

HCT CO., LTD.

CERTIFICATE OF COMPLIANCE FCC Certification

Applicant Name:
MAXFOR Technology Inc.

Address:
48, Banjeong-ro, Yangji-myeon, Cheoin-gu, Yongin-si,
Gyeonggi-do, Korea

Date of Issue:

July 23, 2014

Test Site/Location:

HCT CO., LTD., 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea

Report No.: HCT-R-1407-F025-1

HCT FRN: 0005866421

FCC ID : X6VMFG-G300

APPLICANT : MAXFOR Technology Inc.

FCC Model(s): MFG-G300
EUT Type: Smart Gateway
Max. RF Output Power: 5.33 dBm (3.4119 mW)
Frequency Range: 2405 MHz -2475 MHz (Zigbee Mode)
Modulation type GFSK
FCC Classification: Digital Transmission System(DTS)
FCC Rule Part(s): Part 15.247

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

Report prepared by
: Kyung Soo Kang
Test Engineer of RF Team

Approved by
: Chang Seok Choi
Manager of RF Team

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

Version

TEST REPORT NO.	DATE	DESCRIPTION
HCT-R-1407-F025	July 16, 2014	- First Approval Report
HCT-R-1407-F025-1	July 23, 2014	- Revised antenna requirement.

Table of Contents

1. GENERAL INFORMATION	4
2. EUT DESCRIPTION	4
3. TEST METHODOLOGY	5
3.1 EUT CONFIGURATION.....	5
3.2 EUT EXERCISE	5
3.3 GENERAL TEST PROCEDURES	5
3.4 DESCRIPTION OF TEST MODES	5
4. INSTRUMENT CALIBRATION.....	6
5. FACILITIES AND ACCREATIONS.....	6
5.1 FACILITIES	6
5.2 EQUIPMENT	6
6. ANTENNA REQUIREMENTS	6
7. SUMMARY TEST OF RESULTS	7
8. TEST RESULT	8
8.1 DUTY CYCLE.....	8
8.2 6dB BANDWIDTH MEASUREMENT	9
8.3 OUTPUT POWER MEASUREMENT.....	12
8.4 POWER SPECTRAL DENSITY	19
8.5 OUT OF BAND EMISSIONS AT THE BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS	23
8.6 RAATED MEASUREMENT.....	34
8.6.1 RAATED SPURIOUS EMISSIONS	34
8.6.2 RAATED RESTRICTED BAND EDGES	42
8.7 POWERLINE CONDUCTED EMISSIONS	42
9. LIST OF TEST EQUIPMENT.....	48
9.1 LIST OF TEST EQUIPMENT(Conducted Test)	48
9.2 LIST OF TEST EQUIPMENT(Raated Test)	49

1. GENERAL INFORMATION

Applicant: MAXFOR Technology Inc.
Address: 48, Banjeong-ro, Yangji-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea
FCC ID: X6VMFG-G300
EUT Type: Smart Gateway
Model name(s): MFG-G300
Date(s) of Tests: June 20, 2014 ~ July 14, 2014
Place of Tests: HCT Co., Ltd.
74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea
(IC Recognition No. : 5944A-3)

2. EUT DESCRIPTION

EUT Type	Smart Gateway	
FCC Model Name	MFG-G300	
Power Supply	DC 12.0 V	
Adapter Information	<p>Manufacturer: Atron Model Name : GC990040012 Input : 100 V ~ 240 V, 50/60 Hz, 1200 mA Output : 12.0 V, 3.33 A</p>	
Frequency Range	<p>TX: 2405 MHz ~ 2475 MHz RX: 2405 MHz ~ 2475 MHz</p>	
Max. RF Output Power	Peak	5.33 dBm (3.4119 mW)
	Average	4.65 dBm (2.9174 mW)
Operating Mode	Zigbee Mode	
Modulation Type	GFSK	
Antenna Specification	<p>Manufacturer: WINiZEN Co., Ltd. Antenna type: pole Antenna Peak Gain : 5.496 dBi</p>	

3. TEST METHODOLOGY

FCC KDB 558074 D01 DTS Meas Guidance v03r02 dated June 05, 2014 entitled "Guidance for Performing Compliance Measurements on gital Transmission Systems(DTS) Operating Under §15.247" and the measurement procedure described in the American National Standard for Testing Unlicensed Wireless Devices(ANSI C63.4-2003) were used in the measurement.

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. Accorng to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. Accorng to the requirements in Section 13.1.4.1 of ANSI C63.4. (Version :2003) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and average detector modes.

Raated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes accorng to the requirements in Section 13.1.4.1 of ANSI C63.4. (Version: 2003)

Conducted Antenna Terminal

See Section from 9.1 to 9.2.(KDB 558074)

3.4 DESCRIPTION OF TEST MODES

The EUT has been tested under operating contion. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Channel low, mid and high with highest data rate (worst case) is chosen for full testing.

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipments, which is traceable to recognized national standards.

5. FACILITIES AND ACCREATIONS

5.1 FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the raated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea. The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2003) and CISPR Publication 22. Detailed description of test facility was submitted to the Commission and accepted dated February 28, 2014 (Registration Number: 90661)

5.2 EQUIPMENT

Raated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned pole, bi-conical, log perioc, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform raated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Rao Interference Measuring Apparatus and Measurement Methods."

6. ANTENNA REQUIREMENTS

Accorng to FCC 47 CFR §15.203:

"An intentional raator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional raator shall be considered sufficient to comply with the provisions of this section."

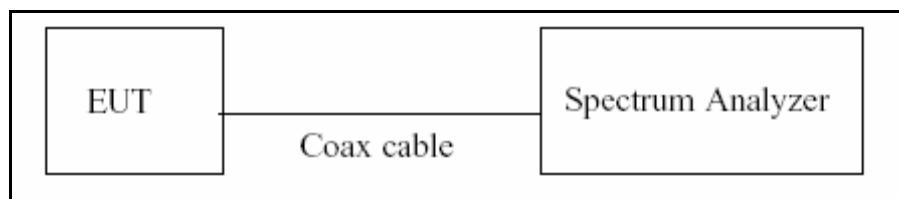
*External antenna is used a unique connector type(Reveresed sma-type).

*The E.U.T Complies with the requirement of §15.203

7. SUMMARY TEST OF RESULTS

Test Description	FCC Part Section(s)	Test Limit	Test Condition	Test Result
Duty Cycle	N/A	N/A	CONDUCTED	N/A
6 dB Bandwidth	§15.247(a)(2)	> 500 kHz		PASS
Conducted Maximum Peak Output Power	§15.247(b)(3)	< 1 Watt		PASS
Power Spectral Density	§15.247(e)	< 8 dBm / 3 kHz Band		PASS
Band Edge(Out of Band Emissions)	§15.247(d)	Conducted < 20 dBc		PASS
AC Power line Conducted Emissions	§15.207	cf. Section 8.7		PASS
Raated Spurious Emissions	§15.205, 15.209	cf. Section 8.6.1	RAATED	PASS
Raated Restricted Band Edge	§15.247(d), 15.205, 15.209	cf. Section 8.6.2		PASS

8. TEST RESULT


8.1 DUTY CYCLE

TEST PROCEDURE

According to KDB 558074(6)b), issued 06/05/2014)

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set $RBW \geq OBW$ if possible; otherwise, set RBW to the largest available value. Set $VBW \geq RBW$. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are $> 50/T$ and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if $T \leq 16.7$ microseconds.)

TEST CONFIGURATION

TEST PROCEDURE

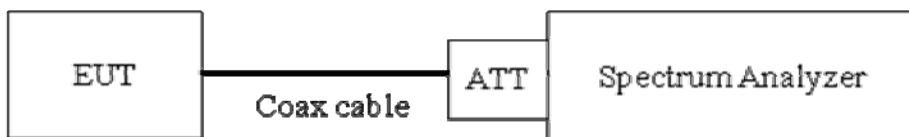
The transmitter output is connected to the Spectrum Analyzer. We tested according to the zero-span measurement method, 6.0)b) in KDB 558074(issued 06/05/2014).

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \leq 6.25$ microseconds. ($50/6.25 = 8$)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are $> 50/T$.

1. $RBW = 8$ MHz (the largest available value)
2. $VBW = 8$ MHz ($\geq RBW$)
3. $SPAN = 0$ Hz
4. Detector = Peak
5. Number of points in sweep > 100
6. Trace mode = Clear write
7. Measure T_{total} and T_{on}
8. Calculate Duty Cycle = T_{on}/ T_{total} and Duty Cycle Factor = $10 * \log(1/\text{Duty Cycle})$

Zigbee Mode	T_{on} (ms)	T_{total} (ms)	Duty Cycle	Duty Cycle Factor(dB)
	-	-	1	0


8.2 6dB BANDWIDTH MEASUREMENT

Test Requirements and limit, §15.247(a)(2)

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the receive antenna while the EUT is operating in transmission mode at the appropriate frequencies.

The minimum permissible 6dB bandwidth is 500 kHz.

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer.

The Spectrum Analyzer is set to (Page 5 in KDB 558074, issued 06/05/2014)

RBW = 100 kHz

VBW \geq 3 x RBW

Detector = Peak

Trace mode = max hold

Sweep = auto couple

Allow the trace to stabilize

Note : We tested 6 dB bandwidth using the automatic bandwidth measurement capability of a spectrum analyzer. X dB is set 6 dB.

TEST RESULTS

Zigbee Mode		Measured Bandwidth [MHz]	Minimum Bandwidth [MHz]	Pass / Fail
Frequency[MHz]	Channel No.			
2405	11	1.581	0.5	Pass
2440	18	1.527	0.5	Pass
2475	25	1.562	0.5	Pass

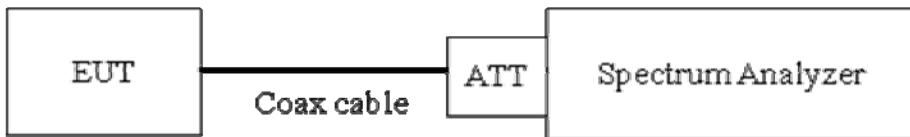
RESULT PLOTS

6dB Bandwidth plot (Low-CH)

6dB Bandwidth plot (Mid-CH)

6dB Bandwidth plot (High-CH)

8.3 OUTPUT POWER MEASUREMENT


Test Requirements and limit, §15.247(b)(3)

A transmitter antenna terminal of EUT is connected to the input of a Spectrum Analyzer.

Measurement is made while the EUT is operating in transmission mode at the appropriate frequencies.

The maximum permissible conducted output power is 1 Watt.

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer. We use the spectrum analyzer's integrated band power measurement function.

This EUT TX contion is 100 % duty cycle operating mode by Zigbee mode test program.

The Spectrum Analyzer is set to

- Peak Power (Procedure 9.1.1 in KDB 558074, issued 06/05/2014)

RBW ≥ DTS Bandwidth

VBW ≥ 3 x RBW

SPAN ≥ 3 x RBW

Detector Mode = Peak

Sweep = auto couple

Trace Mode = max hold

Allow trace to fully stabilize.

Use peak marker function to determine the peak amplitude level

- Average Power (Procedure 9.2.2.2 in KDB 558074, issued 06/05/2014)

Measure the duty cycle

Set span to at least 1.5 times the OBW

RBW = 1-5 % of the OBW, not to exceed 1 MHz.

VBW ≥ 3 x RBW.

Number of points in sweep ≥ 2 x span / RBW. (This gives bin-to-bin spacing ≤ RBW/2, so that narrowband signals are not lost between frequency bins.)

Sweep time = auto.

Detector = RMS(i.e., power averaging)

Do not use sweep triggering. Allow the sweep to "free run".

Trace average at least 100 traces in power averaging(RMS) mode.

Compute power by integrating the spectrum across the OBW of the signal using the instrument's band

power measurement function with band limits set equal to the OBW band edges.

Sample Calculation

Output Power = Reang Value + ATT loss + Cable loss(1 ea)

Output Power = 10 dBm + 10 dB + 0.8 dB = 21.0 dBm

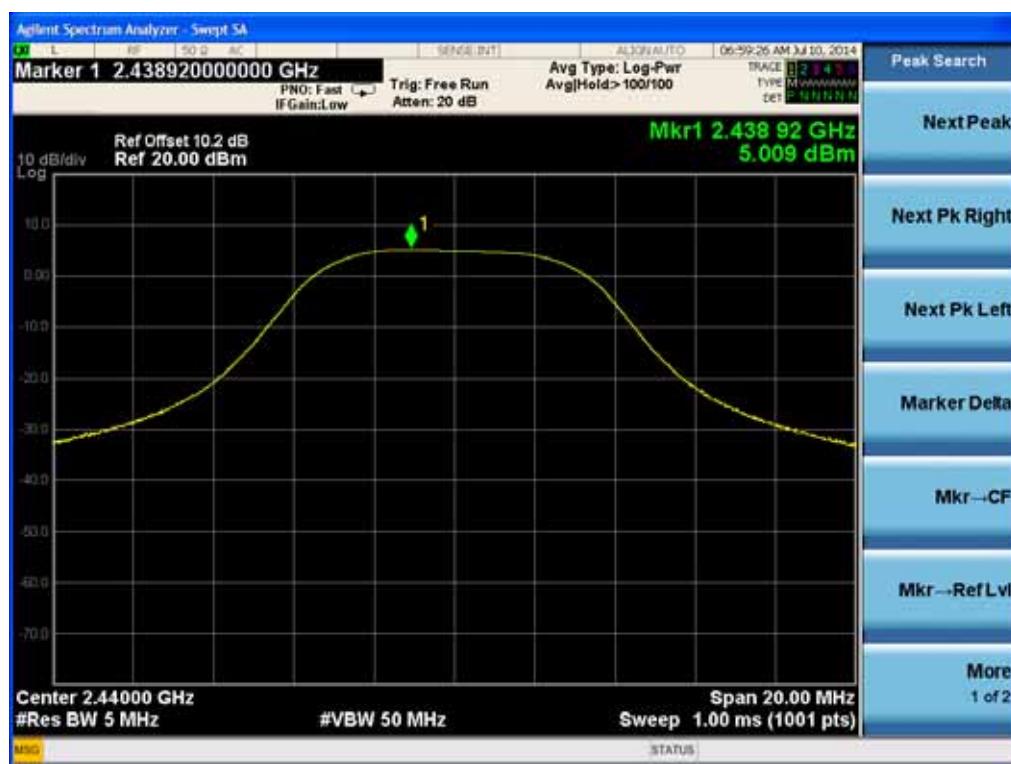
Note :

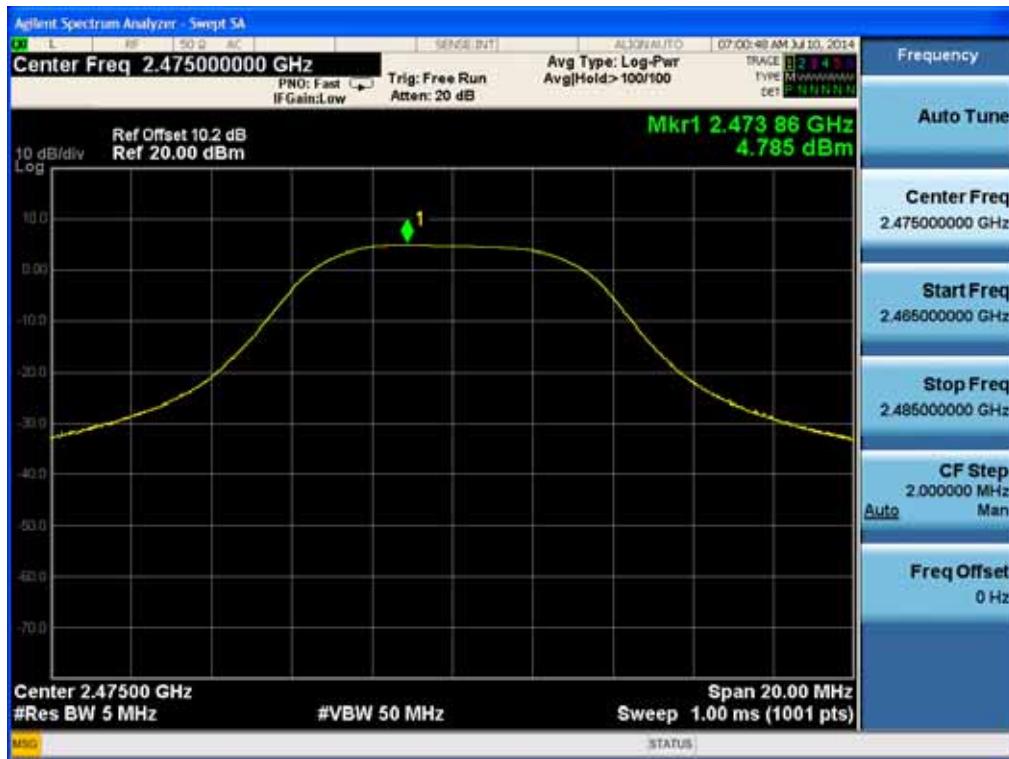
1. Spectrum reang values are not plot data. The power results in plot is already inclung the actual values of loss for the attenuator and cable combination.
2. Spectrum offset = Attenuator loss + Cable loss
3. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. So, 10.2 dB is offset for 2.4 GHz Band.

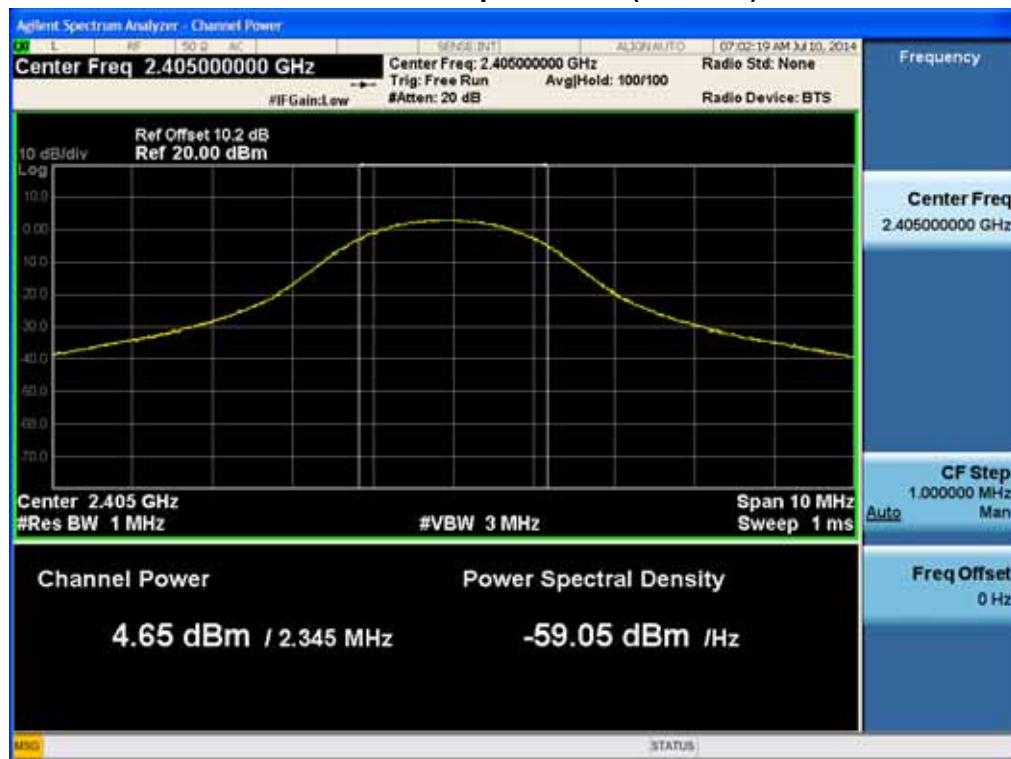
TEST RESULTS-Peak**Conducted Output Power Measurements**

Zigbee Mode		Measured Power(dBm)	Limit (dBm)
Frequency[MHz]	Channel No.		
2405	11	5.33	30
2440	18	5.01	30
2475	25	4.79	30

TEST RESULTS-Average**Conducted Output Power Measurements**


Zigbee Mode		Measured Power(dBm)	Limit (dBm)
Frequency[MHz]	Channel No.		
2405	11	4.65	30
2440	18	4.34	30
2475	25	4.04	30


RESULT PLOTS-Peak



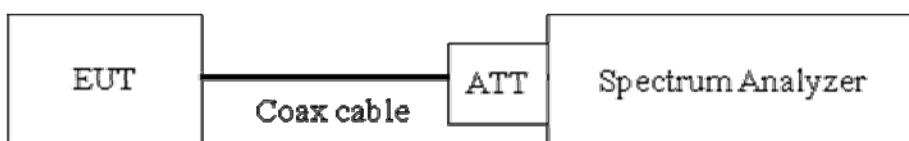
Conducted Output Power (Low-CH)

Conducted Output Power (Mid-CH)

Conducted Output Power (High-CH)

RESULT PLOTS-Average**Conducted Output Power (Low-CH)****Conducted Output Power (Mid-CH)**

Conducted Output Power (High-CH)


8.4 POWER SPECTRAL DENSITY

Test Requirements and limit, §15.247(e)

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

Minimum Standard – the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST CONFIGURATION

TEST PROCEDURE

We tested according to Procedure 10.2 in KDB 558074, issued 06/05/2014

The spectrum analyzer is set to :

Set analyzer center frequency to DTS channel center frequency.

Span = 1.5 times the DTS channel bandwidth.

RBW = 3 kHz ≤ RBW ≤ 100 kHz.

VBW ≥ 3 x RBW.

Sweep = auto couple

Detector = peak

Trace Mode = max hold

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Sample Calculation

PSD = Reading Value + ATT loss + Cable loss(1 ea)

Output Power = -5 dBm + 10 dB + 0.8 dB = 5.8 dBm

Note :

1. Spectrum reading values are not plot data. The PSD results in plot is already including the actual values of loss for the attenuator and cable combination.
2. Spectrum offset = Attenuator loss + Cable loss
3. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. So, 10.2 dB is offset for 2.4 GHz Band.

TEST RESULTS**Conducted Power Density Measurements**

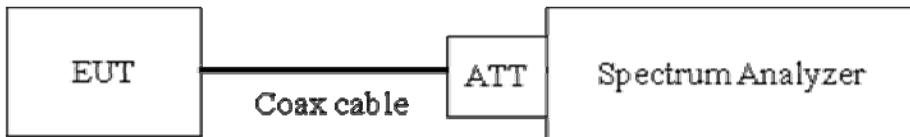
Zigbee Mode		Test Result		
Frequency[MHz]	Channel No.	PSD (dBm)	Limit (dBm)	Pass/Fail
2405	11	-9.247	8	Pass
2440	18	-10.653	8	Pass
2475	25	-10.830	8	Pass

RESULT PLOTS

Power Spectral Density (Low-CH)

Power Spectral Density (Mid-CH)

Power Spectral Density (High-CH)


8.5 OUT OF BAND EMISSIONS AT THE BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS

Test Requirements and limit, §15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or gitaly modulated intentional raotor is operating, the rao frequency power that is produced by the intentional raotor shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a raated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In adtion, raated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the raated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit : 20 dBc

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. (Procedure 11.0 in KDB 558074, issued 06/05/2014)

RBW = 100 kHz

VBW \geq 3 x RBW

Set span to encompass the spectrum to be examined

Detector = Peak

Trace Mode = max hold

Sweep time = auto couple

Ensure that the number of measurement points \geq Span/RBW

Allow trace to fully stabilize.

Use peak marker function to determine the maximum amplitude level.

Measurements are made over the 30 MHz to 10th harmonic range with the transmitter set to the lowest, middle, and highest channels.

Note :

1. The band edge results in plot is already inclung the actual values of loss for the attenuator and cable

combination.

2. Spectrum offset = Attenuator loss + Cable loss
3. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. So, 10.2 dB is offset for 2.4 GHz Band.
4. In case of conducted spurious emissions test, please check factors blow table.
5. In order to simplify the report, attached plots were only the worst case channel and data rate.

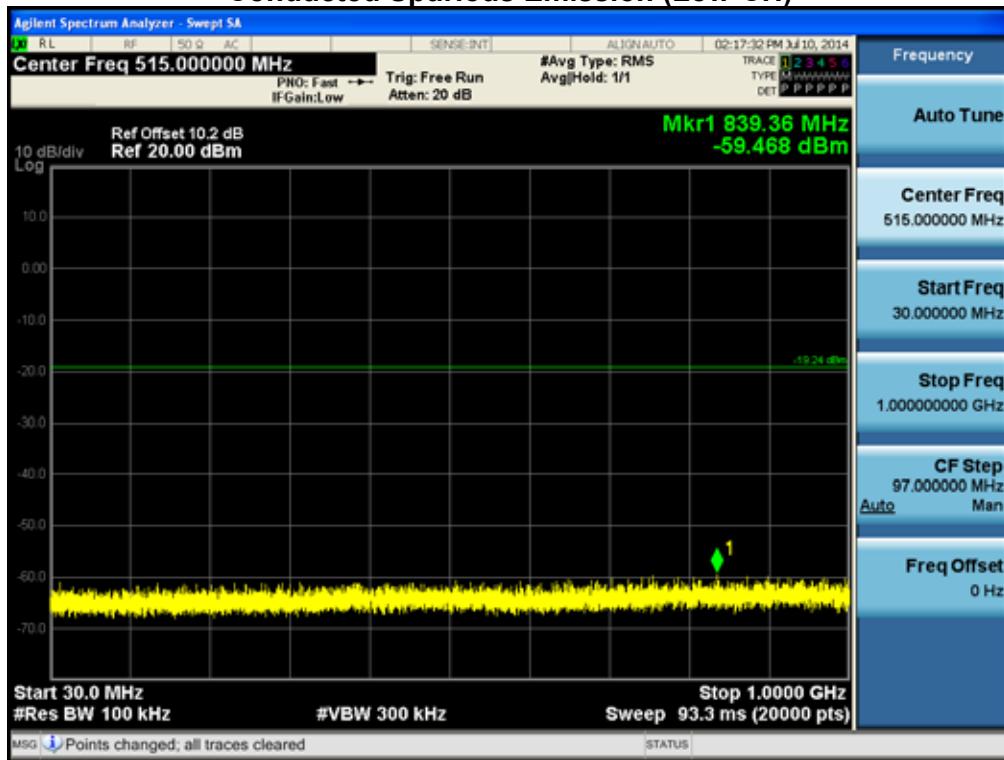
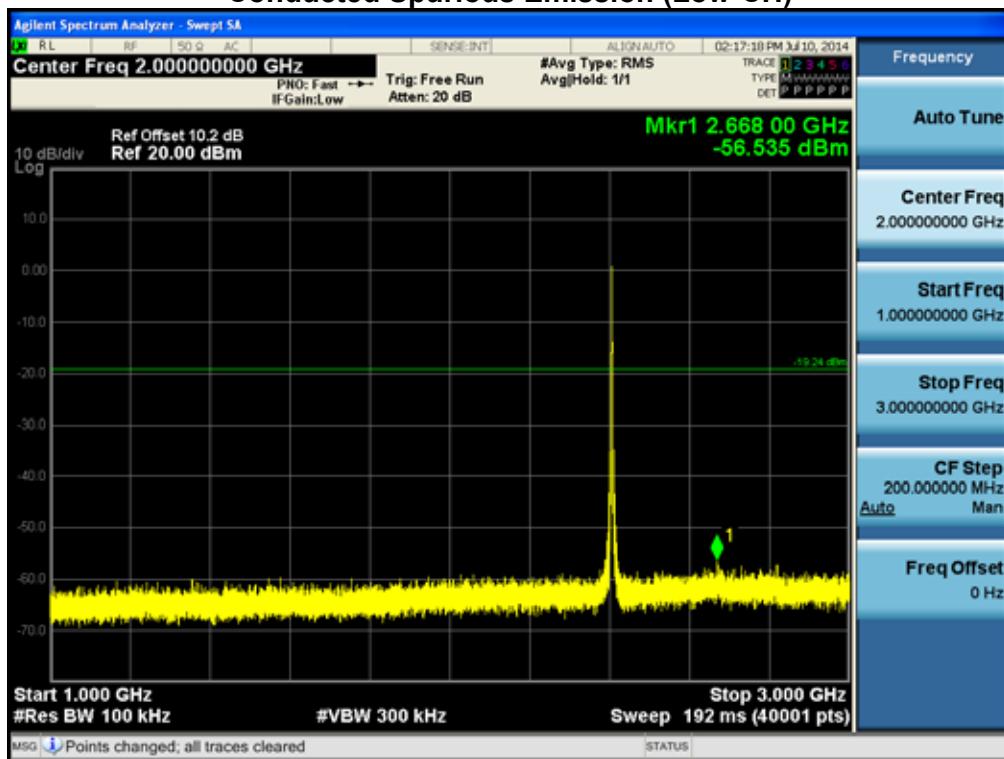
FACTORS FOR FREQUENCY

Freq(MHz)	Factor(dB)
30	9.95
100	10.01
200	10.03
300	10.04
400	10.05
500	10.04
600	10.03
700	10.09
800	10.10
900	10.08
1000	10.11
2000	10.25
2400*	10.19
2500*	10.26
3000	10.27
4000	10.22
5000	10.48
5700*	10.42
5800*	10.48
6000	10.48
7000	10.57
8000	10.45
9000	10.50
10000	10.64
11000	10.69
12000	10.75
13000	10.92

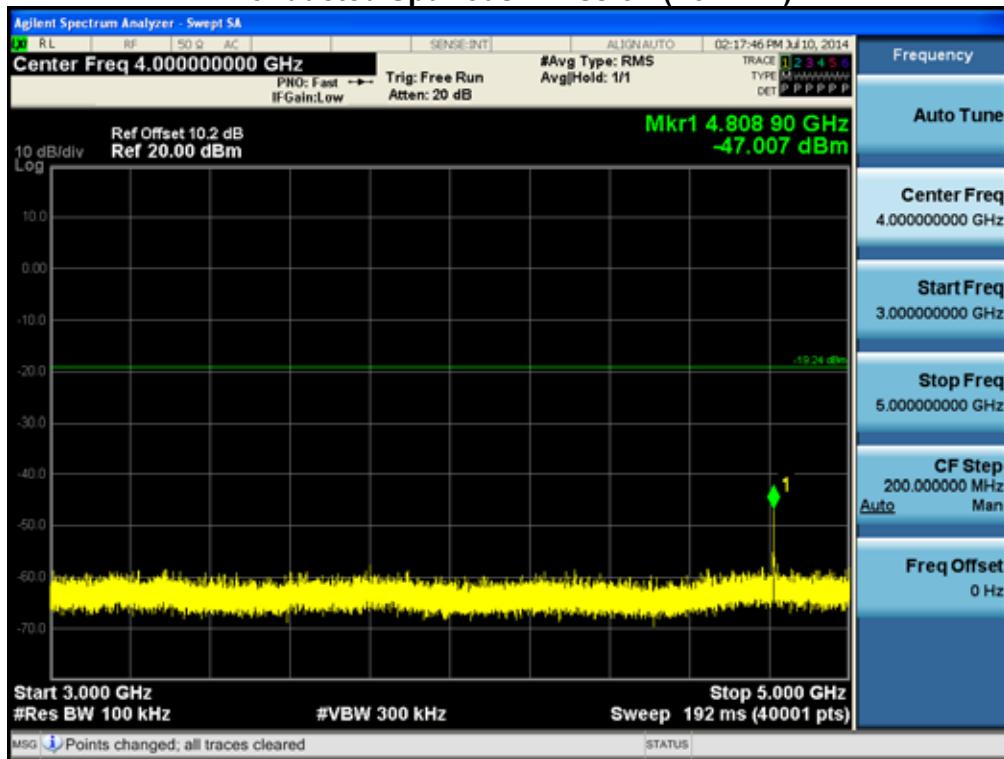
14000	11.90
15000	11.00
16000	11.03
17000	10.93
18000	10.96
19000	10.85
20000	12.11
21000	11.17
22000	10.99
23000	11.12
24000	11.10
25000	11.42

Note : 1. '*' is fundamental frequency range.

2. Factor = Cable loss + Attenuator loss

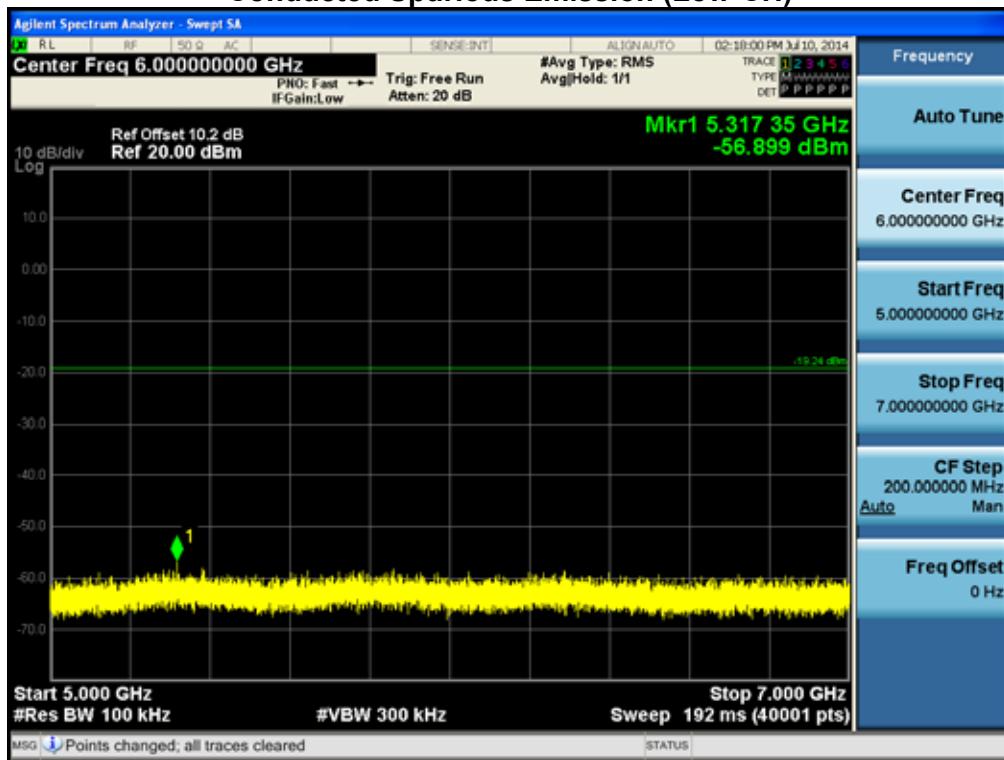


RESULT PLOTS

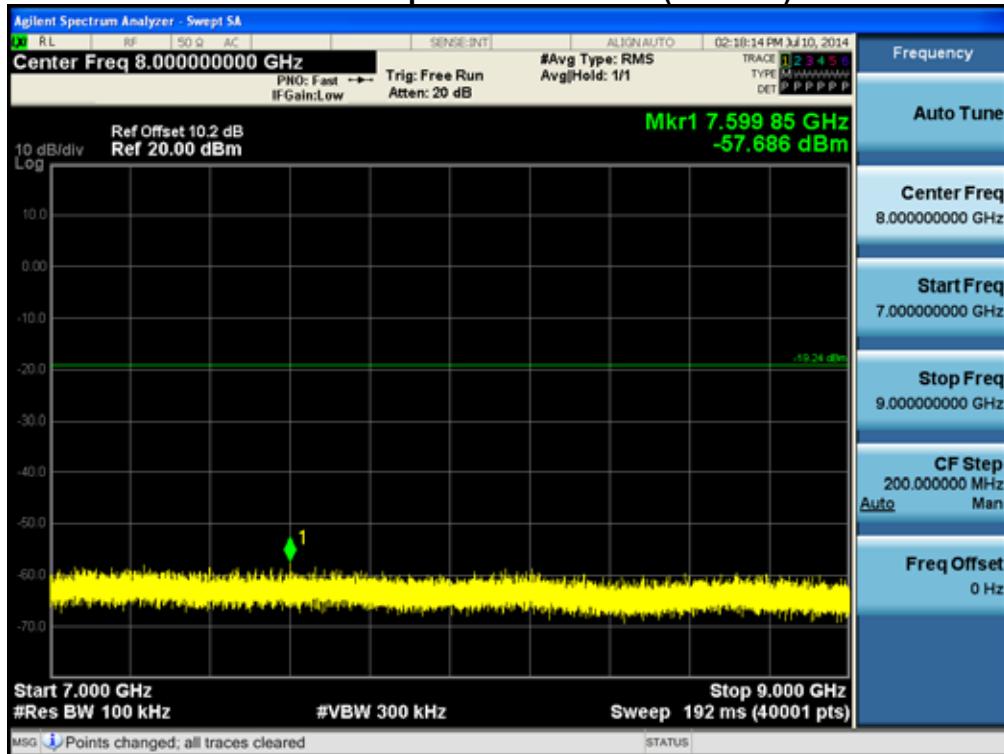
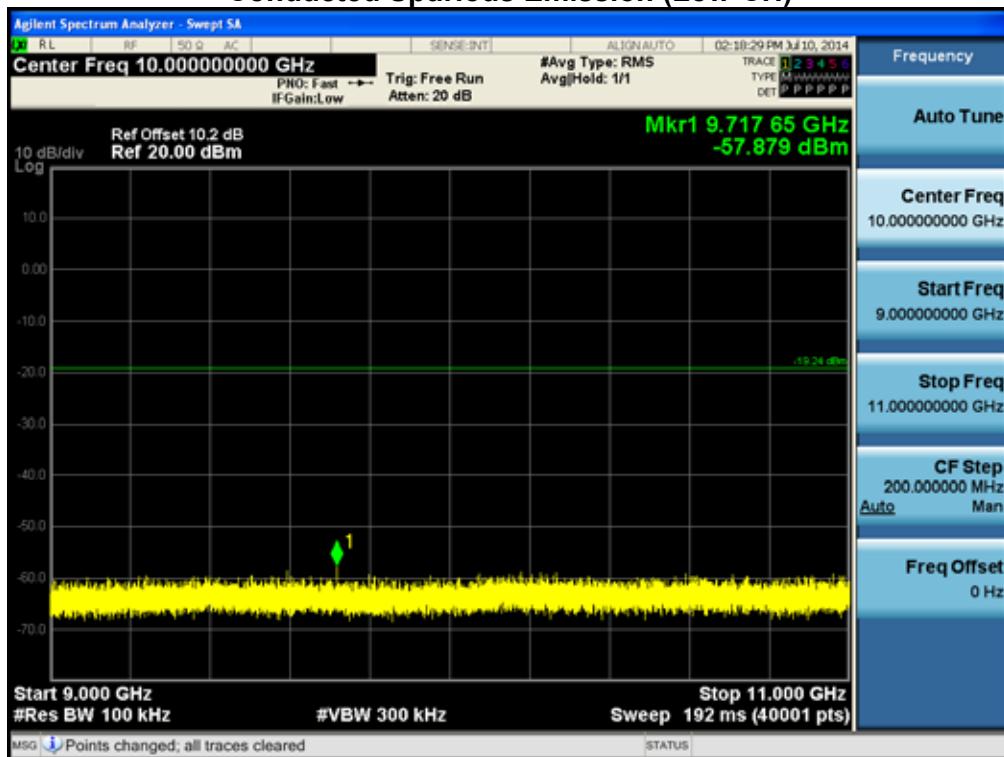
BandEdge (Low-CH)


BandEdge (High-CH)

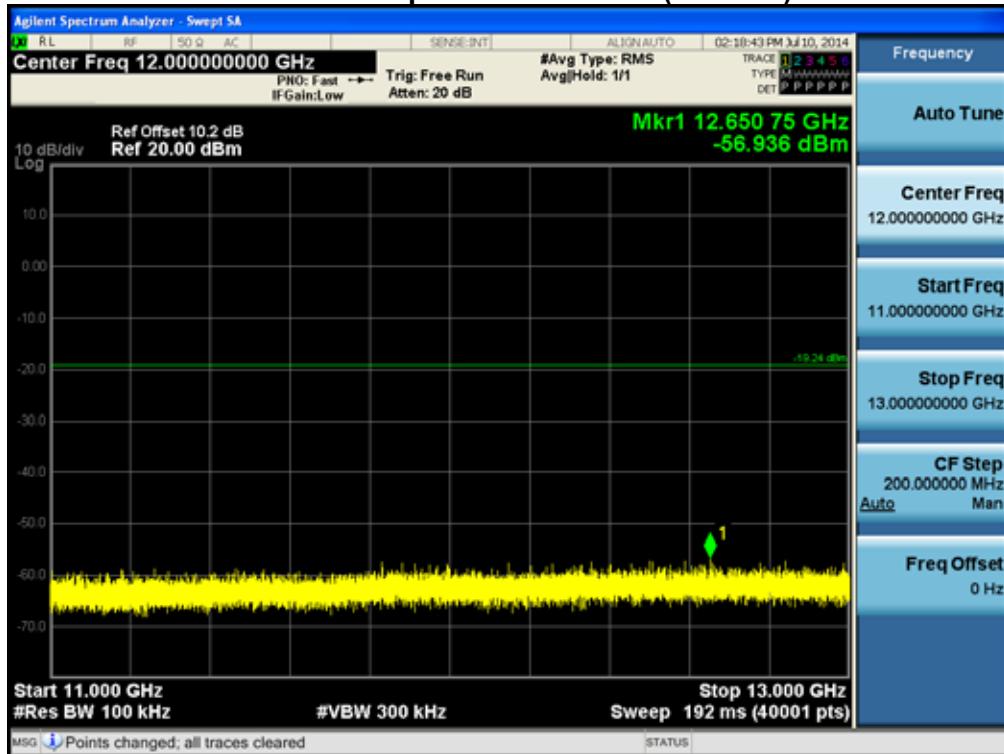
30 MHz ~ 1 GHz
Conducted Spurious Emission (Low-CH)

1 GHz ~ 3 GHz
Conducted Spurious Emission (Low-CH)


3 GHz ~ 5 GHz

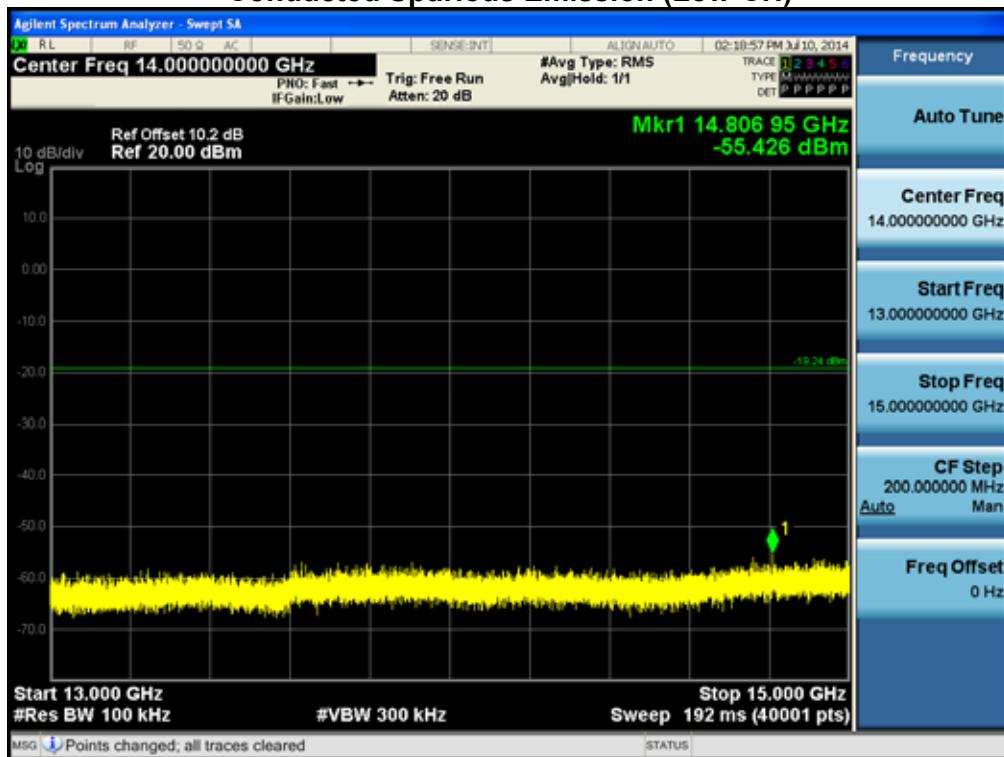


Conducted Spurious Emission (Low-CH)

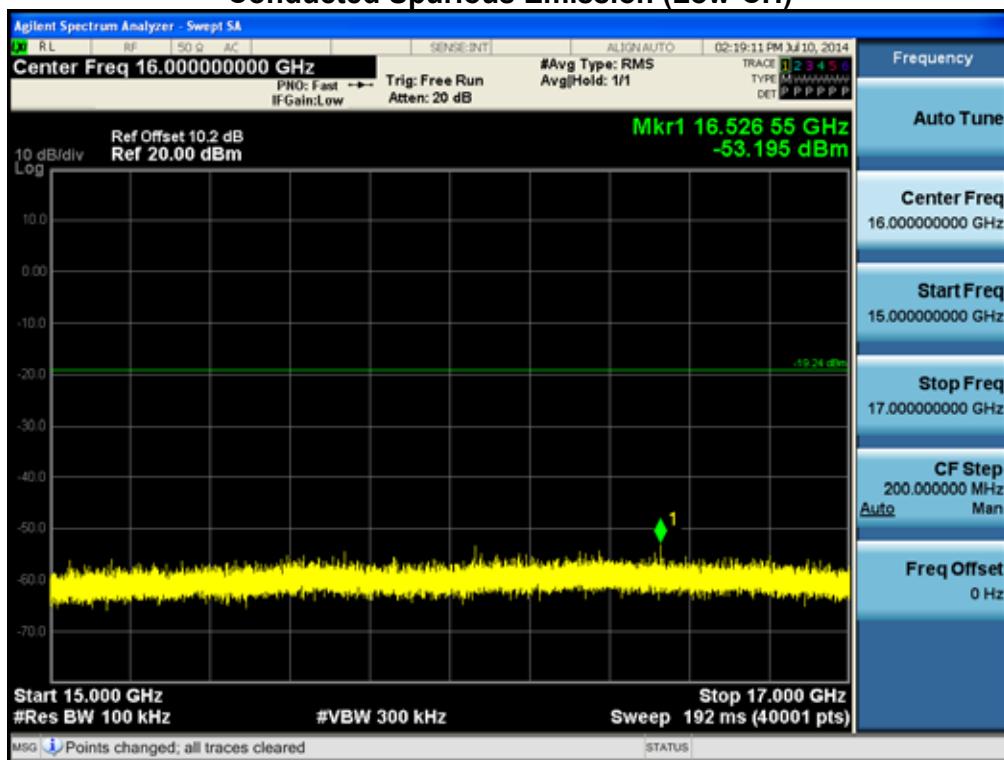
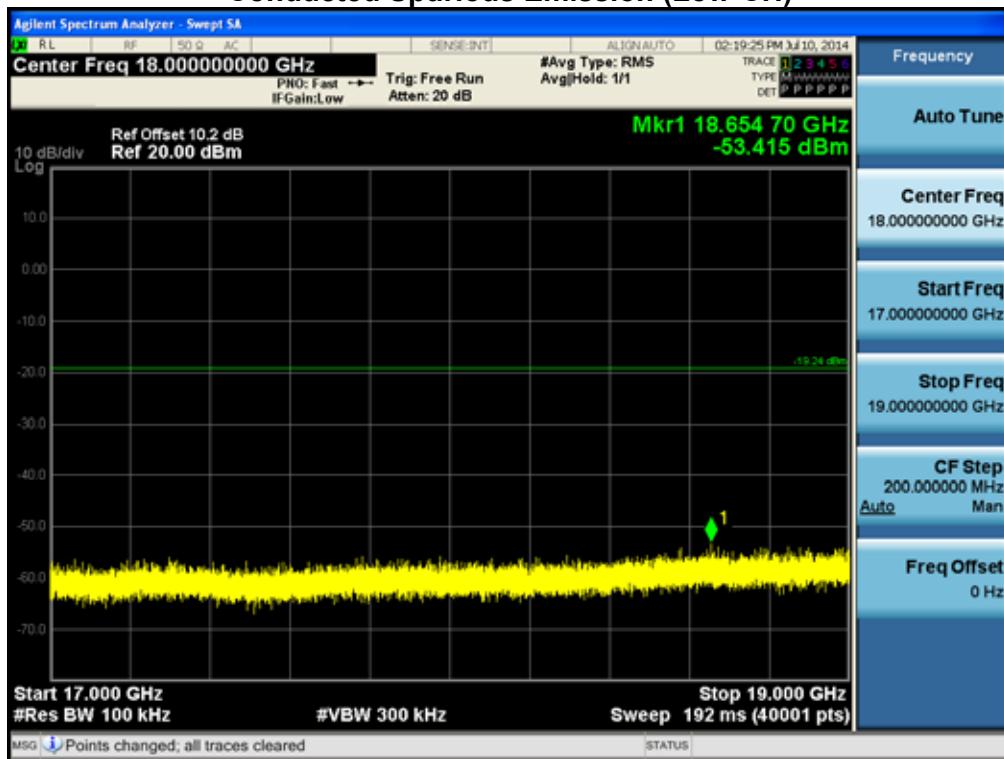
5 GHz ~ 7 GHz

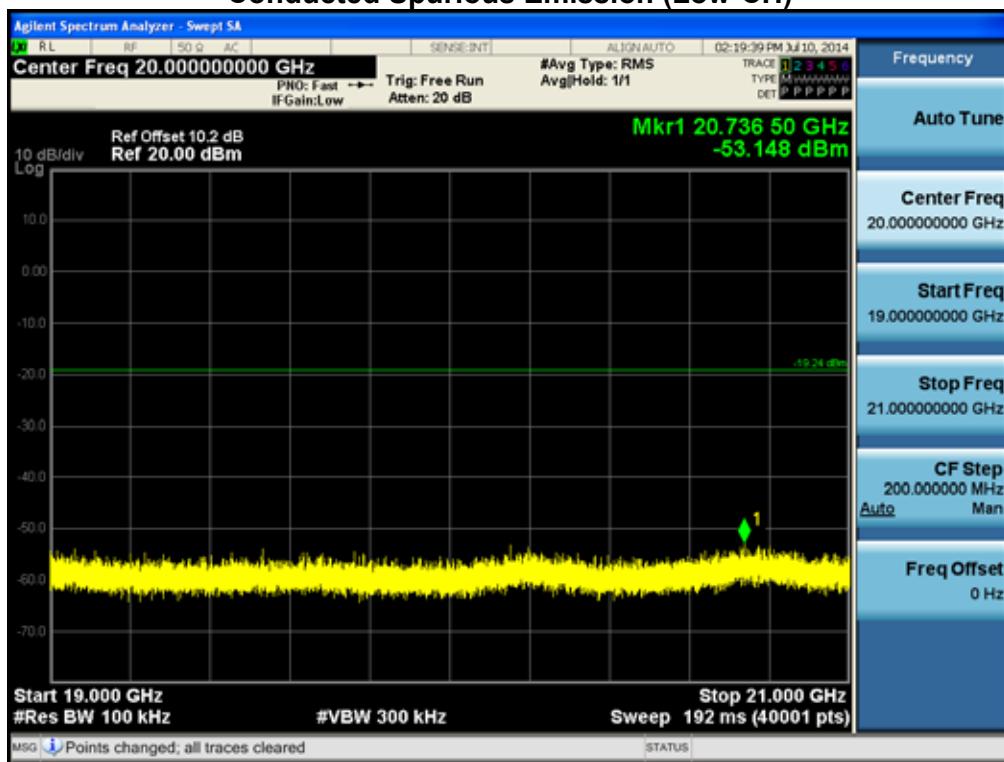
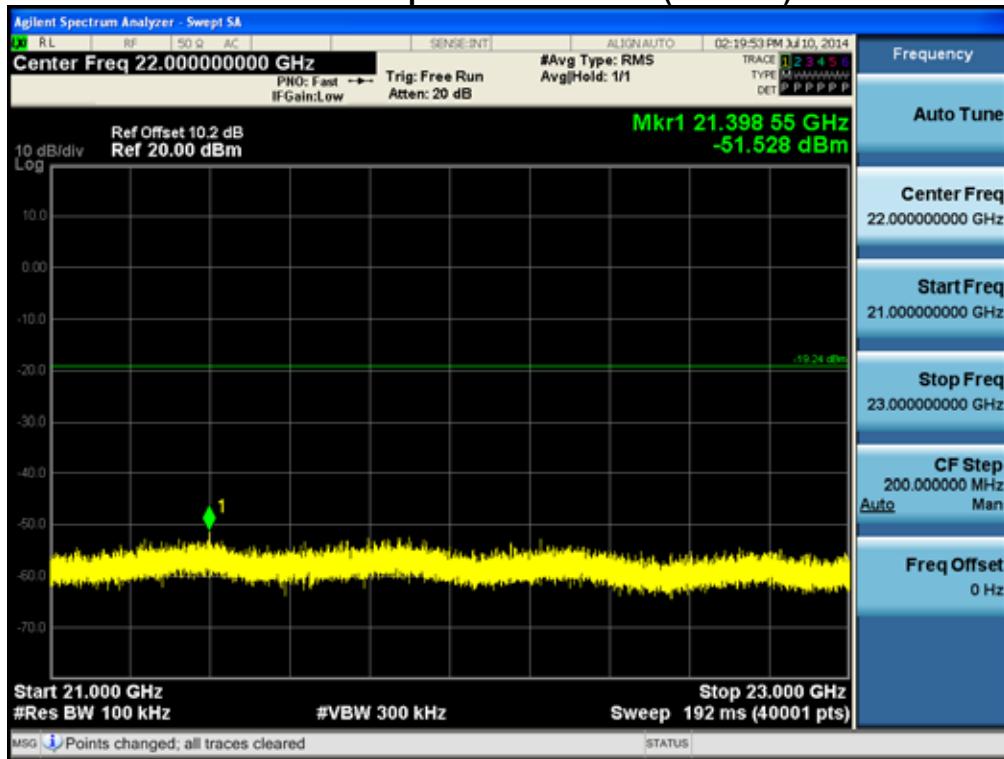

Conducted Spurious Emission (Low-CH)

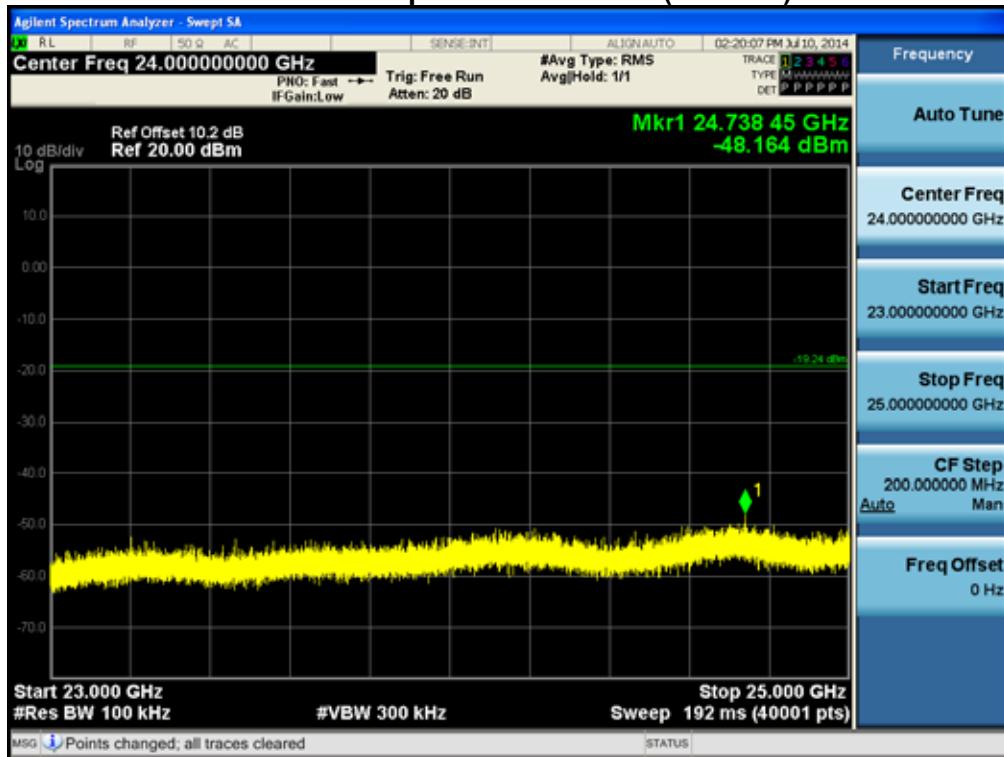
7 GHz ~ 9 GHz
Conducted Spurious Emission (Low-CH)

9 GHz ~ 11 GHz
Conducted Spurious Emission (Low-CH)

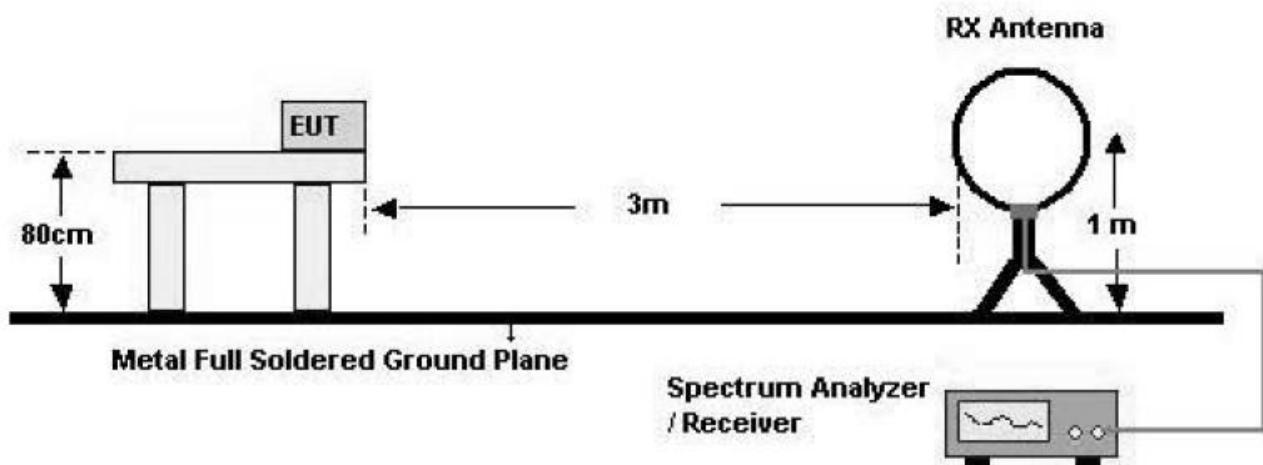
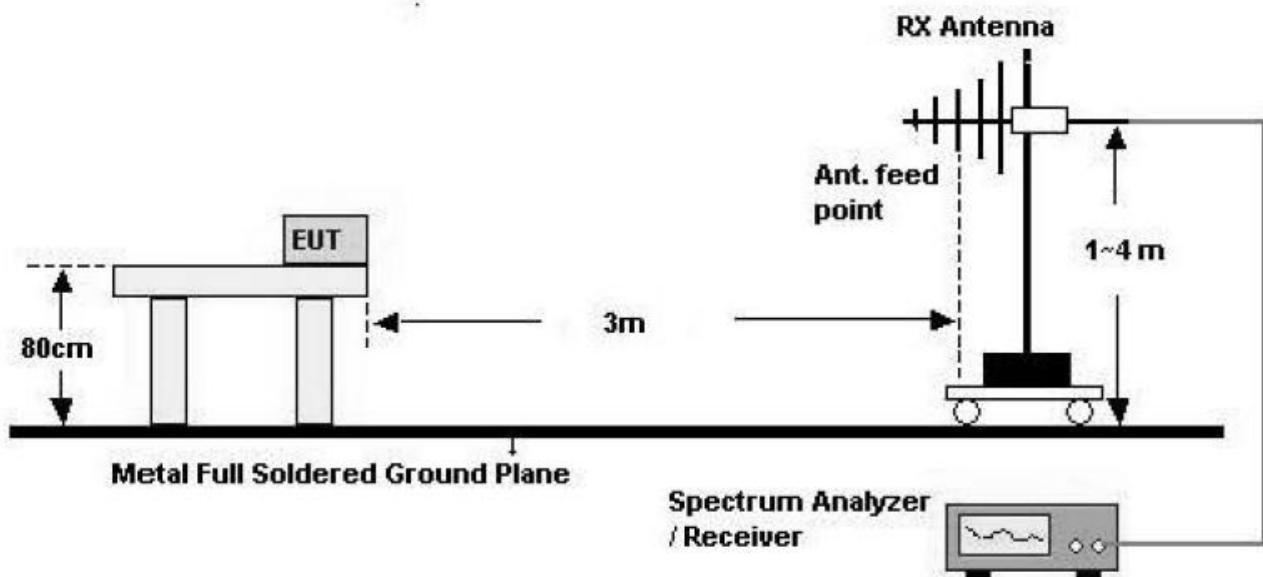

11 GHz ~ 13 GHz



Conducted Spurious Emission (Low-CH)

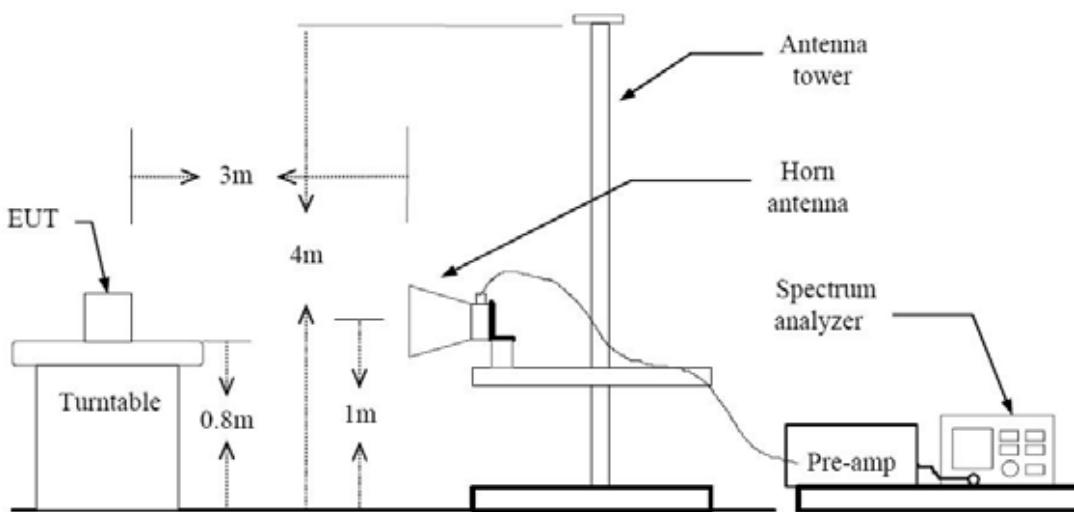




13 GHz ~ 15 GHz

Conducted Spurious Emission (Low-CH)



15 GHz ~ 17 GHz
Conducted Spurious Emission (Low-CH)

17 GHz ~ 19 GHz
Conducted Spurious Emission (Low-CH)


19 GHz ~ 21 GHz
Conducted Spurious Emission (Low-CH)

21 GHz ~ 23 GHz
Conducted Spurious Emission (Low-CH)

23 GHz ~ 25 GHz**Conducted Spurious Emission (Low-CH)**

8.6 RAATED MEASUREMENT.**8.6.1 RAATED SPURIOUS EMISSIONS.****Test Requirements and limit, §15.205, §15.209**

Frequency (MHz)	Field Strength (uV/m)	Measurement stance (m)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Test Configuration**Below 30 MHz****30 MHz - 1 GHz**

Above 1 GHz**TEST PROCEDURE USED**

Method 12.2.4 in KDB 558074, issued 06/05/2014

Spectrum Setting**- Peak**

Peak emission levels are measured by setting the instrument as follows:

RBW = cf. Table 1.

VBW \geq 3 x RBW.

Detector = Peak.

Sweep time = auto.

Trace mode = max hold.

Allow sweeps to continue until the trace stabilizes.

(Note that the required measurement time may be longer for low duty cycle applications).

Table 1 —RBW as a function of frequency

Frequency	RBW
9-150 kHz	200-300 Hz
0.15-30 MHz	9-10 kHz
30-1000 MHz	100-120 kHz
> 1000 MHz	1 MHz

- Average

Set RBW = 1 MHz

Set VBW $\geq 1/T$. (at least 100 times less than the resolution bandwidth, but no less than 10 Hz.)

Select spectrum analyzer linear splay mode.

Detector = Peak.

Sweep time = auto.

Trace mode = max hold.

Note :

1. We used the case 1 for Zigbee mode to perform the average field strength measurements for RSE and unrated band edge test.

TEST RESULTS**9 kHz – 30MHz****Operation Mode:** Normal Mode

Frequency	Reang	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin
MHz	dB μ V/m	dBm /m	dBm	(H/V)	dB μ V/m	dB μ V/m	dB
No Critical peaks found							

Notes:

1. Measuring frequencies from 9 kHz to the 30MHz.
2. The reang of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
3. stance extrapolation factor = $40 \log (\text{specific stance} / \text{test stance})$ (dB)
4. Limit line = specific Limits (dB μ V) + stance extrapolation factor
5. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

TEST RESULTS**Below 1 GHz****Operation Mode:** Normal Mode

Frequency	Reang	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin
MHz	dB μ V/m	dBm /m	dBm	(H/V)	dB μ V/m	dB μ V/m	dB
No Critical peaks found							

Notes:

1. Measuring frequencies from 30 MHz to the 1 GHz.
2. Raated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.
3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

Above 1 GHz

Operation Mode: CH Low

Frequency [MHz]	Reang [dBuV/m]	AN.+CL-AMP G [dBm]	ANT. POL [H/V]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
4810	62.53	-2.16	V	60.37	73.98	13.61	PK
4810	53.12	-2.16	V	50.96	53.98	3.02	AV
7215	50.36	7.31	V	57.67	73.98	16.31	PK
7215	39.22	7.31	V	46.53	53.98	7.45	AV
4810	59.76	-2.16	H	57.60	73.98	16.38	PK
4810	48.95	-2.16	H	46.79	53.98	7.19	AV
7215	50.21	7.31	H	57.52	73.98	16.46	PK
7215	38.88	7.31	H	46.19	53.98	7.79	AV

Operation Mode: CH Mid

Frequency [MHz]	Reang [dBuV/m]	AN.+CL-AMP G [dBm]	ANT. POL [H/V]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
4880	59.98	-1.95	V	58.03	73.98	15.95	PK
4880	50.16	-1.95	V	48.21	53.98	5.77	AV
7320	51.88	7.34	V	59.22	73.98	14.76	PK
7320	41.32	7.34	V	48.66	53.98	5.32	AV
4880	56.81	-1.95	H	54.86	73.98	19.12	PK
4880	45.91	-1.95	H	43.96	53.98	10.02	AV
7320	51.74	7.34	H	59.08	73.98	14.90	PK
7320	40.77	7.34	H	48.11	53.98	5.87	AV

Operation Mode: CH High

Frequency [MHz]	Reang [dBuV/m]	AN.+CL-AMP G [dBm]	ANT. POL [H/V]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
4950	59.89	-1.84	V	58.05	73.98	15.93	PK
4950	50.13	-1.84	V	48.29	53.98	5.69	AV
7425	51.90	7.13	V	59.03	73.98	14.95	PK
7425	41.02	7.13	V	48.15	53.98	5.83	AV
4950	56.48	-1.84	H	54.64	73.98	19.34	PK
4950	45.87	-1.84	H	44.03	53.98	9.95	AV
7425	51.83	7.13	H	58.96	73.98	15.02	PK
7425	40.63	7.13	H	47.76	53.98	6.22	AV

Notes:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
3. Raated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
4. Total = Reang Value + Antenna Factor + Cable Loss - Amp Gain
5. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

8.6.2 RAATED RESTRICTED BAND EDGES

Test Requirements and limit, §15.247(d) §15.205, §15.209

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum is operating, the rao frequency power that is produced by the intentional raator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a raated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In adtion, raated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the raated emission limits specified in section 15.209(a) (See section 15.205(c)).

External Antenna

Operation Mode	Zigbee Mode						
Operating Frequency	2405 MHz, 2475 MHz						
Channel No	11 Ch, 25 Ch						

Frequency [MHz]	Reang [dBuV/m]	A.F.+CL [dBm]	Ant. Pol. [H/V]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Detect
2390.0	25.43	31.47	H	56.90	73.98	17.08	PK
2390.0	12.55	31.47	H	44.02	53.98	9.96	AV
2390.0	26.75	31.47	V	58.22	73.98	15.76	PK
2390.0	12.89	31.47	V	44.36	53.98	9.62	AV
2483.5	29.31	31.46	H	60.77	73.98	13.21	PK
2483.5	17.59	31.46	H	49.05	53.98	4.93	AV
2483.5	29.87	31.46	V	61.33	73.98	12.65	PK
2483.5	17.87	31.46	V	49.33	53.98	4.65	AV

Notes:

1. Total = Reang Value + Antenna Factor + Cable Loss
2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

8.7 POWERLINE CONDUCTED EMISSIONS

Test Requirements and limit, §15.207

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range (MHz)	Limits (dB μ V)	
	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

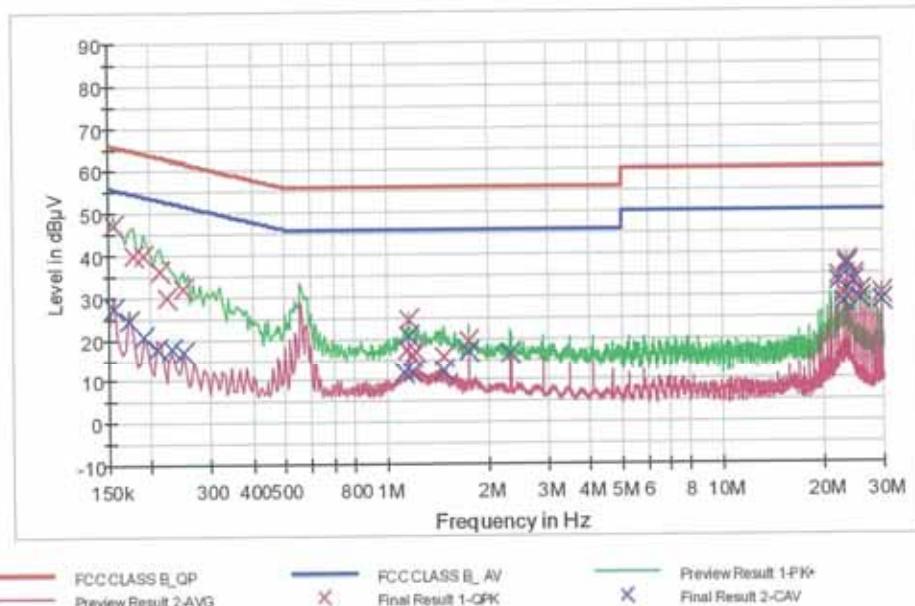
Test Configuration

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
2. The EUT is connected via LISN to a test power supply.
3. The measurement results are obtained as described below:
4. Detectors – Quasi Peak and Average Detector.
5. We are performed the AC Power Line Conducted Emission test for Ch.1 on Zigbee mode.
Because Ch.1 on Zigbee mode is worst case.

RESULT PLOTS**Conducted Emissions (Line 1)**


EMI Auto Test(2)

1 / 2

HCT TEST Report**Common Information**

EUT: MFG-G300
Manufacturer: MAXFOR
Test Site: SHIELD ROOM
Operating Conditions: ZIGBEE MODE
Operator Name: K.S. KANG

FCC CLASS B

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.154500	47.2	9.000	Off	L1	9.6	18.6	65.8
0.177000	40.1	9.000	Off	L1	9.6	24.6	64.6
0.190500	40.2	9.000	Off	L1	9.6	23.8	64.0
0.213000	36.2	9.000	Off	L1	9.6	26.9	63.1
0.222000	29.7	9.000	Off	L1	9.6	33.0	62.7
0.249000	31.8	9.000	Off	L1	9.7	30.0	61.8
1.148000	17.2	9.000	Off	L1	9.7	38.8	56.0
1.166000	24.3	9.000	Off	L1	9.7	31.7	56.0
1.193000	15.5	9.000	Off	L1	9.7	40.5	56.0
1.224500	16.7	9.000	Off	L1	9.7	39.3	56.0
1.481000	15.5	9.000	Off	L1	9.7	40.5	56.0
1.751000	19.4	9.000	Off	L1	9.8	36.6	56.0
22.163000	34.4	9.000	Off	L1	10.5	25.6	60.0
22.748000	30.4	9.000	Off	L1	10.5	29.6	60.0
23.328500	38.1	9.000	Off	L1	10.5	21.9	60.0
24.494000	34.7	9.000	Off	L1	10.6	25.3	60.0

7/11/2014

10:20:27

EMI Auto Test(2)

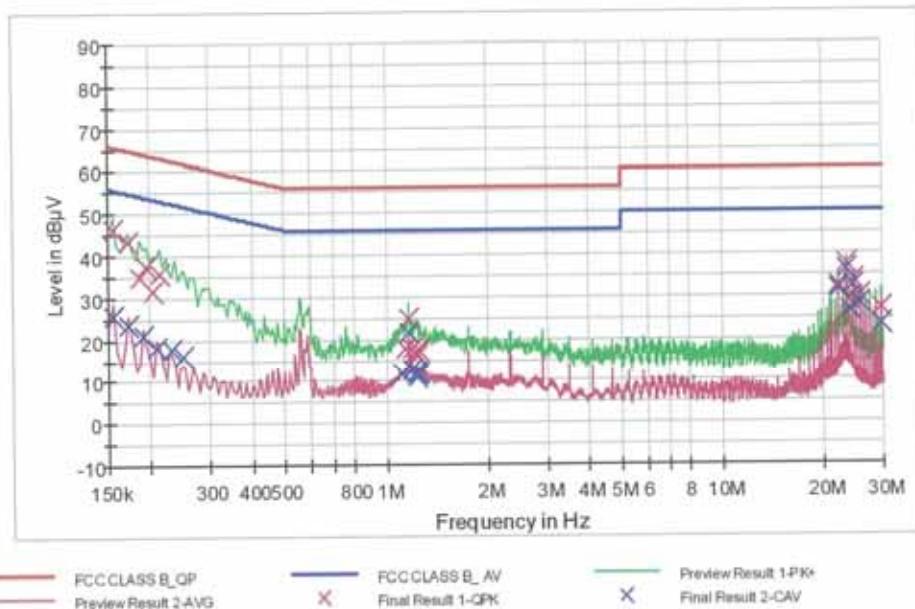
2 / 2

Frequency (MHz)	QuasiPeak (dB μ V)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)
25.664000	30.8	9.000	Off	L1	10.6	29.2	60.0
29.741000	30.3	9.000	Off	L1	10.8	29.7	60.0

Final Result 2

Frequency (MHz)	CAverage (dB μ V)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.154500	27.5	9.000	Off	L1	9.6	28.3	55.8
0.172500	24.4	9.000	Off	L1	9.6	30.4	54.8
0.190500	20.8	9.000	Off	L1	9.6	33.2	54.0
0.208500	17.7	9.000	Off	L1	9.6	35.6	53.3
0.231000	17.9	9.000	Off	L1	9.6	34.5	52.4
0.249000	16.9	9.000	Off	L1	9.7	34.9	51.8
1.130000	11.7	9.000	Off	L1	9.7	34.3	46.0
1.166000	20.5	9.000	Off	L1	9.7	25.5	46.0
1.193000	11.7	9.000	Off	L1	9.7	34.3	46.0
1.476500	12.3	9.000	Off	L1	9.7	33.7	46.0
1.751000	16.9	9.000	Off	L1	9.8	29.1	46.0
2.331500	16.6	9.000	Off	L1	9.8	29.4	46.0
22.163000	33.5	9.000	Off	L1	10.5	16.5	50.0
22.748000	28.1	9.000	Off	L1	10.5	21.9	50.0
23.328500	37.0	9.000	Off	L1	10.5	13.0	50.0
24.494000	33.4	9.000	Off	L1	10.6	16.6	50.0
25.659500	29.1	9.000	Off	L1	10.6	20.9	50.0
29.741000	28.6	9.000	Off	L1	10.8	21.4	50.0

Conducted Emissions (Line 2)


EMI Auto Test(2)

1 / 2

HCT TEST Report**Common Information**

EUT: MFG-G300
Manufacturer: MAXFOR
Test Site: SHIELD ROOM
Operating Conditions: ZIGBEE MODE
Operator Name: KS. KANG

FCC CLASS B

Final Result 1

Frequency (MHz)	QuasiPeak (dB μ V)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.154500	46.4	9.000	Off	N	9.6	19.4	65.8
0.172500	43.4	9.000	Off	N	9.7	21.4	64.8
0.186000	34.7	9.000	Off	N	9.7	29.5	64.2
0.195000	37.6	9.000	Off	N	9.7	26.2	63.8
0.204000	31.5	9.000	Off	N	9.7	31.9	63.4
0.213000	35.9	9.000	Off	N	9.7	27.2	63.1
1.139000	17.7	9.000	Off	N	9.7	38.3	56.0
1.166000	24.9	9.000	Off	N	9.7	31.1	56.0
1.188500	17.6	9.000	Off	N	9.7	38.4	56.0
1.224500	16.8	9.000	Off	N	9.7	39.2	56.0
1.238000	16.1	9.000	Off	N	9.7	39.9	56.0
1.247000	17.2	9.000	Off	N	9.7	38.8	56.0
22.158500	32.3	9.000	Off	N	10.4	27.7	60.0
23.328500	37.4	9.000	Off	N	10.4	22.6	60.0
23.909000	29.0	9.000	Off	N	10.4	31.0	60.0
24.494000	33.6	9.000	Off	N	10.4	26.4	60.0

7/11/2014

10:31:38

EMI Auto Test(2)

2 / 2

Frequency (MHz)	QuasiPeak (dB μ V)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)
25.664000	29.9	9.000	Off	N	10.4	30.1	60.0
29.736500	27.0	9.000	Off	N	10.5	33.0	60.0

Final Result 2

Frequency (MHz)	CAverage (dB μ V)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.154500	25.7	9.000	Off	N	9.6	30.1	55.8
0.172500	23.6	9.000	Off	N	9.7	31.2	54.8
0.190500	21.1	9.000	Off	N	9.7	32.9	54.0
0.208500	18.3	9.000	Off	N	9.7	35.0	53.3
0.231000	17.6	9.000	Off	N	9.7	34.8	52.4
0.249000	15.9	9.000	Off	N	9.7	35.9	51.8
1.112000	11.8	9.000	Off	N	9.7	34.2	46.0
1.166000	21.3	9.000	Off	N	9.7	24.7	46.0
1.188500	12.6	9.000	Off	N	9.7	33.4	46.0
1.224500	11.8	9.000	Off	N	9.7	34.2	46.0
1.238000	10.9	9.000	Off	N	9.7	35.1	46.0
1.247000	11.9	9.000	Off	N	9.7	34.1	46.0
22.158500	31.6	9.000	Off	N	10.4	18.4	50.0
23.328500	36.1	9.000	Off	N	10.4	13.9	50.0
23.999000	26.4	9.000	Off	N	10.4	23.6	50.0
24.494000	32.6	9.000	Off	N	10.4	17.4	50.0
25.659500	28.1	9.000	Off	N	10.4	21.9	50.0
29.741000	23.1	9.000	Off	N	10.5	26.9	50.0

9. LIST OF TEST EQUIPMENT

9.1 LIST OF TEST EQUIPMENT(Conducted Test)

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Calibration Due	Serial No.
Rohde & Schwarz	ENV216/ LISN	01/29/2014	Annual	01/29/2015	100073
Agilent	E4440A/ Spectrum Analyzer	04/09/2014	Annual	04/09/2015	US45303008
Agilent	N9020A/ SIGNAL ANALYZER	05/23/2014	Annual	05/23/2015	MY51110063
Agilent	N1911A/Power Meter	01/24/2014	Annual	01/24/2015	MY45100523
*Agilent	*N1921A /POWER SENSOR	07/09/2014	Annual	07/09/2015	MY45241059
GITAL	EP-3010 /DC POWER SUPPLY	10/29/2013	Annual	10/29/2014	3110117
ITECH	IT6720 / DC POWER SUPPLY	11/05/2013	Annual	11/05/2014	0100021562870011 99
Agilent	8493C / Attenuator(10 dB)	07/24/2013	Annual	07/24/2014	76649

Note :*This equipment (N1921A /POWER SENSOR) is used after 07/09/2014
and actual calibration date is 07/09/2015

9.2 LIST OF TEST EQUIPMENT(Raated Test)

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Calibration Due	Serial No.
Schwarzbeck	VULB 9160/ TRILOG Antenna	12/17/2012	Biennial	12/17/2014	3150
Rohde & Schwarz	ESCI / EMI TEST RECEIVER	01/24/2014	Annual	01/24/2015	100584
HD	MA240/ Antenna Position Tower	N/A	N/A	N/A	556
EMCO	1050/ Turn Table	N/A	N/A	N/A	114
HD GmbH	HD 100/ Controller	N/A	N/A	N/A	13
HD GmbH	KMS 560/ SlideBar	N/A	N/A	N/A	12
Rohde & Schwarz	SCU-18/ Signal Contioning Unit	09/10/2013	Annual	09/10/2014	10094
CERNEX	CBL18265035 / POWER AMP	07/24/2013	Annual	07/24/2014	22966
Schwarzbeck	BBHA 9120D/ Horn Antenna	07/05/2013	Biennial	07/05/2015	1151
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	10/30/2012	Biennial	10/30/2014	BBHA9170124
Rohde & Schwarz	FSP / Spectrum Analyzer	01/24/2014	Annual	01/24/2015	839117/011
Wainwright Instrument	WHF3.0/18G-10EF / High Pass Filter	02/03/2014	Annual	02/03/2015	F6
Wainwright Instrument	WRCJ2400/2483.5-2370/2520-60/14SS / Band Reject Filter	06/17/2014	Annual	06/17/2015	1
Rohde & Schwarz	LOOP ANTENNA	08/14/2012	Biennial	08/14/2014	100179
CERNEX	CBLU1183540 / POWER AMP	07/24/2013	Annual	07/24/2014	22964