configured to be consistent with the level in the original testing.

	Ellic	ott Æ*company				EMO	C Test Data	
	Avaya					Job Number:	J81820	
Madal	AD 0120 with	h 1 outornal	Antonno (Cla	oo II Darmia	olivo ahanga)	T-Log Number:	T82013	
woder:	AP 8120 WII	n z externar	Antenna (Cia	ass II Permiss	sive change)	Account Manager:	Christine	
Contact:	Vipin Naik							
Standard:	FCC 15.247	1				Class: N/A		
Summary	of Result	s - Device	Operating	g in the 51	50-5350 MHz Band	and 5470-5725 MHz	Band	
Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin	
1a	2	36	-	-	Restricted Band Edge (5150 MHz)	FCC Part 15.209	50.0dBµV/m @ 5147.5MHz (-4.0dB)	
Та	a	36	-	-	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	46.7dBµV/m @ 5013.4MHz (-7.3dB)	
1b	а	40	-	-	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	44.7dBµV/m @ 2700.3MHz (-9.3dB)	
1c	а	48	-	-	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	36.8dBµV/m @ 1125.0MHz (-17.2dB)	

	All Diggs Company		
Client:	Avaya	Job Number:	J81820
Madal	AP 8120 with 2 external Antenna (Class II Permissive change)	T-Log Number:	T82013
Model.	AF 0120 With 2 external Africania (Class II Fermissive Change)	Account Manager:	Christine
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #1: Radiated Spurious Emissions, 30 - 40000 MHz. Operating Mode: 802.11a

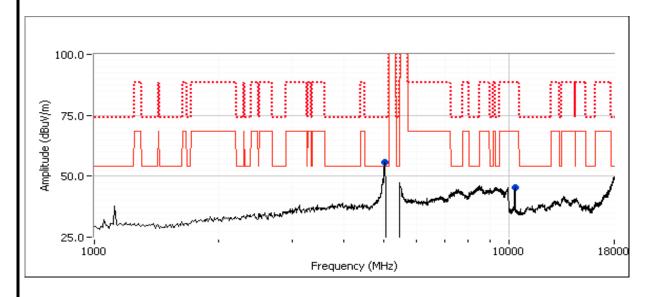

Date of Test: 6/1/2011 Test Location: FT Chamber #4


Test Engineer: M. Birgani / R. Varelas

Run #1a: Channel 36 @ 5180 MHz

Band Edge Signal Field Strength - Direct measurement of field strength

	10 0.ga	3. a	2000	404.00	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
5147.495	50.0	Н	54.0	-4.0	Avg	13	1.0	
5149.900	68.5	Н	74.0	-5.5	Pk	13	1.0	
5147.495	39.1	V	54.0	-14.9	Avg	79	1.5	
5147.896	54.5	V	74.0	-19.5	Pk	79	1.5	

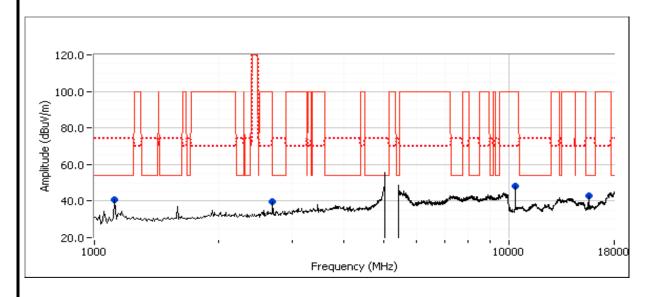


	The secondary		
Client:	Avaya	Job Number:	J81820
Model:	AP 8120 with 2 external Antenna (Class II Permissive change)	T-Log Number:	T82013
woder.	AP 6120 With 2 external Africania (Class ii Pernissive Change)	Account Manager:	Christine
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Other Spurious Emissions with power setting of 66

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
5013.360	46.7	Н	54.0	-7.3	AVG	358	1.1	RB 1 MHz;VB 10 Hz;Pk
10360.140	57.7	Н	68.3	-10.6	PK	310	1.0	RB 1 MHz;VB 3 MHz;Pk
5015.200	56.6	Н	74.0	-17.4	PK	358	1.1	RB 1 MHz;VB 3 MHz;Pk

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the **average** limit was set to -27dBm/MHz (~68dBuV/m).

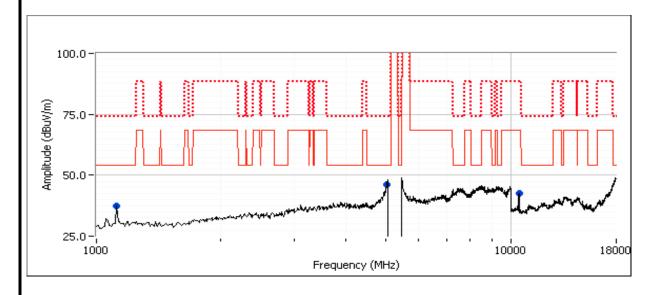

	741 2023 Company		
Client:	Avaya	Job Number:	J81820
Model:	AP 8120 with 2 external Antenna (Class II Permissive change)	T-Log Number:	T82013
woder.	AP 6120 Will 2 external Affertia (Class II Perfilssive Change)	Account Manager:	Christine
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #1b: Channel 40 @ 5200 MHz

Other Spurious Emissions

Frequency	Level	Pol	15.209	7 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
2700.300	44.7	V	54.0	-9.3	PK	203	2.5	RB 1 MHz;VB 3 MHz;Pk
1124.900	44.6	V	54.0	-9.4	PK	161	1.0	RB 1 MHz;VB 3 MHz;Pk
10400.810	57.1	Н	68.3	-11.2	PK	308	1.0	RB 1 MHz;VB 3 MHz;Pk
15597.180	42.3	V	54.0	-11.7	AVG	57	1.0	RB 1 MHz;VB 10 Hz;Pk
15597.760	53.7	V	74.0	-20.3	PK	57	1.0	RB 1 MHz;VB 3 MHz;Pk

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the **average** limit was set to -27dBm/MHz (~68.3dBuV/m).


	All Bazz Stompany		
Client:	Avaya	Job Number:	J81820
Model	AP 8120 with 2 external Antenna (Class II Permissive change)	T-Log Number:	T82013
woder.	AP 6120 With 2 external Africania (Class ii Pernissive Change)	Account Manager:	Christine
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #1c: Channel 48 @ 5240 MHz

Other Spurious Emissions

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
1124.980	36.8	Н	54.0	-17.2	AVG	60	1.0	RB 1 MHz;VB 10 Hz;Pk
5008.520	36.6	Н	54.0	-17.4	AVG	7	1.0	RB 1 MHz;VB 10 Hz;Pk
5013.330	48.5	Н	74.0	-25.5	PK	7	1.0	RB 1 MHz;VB 3 MHz;Pk
10475.330	40.0	V	68.3	-28.3	AVG	31	1.0	RB 1 MHz;VB 10 Hz;Pk
1125.100	43.2	Н	74.0	-30.8	PK	60	1.0	RB 1 MHz;VB 3 MHz;Pk
10479.550	51.6	V	88.3	-36.7	PK	31	1.0	RB 1 MHz;VB 3 MHz;Pk

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the **average** limit was set to -27dBm/MHz (~68dBuV/m).

	Time de la company			
Client:	Avaya	Job Number:	J81820	
Model	AP 8120 with 2 external Antenna (Class II Permissive change)	T-Log Number: T82013		
Model.	AF 0120 With 2 external Afferma (Class II Fermissive Change)	Account Manager:	Christine	
Contact:	Vipin Naik			
Standard:	FCC 15.247	Class:	В	

Radiated Emissions

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 2/9/2011 Config. Used: 1

Test Engineer: John Caizzi Config Change: External Laird antenna, laptop was remote

support.

Test Location: Fremont Chamber #5 EUT Voltage: PoE

General Test Configuration

The EUT and any local support equipment were located on the turntable for radiated emissions testing. Any remote support equipment was located outside the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Ambient Conditions:

Temperature: 19 °C Rel. Humidity: 24 %

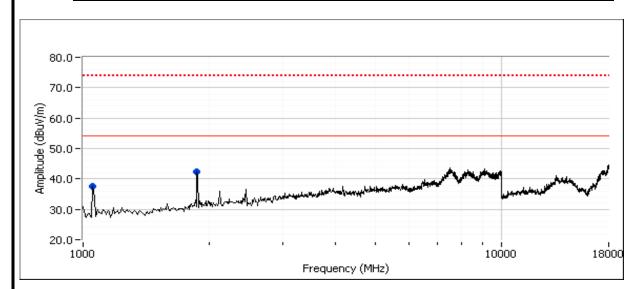
Summary of Results

Run #	Test Performed	Limit	Result	Margin
1			Doos	32.7dBµV/m @ 1062.5MHz
1			Pass	(-21.3dB)
າ	Radiated Emissions	RSS-210	Doce	33.2dBµV/m @ 2124.8MHz
2	1 - 18 GHz Maximized		Pass	(-20.8dB)
2			Doce	32.9dBµV/m @ 1062.4MHz
3			Pass	(-21.1dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard


No deviations were made from the requirements of the standard.

Client:	Avaya	Job Number:	J81820
Model:	AP 8120 with 2 external Antenna (Class II Permissive change)	T-Log Number:	T82013
Model.	AF 0120 With 2 external Afferma (Class II Fermissive Change)	Account Manager:	Christine
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	В

Run #1: Maximized Readings, 1000 - 18,000 MHz. Rx mode, CH40.

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
1000 - 18000 MHz	3	3	0.0

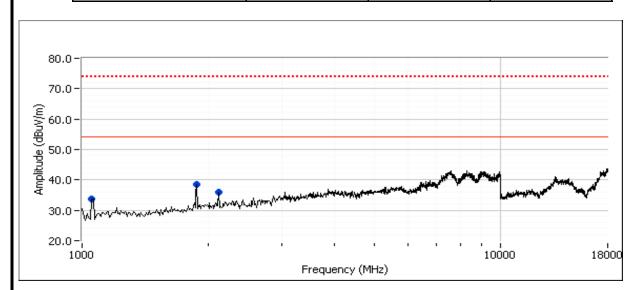
Preliminary peak readings captured during pre-scan (peak readings vs. average limit)

,		3	· · · · · · · · · · · · · · · · · · ·					
Frequency	Level	Pol	RSS	-210	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1870.830	42.2	V	54.0	-11.8	Peak	250	2.5	
1055.000	37.7	V	54.0	-16.3	Peak	94	1.0	

Final peak and average readings

Frequency	Level	Pol	RSS	5-210	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1062.450	32.7	V	54.0	-21.3	AVG	40	1.07	
1859.100	29.5	V	54.0	-24.5	AVG	240	1.14	
1859.350	38.1	V	74.0	-35.9	PK	240	1.14	
1062.450	38.0	V	74.0	-36.0	PK	40	1.07	

Note 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above 1 GHz can not exceed the average limit by more than 20 dB.


Note 2: As there were no emissions observed above 14 GHz during the preliminary scan, or the size of the EUT did not exceed 1.6m above the ground plane, additional measures were **not** required to ensure that the emissions from the EUT were maintained within the beam-width of the antenna during antenna height maximization.

Client:	Avaya	Job Number:	J81820
Model	AP 8120 with 2 external Antenna (Class II Permissive change)	T-Log Number:	T82013
Model.	AF 0120 With 2 external Afferma (Class II Fermissive Change)	Account Manager:	Christine
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	В

Run #2: Maximized Readings, 1000 - 18,000 MHz. Rx mode, CH60.

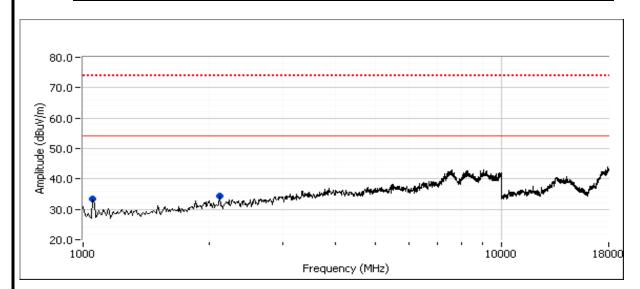
Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
1000 - 18000 MHz	3	3	0.0

Preliminary peak readings captured during pre-scan (peak readings vs. average limit)

. ,		3	· · · · · · · · · · · · · · · · · · ·					
Frequency	Level	Pol	RSS	5-210	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1880.000	38.4	Н	54.0	-15.6	Peak	305	1.3	
2118.330	36.0	V	54.0	-18.0	Peak	245	1.0	
1055.000	33.7	V	54.0	-20.3	Peak	41	1.0	

Final peak and average readings

Frequency	Level	Pol	RSS	5-210	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2124.750	33.2	V	54.0	-20.8	AVG	247	1.00	
1062.400	33.0	V	54.0	-21.0	AVG	34	1.10	
1859.230	28.3	Н	54.0	-25.7	AVG	347	1.06	
2125.100	40.9	V	74.0	-33.1	PK	247	1.00	
1062.530	38.8	V	74.0	-35.2	PK	34	1.10	
1859.520	37.3	Н	74.0	-36.7	PK	347	1.06	


	Elliott	EMO	C Test Da
Client	Avaya	Job Number:	J81820
Model:	AP 8120 with 2 external Antenna (Class II Permissive change)	T-Log Number:	T82013
		Account Manager:	Christine
	Vipin Naik	Class	D
Standard:	FCC 15.247	Class:	В
ote 1:	Above 1 GHz, the limit is based on an average measurement. In additican not exceed the average limit by more than 20 dB.	ion, the peak reading of any	emission above 1 Gl
ote 2:	As there were no emissions observed above 14 GHz during the preliming 1.6m above the ground plane, additional measures were not required the maintained within the beam-width of the antenna during antenna height	to ensure that the emissions	

Client:	Avaya	Job Number:	J81820
Model	AP 8120 with 2 external Antenna (Class II Permissive change)	T-Log Number:	T82013
Model.	AF 0120 With 2 external Afferma (Class II Fermissive Change)	Account Manager:	Christine
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	В

Run #3: Maximized Readings, 1000 - 18,000 MHz. Rx mode, CH116.

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
1000 - 18000 MHz	3	3	0.0

Preliminary peak readings captured during pre-scan (peak readings vs. average limit)

j		9					,	
Frequency	Level	Pol	RSS	5-210	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2118.330	34.3	V	54.0	-19.7	Peak	125	1.6	
1055.000	33.5	V	54.0	-20.5	Peak	280	1.3	

Final peak and average readings

Frequency	Level	Pol	RSS	-210	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1062.370	32.9	V	54.0	-21.1	AVG	286	1.34	
2124.880	31.5	V	54.0	-22.5	AVG	79	1.57	
2125.000	38.9	V	74.0	-35.1	PK	79	1.57	
1062.370	38.8	V	74.0	-35.2	PK	286	1.34	

Note 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above 1 GHz can not exceed the average limit by more than 20 dB.

As there were no emissions observed above 14 GHz during the preliminary scan, or the size of the EUT did not exceed 1.6m above the ground plane, additional measures were **not** required to ensure that the emissions from the EUT were maintained within the beam-width of the antenna during antenna height maximization.

Ellio	tt Ecompany	El	MC Test Data
Client:	Avaya	Job Number:	J81820
Model:	AP 8120 with internal antenna (STBC mode)	T-Log Number:	T84008
		Account Manager:	Christine
Contact:	Vipin Naik		-
Emissions Standard(s):	FCC 15.E	Class:	В
Immunity Standard(s):	-	Environment:	-

For The

Avaya

Model

AP 8120 with internal antenna (STBC mode)

Date of Last Test: 8/2/2011

	Ell	iott An ATAS company
Client:	Avaya	

	All DEED Company		
Client:	Avaya	Job Number:	J81820
Model	AP 8120 with internal antenna (STBC mode)	T-Log Number:	T84008
Model.	AF 6120 Will Illettial afficilia (STBC filode)	Account Manager:	Christine
Contact:	Vipin Naik		
Standard:	FCC 15.E	Class:	N/A

RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Config Change: Console port not cabled EUT Voltage: POE

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 21 °C

Rel. Humidity: 38 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

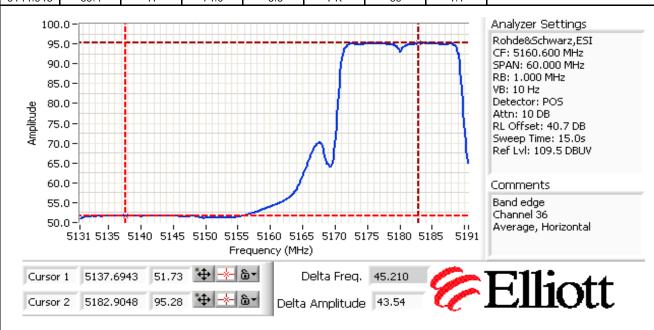
E)tt			EM	C Test Data
Client:	Avaya				Job Number	: J81820
Model·	ΔD 8120 wit	h internal ante	enna (STRC	noda)	T-Log Number	
MOGG.	AF UIZU WIL	II IIItorriai ario	cilia (3150	loue)	Account Manager	: Christine
	Vipin Naik					
Standard:	FCC 15.E				Class	: N/A
Summary	of Result	S				
Run #	Mode	Channel	Power Setting	Test Performed	Limit	Result / Margin
	802.11n20	5150-5250 Low	-	Restricted Band Edge at 5150 MHz	15.209	51.7dBµV/m @ 5137.7MHz (-2.3dB)
1	802.11n20	5150-5250 Low	-	Radiated Emissions 1 - 18 GHz	FCC 15.209 / 15 E	43.3dBµV/m @ 2448.2MHz (-25.0dB)
1	802.11n20	5150-5250 Center	-	Radiated Emissions 1 - 18 GHz	FCC 15.209 / 15 E	38.3dBµV/m @ 7492.1MHz (-15.7dB)
	802.11n20	5150-5250 High	-	Radiated Emissions 1 - 18 GHz	FCC 15.209 / 15 E	38.1dBµV/m @ 7516.1MHz (-15.9dB)
Test Note A near fie		red no emissio	ons above 18	GHz. No radio related emissions we	re detected below 1GHz.	
Note 1:	For emission	ns in restricted	d bands, the	mit of 15.209 was used which requir	res average and peak me	asurements.
Note 2:	required is th (RB=1MHz,	he same mea VB>1MHz).	surement me Pavg indica	oands the limit is -27dBm/MHz eirp (hod used to determine the in-band p s that the power averaging method ls. PK indicates that a peak measu	oower spectral density or of measurement was use	a peak measurement

Elliott

EMC Test Data

All 2022 Company									
Client:	Avaya	Job Number:	J81820						
Madal	AP 8120 with internal antenna (STBC mode)	T-Log Number:	T84008						
woder.		Account Manager:	Christine						
Contact:	Vipin Naik								
Standard:	FCC 15.E	Class:	N/A						

Run #1, Radiated Spurious Emissions, 1,000 - 18,000 MHz. Operation in the 5150-5250 MHz Band, 802.11n20 STBC

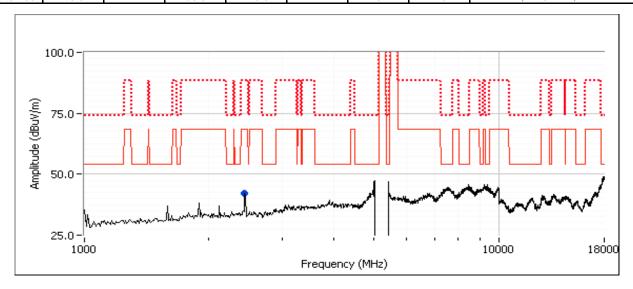

Date of Test: 7/20/2011 Test Location: FT chamber #3

Test Engineer: M. Birgani

Run #1a: Low Channel

5150 MHz Band Edge Signal Radiated Field Strength

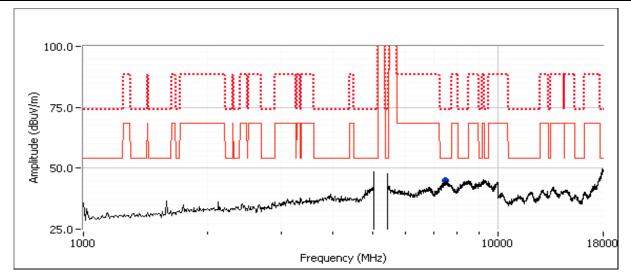
3 1 3 0 WII 12	3130 Will Balla Eage Signal Radiated Field Strength							
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5137.694	51.7	Н	54.0	-2.3	AVG	65	1.1	
5140.820	51.7	V	54.0	-2.4	AVG	125	1.4	
5134.929	65.7	V	74.0	-8.3	PK	125	1.4	
5144.548	65.4	Н	74.0	-8.6	PK	65	1.1	



	· · · · · · · · · · · · · · · · · · ·		
Client:	Avaya	Job Number:	J81820
Model	AP 8120 with internal antenna (STBC mode)	T-Log Number:	T84008
woder.		Account Manager:	Christine
Contact:	Vipin Naik		
Standard:	FCC 15.E	Class:	N/A

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2448.230	43.3	V	68.3	-25.0	PK	0	1.0	RB 1 MHz;VB 3 MHz;Pk



	The secondary		
Client:	Avaya	Job Number:	J81820
Model	AP 8120 with internal antenna (STBC mode)	T-Log Number:	T84008
woder.		Account Manager:	Christine
Contact:	Vipin Naik		
Standard:	FCC 15.E	Class:	N/A

Run #1b: Center Channel

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7492.100	38.3	Н	54.0	-15.7	AVG	179	1.8	RB 1 MHz;VB 10 Hz;Pk
7486.800	48.9	Н	74.0	-25.1	PK	179	1.8	RB 1 MHz;VB 3 MHz;Pk



	741 Days company		
Client:	Avaya	Job Number:	J81820
Model	AP 8120 with internal antenna (STBC mode)	T-Log Number:	T84008
Model.		Account Manager:	Christine
Contact:	Vipin Naik		
Standard:	FCC 15.E	Class:	N/A

Run #1c: High Channel

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7516.070	38.1	Н	54.0	-15.9	AVG	203	1.0	RB 1 MHz;VB 10 Hz;Pk
7511.670	50.3	Н	74.0	-23.7	PK	203	1.0	RB 1 MHz;VB 3 MHz;Pk

An 2023 company									
Client:	Avaya	Job Number:	J81820						
Madalı	AP 8120 with internal antenna (STBC mode)	T-Log Number:	T84008						
wouer.		Account Manager:	Christine						
Contact:	Vipin Naik								
Standard:	FCC 15.E	Class:	N/A						

RSS-210 (LELAN) and FCC 15.407(UNII) **Antenna Port Measurements** Power and PSD - STBC Operation

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Config. Used: 3 Date of Test: 7/20/2011 Config Change: None Test Engineer: Mehran Birgani Test Location: FT EMC Lab #4 EUT Voltage: POE

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Power, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	802.11n 20MHz: 22 mW
1	PSD, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	802.11n 20MHz: 1.0 dBm/MHz
1	26dB Bandwidth	15.407 (Information only)	-	> 20MHz for all modes
1	99% Bandwidth	RSS 210 (Information only)	-	802.11n 20MHz: 18.1 MHz

	An ZAZZES company		
Client:	Avaya	Job Number:	J81820
Model:	AP 8120 with internal antenna (STBC mode)	T-Log Number:	T84008
		Account Manager:	Christine
Contact:	Vipin Naik		
Standard:	FCC 15.E	Class:	N/A

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions:

Temperature: 22 °C Rel. Humidity: 41 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

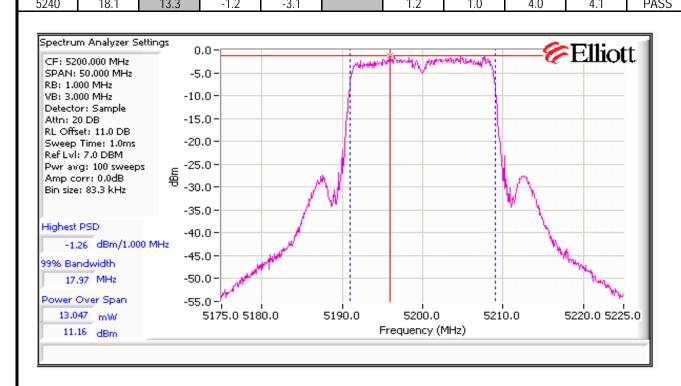
No deviations were made from the requirements of the standard.

Test Notes

STBC mode, non coherent, MCS 0 used for all tests.

= measurement from original testing

= power reduced due to radiated bandedge



All Diffs Company						
Client:	Avaya	Job Number:	J81820			
Model:	AP 8120 with internal antenna (STBC mode)	T-Log Number:	T84008			
		Account Manager:	Christine			
Contact:	Vipin Naik					
Standard:	FCC 15.E	Class:	N/A			

Run #1: Bandwidth, Output Power and Power Spectral Density - MIMO Systems

MIMO Device - 5150-5250 MHz Band

		$\overline{}$							-
	J	Chain 1	Chain 2	Chain 3	Coherent	Effective ⁵	EIRP (mW)	EIRP (dBm)	1
Antenna	a Gain (dBi):	5.91	5.91		No	5.9	84.6	19.3	
Software	26dB BW	Measure	d Output Po	wer ¹ dBm	Tr	otal	Limit (dDm)	Max Power	
Setting	(MHz)	Chain 1	Chain 2	Chain 3	mW	dBm	Liffiii (ubiii)	(W)	Pass or Fail
de .									
	21.8	11.2	9.3		21.7	13.4	17.0		PASS
	21.8	11.2	9.1		21.3	13.3	17.0	0.022	PASS
	21.5	11.0	9.6		21.6	13.3	17.0		PASS
PSD									
99% ⁴	Total	PSD ² dBm/MHz		Tota'	Total PSD		mit	Pass or Fail	
BW	Power	Chain 1	Chain 2	Chain 3	mW/MHz	dBm/MHz	FCC	RSS 210 ³	Pass of Fai
20MHz Mode									
18.1	13.4	-1.1	-3.2		1.3	1.0	4.0	4.1	PASS
18.0	13.3	-1.3	-3.6		1.2	0.7	4.0	4.1	PASS
18.1	13.3	-1.2	-3.1		1.2	1.0	4.0	4.1	PASS
	Software Setting de 99% ⁴ BW de 18.1 18.0	Setting (MHz) de - 21.8 - 21.8 - 21.5 99% Total Power de 18.1 13.4 18.0 13.3	Antenna Gain (dBi): 5.91 Software Setting (MHz) Measurer Chain 1 Me - 21.8 11.2 - 21.8 11.2 - 21.5 11.0 99% ⁴ Total P: Power Chain 1 Me 18.1 13.4 -1.1 18.0 13.3 -1.3	Antenna Gain (dBi): 5.91 5.91 Software Setting 26dB BW (MHz) Measured Output Pow Chain 1 Chain 2 6e - 21.8 11.2 9.3 - 21.8 11.2 9.1 - 21.5 11.0 9.6 99%⁴ BW Total Power Chain 1 PSD² dBm/MH Chain 2 6e 18.1 13.4 -1.1 -3.2 18.0 13.3 -1.3 -3.6	Antenna Gain (dBi): 5.91 5.91 Software Setting (MHz) Measured Output Power¹dBm Chain 1 Chain 2 Chain 3 Me - 21.8 11.2 9.3 - 21.8 11.2 9.1 - 21.5 11.0 9.6 99%⁴ Total PSD²dBm/MHz BW Power Chain 1 Chain 2 Chain 3 Me 18.1 13.4 -1.1 -3.2 18.0 13.3 -1.3 -3.6	Antenna Gain (dBi): 5.91 5.91 No Software Setting 26dB BW (MHz) Measured Output Power¹dBm Chain 2 Chain 3 mW To mw 6e - 21.8 11.2 9.3 21.7 - 21.8 11.2 9.1 21.3 - 21.5 11.0 9.6 21.6 PSD² dBm/MHz D² dBm/MHz Chain 3 mW/MHz Total mW/MHz 6e 18.1 13.4 -1.1 -3.2 1.3 18.0 13.3 -1.3 -3.6 1.2	Software 26dB BW Measured Output Power dBm Total mW dBm dBm	Antenna Gain (dBi): 5.91 5.91 No 5.9 84.6 Software Setting 26dB BW (MHz) Measured Output Power¹ dBm Chain 1 Total mW Limit (dBm) 6e - 21.8 11.2 9.3 21.7 13.4 17.0 - 21.8 11.2 9.1 21.3 13.3 17.0 - 21.5 11.0 9.6 21.6 13.3 17.0 99%⁴ BW Total Power Chain 1 Power Chain 2 Chain 3 Total PSD Lir mW/MHz dBm/MHz FCC Ecc 18.1 13.4 -1.1 -3.2 1.3 1.0 4.0 18.0 13.3 -1.3 -3.6 1.2 0.7 4.0	Antenna Gain (dBi): 5.91 5.91 No 5.9 84.6 19.3 Software Setting 26dB BW (MHz) Measured Output Power¹ dBm Chain 1 Total mW Limit (dBm) Max Power (W) 6e - 21.8 11.2 9.3 21.7 13.4 17.0 17.0 0.022 - 21.8 11.2 9.1 21.3 13.3 17.0 0.022 - 21.5 11.0 9.6 21.6 13.3 17.0 0.022 99%⁴ BW Total PSD Chain 1 Chain 2 Chain 3 mW/MHz dBm/MHz FCC RSS 210³ 18.1 13.4 -1.1 -3.2 1.3 1.0 4.0 4.1 18.0 13.3 -1.3 -3.6 1.2 0.7 4.0 4.1

Test Report Reissue Date: August 5, 2011

End of Report

This page is intentionally blank and marks the last page of this test report.

Page 65 File: R82354 Rev 2