

Prediction of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density

P = power input to the antenna

G = antenna gain

R = distance

Conducted output power:	40.00	(dBm)
	10000	(mW)
	10	(W)
Antenna gain:	5	(dBi)
Maximum antenna gain:	3.162	(numeric)
EIRP	31.62	(W)
Distance:	72	(cm)
Duty Cycle(SourceBased):	25	(%)
Frequency:	817	(MHz)
MPE Limit:	0.545	(mW/cm^2)
Power density:	0.121	(mW/cm^2)
	1.21	(W/m^2)
Margin	6.5	(dB)