Neutron Engineering Inc.\_\_

### **FCC/IC** Radio Test Report

### FCC ID: X5B-PL7624A IC: 8814A-PL7624A

This report concerns (check one) : Criginal Grant Class II Change

| Issued Date<br>Project No.<br>Equipment<br>Model Name<br>for FCC | : Sep. 13, 2012<br>: 1209C023<br>: Afterglow Remote For Wii<br><sup>:</sup> PL-7624                            |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Model Name<br>for IC                                             | : PL-7624A                                                                                                     |
| Applicant                                                        | <ul> <li>Performance Designed Products, LLC</li> <li>14144 Ventura Blvd. Suite 200, Sherman Oaks, CA</li></ul> |
| Address                                                          | 91423                                                                                                          |
| Manufacturer                                                     | <ul> <li>Performance Designed Products, LLC</li> <li>14144 Ventura Blvd. Suite 200, Sherman Oaks, CA</li></ul> |
| Address                                                          | 91423                                                                                                          |

Tested by: Neutron Engineering Inc. EMC Laboratory Date of Receipt: Sep. 03, 2012 Date of Test: Sep. 03, 2012 ~ Sep. 12, 2012

| Testing Engineer     | : | David Mao<br>(David Mao) |
|----------------------|---|--------------------------|
| Technical Manager    | : | (Leo Hung)               |
| Authorized Signatory | : | Seeren In<br>(Steven Lu) |

#### Neutron Engineering Inc.

No.3, Jinshagang 1st Road, ShiXia, Dalang Town, Dong Guan, China. TEL : (0769) 8318-3000 FAX : (0769) 8319-6000



#### Declaration

**Neutron** represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with the standards traceable to National Measurement Laboratory (**NML**) of **CHINA**, or National Institute of Standards and Technology (**NIST**) of **U.S.A**.

**Neutron**'s reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **Neutron** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **Neutron** issued reports.

**Neutron**'s reports must not be used by the client to claim product endorsement by the authorities or any agency of the Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **Neutron-self**, extracts from the test report shall not be reproduced except in full with **Neutron**'s authorized written approval.

**Neutron**'s laboratory quality assurance procedures are in compliance with the **ISO Guide 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

#### Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.



| Table of Contents                                          | Page     |
|------------------------------------------------------------|----------|
| 1. CERTIFICATION                                           | 6        |
| 2 . SUMMARY OF TEST RESULTS                                | 7        |
| 2.1 TEST FACILITY                                          | 8        |
| 2.2 MEASUREMENT UNCERTAINTY                                | 8        |
| 3 . GENERAL INFORMATION                                    | 9        |
| 3.1 GENERAL DESCRIPTION OF EUT                             | 9        |
| 3.2 DESCRIPTION OF TEST MODES                              | 11       |
| 3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING           | 11       |
| 3.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTE |          |
| 3.5 DESCRIPTION OF SUPPORT UNITS                           | 13       |
| 4. EMC EMISSION TEST                                       | 14       |
| 4.1 CONDUCTED EMISSION MEASUREMENT                         | 14       |
| 4.1.1 POWER LINE CONDUCTED EMISSION LIMITS                 | 14       |
| 4.1.2 MEASUREMENT INSTRUMENTS LIST AND SETTING             | 14       |
| 4.1.3 TEST PROCEDURE                                       | 15       |
| 4.1.4 DEVIATION FROM TEST STANDARD                         | 15       |
| 4.1.5 TEST SETUP                                           | 15       |
| 4.1.6 EUT OPERATING CONDITIONS                             | 15       |
| 4.1.7 TEST RESULTS                                         | 16       |
| 4.2 RADIATED EMISSION MEASUREMENT                          | 17       |
| 4.2.1 RADIATED EMISSION LIMITS                             | 17       |
| 4.2.2 MEASUREMENT INSTRUMENTS LIST ANS SETTING             | 18       |
| 4.2.3 TEST PROCEDURE<br>4.2.4 DEVIATION FROM TEST STANDARD | 19       |
| 4.2.5 TEST SETUP                                           | 19<br>20 |
| 4.2.6 EUT OPERATING CONDITIONS                             | 20       |
| 4.2.7 TEST RESULTS (9K-30MHZ)                              | 22       |
| 4.2.8 TEST RESULTS (BETWEEN30 – 1000 MHZ)                  | 23       |
| 4.2.9 TEST RESULTS (ABOVE 1000 MHZ)                        | 27       |
| 5 . NUMBER OF HOPPING CHANNEL                              | 45       |
| 5.1 APPLIED PROCEDURES / LIMIT                             | 45       |
| 5.1.1 MEASUREMENT INSTRUMENTS LIST AND SETTING             | 45       |
| 5.1.2 TEST PROCEDURE                                       | 45       |
| 5.1.3 DEVIATION FROM STANDARD                              | 45       |
| 5.1.4 TEST SETUP                                           | 45       |
| 5.1.5 EUT OPERATION CONDITIONS                             | 45<br>46 |
| 5.1.6 TEST RESULTS                                         | 40       |

| Neutron Engineering Inc.                                               |          |
|------------------------------------------------------------------------|----------|
| Table of Contents                                                      | Page     |
| 6 . AVERAGE TIME OF OCCUPANCY                                          | 47       |
| 6.1 APPLIED PROCEDURES / LIMIT                                         | 47       |
| 6.1.1 MEASUREMENT INSTRUMENTS LIST                                     | 47       |
| 6.1.2 TEST PROCEDURE                                                   | 47       |
| 6.1.3 DEVIATION FROM STANDARD                                          | 47       |
| 6.1.4 TEST SETUP                                                       | 48       |
| 6.1.5 EUT OPERATION CONDITIONS                                         | 48       |
| 6.1.6 TEST RESULTS                                                     | 49       |
| 7 . HOPPING CHANNEL SEPARATION MEASUREMENT                             | 55       |
| 7.1 APPLIED PROCEDURES / LIMIT                                         | 55       |
| 7.1.1 MEASUREMENT INSTRUMENTS LIST AND SETTING                         | 55       |
| 7.1.2 TEST PROCEDURE                                                   | 55       |
| 7.1.3 DEVIATION FROM STANDARD                                          | 55       |
| 7.1.4 TEST SETUP                                                       | 55       |
| 7.1.5 EUT OPERATION CONDITIONS<br>7.1.6 TEST RESULTS                   | 55<br>56 |
|                                                                        |          |
| 8 . BANDWIDTH TEST                                                     | 58       |
| 8.1 APPLIED PROCEDURES / LIMIT                                         | 58       |
| 8.1.1 MEASUREMENT INSTRUMENTS LIST AND SETTING                         | 58       |
| 8.1.2 TEST PROCEDURE                                                   | 58       |
| 8.1.3 DEVIATION FROM STANDARD                                          | 58       |
| 8.1.4 TEST SETUP                                                       | 58       |
| 8.1.5 EUT OPERATION CONDITIONS<br>8.1.6 TEST RESULTS                   | 58<br>59 |
|                                                                        |          |
| 9. PEAK OUTPUT POWER TEST                                              | 61       |
| 9.1 APPLIED PROCEDURES / LIMIT                                         | 61       |
| 9.1.1 MEASUREMENT INSTRUMENTS LIST AND SETTING<br>9.1.2 TEST PROCEDURE | 61<br>61 |
| 9.1.3 DEVIATION FROM STANDARD                                          | 61       |
| 9.1.4 TEST SETUP                                                       | 61       |
| 9.1.5 EUT OPERATION CONDITIONS                                         | 61       |
| 9.1.6 TEST RESULTS                                                     | 62       |
| 10 . ANTENNA CONDUCTED SPURIOUS EMISSION                               | 64       |
| 10.1 APPLIED PROCEDURES / LIMIT                                        | 64       |
| 10.1.1 MEASUREMENT INSTRUMENTS LIST AND SETTING                        | 64       |
| 10.1.2 TEST PROCEDURE                                                  | 64       |
| 10.1.3 DEVIATION FROM STANDARD                                         | 64       |
| 10.1.4 TEST SETUP                                                      | 64       |
| 10.1.5 EUT OPERATION CONDITIONS                                        | 64       |
| 10.1.6 TEST RESULTS                                                    | 65       |

| BTL W   | Neutron Engineering Inc |
|---------|-------------------------|
| NEUTRON | Table of Contents       |

Page

11 . EUT TEST PHOTO

71



#### **1. CERTIFICATION**

| Equipment          |   | Afterglow Remote For Wii                              |
|--------------------|---|-------------------------------------------------------|
| Brand Name         |   | Afterglow                                             |
| Model Name for FCC | : | PL-7624                                               |
| Model Name for IC  | : | PL-7624A                                              |
| Applicant          |   | Performance Designed Products, LLC                    |
| Factory            | : | Performance Designed Products, LLC                    |
| Address            | : | 14144 Ventura Blvd. Suite 200, Sherman Oaks, CA 91423 |
| Date of Test       | : | Sep. 03, 2012 ~ Sep. 12, 2012                         |
| Test Item          | : | ENGINEERING SAMPLE                                    |
| Standards          | : | FCC Part15, Subpart C(15.247) / ANSI C63.4 : 2009     |
|                    |   | FCC Public Notice DA 00-705, March 30, 2000.          |
|                    |   | Canada RSS-210:2010                                   |

The above equipment has been tested and found compliance with the requirement of the relative standards by Neutron Engineering Inc. EMC Laboratory.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. NEI-FICP-1-1209C023) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of NVLAP and TAF according to the ISO-17025 quality assessment standard and technical standard(s).



#### 2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

| APPLIED STANDARD: 47 CFR Part 15, Subpart C; Canada RSS-210:2010 |                                           |                                     |          |        |  |  |
|------------------------------------------------------------------|-------------------------------------------|-------------------------------------|----------|--------|--|--|
| Standar                                                          | d Section                                 |                                     |          |        |  |  |
| RSS-210                                                          | 47 CFR<br>Part 15                         | Test Item                           | Judgment | Remark |  |  |
| RSS-GEN<br>7.2.2                                                 | 15.207                                    | Conducted Emission                  | -        | N/A    |  |  |
| RSS-210<br>Annex 8<br>(A8.1d)                                    | 15.247(d)                                 | Antenna conducted Spurious Emission | PASS     |        |  |  |
| RSS-210<br>Annex 8<br>(A8.1d)                                    | 15.247<br>(a)(1)                          | Hopping Channel Separation          | PASS     |        |  |  |
| RSS-210<br>Annex 8<br>(A8.1b)                                    | 15.247<br>(b)(1)                          | Peak Output Power                   | PASS     |        |  |  |
| RSS-210<br>Annex 8<br>(A8.1a)                                    | ex 8 15.247(d) Radiated Spurious Emission |                                     | PASS     |        |  |  |
| RSS-210<br>Annex 8<br>(A8.4(2)) 15.247<br>(a)(1)(iii)            |                                           | Number of Hopping Frequency         | PASS     |        |  |  |
| RSS-210<br>Annex 8<br>(A8.5)                                     | 15.247<br>(a)(1)(iii)                     | Dwell Time                          | PASS     |        |  |  |
| RSS-Gen<br>7.2.3                                                 | 15.205                                    | Restricted Bands                    | PASS     |        |  |  |
| RSS-210<br>Annex 8<br>(A8.5)                                     | 15.203                                    | Antenna Requirement                 | PASS     |        |  |  |

NOTE:

(1)" N/A" denotes test is not applicable in this test report

(2) According to FCC Public Notice DA 00-705, March 30, 2000.



#### 2.1 TEST FACILITY

The test facilities used to collect the test data in this report is **DG-CB03** at the location of No.3, Jinshagang 1st Road, ShiXia, Dalang Town, Dong Guan, China.523792 Neutron's test firm number for FCC 319330 Neutron's test firm number for IC 4428B-1

#### 2.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

The reported uncertainty of measurement y  $\pm$  U  $^{,}$  where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of ~k=2  $^{,}$  providing a level of confidence of approximately 95 %  $^{\circ}$ 

A. Conducted Measurement :

| Test Site | Method | Measurement Frequency Range | U , (dB) | NOTE |
|-----------|--------|-----------------------------|----------|------|
| DG-C02    | CISPR  | 150 KHz ~ 30MHz             | 1.94     |      |

#### B. Radiated Measurement :

| Test Site | Method | Measurement Frequency<br>Range | Ant.<br>H / V | U , (dB) | NOTE |
|-----------|--------|--------------------------------|---------------|----------|------|
|           |        | 30MHz ~ 200MHz                 | V             | 3.82     |      |
|           | CISPR  | 30MHz ~ 200MHz                 | Н             | 3.60     |      |
| DG-CB03   |        | 200MHz ~ 1,000MHz              | V             | 3.86     |      |
| DG-CB03   |        | 200MHz ~ 1,000MHz              | Н             | 3.94     |      |
|           |        | 1GHz~18GHz                     | V             | 3.12     |      |
|           |        | 1GHz~18GHz                     | Н             | 3.68     |      |

### Neutron Engineering Inc.

#### **3. GENERAL INFORMATION**

#### 3.1 GENERAL DESCRIPTION OF EUT

| Equipment              | Afterglow Remote For Wii                                                                                                                                                                                                    |                                       |  |  |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|--|
| Brand Name             | Afterglow                                                                                                                                                                                                                   |                                       |  |  |  |
| Model Name for FCC     | PL-7624                                                                                                                                                                                                                     |                                       |  |  |  |
| Model Name for IC      | PL-7624A                                                                                                                                                                                                                    |                                       |  |  |  |
| Model Difference       | N/A                                                                                                                                                                                                                         |                                       |  |  |  |
|                        | The EUT is a Afterglow I                                                                                                                                                                                                    | Remote For Wii.                       |  |  |  |
|                        | Operation Frequency:                                                                                                                                                                                                        | 2402~2480 MHz                         |  |  |  |
|                        | Modulation Technology:<br>Bit Rate of Transmitter                                                                                                                                                                           | GFSK(1Mbps)                           |  |  |  |
|                        | Number of Channel:                                                                                                                                                                                                          | 79 CH, Please see note 2.<br>(Page 9) |  |  |  |
| Product Description    | Antenna Designation:                                                                                                                                                                                                        | Please see note 3.(Page 9)            |  |  |  |
|                        | Antenna Gain(Peak):                                                                                                                                                                                                         | Please see note 3.(Page 9)            |  |  |  |
|                        | Output Power:                                                                                                                                                                                                               | -2.29 dBm (1Mbps)                     |  |  |  |
|                        | Based on the application, features, or specification<br>exhibited in User's Manual, the EUT is considered as an<br>ITE/Computing Device. More details of EUT technical<br>specification, please refer to the User's Manual. |                                       |  |  |  |
| Power Source           | DC voltage supplied from 2*AA size battery.                                                                                                                                                                                 |                                       |  |  |  |
| Power Rating           | DC 3V                                                                                                                                                                                                                       |                                       |  |  |  |
| Connecting I/O Port(s) | Please refer to the User's Manual                                                                                                                                                                                           |                                       |  |  |  |

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Neutron Engineering Inc.

2.

|         | Channel List       |         |                    |         |                    |  |
|---------|--------------------|---------|--------------------|---------|--------------------|--|
| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |  |
| 00      | 2402               | 27      | 2429               | 54      | 2456               |  |
| 01      | 2403               | 28      | 2430               | 55      | 2457               |  |
| 02      | 2404               | 29      | 2431               | 56      | 2458               |  |
| 03      | 2405               | 30      | 2432               | 57      | 2459               |  |
| 04      | 2406               | 31      | 2433               | 58      | 2460               |  |
| 05      | 2407               | 32      | 2434               | 59      | 2461               |  |
| 06      | 2408               | 33      | 2435               | 60      | 2462               |  |
| 07      | 2409               | 34      | 2436               | 61      | 2463               |  |
| 08      | 2410               | 35      | 2437               | 62      | 2464               |  |
| 09      | 2411               | 36      | 2438               | 63      | 2465               |  |
| 10      | 2412               | 37      | 2439               | 64      | 2466               |  |
| 11      | 2413               | 38      | 2440               | 65      | 2467               |  |
| 12      | 2414               | 39      | 2441               | 66      | 2468               |  |
| 13      | 2415               | 40      | 2442               | 67      | 2469               |  |
| 14      | 2416               | 41      | 2443               | 68      | 2470               |  |
| 15      | 2417               | 42      | 2444               | 69      | 2471               |  |
| 16      | 2418               | 43      | 2445               | 70      | 2472               |  |
| 17      | 2419               | 44      | 2446               | 71      | 2473               |  |
| 18      | 2420               | 45      | 2447               | 72      | 2474               |  |
| 19      | 2421               | 46      | 2448               | 73      | 2475               |  |
| 20      | 2422               | 47      | 2449               | 74      | 2476               |  |
| 21      | 2423               | 48      | 2450               | 75      | 2477               |  |
| 22      | 2424               | 49      | 2451               | 76      | 2478               |  |
| 23      | 2425               | 50      | 2452               | 77      | 2479               |  |
| 24      | 2426               | 51      | 2453               | 78      | 2480               |  |
| 25      | 2427               | 52      | 2454               |         |                    |  |
| 26      | 2428               | 53      | 2455               |         |                    |  |

#### 3.

Table for Filed Antenna

|   | 0.0.1 |       | in lo      |              |           |            |
|---|-------|-------|------------|--------------|-----------|------------|
| / | Ant.  | Brand | Model Name | Antenna Type | Connector | Gain (dBi) |
|   | 1     | N/A   | N/A        | PIFA         | N/A       | 1.76       |



#### 3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

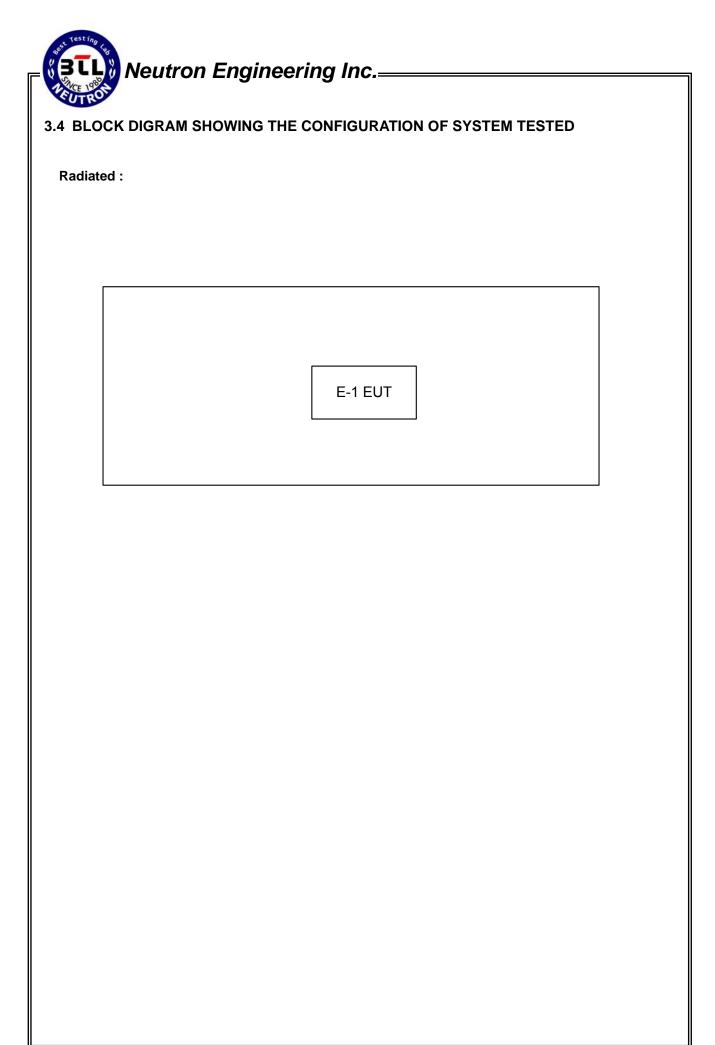
| Pretest Mode | Description      |  |  |
|--------------|------------------|--|--|
| Mode 1       | TX Mode NOTE (1) |  |  |
| Mode 2       | RX Mode NOTE (1) |  |  |

The EUT system operated these modes were found to be the worst case during the pre-scanning test as following:

| For Conducted Emission      |                                                            |  |  |
|-----------------------------|------------------------------------------------------------|--|--|
| Final Test Mode Description |                                                            |  |  |
| N/A                         | " N/A" denotes test is not applicable in this test report. |  |  |

Note: The Equipment will be connected to a controller, however that controller is powered on Equipment only without connecting to the AC Source. Therefore, AC Power Line Conducted emission is not required for this EUT.

| For Radiated Emission |                  |  |  |
|-----------------------|------------------|--|--|
| Final Test Mode       | Description      |  |  |
| Mode 1                | TX Mode NOTE (1) |  |  |
| Mode 2                | RX Mode NOTE (1) |  |  |


Note:

(1) The measurements are performed at the high, middle, low available channels.

#### 3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power r selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS

| Test software Version | Test program: OEM_FCC_EEPROM_UTILITY_TOD |          |          |  |  |
|-----------------------|------------------------------------------|----------|----------|--|--|
| Frequency             | 2402 MHz                                 | 2441 MHz | 2480 MHz |  |  |
| Parameters-1Mbps      | N/A                                      | N/A      | N/A      |  |  |





#### 3.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Item | Equipment                      | Mfr/Brand | Model/Type<br>No. | FCC ID      | Series No.  | Note |
|------|--------------------------------|-----------|-------------------|-------------|-------------|------|
| E-1  | Afterglow<br>Remote For<br>Wii | Afterglow | PL-7624A          | X5B-PL7624A | N/A         | EUT  |
| E-2  | TV                             | OLYMP     | IDDHDII           | DOC         | N/A         |      |
| E-3  | WI                             | nintendo  | RVL-001(JPN)      | POOWML-C43  | LU300854532 |      |
| E-4  | Sensor Bar                     | nintendo  | RVL-001(JPN)      | POOWML-C43  | LU300854532 |      |
| E-5  | Controller                     | nintendo  | RVL-001(JPN)      | POOWML-C43  | LU300854532 |      |

| Item | Shielded Type | Ferrite Core | Length | Note |
|------|---------------|--------------|--------|------|
| C-1  | NO            | NO           | 2.3m   |      |
| C-2  | NO            | NO           | 3.4m   |      |
| C-3  | YES           | NO           | 0.9m   |      |

Note:

(1) For detachable type I/O cable should be specified the length in m in  $\[\]$  Length  $\[\]$  column.



#### 4. EMC EMISSION TEST

#### 4.1 CONDUCTED EMISSION MEASUREMENT

#### 4.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

| FREQUENCY (MHz)  | Class A (dBuV) |         | Class B (dBuV) |           | Standard |  |
|------------------|----------------|---------|----------------|-----------|----------|--|
| FREQUENCT (MITZ) | Quasi-peak     | Average | Quasi-peak     | Average   | Stanuaru |  |
| 0.15 -0.5        | 79.00          | 66.00   | 66 - 56 *      | 56 - 46 * | CISPR    |  |
| 0.50 -5.0        | 73.00          | 60.00   | 56.00          | 46.00     | CISPR    |  |
| 5.0 -30.0        | 73.00          | 60.00   | 60.00          | 50.00     | CISPR    |  |

| 0.15 -0.5 | 79.00 | 66.00 | 66 - 56 * | 56 - 46 * | FCC |
|-----------|-------|-------|-----------|-----------|-----|
| 0.50 -5.0 | 73.00 | 60.00 | 56.00     | 46.00     | FCC |
| 5.0 -30.0 | 73.00 | 60.00 | 60.00     | 50.00     | FCC |

Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " \* " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

#### 4.1.2 MEASUREMENT INSTRUMENTS LIST AND SETTING

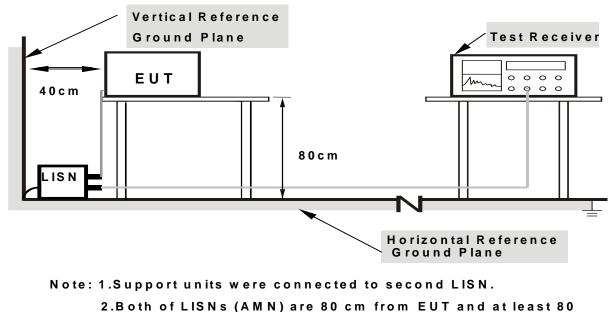
| Item | Kind of Equipment    | Manufacturer | Type No. | Serial No. | Calibrated until |
|------|----------------------|--------------|----------|------------|------------------|
| 1    | LISN                 | EMCO         | 3816/2   | 00052765   | May.04.2013      |
| 2    | LISN                 | R&S          | ENV216   | 100087     | May.04.2013      |
| 3    | Test Cable           | N/A          | C_17     | N/A        | Mar.28.2013      |
| 4    | EMI TEST<br>RECEIVER | R&S          | ESCS30   | 826547/022 | May.04.2013      |
| 5    | 50Ω Terminator       | SHX          | TF2-3G-A | 08122902   | May.04.2013      |

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of Equipment List is One Year.

#### The following table is the setting of the receiver

| Receiver Parameters | Setting  |
|---------------------|----------|
| Attenuation         | 10 dB    |
| Start Frequency     | 0.15 MHz |
| Stop Frequency      | 30 MHz   |
| IF Bandwidth        | 9 kHz    |




#### 4.1.3 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

#### 4.1.4 DEVIATION FROM TEST STANDARD

No deviation

#### 4.1.5 TEST SETUP



from other units and other metal planes

#### 4.1.6 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

The EUT is continue Transmitter/Receive data or Hopping on mode.



#### 4.1.7 TEST RESULTS

| EUT :         | Afterglow Remote For Wii | Model Name :        | PL-7624A |
|---------------|--------------------------|---------------------|----------|
| Temperature : | -                        | Relative Humidity : | -        |
| Pressure :    | -                        | Test Power :        | -        |
| Test Mode :   | N/A                      |                     |          |

Note: " N/A" denotes test is not applicable in this test report.

#### Remark

- (1) All readings are QP Mode value unless otherwise stated AVG in column of Note ... If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform In this case, a "\*" marked in AVG Mode column of Interference Voltage Measured •
- (2) Measuring frequency range from 150KHz to 30MHz.



#### 4.2 RADIATED EMISSION MEASUREMENT

#### 4.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

| Frequencies | Field Strength     | Measurement Distance |
|-------------|--------------------|----------------------|
| (MHz)       | (micorvolts/meter) | (meters)             |
| 0.009~0.490 | 2400/F(KHz)        | 300                  |
| 0.490~1.705 | 24000/F(KHz)       | 30                   |
| 1.705~30.0  | 30                 | 30                   |
| 30~88       | 100                | 3                    |
| 88~216      | 150                | 3                    |
| 216~960     | 200                | 3                    |
| Above 960   | 500                | 3                    |

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

| FREQUENCY (MHz) | (dBuV/n | n) (at 3M) |
|-----------------|---------|------------|
|                 | PEAK    | AVERAGE    |
| Above 1000      | 74      | 54         |

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

FREQUENCY RANGE OF RADIATED MEASUREMENT (For unintentional radiators)

| Highest frequency generated or<br>Upper frequency of<br>measurement used in the device<br>or on which the device operates<br>or tunes (MHz) | Range (MHz)                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Below 1.705                                                                                                                                 | 30                                                                                 |
| 1.705 – 108                                                                                                                                 | 1000                                                                               |
| 108 – 500                                                                                                                                   | 2000                                                                               |
| 500 – 1000                                                                                                                                  | 5000                                                                               |
| Above 1000                                                                                                                                  | 5 <sup>th</sup> harmonic of the highest frequency or 40 GHz,<br>whichever is lower |

Neutron Engineering Inc.\_\_\_\_\_

#### 4.2.2 MEASUREMENT INSTRUMENTS LIST ANS SETTING

| Item | Kind of<br>Equipment       | Manufacturer     | Type No.  | Serial No. | Calibrated until |
|------|----------------------------|------------------|-----------|------------|------------------|
| 1    | Antenna                    | Schwarbeck       | VULB9160  | 9160-3232  | May.25.2013      |
| 2    | Amplifier                  | HP               | 8447D     | 2944A09673 | May.04.2013      |
| 3    | Test Receiver              | R&S              | ESCI      | 100382     | May.04.2013      |
| 4    | Test Cable                 | N/A              | C-01_CB03 | N/A        | Jul.01.2013      |
| 5    | Antenna                    | ETS              | 3115      | 00075789   | May.25.2013      |
| 6    | Amplifier                  | Agilent          | 8449B     | 3008A02274 | May.04.2013      |
| 7    | Spectrum                   | Agilent          | E4408B    | US39240143 | Nov.25.2012      |
| 8    | Test Cable                 | HUBER+SUH<br>NER | C-45      | N/A        | May.02.2013      |
| 9    | Controller                 | СТ               | SC100     | N/A        | N/A              |
| 10   | Active Loop<br>Antenna     | R&S              | HFH2-Z2   | 830749/020 | May.04.2013      |
| 11   | Broad-Band<br>Horn Antenna | Schwarzbeck      | BBHA 9170 | 9170319    | Oct.13.2012      |
| 12   | Horn Antenna               | EMCO             | 3115      | 9605-4803  | May.25.2013      |

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of Equipment List is One Year.

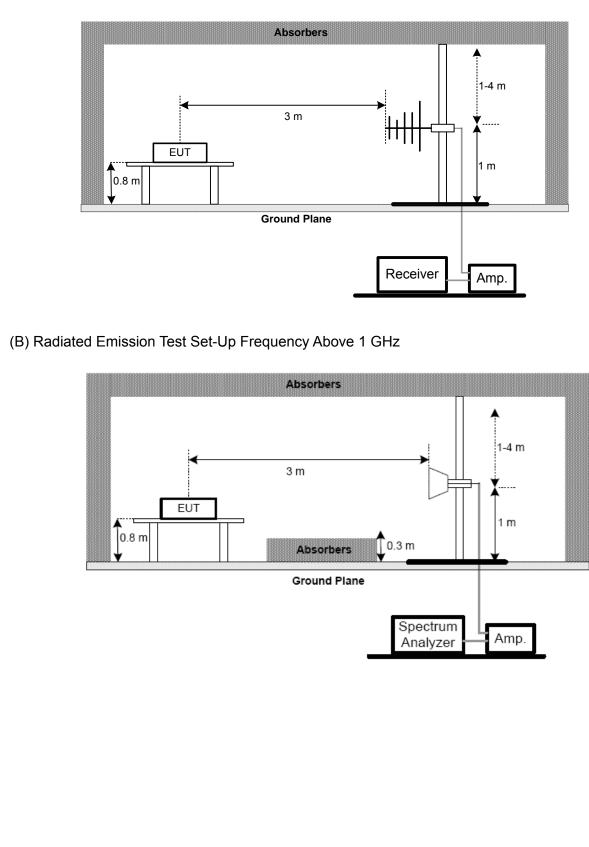
| Spectrum Parameter                    | Setting                                       |
|---------------------------------------|-----------------------------------------------|
| Attenuation                           | Auto                                          |
| Start Frequency                       | 1000 MHz                                      |
| Stop Frequency                        | 10th carrier harmonic                         |
| RB / VB (emission in restricted band) | 1 MHz / 1 MHz for Peak, Average=PK-duty cycle |

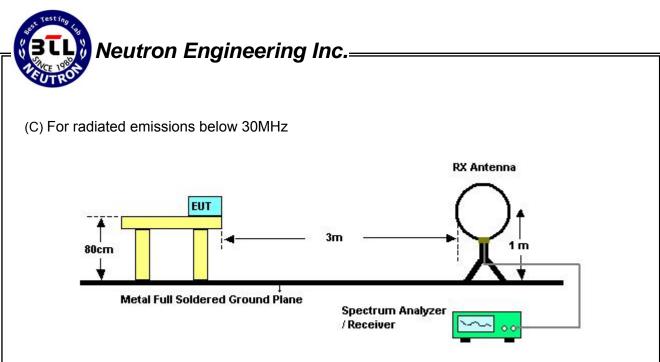
| Receiver Parameter     | Setting                           |
|------------------------|-----------------------------------|
| Attenuation            | Auto                              |
| Start ~ Stop Frequency | 9kHz~90kHz for PK/AVG detector    |
| Start ~ Stop Frequency | 90kHz~110kHz for QP detector      |
| Start ~ Stop Frequency | 110kHz~490kHz for PK/AVG detector |
| Start ~ Stop Frequency | 490kHz~30MHz for QP detector      |
| Start ~ Stop Frequency | 30MHz~1000MHz for QP detector     |



#### 4.2.3 TEST PROCEDURE

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.


#### 4.2.4 DEVIATION FROM TEST STANDARD


No deviation

# Neutron Engineering Inc.=

#### 4.2.5 TEST SETUP

(A) Radiated Emission Test Set-Up Frequency Below 1 GHz





#### 4.2.6 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **4.1.6** Unless otherwise a special operating condition is specified in the follows during the testing.

## Neutron Engineering Inc.

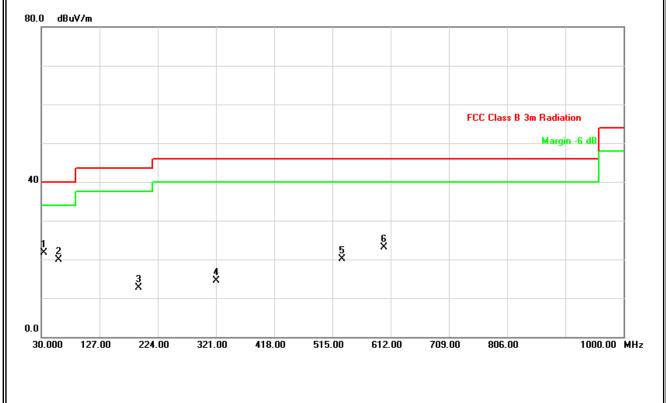
#### 4.2.7 TEST RESULTS (9K-30MHZ)

| EUT :         | Afterglow Remote For Wii | Model Name :        | PL-7624A |
|---------------|--------------------------|---------------------|----------|
| Temperature : | <b>25</b> ℃              | Relative Humidity : | 58 %     |
| Pressure :    | 1010 hPa                 | Test Voltage :      | DC 3V    |
| Test Mode :   | TX Mode                  |                     |          |

| Freq.  | Ant.   | Reading(RA) | Corr.Factor(CF) | Measured(FS) | Limits(QP) | Margin  | Note |
|--------|--------|-------------|-----------------|--------------|------------|---------|------|
| (MHz)  | 0°/90° | (dBuV)      | (dB)            | (dBuV/m)     | (dBuV/m)   | (dB)    | NOLE |
| 0.0096 | 0°     | 20.06       | 24.30           | 44.36        | 127.98     | -83.62  | AV   |
| 0.0096 | 0°     | 22.25       | 24.30           | 46.55        | 147.98     | -101.43 | PK   |
| 0.0235 | 0°     | 18.14       | 24.08           | 42.22        | 120.19     | -77.97  | AV   |
| 0.0235 | 0°     | 20.67       | 24.08           | 44.75        | 140.19     | -95.44  | PK   |
| 0.0371 | 0°     | 18.67       | 23.22           | 41.89        | 116.22     | -74.33  | AV   |
| 0.0371 | 0°     | 22.32       | 23.22           | 45.54        | 136.22     | -90.68  | PK   |
| 0.0674 | 0°     | 19.31       | 22.05           | 41.36        | 111.03     | -69.67  | AV   |
| 0.0674 | 0°     | 23.64       | 22.05           | 45.69        | 131.03     | -85.34  | PK   |
| 0.2567 | 0°     | 21.35       | 20.38           | 41.73        | 99.42      | -57.69  | AVG  |
| 0.2567 | 0°     | 23.46       | 20.38           | 43.84        | 119.42     | -75.58  | PK   |
| 1.2436 | 0°     | 24.33       | 19.58           | 43.91        | 65.71      | -21.81  | QP   |

| Freq.  | Ant.   | Reading(RA) | Corr.Factor(CF) | Measured(FS) | Limits(QP) | Margin  | Note |
|--------|--------|-------------|-----------------|--------------|------------|---------|------|
| (MHz)  | 0°/90° | (dBuV)      | (dB)            | (dBuV/m)     | (dBuV/m)   | (dB)    | NOLE |
| 0.0097 | 90°    | 16.56       | 24.30           | 40.86        | 127.90     | -87.04  | AVG  |
| 0.0097 | 90°    | 20.88       | 24.30           | 45.18        | 147.90     | -102.72 | PK   |
| 0.0254 | 90°    | 15.34       | 23.96           | 39.30        | 119.50     | -80.20  | AVG  |
| 0.0254 | 90°    | 19.34       | 23.96           | 43.30        | 139.50     | -96.20  | PK   |
| 0.0362 | 90°    | 18.05       | 23.27           | 41.32        | 116.42     | -75.10  | AVG  |
| 0.0362 | 90°    | 22.68       | 23.27           | 45.95        | 136.42     | -90.47  | PK   |
| 0.0654 | 90°    | 20.57       | 22.09           | 42.66        | 111.30     | -68.64  | AVG  |
| 0.0654 | 90°    | 23.87       | 22.09           | 45.96        | 131.30     | -85.34  | PK   |
| 0.2426 | 90°    | 21.04       | 20.41           | 41.45        | 99.91      | -58.46  | AVG  |
| 0.2426 | 90°    | 23.33       | 20.41           | 43.74        | 119.91     | -76.17  | PK   |
| 1.2528 | 90°    | 22.34       | 19.57           | 41.91        | 65.65      | -23.74  | QP   |

- (1) The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported  $\,{}_{\circ}$
- (2) Distance extrapolation factor = 40 log (specific distance / test distance) (dB); •
- (3) Limit line = specific limits (dBuV) + distance extrapolation factor. •

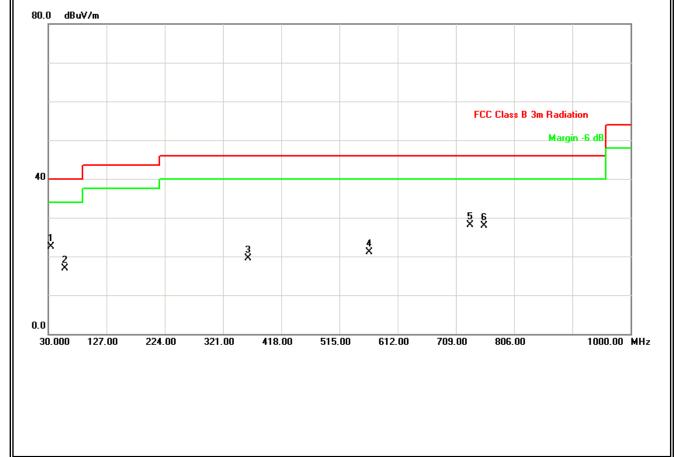

## Neutron Engineering Inc.=

#### 4.2.8 TEST RESULTS (BETWEEN30 - 1000 MHZ)

| EUT :         | Afterglow Remote For Wii | Model Name :        | PL-7624A |
|---------------|--------------------------|---------------------|----------|
| Temperature : | <b>25</b> ℃              | Relative Humidity : | 58 %     |
| Pressure :    | 1010 hPa                 | Test Voltage :      | DC 3V    |
| Test Mode :   | TX 2402MHz –CH00-1Mbps   |                     |          |

| Freq.  | Ant. | Reading(RA) | Corr.Factor(CF) | Measured(FS) | Limits(QP) | Margin  | Note |
|--------|------|-------------|-----------------|--------------|------------|---------|------|
| (MHz)  | H/V  | (dBuV)      | (dB)            | (dBuV/m)     | (dBuV/m)   | (dB)    | Note |
| 33.88  | V    | 38.52       | -16.89          | 21.63        | 40.00      | - 18.37 |      |
| 59.10  | V    | 37.55       | -17.62          | 19.93        | 40.00      | - 20.07 |      |
| 191.99 | V    | 29.68       | -17.07          | 12.61        | 43.50      | - 30.89 |      |
| 321.97 | V    | 26.60       | -12.15          | 14.45        | 46.00      | - 31.55 |      |
| 530.52 | V    | 27.41       | -7.29           | 20.12        | 46.00      | - 25.88 |      |
| 600.36 | V    | 28.66       | -5.49           | 23.17        | 46.00      | - 22.83 |      |

- (1) Reading in which marked as QP or Peak means measurements by using are Quasi-Peak Mode or Peak Mode with Detector BW=120KHz ; SPA setting in RBW=120KHz, VBW =120KHz, Swp. Time = 0.3 sec./MHz ∘
- (2) All readings are Peak unless otherwise stated QP in column of <sup>©</sup> Note <sub>□</sub> . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform ∘
- (3) Measuring frequency range from 30MHz to 1000MHz  ${\scriptstyle \circ}$
- (4) If the peak scan value lower limit more than 20dB, then this signal data does not show in table  ${\scriptstyle \circ}$



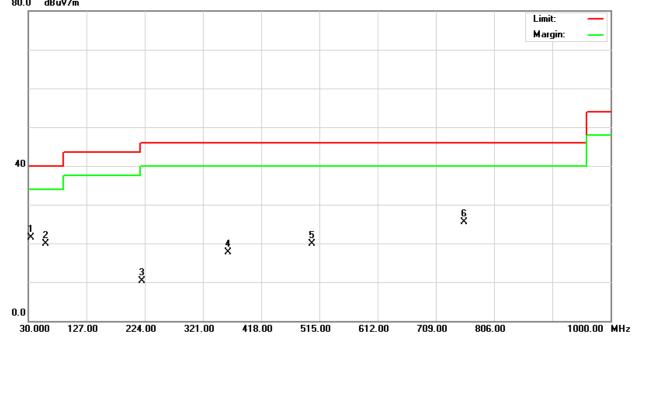



| EUT :         | Afterglow Remote For Wii | Model Name :        | PL-7624A |
|---------------|--------------------------|---------------------|----------|
| Temperature : | <b>25</b> °C             | Relative Humidity : | 58 %     |
| Pressure :    | 1010 hPa                 | Test Voltage :      | DC 3V    |
| Test Mode :   | TX 2402MHz –CH00-1Mbps   |                     |          |

| Freq.  | Ant. | Reading(RA) | Corr.Factor(CF) | Measured(FS) | Limits(QP) | Margin  | Nete |
|--------|------|-------------|-----------------|--------------|------------|---------|------|
| (MHz)  | H/V  | (dBuV)      | (dB) `          | (dBuV/m)     | (dBuV/m)   | (dB)    | Note |
| 33.88  | Н    | 39.30       | -16.89          | 22.41        | 40.00      | - 17.59 |      |
| 57.16  | Н    | 34.59       | -17.70          | 16.89        | 40.00      | - 23.11 |      |
| 362.71 | Н    | 30.65       | -11.08          | 19.57        | 46.00      | - 26.43 |      |
| 564.47 | Н    | 27.33       | -6.28           | 21.05        | 46.00      | - 24.95 |      |
| 732.28 | Н    | 32.41       | -4.40           | 28.01        | 46.00      | - 17.99 |      |
| 756.53 | Н    | 32.06       | -4.16           | 27.90        | 46.00      | - 18.10 |      |

- (1) Reading in which marked as QP or Peak means measurements by using are Quasi-Peak Mode or Peak Mode with Detector BW=120KHz ; SPA setting in RBW=120KHz, VBW =120KHz, Swp. Time = 0.3 sec./MHz ∘
- (2) All readings are Peak unless otherwise stated QP in column of 『Note』. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform  $\circ$
- (3) Measuring frequency range from 30MHz to 1000MHz  ${\scriptstyle \circ}$
- (4) If the peak scan value lower limit more than 20dB, then this signal data does not show in table  ${}_{\circ}$



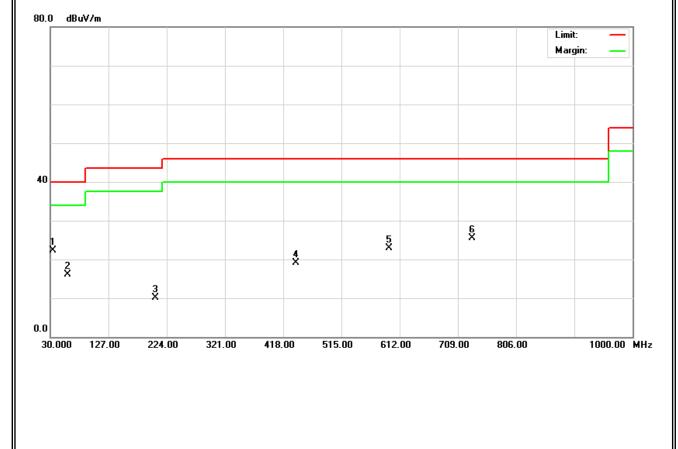



| EUT :         | Afterglow Remote For Wii | Model Name :        | PL-7624A |
|---------------|--------------------------|---------------------|----------|
| Temperature : | <b>25</b> ℃              | Relative Humidity : | 58 %     |
| Pressure :    | 1010 hPa                 | Test Voltage :      | DC 3V    |
| Test Mode :   | RX Mode 2402MHz-1Mbps    |                     |          |

| Freq.  | Ant. | Reading(RA) | Corr.Factor(CF) | Measured(FS) | Limits(QP)       | Margin  | Note |
|--------|------|-------------|-----------------|--------------|------------------|---------|------|
| (MHz)  | H/V  | (dBuV)      | (dB)            | (dBuV/m)     | n) (dBuV/m) (dB) |         | NOLE |
| 33.88  | V    | 38.42       | -16.84          | 21.58        | 40.00            | - 18.42 |      |
| 59.10  | V    | 37.43       | -17.50          | 19.93        | 40.00            | - 20.07 |      |
| 219.15 | V    | 26.10       | -15.89          | 10.21        | 46.00            | - 35.79 |      |
| 362.71 | V    | 28.10       | -10.37          | 17.73        | 46.00            | - 28.27 |      |
| 502.39 | V    | 27.20       | -7.27           | 19.93        | 46.00            | - 26.07 |      |
| 756.53 | V    | 27.91       | -2.47           | 25.44        | 46.00            | - 20.56 |      |

- (1) Reading in which marked as QP or Peak means measurements by using are Quasi-Peak Mode or Peak Mode with Detector BW=120KHz ; SPA setting in RBW=120KHz, VBW =120KHz, Swp. Time = 0.3 sec./MHz •
- (2) All readings are Peak unless otherwise stated QP in column of "Note ]. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform •
- (3) Measuring frequency range from 30MHz to 1000MHz  $_{\circ}$
- (4) If the peak scan value lower limit more than 20dB, then this signal data does not show in table •





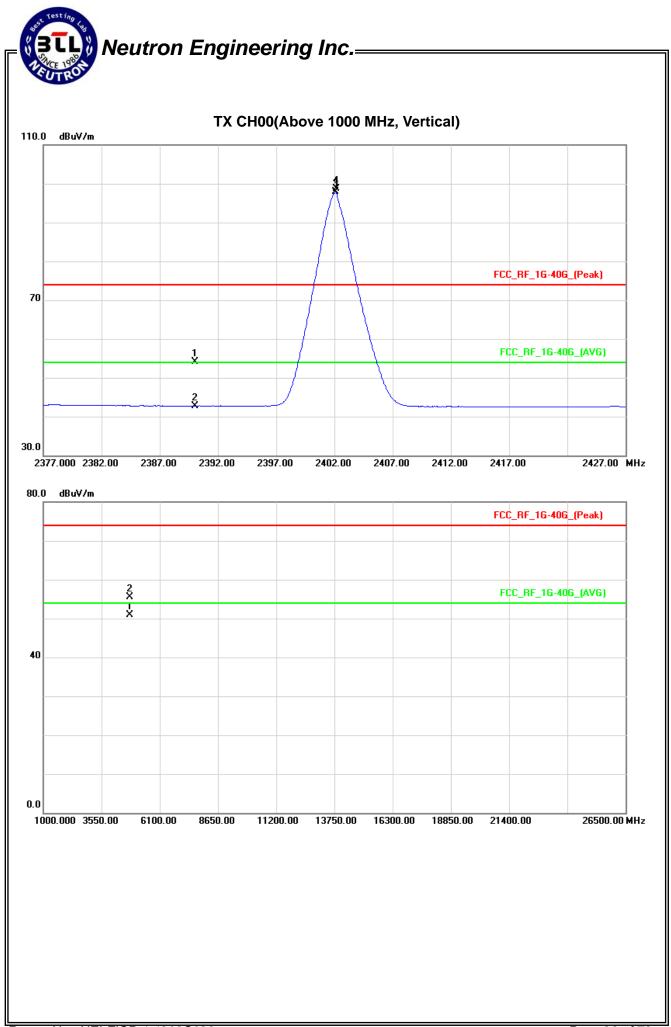



| EUT :         | Afterglow Remote For Wii | Model Name :        | PL-7624A |
|---------------|--------------------------|---------------------|----------|
| Temperature : | <b>25</b> ℃              | Relative Humidity : | 58 %     |
| Pressure :    | 1010 hPa                 | Test Voltage :      | DC 3V    |
| Test Mode :   | RX Mode 2402MHz-1Mbps    |                     |          |

| Freq.  | Ant. | Reading(RA) | Corr.Factor(CF) | Measured(FS) | Limits(QP) | Margin  | Note |  |
|--------|------|-------------|-----------------|--------------|------------|---------|------|--|
| (MHz)  | H/V  | (dBuV)      | (dB)            | (dBuV/m)     | (dBuV/m)   | (dB)    | NOLE |  |
| 33.88  | Н    | 39.12       | -16.84          | 22.28        | 40.00      | - 17.72 |      |  |
| 59.10  | Н    | 33.58       | -17.50          | 16.08        | 40.00      | - 23.92 |      |  |
| 204.60 | Н    | 26.63       | -16.44          | 10.19        | 43.50      | - 33.31 |      |  |
| 439.34 | Н    | 27.39       | -8.31           | 19.08        | 46.00      | - 26.92 |      |  |
| 594.54 | Н    | 27.24       | -4.40           | 22.84        | 46.00      | - 23.16 |      |  |
| 732.28 | Н    | 28.29       | -2.78           | 25.51        | 46.00      | - 20.49 |      |  |

- (1) Reading in which marked as QP or Peak means measurements by using are Quasi-Peak Mode or Peak Mode with Detector BW=120KHz ; SPA setting in RBW=120KHz, VBW =120KHz, Swp. Time = 0.3 sec./MHz ∘
- (2) All readings are Peak unless otherwise stated QP in column of 『Note』. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform  $\circ$
- (3) Measuring frequency range from 30MHz to 1000MHz  ${\scriptstyle \circ}$
- (4) If the peak scan value lower limit more than 20dB, then this signal data does not show in table  ${}_{\circ}$



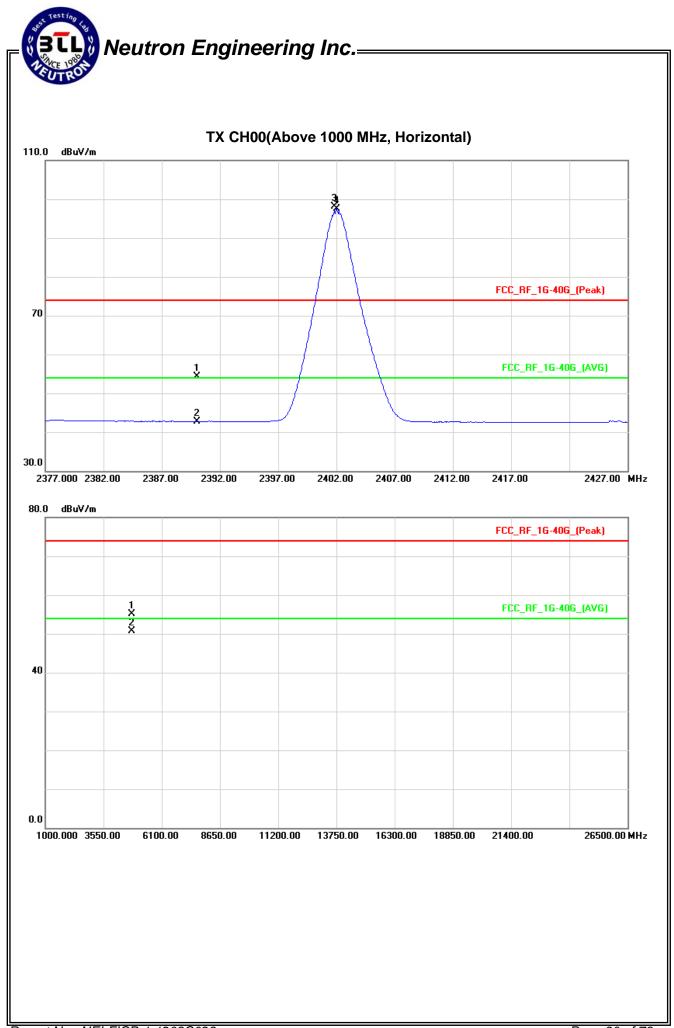

### Neutron Engineering Inc.=

#### 4.2.9 TEST RESULTS (ABOVE 1000 MHZ)

| EUT :         | Afterglow Remote For Wii | Model Name :        | PL-7624A |
|---------------|--------------------------|---------------------|----------|
| Temperature : | <b>25</b> ℃              | Relative Humidity : | 58 %     |
| Pressure :    | 1010 hPa                 | Test Voltage :      | DC 3V    |
| Test Mode :   | TX 2402MHz – CH 00-1Mbps |                     |          |

|    | Freq.  | Ant.Pol. | Reading |        | Ant./CF | Act.     |          | Limit    |          | Margin   |          |      |
|----|--------|----------|---------|--------|---------|----------|----------|----------|----------|----------|----------|------|
|    |        |          | Peak    | AV     |         | Peak     | AV       | Peak     | AV       | Peak     | AV       | Note |
| (  | (MHz)  | H/V      | (dBuV)  | (dBuV) | CF(dB)  | (dBuV/m) | (dBuV/m) | (dBuV/m) | (dBuV/m) | (dBuV/m) | (dBuV/m) |      |
| 23 | 390.00 | V        | 21.73   | 10.51  | 32.28   | 54.01    | 42.79    | 74.00    | 54.00    | -19.99   | -11.21   | X/E  |
| 24 | 402.15 | V        | 66.43   | 65.65  | 32.27   | 98.70    | 97.92    |          |          |          |          | X/F  |
| 48 | 804.50 | V        | 49.46   | 44.80  | 6.11    | 55.57    | 50.91    | 74.00    | 54.00    | -18.43   | -3.09    | X/H  |

- (1) All readings are Peak unless otherwise stated QP in column of  $\[\]$  Note  $\[\]$  . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform  $\[\circ$
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency.
   "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (4) Data of measurement within this frequency range shown " \* " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
  - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna

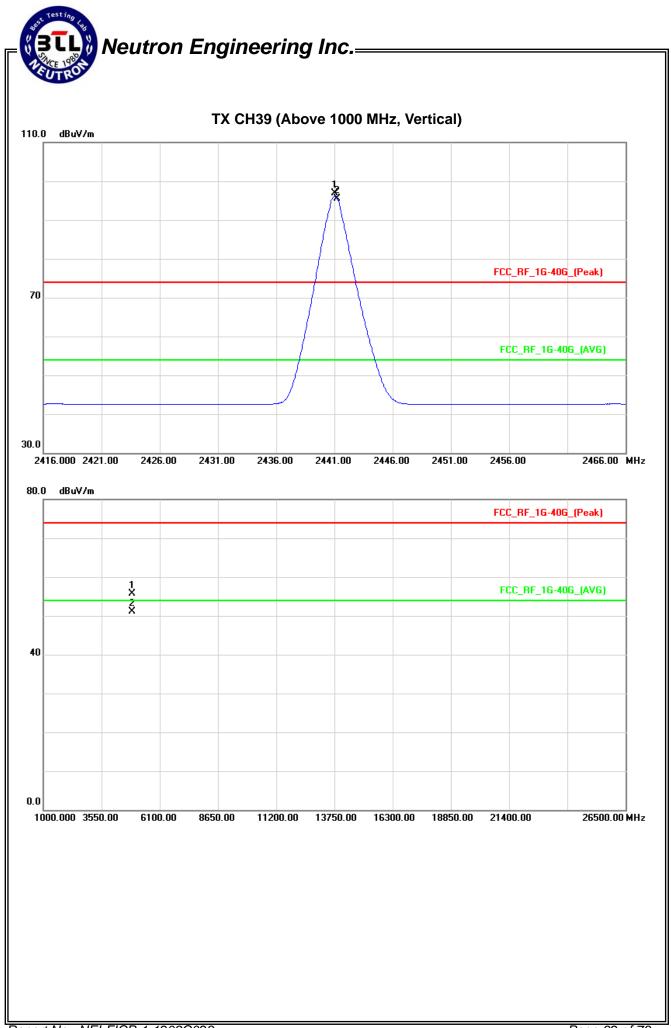





| EUT :         | Afterglow Remote For Wii | Model Name :        | PL-7624A |
|---------------|--------------------------|---------------------|----------|
| Temperature : | <b>25</b> ℃              | Relative Humidity : | 58 %     |
| Pressure :    | 1010hPa                  | Test Voltage :      | DC 3V    |
| Test Mode :   | TX 2402MHz – CH 00-1Mbps | ·                   |          |

| Freq.   | Ant.Pol. | Rea    | Reading Ant./CF |        | Act.     |          | Limit    |          | Margin   |          |      |
|---------|----------|--------|-----------------|--------|----------|----------|----------|----------|----------|----------|------|
|         |          | Peak   | AV              |        | Peak     | AV       | Peak     | AV       | Peak     | AV       | Note |
| (MHz)   | H/V      | (dBuV) | (dBuV)          | CF(dB) | (dBuV/m) | (dBuV/m) | (dBuV/m) | (dBuV/m) | (dBuV/m) | (dBuV/m) |      |
| 2390.00 | Н        | 22.12  | 10.52           | 32.28  | 54.40    | 42.80    | 74.00    | 54.00    | -19.60   | -11.20   | X/E  |
| 2401.80 | Н        | 65.76  | 65.25           | 32.27  | 98.03    | 97.52    |          |          |          |          | X/F  |
| 4803.70 | Н        | 49.00  | 44.61           | 6.11   | 55.11    | 50.72    | 74.00    | 54.00    | -18.89   | -3.28    | X/H  |

- (1) All readings are Peak unless otherwise stated QP in column of  $\[\]$  Note $\]$ . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform  $\[\circ\]$
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency<sup>o</sup> "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (4) Data of measurement within this frequency range shown " \* " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
  - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna

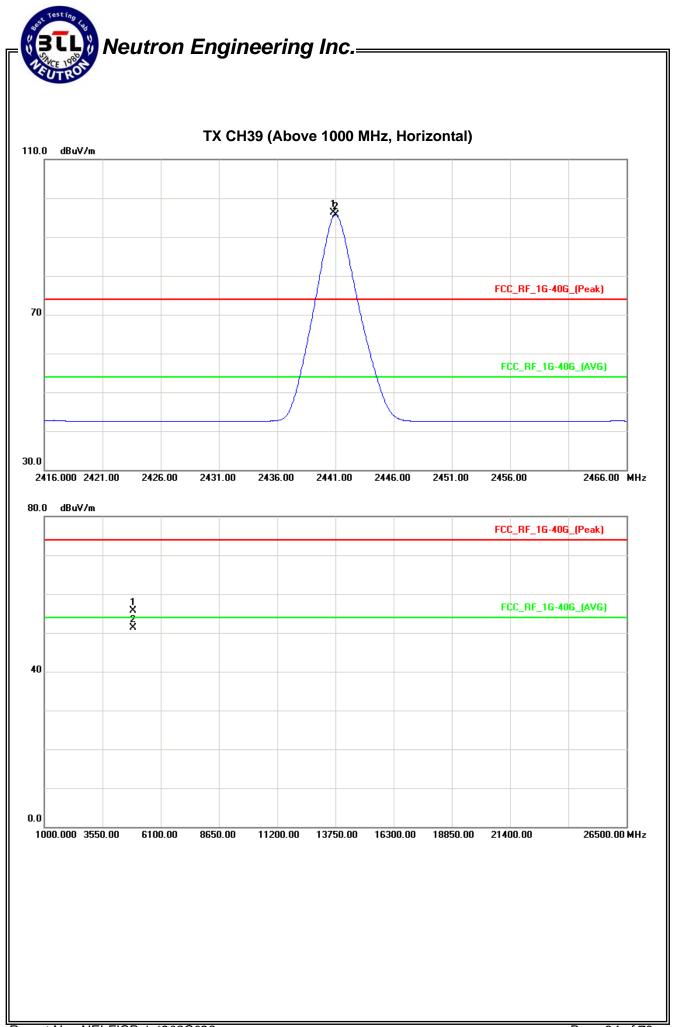





| EUT :         | Afterglow Remote For Wii | Model Name :        | PL-7624A |
|---------------|--------------------------|---------------------|----------|
| Temperature : | <b>25</b> ℃              | Relative Humidity : | 58 %     |
| Pressure :    | 1010 hPa                 | Test Voltage :      | DC 3V    |
| Test Mode :   | TX 2441MHz –CH39-1Mbps   |                     |          |

| Freg. Ant.Pol |           | Reading |        | Ant./CF | Act.     |        | Limit    |          | Margin   |          |      |
|---------------|-----------|---------|--------|---------|----------|--------|----------|----------|----------|----------|------|
| rieq.         | Ant.i 01. | Peak    | AV     |         | Peak     | AV     | Peak     | AV       | Peak     | AV       | Note |
| (MHz)         | H/V       | (dBuV)  | (dBuV) | CF(dB)  | (dBuV/m) | dBuV/m | (dBuV/m) | (dBuV/m) | (dBuV/m) | (dBuV/m) |      |
| 2441.00       | V         | 64.67   | 63.33  | 32.23   | 96.90    | 95.56  |          |          |          |          | X/F  |
| 4881.50       | V         | 49.22   | 44.64  | 6.43    | 55.65    | 51.07  | 74.00    | 54.00    | -18.35   | -2.93    | X/H  |

- (1) All readings are Peak unless otherwise stated QP in column of  $\[\]$  Note $\]$ . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform  $\[\circ$
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency<sup>o</sup> "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (4) Data of measurement within this frequency range shown "\*" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
  - "X" denotes Laid on Table ; "Y" denotes Vertical Stand ; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna

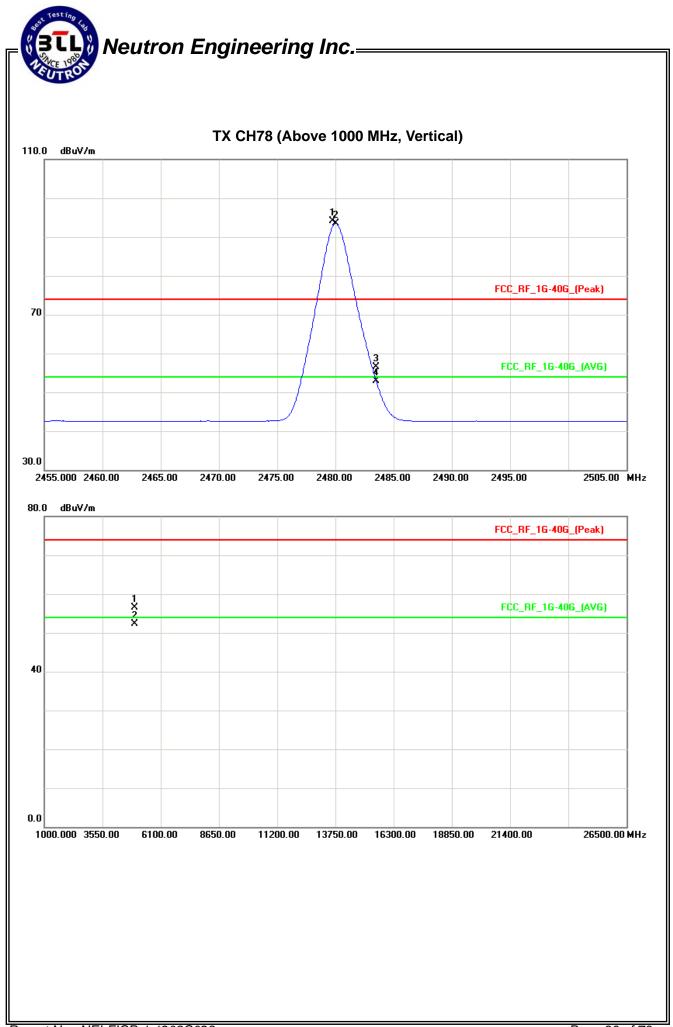





| EUT :         | Afterglow Remote For Wii | Model Name :        | PL-7624A |
|---------------|--------------------------|---------------------|----------|
| Temperature : | <b>25</b> ℃              | Relative Humidity : | 58 %     |
| Pressure :    | 1010 hPa                 | Test Voltage :      | DC 3V    |
| Test Mode :   | TX 2441MHz –CH39-1Mbps   |                     |          |

| Freg. Ant.Pol. |           | Reading |        | Ant./CF | Act.     |         | Limit    |          | Margin   |          |      |
|----------------|-----------|---------|--------|---------|----------|---------|----------|----------|----------|----------|------|
| rieq.          | Ant.i 01. | Peak    | AV     |         | Peak     | AV      | Peak     | AV       | Peak     | AV       | Note |
| (MHz)          | H/V       | (dBuV)  | (dBuV) | CF(dB)  | (dBuV/m) | (dBuV/m | (dBuV/m) | (dBuV/m) | (dBuV/m) | (dBuV/m) |      |
| 2440.85        | Н         | 63.98   | 63.48  | 32.23   | 96.21    | 95.71   |          |          |          |          | X/F  |
| 4881.64        | Н         | 49.28   | 44.84  | 6.43    | 55.71    | 51.27   | 74.00    | 54.00    | -18.29   | -2.73    | X/H  |

- (1) All readings are Peak unless otherwise stated QP in column of  $\[\]$  Note  $\]$ . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform  $\[\circ\]$
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency<sup>o</sup> "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (4) Data of measurement within this frequency range shown "\*" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
  - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



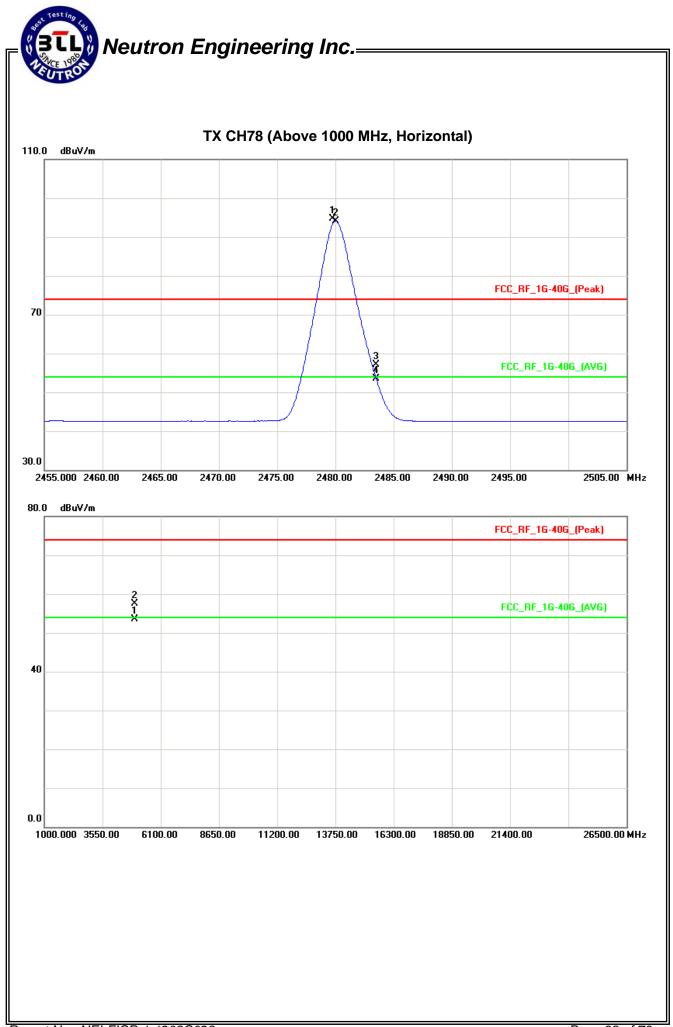



| EUT :         | Afterglow Remote For Wii | Model Name :        | PL-7624A |
|---------------|--------------------------|---------------------|----------|
| Temperature : | <b>25</b> ℃              | Relative Humidity : | 58 %     |
| Pressure :    | 1010hPa                  | Test Voltage :      | DC 3V    |
| Test Mode :   | TX 2480MHz –CH78-1Mbps   |                     |          |

| Freq.   | Ant.Pol. | Reading |        | Ant./CF | Act.     |          | Limit    |          | Margin   |          |      |
|---------|----------|---------|--------|---------|----------|----------|----------|----------|----------|----------|------|
|         |          | Peak    | AV     |         | Peak     | AV       | Peak     | AV       | Peak     | AV       | Note |
| (MHz)   | H/V      | (dBuV)  | (dBuV) | CF(dB)  | (dBuV/m) | (dBuV/m) | (dBuV/m) | (dBuV/m) | (dBuV/m) | (dBuV/m) |      |
| 2479.75 | V        | 61.85   | 61.35  | 32.18   | 94.03    | 93.53    |          |          |          |          | X/F  |
| 2483.50 | V        | 24.39   | 20.68  | 32.17   | 56.56    | 52.85    | 74.00    | 54.00    | -17.44   | -1.15    | X/E  |
| 4959.91 | V        | 49.74   | 45.62  | 6.74    | 56.48    | 52.36    | 74.00    | 54.00    | -17.52   | -1.64    | X/H  |

- (1) All readings are Peak unless otherwise stated QP in column of  $\[\]$  Note $\]$ . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform  $\[\circ\]$
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency<sup>o</sup> "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (4) Data of measurement within this frequency range shown " \* " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
  - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna






| EUT :         | Afterglow Remote For Wii | Model Name :        | PL-7624A |
|---------------|--------------------------|---------------------|----------|
| Temperature : | <b>25</b> ℃              | Relative Humidity : | 58 %     |
| Pressure :    | 1010 hPa                 | Test Voltage :      | DC 3V    |
| Test Mode :   | TX 2480MHz –CH78-1Mbps   |                     |          |

| Freq.   | Ant.Pol. | Rea    | ding   | Ant./CF | A        | ct.      | Lir      | nit      | Ma       | rgin     |      |
|---------|----------|--------|--------|---------|----------|----------|----------|----------|----------|----------|------|
|         |          | Peak   | AV     |         | Peak     | AV       | Peak     | AV       | Peak     | AV       | Note |
| (MHz)   | H/V      | (dBuV) | (dBuV) | CF(dB)  | (dBuV/m) | (dBuV/m) | (dBuV/m) | (dBuV/m) | (dBuV/m) | (dBuV/m) |      |
| 2479.75 | Н        | 62.46  | 61.96  | 32.18   | 94.64    | 94.14    |          |          |          |          | X/F  |
| 2483.50 | Н        | 24.85  | 21.33  | 32.17   | 57.02    | 53.50    | 74.00    | 54.00    | -16.98   | -0.50    | X/E  |
| 4960.34 | Н        | 50.77  | 46.84  | 6.74    | 57.51    | 53.58    | 74.00    | 54.00    | -16.49   | -0.42    | X/H  |

Remark :

- (1) All readings are Peak unless otherwise stated QP in column of  $\[\]$  Note  $\[\]$ . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform  $\[\circ$
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency<sup>o</sup> "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (4) Data of measurement within this frequency range shown " \* " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
  - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna





| EUT :          |                                                                                 |                                                                                                  |                                                                                                       |                                                                         |                                                                        |                                                                             |                                                                                       | PL-7624                                                                 |                                                            |                                         |
|----------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------|
| Tempera        |                                                                                 | <b>25</b> ℃                                                                                      |                                                                                                       |                                                                         |                                                                        | ve Humic                                                                    | •                                                                                     | 58 %                                                                    |                                                            |                                         |
| ressure        |                                                                                 | 1010 h                                                                                           |                                                                                                       |                                                                         | Test V                                                                 | /oltage :                                                                   |                                                                                       | DC 3V                                                                   |                                                            |                                         |
| est Mo         | de :                                                                            | RX Mo                                                                                            | de 2402MH                                                                                             | z - 1Mbps                                                               |                                                                        |                                                                             |                                                                                       |                                                                         |                                                            |                                         |
|                |                                                                                 |                                                                                                  |                                                                                                       | <b>_</b>                                                                |                                                                        |                                                                             | .,                                                                                    |                                                                         |                                                            | -                                       |
| Freq.          | Ant.Pol.                                                                        |                                                                                                  | ng Ant./C                                                                                             | F Ac<br>Peak                                                            | at.<br>AV                                                              | LII<br>Peak                                                                 | mit<br>AV                                                                             | Ma<br>Peak                                                              | argin<br>AV                                                | - No                                    |
| (MHz)          | H/V                                                                             |                                                                                                  | dBuV)CF(dB                                                                                            |                                                                         |                                                                        |                                                                             |                                                                                       |                                                                         |                                                            |                                         |
| 863.20         | V                                                                               |                                                                                                  | 8.15 -2.43                                                                                            | 48.87                                                                   | 45.72                                                                  | 74.00                                                                       | 54.00                                                                                 | -25.13                                                                  | -8.28                                                      | <u>''</u> Х/                            |
| (1             | that th<br>perfor<br>2) Measu<br>fundau<br>"E" d<br>Requi<br>3) Radia<br>instru | e Peak re<br>m ∘<br>uring freq<br>mental fre<br>enotes ba<br>rement.)<br>ted emiss<br>ment using | Peak unless<br>eading comp<br>uency range<br>quency "F"<br>and edge f<br>sions measu<br>g Peak detect | iance with t<br>e from 1000<br>denotes fur<br>requency.<br>ired in freq | he QP Li<br>DMHz to<br>Idamenta<br>(This jud<br>Iuency ra<br>Ind AV de | mits and t<br>6000MHz<br>Il frequenc<br>dgment n<br>ange abov<br>etector mo | hen QP M<br>z or the <sup></sup><br>cy; "H" den<br>nethod in<br>ve 1000M<br>de of the | Node mea<br>10th harn<br>notes spu<br>icludes t<br>1Hz were<br>emission | asuremer<br>nonic of<br>Irious frec<br>he Band<br>e made v | nt did<br>highe<br>queno<br>Edg<br>with |
| (              | readin<br>streng<br>5) A pre<br>measu<br>6) EUT (                               | ig of emis<br>ith is too s<br>amp and<br>urement s<br>Drthogona                                  | sions are att<br>small to be m<br>I high pass<br>sensitivity.                                         | enuated mo<br>easured.<br>filter were                                   | ore than 2                                                             | 20dB belo                                                                   | w the per                                                                             | missible<br>der to p                                                    | limits or t<br>rovide su                                   | he fie                                  |
| (1             | readin<br>streng<br>5) A pre<br>measu<br>6) EUT (                               | ig of emis<br>ith is too s<br>amp and<br>urement s<br>Drthogona                                  | sions are att<br>mall to be m<br>I high pass<br>sensitivity.<br>al Axis :                             | enuated mo<br>easured.<br>filter were                                   | ore than 2                                                             | 20dB belo                                                                   | w the per                                                                             | missible<br>der to p<br>notes Side                                      | limits or t<br>rovide su                                   | he fie                                  |
| (1             | readin<br>streng<br>5) A pre<br>measu<br>6) EUT (<br>"X" - d                    | ig of emis<br>ith is too s<br>amp and<br>urement s<br>Drthogona                                  | sions are att<br>mall to be m<br>I high pass<br>sensitivity.<br>al Axis :                             | enuated mo<br>easured.<br>filter were                                   | ore than 2                                                             | 20dB belo                                                                   | w the per                                                                             | missible<br>der to pr<br>notes Side                                     | limits or t<br>rovide su<br>e Stand                        | he fie                                  |
| (1             | readin<br>streng<br>5) A pre<br>measu<br>6) EUT (<br>"X" - d                    | ig of emis<br>ith is too s<br>amp and<br>urement s<br>Drthogona                                  | sions are att<br>mall to be m<br>I high pass<br>sensitivity.<br>al Axis :                             | enuated mo<br>easured.<br>filter were                                   | ore than 2                                                             | 20dB belo                                                                   | w the per                                                                             | missible<br>der to pr<br>notes Side                                     | limits or t<br>rovide su<br>e Stand                        | he fie                                  |
| (1             | readin<br>streng<br>5) A pre<br>measu<br>6) EUT (<br>"X" - d                    | ig of emis<br>ith is too s<br>amp and<br>urement s<br>Drthogona                                  | sions are att<br>mall to be m<br>I high pass<br>sensitivity.<br>al Axis :                             | enuated mo<br>easured.<br>filter were                                   | ore than 2                                                             | 20dB belo                                                                   | w the per                                                                             | missible<br>der to pr<br>notes Side                                     | limits or t<br>rovide su<br>e Stand                        | he fie                                  |
| (1             | readin<br>streng<br>5) A pre<br>measu<br>6) EUT (<br>"X" - d                    | ig of emis<br>ith is too s<br>amp and<br>urement s<br>Drthogona                                  | sions are att<br>mall to be m<br>I high pass<br>sensitivity.<br>al Axis :                             | enuated mo<br>easured.<br>filter were                                   | ore than 2                                                             | 20dB belo                                                                   | w the per                                                                             | missible<br>der to pr<br>notes Side                                     | limits or t<br>rovide su<br>e Stand                        | he fie                                  |
| ()<br>80.0 dBu | readin<br>streng<br>5) A pre<br>measu<br>6) EUT (<br>"X" - d                    | ig of emis<br>ith is too s<br>amp and<br>urement s<br>Drthogona                                  | sions are att<br>mall to be m<br>I high pass<br>sensitivity.<br>al Axis :                             | enuated mo<br>easured.<br>filter were                                   | ore than 2                                                             | 20dB belo                                                                   | w the per                                                                             | missible<br>der to pr<br>notes Side                                     | limits or t<br>rovide su<br>e Stand                        | he fie                                  |
| (1             | readin<br>streng<br>5) A pre<br>measu<br>6) EUT (<br>"X" - d                    | ig of emis<br>ith is too s<br>amp and<br>urement s<br>Drthogona                                  | sions are att<br>mall to be m<br>I high pass<br>sensitivity.<br>al Axis :                             | enuated mo<br>easured.<br>filter were                                   | ore than 2                                                             | 20dB belo                                                                   | w the per                                                                             | missible<br>der to pr<br>notes Side                                     | limits or t<br>rovide su<br>e Stand                        | he fie                                  |
| ()<br>30.0 dBu | readin<br>streng<br>5) A pre<br>measu<br>6) EUT (<br>"X" - d                    | ig of emis<br>ith is too s<br>amp and<br>urement s<br>Drthogona                                  | sions are att<br>mall to be m<br>I high pass<br>sensitivity.<br>al Axis :                             | enuated mo<br>easured.<br>filter were                                   | ore than 2                                                             | 20dB belo                                                                   | w the per                                                                             | missible<br>der to pr<br>notes Side                                     | limits or t<br>rovide su<br>e Stand                        | he fie                                  |
| ()<br>80.0 dBu | readin<br>streng<br>5) A pre<br>measu<br>6) EUT (<br>"X" - d                    | ig of emis<br>ith is too s<br>amp and<br>urement s<br>Drthogona                                  | sions are att<br>mall to be m<br>I high pass<br>sensitivity.<br>al Axis :                             | enuated mo<br>easured.<br>filter were                                   | ore than 2                                                             | 20dB belo                                                                   | w the per                                                                             | missible<br>der to pr<br>notes Side                                     | limits or t<br>rovide su<br>e Stand                        | he fie                                  |
| ()<br>80.0 dBu | readin<br>streng<br>5) A pre<br>measu<br>6) EUT (<br>"X" - d                    | ig of emis<br>ith is too s<br>amp and<br>urement s<br>Drthogona                                  | sions are att<br>mall to be m<br>I high pass<br>sensitivity.<br>al Axis :                             | enuated mo<br>easured.<br>filter were                                   | ore than 2                                                             | 20dB belo                                                                   | w the per                                                                             | missible<br>der to pr<br>notes Side                                     | limits or t<br>rovide su<br>e Stand                        | he fie                                  |
| ()<br>80.0 dBu | readin<br>streng<br>5) A pre<br>measu<br>6) EUT (<br>"X" - d                    | ig of emis<br>ith is too s<br>amp and<br>urement s<br>Drthogona                                  | sions are att<br>mall to be m<br>I high pass<br>sensitivity.<br>al Axis :                             | enuated mo<br>easured.<br>filter were                                   | ore than 2                                                             | 20dB belo                                                                   | w the per                                                                             | missible<br>der to pr<br>notes Side                                     | limits or t<br>rovide su<br>e Stand                        | he fie                                  |
| ()<br>80.0 dBu | readin<br>streng<br>5) A pre<br>measu<br>6) EUT (<br>"X" - d                    | ig of emis<br>ith is too s<br>amp and<br>urement s<br>Drthogona                                  | sions are att<br>mall to be m<br>I high pass<br>sensitivity.<br>al Axis :                             | enuated mo<br>easured.<br>filter were                                   | ore than 2                                                             | 20dB belo                                                                   | w the per                                                                             | missible<br>der to pr<br>notes Side                                     | limits or t<br>rovide su<br>e Stand                        | he fie                                  |
| ()<br>80.0 dBu | readin<br>streng<br>5) A pre<br>measu<br>6) EUT (<br>"X" - d                    | ig of emis<br>ith is too s<br>amp and<br>urement s<br>Drthogona                                  | sions are att<br>mall to be m<br>I high pass<br>sensitivity.<br>al Axis :                             | enuated mo<br>easured.<br>filter were                                   | ore than 2                                                             | 20dB belo                                                                   | w the per                                                                             | missible<br>der to pr<br>notes Side                                     | limits or t<br>rovide su<br>e Stand                        | he fie                                  |
| ()<br>80.0 dBu | readin<br>streng<br>5) A pre<br>measu<br>6) EUT (<br>"X" - d                    | ig of emis<br>ith is too s<br>amp and<br>urement s<br>Drthogona                                  | sions are att<br>mall to be m<br>I high pass<br>sensitivity.<br>al Axis :                             | enuated mo<br>easured.<br>filter were                                   | ore than 2                                                             | 20dB belo                                                                   | w the per                                                                             | missible<br>der to pr<br>notes Side                                     | limits or t<br>rovide su<br>e Stand                        | he fie                                  |



|                                        |                                                                                                                                                  | Aller                                                                                                            | <u> </u>                                                                        | emote F                                                                                            | or will                                                                                                                | Model                                                                                 | Name :                                                                           |                                                                                            | PL-7624                                                                         | 4A                                                     |                                                              |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------|
| empera                                 | ature :                                                                                                                                          | <b>25</b> ℃                                                                                                      | /                                                                               |                                                                                                    |                                                                                                                        | Relativ                                                                               | /e Humid                                                                         | ity :                                                                                      | 58 %                                                                            |                                                        |                                                              |
| Pressure                               | <b>;</b>                                                                                                                                         | 1010                                                                                                             | hPa                                                                             |                                                                                                    |                                                                                                                        | Test V                                                                                | oltage :                                                                         |                                                                                            | DC 3V                                                                           |                                                        |                                                              |
| est Mo                                 | de :                                                                                                                                             | RX M                                                                                                             | lode 24                                                                         | 102MHz                                                                                             | - 1Mbps                                                                                                                |                                                                                       | Ŧ                                                                                |                                                                                            |                                                                                 |                                                        |                                                              |
|                                        |                                                                                                                                                  |                                                                                                                  |                                                                                 |                                                                                                    | •                                                                                                                      |                                                                                       |                                                                                  |                                                                                            |                                                                                 |                                                        |                                                              |
| Freq.                                  | Ant.Pol.                                                                                                                                         | Read                                                                                                             | ding                                                                            | Ant./CF                                                                                            | Ac                                                                                                                     | ct.                                                                                   | Lii                                                                              | nit                                                                                        | Μ                                                                               | largin                                                 |                                                              |
|                                        |                                                                                                                                                  | Peak                                                                                                             | AV                                                                              |                                                                                                    | Peak                                                                                                                   | AV                                                                                    | Peak                                                                             | AV                                                                                         | Peak                                                                            |                                                        | No                                                           |
| (MHz)                                  | H/V                                                                                                                                              |                                                                                                                  |                                                                                 |                                                                                                    | (dBuV/m)                                                                                                               |                                                                                       |                                                                                  |                                                                                            |                                                                                 |                                                        |                                                              |
| 863.75                                 | Н                                                                                                                                                | 53.02                                                                                                            | 50.84                                                                           | -2.41                                                                                              | 50.61                                                                                                                  | 48.43                                                                                 | 74.00                                                                            | 54.00                                                                                      | -23.39                                                                          | -5.5                                                   | 7 X/                                                         |
| (2                                     | <ol> <li>All reat that the perfor</li> <li>Mease funda</li> <li>"E" d</li> <li>Requi</li> <li>Radia instruit</li> <li>Data dia readir</li> </ol> | e Peak i<br>m ∘<br>uring fre<br>mental fr<br>enotes<br>rement.)<br>ted emis<br>ment usi<br>of measi<br>ig of emi | reading<br>equency<br>band e<br>band e<br>ssions<br>ng Pea<br>uremen<br>issions | r complia<br>r range f<br>cy∘"F" de<br>edge fre<br>measure<br>k detecte<br>t within f<br>are atter | otherwise<br>ince with t<br>from 1000<br>enotes fun<br>equency.<br>ed in freq<br>or mode a<br>this freque<br>nuated mo | he QP Lir<br>OMHz to<br>Idamental<br>(This jud<br>Juency ra<br>Ind AV de<br>ency rang | mits and t<br>6000MHz<br>frequenc<br>gment m<br>nge abov<br>tector mo<br>e shown | then QP N<br>c or the f<br>ry; "H" de<br>nethod ir<br>ve 1000N<br>de of the<br>" * " in th | Node me<br>10th han<br>notes spi<br>ncludes<br>1Hz wen<br>emissior<br>e table a | asureme<br>monic of<br>urious fre<br>the Bar<br>e made | ent did<br>f highe<br>equence<br>id Edg<br>with a<br>eans th |
|                                        | 5) A pre<br>meas<br>6) EUT (                                                                                                                     | urement<br>Orthogor                                                                                              | nd high<br>sensitiv<br>nal Axis                                                 | n pass f<br>vity.<br>:                                                                             | ilter were<br>"Y" - deno                                                                                               |                                                                                       |                                                                                  |                                                                                            |                                                                                 |                                                        | sufficie                                                     |
| (6                                     | 5) A pre<br>meas<br>6) EUT (<br>"X" - c                                                                                                          | amp ar<br>urement<br>Drthogor                                                                                    | nd high<br>sensitiv<br>nal Axis                                                 | n pass f<br>vity.<br>:                                                                             | filter were                                                                                                            |                                                                                       |                                                                                  |                                                                                            |                                                                                 |                                                        | sufficie                                                     |
| (6                                     | 5) A pre<br>meas<br>6) EUT (                                                                                                                     | amp ar<br>urement<br>Drthogor                                                                                    | nd high<br>sensitiv<br>nal Axis                                                 | n pass f<br>vity.<br>:                                                                             | filter were                                                                                                            |                                                                                       |                                                                                  |                                                                                            | notes Sid                                                                       |                                                        | sufficie                                                     |
| (6                                     | 5) A pre<br>meas<br>6) EUT (<br>"X" - c                                                                                                          | amp ar<br>urement<br>Drthogor                                                                                    | nd high<br>sensitiv<br>nal Axis                                                 | n pass f<br>vity.<br>:                                                                             | filter were                                                                                                            |                                                                                       |                                                                                  |                                                                                            | notes Sid                                                                       | le Stand                                               | sufficie                                                     |
| (6                                     | 5) A pre<br>meas<br>6) EUT (<br>"X" - c                                                                                                          | amp ar<br>urement<br>Drthogor                                                                                    | nd high<br>sensitiv<br>nal Axis                                                 | n pass f<br>vity.<br>:                                                                             | filter were                                                                                                            |                                                                                       |                                                                                  |                                                                                            | notes Sid                                                                       | le Stand                                               |                                                              |
| (6                                     | 5) A pre<br>meas<br>6) EUT (<br>"X" - c                                                                                                          | amp ar<br>urement<br>Drthogor                                                                                    | nd high<br>sensitiv<br>nal Axis                                                 | n pass f<br>vity.<br>:                                                                             | filter were                                                                                                            |                                                                                       |                                                                                  |                                                                                            | notes Sid                                                                       | le Stand                                               |                                                              |
| (6                                     | 5) A pre<br>meas<br>6) EUT (<br>"X" - c                                                                                                          | amp ar<br>urement<br>Drthogor                                                                                    | nd high<br>sensitiv<br>nal Axis                                                 | n pass f<br>vity.<br>:                                                                             | filter were                                                                                                            |                                                                                       |                                                                                  |                                                                                            | notes Sid                                                                       | le Stand                                               |                                                              |
| ((<br>80.0 dBu                         | 5) A pre<br>meas<br>6) EUT (<br>"X" - c                                                                                                          | amp ar<br>urement<br>Drthogor                                                                                    | nd high<br>sensitiv<br>nal Axis                                                 | n pass f<br>vity.<br>:                                                                             | filter were                                                                                                            |                                                                                       |                                                                                  |                                                                                            | notes Sid                                                                       | le Stand                                               |                                                              |
| (6                                     | 5) A pre<br>meas<br>6) EUT (<br>"X" - c                                                                                                          | amp ar<br>urement<br>Drthogor                                                                                    | nd high<br>sensitiv<br>nal Axis                                                 | n pass f<br>vity.<br>:                                                                             | filter were                                                                                                            |                                                                                       |                                                                                  |                                                                                            | notes Sid                                                                       | le Stand                                               |                                                              |
| (6<br>80.0 dBu                         | 5) A pre<br>meas<br>6) EUT (<br>"X" - c                                                                                                          | amp ar<br>urement<br>Drthogor                                                                                    | nd high<br>sensitiv<br>nal Axis                                                 | n pass f<br>vity.<br>:                                                                             | filter were                                                                                                            |                                                                                       |                                                                                  |                                                                                            | notes Sid                                                                       | le Stand                                               |                                                              |
| ((<br>80.0 dBu                         | 5) A pre<br>meas<br>6) EUT (<br>"X" - c                                                                                                          | amp ar<br>urement<br>Drthogor                                                                                    | nd high<br>sensitiv<br>nal Axis                                                 | n pass f<br>vity.<br>:                                                                             | filter were                                                                                                            |                                                                                       |                                                                                  |                                                                                            | notes Sid                                                                       | le Stand                                               |                                                              |
| (6<br>80.0 dBu                         | 5) A pre<br>meas<br>6) EUT (<br>"X" - c                                                                                                          | amp ar<br>urement<br>Drthogor                                                                                    | nd high<br>sensitiv<br>nal Axis                                                 | n pass f<br>vity.<br>:                                                                             | filter were                                                                                                            |                                                                                       |                                                                                  |                                                                                            | notes Sid                                                                       | le Stand                                               |                                                              |
| (6<br>80.0 dBu                         | 5) A pre<br>meas<br>6) EUT (<br>"X" - c                                                                                                          | amp ar<br>urement<br>Drthogor                                                                                    | nd high<br>sensitiv<br>nal Axis                                                 | n pass f<br>vity.<br>:                                                                             | filter were                                                                                                            |                                                                                       |                                                                                  |                                                                                            | notes Sid                                                                       | le Stand                                               |                                                              |
| (6<br>80.0 dBu                         | 5) A pre<br>meas<br>6) EUT (<br>"X" - c                                                                                                          | amp ar<br>urement<br>Drthogor                                                                                    | nd high<br>sensitiv<br>nal Axis                                                 | n pass f<br>vity.<br>:                                                                             | filter were                                                                                                            |                                                                                       |                                                                                  |                                                                                            | notes Sid                                                                       | le Stand                                               |                                                              |
| (6<br>80.0 dBu                         | 5) A pre<br>meas<br>6) EUT (<br>"X" - c                                                                                                          | amp ar<br>urement<br>Drthogor                                                                                    | nd high<br>sensitiv<br>nal Axis                                                 | n pass f<br>vity.<br>:                                                                             | filter were                                                                                                            |                                                                                       |                                                                                  |                                                                                            | notes Sid                                                                       | le Stand                                               |                                                              |
| (6<br>80.0 dBu                         | 5) A pre<br>meas<br>6) EUT (<br>"X" - c                                                                                                          | amp ar<br>urement<br>Drthogor                                                                                    | nd high<br>sensitiv<br>nal Axis                                                 | n pass f<br>vity.<br>:                                                                             | filter were                                                                                                            |                                                                                       |                                                                                  |                                                                                            | notes Sid                                                                       | le Stand                                               |                                                              |
| (6<br>80.0 dBu                         | 5) A pre<br>meas<br>6) EUT (<br>"X" - c                                                                                                          | amp ar<br>urement<br>Drthogor                                                                                    | nd high<br>sensitiv<br>nal Axis                                                 | n pass f<br>vity.<br>:                                                                             | filter were                                                                                                            |                                                                                       |                                                                                  |                                                                                            | notes Sid                                                                       | le Stand                                               |                                                              |
| (6<br>80.0 dBu                         | 5) A pre<br>meas<br>6) EUT (<br>"X" - c                                                                                                          | amp ar<br>urement<br>Drthogor                                                                                    | nd high<br>sensitiv<br>nal Axis                                                 | n pass f<br>vity.<br>:                                                                             | filter were                                                                                                            |                                                                                       |                                                                                  |                                                                                            | notes Sid                                                                       | le Stand                                               |                                                              |
| (6<br>80.0 dBu<br>80.0 dBu<br>80.0 dBu | 5) A pre<br>meas<br>6) EUT (<br>"X" - c                                                                                                          | amp ar<br>urement<br>Drthogor                                                                                    | nd high<br>sensitiv<br>nal Axis<br>Laid on                                      | n pass 1<br>vity.<br>:<br>Table ; '                                                                | filter were                                                                                                            | tes Vertic                                                                            | al Stand ;                                                                       | "Z" - der                                                                                  | notes Sid                                                                       | le Stand                                               |                                                              |



| -              |                                                                               | Afterg                                                                        |                                                              |                                                                               |                                                                                         |                                                                                         | Name :                                                                              |                                                                             | PL-7624A                                                       |                                                                        |
|----------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------|
| Tempera        |                                                                               | <b>25</b> ℃                                                                   |                                                              |                                                                               |                                                                                         |                                                                                         | e Humidi                                                                            | ,                                                                           | 58 %                                                           |                                                                        |
| Pressure       |                                                                               | 1010                                                                          |                                                              |                                                                               |                                                                                         | Test Vo                                                                                 | oltage :                                                                            |                                                                             | DC 3V                                                          |                                                                        |
| Test Mo        | de :                                                                          | RX M                                                                          | ode 24                                                       | 41MHz                                                                         | - 1Mbps                                                                                 |                                                                                         |                                                                                     |                                                                             |                                                                |                                                                        |
| Freq.          | Ant.Pol                                                                       | Read                                                                          | dina                                                         | Ant./CF                                                                       | A                                                                                       | <b>^t</b>                                                                               | l ir                                                                                | nit                                                                         | Mar                                                            | ain                                                                    |
| Fieq.          | AIILF OI                                                                      | Peak                                                                          | AV                                                           | Ant./OF                                                                       | Peak                                                                                    | AV                                                                                      | Peak                                                                                | AV                                                                          | Peak                                                           | AV N                                                                   |
| (MHz)          | H/V                                                                           |                                                                               | (dBuV)                                                       | CF(dB)                                                                        |                                                                                         |                                                                                         |                                                                                     |                                                                             | (dBuV/m)                                                       |                                                                        |
| 965.23         | V                                                                             | 48.84                                                                         | 46.81                                                        | -1.29                                                                         | 47.55                                                                                   | 45.52                                                                                   | 74.00                                                                               | 54.00                                                                       | -26.45                                                         | -8.48 X                                                                |
| (3             | that th<br>perfor<br>2) Meas<br>funda<br>"E" d<br>Requi<br>3) Radia<br>instru | e Peak r<br>m ∘<br>mental fr<br>enotes ∣<br>rement.)<br>ted emis<br>ment usii | reading<br>quency<br>equenc<br>band e<br>ssions r<br>ng Peak | complia<br>range f<br>y°"F" de<br>dge fre<br>measure<br>detecto<br>: within t | nce with t<br>rom 1000<br>notes fun<br>quency.<br>ed in freq<br>or mode a<br>his freque | he QP Lir<br>OMHz to (<br>damental<br>(This judy<br>uency rai<br>nd AV det<br>ency rang | nits and th<br>6000MHz<br>frequenc<br>gment m<br>nge abov<br>ector mod<br>e shown ' | or the 1<br>y; "H" der<br>ethod in<br>e 1000M<br>de of the o<br>'* " in the | Oth harmo<br>notes spuri<br>cludes the<br>IHz were<br>emission | urement did<br>onic of highe<br>ous frequent<br>e Band Ed<br>made with |
| (              | readir<br>streng<br>5) A pre<br>meas<br>6) EUT (                              | ith is too<br>amp an<br>urement<br>Orthogon                                   | small to<br>d high<br>sensitiv<br>al Axis                    | be mea<br>pass f<br>ity.<br>:                                                 | asured.<br>ilter were                                                                   | e used fo                                                                               | or this te                                                                          | st in orc                                                                   |                                                                | vide sufficie                                                          |
| (;             | readir<br>streng<br>5) A pre<br>meas<br>6) EUT (                              | ith is too<br>amp an<br>urement<br>Orthogon                                   | small to<br>d high<br>sensitiv<br>al Axis                    | be mea<br>pass f<br>ity.<br>:                                                 | asured.<br>ilter were                                                                   | e used fo                                                                               | or this te                                                                          | st in orc                                                                   | ler to pro<br>otes Side \$                                     | vide sufficie<br>Stand                                                 |
| (;             | readir<br>streng<br>5) A pre<br>meas<br>6) EUT (<br>"X" - c                   | ith is too<br>amp an<br>urement<br>Orthogon                                   | small to<br>d high<br>sensitiv<br>al Axis                    | be mea<br>pass f<br>ity.<br>:                                                 | asured.<br>ilter were                                                                   | e used fo                                                                               | or this te                                                                          | st in orc                                                                   | ler to pro<br>otes Side S                                      | vide sufficie<br>Stand                                                 |
| (;             | readir<br>streng<br>5) A pre<br>meas<br>6) EUT (<br>"X" - c                   | ith is too<br>amp an<br>urement<br>Orthogon                                   | small to<br>d high<br>sensitiv<br>al Axis                    | be mea<br>pass f<br>ity.<br>:                                                 | asured.<br>ilter were                                                                   | e used fo                                                                               | or this te                                                                          | st in orc                                                                   | ler to pro<br>otes Side \$                                     | vide sufficie<br>Stand                                                 |
| (;             | readir<br>streng<br>5) A pre<br>meas<br>6) EUT (<br>"X" - c                   | ith is too<br>amp an<br>urement<br>Orthogon                                   | small to<br>d high<br>sensitiv<br>al Axis                    | be mea<br>pass f<br>ity.<br>:                                                 | asured.<br>ilter were                                                                   | e used fo                                                                               | or this te                                                                          | st in orc                                                                   | ler to pro<br>otes Side \$                                     | vide sufficie<br>Stand                                                 |
| (;             | readir<br>streng<br>5) A pre<br>meas<br>6) EUT (<br>"X" - c                   | ith is too<br>amp an<br>urement<br>Orthogon                                   | small to<br>d high<br>sensitiv<br>al Axis                    | be mea<br>pass f<br>ity.<br>:                                                 | asured.<br>ilter were                                                                   | e used fo                                                                               | or this te                                                                          | st in orc                                                                   | ler to pro<br>otes Side \$                                     | vide sufficie<br>Stand                                                 |
| (!<br>80.0 dBu | readir<br>streng<br>5) A pre<br>meas<br>6) EUT (<br>"X" - c                   | ith is too<br>amp an<br>urement<br>Orthogon                                   | small to<br>d high<br>sensitiv<br>al Axis                    | be mea<br>pass f<br>ity.<br>:                                                 | asured.<br>ilter were                                                                   | e used fo                                                                               | or this te                                                                          | st in orc                                                                   | ler to pro<br>otes Side \$                                     | vide sufficie<br>Stand                                                 |
| ()<br>80.0 dBu | readir<br>streng<br>5) A pre<br>meas<br>6) EUT (<br>"X" - c                   | ith is too<br>amp an<br>urement<br>Orthogon                                   | small to<br>d high<br>sensitiv<br>al Axis<br>aid on          | be mea<br>pass f<br>ity.<br>:<br>Table ; "                                    | asured.<br>ilter were<br>Y" - deno                                                      | e used fo                                                                               | or this te                                                                          | st in orc                                                                   | ler to pro<br>otes Side \$                                     | vide sufficie<br>Stand                                                 |



| Tempera<br>Pressure |                                                                                                                                                                                                                          | /                                                                                                                                                                   | Jow Re                                                                                                                                      | mote F                                                                                                      | or Wii                                                                                                                    | Model                                                                                                        | Name :                                                                                               |                                                                                                       | PL-7624A                                                                                                                            | ١                                                                                            |                                          |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------|
| Pressure            | ature :                                                                                                                                                                                                                  | <b>25</b> ℃                                                                                                                                                         |                                                                                                                                             |                                                                                                             |                                                                                                                           | Relativ                                                                                                      | e Humidi                                                                                             | ty :                                                                                                  | 58 %                                                                                                                                |                                                                                              |                                          |
|                     | э:                                                                                                                                                                                                                       | 1010                                                                                                                                                                | hPa                                                                                                                                         |                                                                                                             |                                                                                                                           | Test Vo                                                                                                      | oltage :                                                                                             |                                                                                                       | DC 3V                                                                                                                               |                                                                                              |                                          |
| Fest Mo             | de :                                                                                                                                                                                                                     | RX M                                                                                                                                                                | ode 24                                                                                                                                      | 41MHz                                                                                                       | - 1Mbps                                                                                                                   |                                                                                                              | U                                                                                                    |                                                                                                       |                                                                                                                                     |                                                                                              |                                          |
|                     |                                                                                                                                                                                                                          |                                                                                                                                                                     |                                                                                                                                             |                                                                                                             |                                                                                                                           |                                                                                                              |                                                                                                      |                                                                                                       |                                                                                                                                     |                                                                                              |                                          |
| Freq.               | Ant.Pol.                                                                                                                                                                                                                 | Read                                                                                                                                                                | ding ,                                                                                                                                      | Ant./CF                                                                                                     | Ac                                                                                                                        | t.                                                                                                           | Lir                                                                                                  | nit                                                                                                   | Ма                                                                                                                                  | rgin                                                                                         |                                          |
|                     |                                                                                                                                                                                                                          | Peak                                                                                                                                                                | AV                                                                                                                                          |                                                                                                             | Peak                                                                                                                      | AV                                                                                                           | Peak                                                                                                 | AV                                                                                                    | Peak                                                                                                                                | AV                                                                                           | No                                       |
| (MHz)               | H/V                                                                                                                                                                                                                      |                                                                                                                                                                     |                                                                                                                                             |                                                                                                             |                                                                                                                           |                                                                                                              |                                                                                                      |                                                                                                       | )(dBuV/m)                                                                                                                           |                                                                                              |                                          |
| 965.72              | Н                                                                                                                                                                                                                        | 52.62                                                                                                                                                               | 49.70                                                                                                                                       | -1.28                                                                                                       | 51.34                                                                                                                     | 48.42                                                                                                        | 74.00                                                                                                | 54.00                                                                                                 | -22.66                                                                                                                              | -5.58                                                                                        | X                                        |
| (<br>(<br>(         | <ol> <li>All reached that the perform</li> <li>Measure fundare</li> <li>"E" de Require</li> <li>Radiate</li> <li>Instrum</li> <li>Data de reading</li> <li>strenge</li> <li>A preached measure</li> <li>EUT C</li> </ol> | e Peak r<br>m -<br>uring free<br>mental free<br>enotes I<br>rement.)<br>red emis<br>nent usir<br>of measu<br>g of emi<br>th is too<br>amp an<br>urement<br>Orthogon | reading of<br>quency<br>requency<br>band eo<br>ssions n<br>ng Peak<br>urement<br>ssions a<br>small to<br>ad high<br>sensitivi<br>aal Axis : | range f<br>/ • "F" de<br>dge fre<br>neasure<br>detecto<br>within t<br>ire atter<br>be mea<br>pass f<br>ity. | nce with the<br>rom 1000<br>enotes funce<br>quency. (<br>ed in freque<br>his freque<br>nuated mo<br>asured.<br>ilter were | ne QP Lir<br>MHz to (<br>damental<br>This judy<br>uency ran<br>nd AV det<br>ncy rang<br>re than 2<br>used fo | nits and th<br>6000MHz<br>frequency<br>gment m<br>nge above<br>e shown "<br>0dB below<br>or this tes | or the 1<br>y; "H" der<br>ethod in<br>e 1000N<br>le of the o<br>* " in the<br>v the per-<br>st in orc | te Peak<br>lode meas<br>Oth harmo<br>notes spuri<br>cludes the<br>IHz were<br>emission<br>e table abo<br>missible lir<br>der to pro | surement of hig<br>ous freque<br>e Band<br>made wit<br>ove mean<br>mits or the<br>ovide suff | ghe<br>enc<br>Edg<br>h a<br>s th<br>s th |
| 80.0 dB             | uV/m                                                                                                                                                                                                                     |                                                                                                                                                                     |                                                                                                                                             |                                                                                                             |                                                                                                                           |                                                                                                              |                                                                                                      |                                                                                                       |                                                                                                                                     |                                                                                              | -                                        |
|                     |                                                                                                                                                                                                                          |                                                                                                                                                                     |                                                                                                                                             |                                                                                                             |                                                                                                                           |                                                                                                              |                                                                                                      |                                                                                                       | Lim                                                                                                                                 |                                                                                              |                                          |
|                     |                                                                                                                                                                                                                          |                                                                                                                                                                     |                                                                                                                                             |                                                                                                             |                                                                                                                           |                                                                                                              |                                                                                                      |                                                                                                       |                                                                                                                                     | -                                                                                            |                                          |
|                     |                                                                                                                                                                                                                          |                                                                                                                                                                     |                                                                                                                                             |                                                                                                             |                                                                                                                           |                                                                                                              |                                                                                                      |                                                                                                       |                                                                                                                                     |                                                                                              |                                          |
|                     |                                                                                                                                                                                                                          |                                                                                                                                                                     |                                                                                                                                             |                                                                                                             |                                                                                                                           |                                                                                                              |                                                                                                      |                                                                                                       |                                                                                                                                     |                                                                                              |                                          |
|                     |                                                                                                                                                                                                                          |                                                                                                                                                                     |                                                                                                                                             |                                                                                                             |                                                                                                                           |                                                                                                              |                                                                                                      |                                                                                                       |                                                                                                                                     |                                                                                              | -                                        |
|                     |                                                                                                                                                                                                                          |                                                                                                                                                                     |                                                                                                                                             |                                                                                                             |                                                                                                                           |                                                                                                              |                                                                                                      |                                                                                                       |                                                                                                                                     |                                                                                              |                                          |
|                     |                                                                                                                                                                                                                          |                                                                                                                                                                     |                                                                                                                                             |                                                                                                             |                                                                                                                           |                                                                                                              |                                                                                                      |                                                                                                       |                                                                                                                                     |                                                                                              |                                          |
|                     |                                                                                                                                                                                                                          |                                                                                                                                                                     |                                                                                                                                             |                                                                                                             |                                                                                                                           |                                                                                                              |                                                                                                      |                                                                                                       |                                                                                                                                     |                                                                                              |                                          |
| 40                  |                                                                                                                                                                                                                          |                                                                                                                                                                     |                                                                                                                                             |                                                                                                             |                                                                                                                           |                                                                                                              |                                                                                                      |                                                                                                       |                                                                                                                                     |                                                                                              |                                          |
|                     |                                                                                                                                                                                                                          |                                                                                                                                                                     |                                                                                                                                             |                                                                                                             |                                                                                                                           |                                                                                                              |                                                                                                      |                                                                                                       |                                                                                                                                     |                                                                                              |                                          |
|                     |                                                                                                                                                                                                                          |                                                                                                                                                                     |                                                                                                                                             |                                                                                                             |                                                                                                                           |                                                                                                              |                                                                                                      |                                                                                                       |                                                                                                                                     |                                                                                              |                                          |
|                     |                                                                                                                                                                                                                          |                                                                                                                                                                     |                                                                                                                                             |                                                                                                             |                                                                                                                           |                                                                                                              |                                                                                                      |                                                                                                       |                                                                                                                                     |                                                                                              |                                          |
|                     |                                                                                                                                                                                                                          |                                                                                                                                                                     |                                                                                                                                             |                                                                                                             |                                                                                                                           |                                                                                                              |                                                                                                      |                                                                                                       |                                                                                                                                     |                                                                                              |                                          |
|                     |                                                                                                                                                                                                                          |                                                                                                                                                                     |                                                                                                                                             |                                                                                                             |                                                                                                                           |                                                                                                              |                                                                                                      |                                                                                                       |                                                                                                                                     |                                                                                              |                                          |
|                     |                                                                                                                                                                                                                          |                                                                                                                                                                     |                                                                                                                                             |                                                                                                             |                                                                                                                           |                                                                                                              |                                                                                                      |                                                                                                       |                                                                                                                                     |                                                                                              |                                          |
|                     |                                                                                                                                                                                                                          |                                                                                                                                                                     |                                                                                                                                             |                                                                                                             |                                                                                                                           |                                                                                                              |                                                                                                      |                                                                                                       |                                                                                                                                     |                                                                                              |                                          |



| EUT :           |                                                                                                      |                                                                                                               |                                                                                         |                                                                                          |                  |                                                                                        | Name :                                                                               |                                                                                              | PL-762                                                                       | ΔΝ                                                                         |                                                       |                                            |
|-----------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------|
| Tempera         | oturo :                                                                                              | 25 °(                                                                                                         | <u> </u>                                                                                | emote F                                                                                  |                  |                                                                                        | /e Humid                                                                             |                                                                                              | 58 %                                                                         | .+/                                                                        |                                                       |                                            |
| •               |                                                                                                      |                                                                                                               |                                                                                         |                                                                                          |                  |                                                                                        |                                                                                      |                                                                                              |                                                                              |                                                                            |                                                       |                                            |
| Pressure        |                                                                                                      | 1010                                                                                                          |                                                                                         |                                                                                          |                  | lest v                                                                                 | oltage :                                                                             |                                                                                              | DC 3V                                                                        |                                                                            |                                                       |                                            |
| Test Mo         | de :                                                                                                 |                                                                                                               | lode 24                                                                                 | 180MHz                                                                                   | - 1Mbps          |                                                                                        |                                                                                      |                                                                                              |                                                                              |                                                                            |                                                       |                                            |
| Freq.           | Ant.Pol.                                                                                             | Rea                                                                                                           | ding                                                                                    | Ant./CF                                                                                  | A                | ot.                                                                                    | Lir                                                                                  | nit                                                                                          | N                                                                            | /largin                                                                    |                                                       |                                            |
|                 | H/V                                                                                                  | Peak                                                                                                          |                                                                                         |                                                                                          | Peak<br>(dBuV/m) | AV                                                                                     | Peak                                                                                 | AV<br>(dPu)//m                                                                               | Peak                                                                         |                                                                            |                                                       | No                                         |
| (MHz)<br>712.65 | V                                                                                                    | (ubuv)<br>52.68                                                                                               | 49.32                                                                                   | -4.07                                                                                    | 48.61            | 45.25                                                                                  | (uBuv/iii)<br>74.00                                                                  | 54.00                                                                                        | -25.3                                                                        |                                                                            |                                                       | Χ/                                         |
| (               | perfor<br>2) Meas<br>funda<br>"E" d<br>Requi<br>3) Radia<br>instrui<br>4) Data o<br>readir<br>streng | m ∘<br>uring fre<br>mental fi<br>enotes<br>rement.<br>ted emi<br>ment usi<br>of meas<br>ig of em<br>th is too | equency<br>requency<br>band e<br>)<br>ssions<br>ng Pea<br>uremen<br>issions<br>small to | range<br>cy∘"F" de<br>edge fre<br>measure<br>k detect<br>t within<br>are atte<br>o be me |                  | OMHz to<br>Indamenta<br>(This juc<br>Juency ra<br>Ind AV de<br>ency rang<br>ore than 2 | 6000MHz<br>I frequenc<br>Igment m<br>nge abov<br>tector mod<br>le shown<br>20dB belo | x or the 1<br>by; "H" der<br>nethod in<br>re 1000M<br>de of the<br>" * " in the<br>w the per | Oth har<br>notes sp<br>cludes<br>IHz wer<br>emissio<br>e table a<br>missible | rmonic o<br>ourious f<br>the Ba<br>re made<br>n ∘<br>above n<br>e limits c | of hig<br>reque<br>and E<br>e with<br>neans<br>or the | ghes<br>enc <u>y</u><br>Edg<br>h a<br>s th |
|                 | meas<br>6) EUT (                                                                                     | urement<br>Orthogor                                                                                           | sensitiv<br>nal Axis                                                                    | vity.<br>:                                                                               | "Y" - denc       | e used f                                                                               |                                                                                      |                                                                                              |                                                                              |                                                                            |                                                       | cier                                       |
| (               | meas<br>6) EUT (                                                                                     | urement<br>Orthogor                                                                                           | sensitiv<br>nal Axis                                                                    | vity.<br>:                                                                               |                  |                                                                                        |                                                                                      |                                                                                              | otes Sic                                                                     |                                                                            |                                                       |                                            |
| (               | meas<br>6) EUT (<br>"X" - c                                                                          | urement<br>Orthogor                                                                                           | sensitiv<br>nal Axis                                                                    | vity.<br>:                                                                               |                  |                                                                                        |                                                                                      |                                                                                              | otes Sic                                                                     | de Stand                                                                   |                                                       |                                            |
| (               | meas<br>6) EUT (<br>"X" - c                                                                          | urement<br>Orthogor                                                                                           | sensitiv<br>nal Axis                                                                    | vity.<br>:                                                                               |                  |                                                                                        |                                                                                      |                                                                                              | otes Sic                                                                     | de Stand                                                                   |                                                       |                                            |



| Temperature :       25 °C       Relative Humidity :       58 %         Pressure :       1010 hPa       Test Voltage :       DC 3V         Test Mode :       RX Mode 2480MHz - 1Mbps       RX Mode 2480MHz - 1Mbps         Freq.       Ant.Pol.       Reading       Ant./CF       Act.       Limit       Margin         Peak       AV       Peak       AV       Peak       AV       Peak       AV       N         (MHz)       H/V       (dBuV)       (CF(dB)       (dBuV/m)       (dBuV/m)       (dBuV/m)       N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EUT :       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | After                                                                                                                                                                  | glow R                                                                                                                                    | emote F                                                                                                            | or Wii                                                                                                               | Model                                                                                                          | Name :                                                                                                             |                                                                                                                       | PL-7624                                                                                                  | 4A                                                                                                                       |                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Test Mode       RX Mode 2480MHz - 1Mbps         Freq.       Ant.Pol.       Reading       Ant./CF       Act.       Limit       Margin         Yeak       AV       Peak       Audited       Adited       Peak       Ad                                                                                                                                                                                                       | [emperation | ature :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25 °(                                                                                                                                                                  | 2                                                                                                                                         |                                                                                                                    |                                                                                                                      | Relati                                                                                                         | ve Humid                                                                                                           | ity :                                                                                                                 | 58 %                                                                                                     |                                                                                                                          |                                                   |
| RX Mode 2480MHz - 1Mbps         Freq.       Ant //CF       Act.       Limit       Margin         Freq.       Ant //CF       Act.       Limit       Margin         Peak       AV       Peak       AI       2       Colspan="2"       Colspan= 200       54.00       -24.29       -6.47       2         A       Peak       Peak       AI       O         Colspan= 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1010                                                                                                                                                                   | hPa                                                                                                                                       |                                                                                                                    |                                                                                                                      |                                                                                                                |                                                                                                                    | <u> </u>                                                                                                              | DC 3V                                                                                                    |                                                                                                                          |                                                   |
| Peak       AV       P                                                                                                                                                                                                                  | ſest Mo     | de :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RX N                                                                                                                                                                   | /lode 24                                                                                                                                  | 480MHz                                                                                                             | : - 1Mbps                                                                                                            |                                                                                                                | 0                                                                                                                  |                                                                                                                       |                                                                                                          |                                                                                                                          |                                                   |
| Peak       AV       P                                                                                                                                                                                                                  | Frea        | Ant Pol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Read                                                                                                                                                                   | dina                                                                                                                                      | Ant /CF                                                                                                            | Ad                                                                                                                   | ot.                                                                                                            | Lir                                                                                                                | nit                                                                                                                   | N                                                                                                        | largin                                                                                                                   |                                                   |
| 712.65       H       53.78       51.60       -4.07       49.71       47.53       74.00       54.00       -24.29       -6.47       >         Remark :         (1) All readings are Peak unless otherwise stated QP in column of "Note " Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement did perform °.         (2) Measuring frequency range from 1000MHz to 6000MHz or the 10th harmonic of highe fundamental frequency. "F" denotes fundamental frequency, "H" denotes spurious frequenc "E" denotes band edge frequency. (This judgment method includes the Band Ed Requirement.)         (3) Radiated emissions measured in frequency range above 1000MHz were made with instrument using Peak detector mode and AV detector mode of the emission ~         (4) Data of measurement within this frequency range shown ** " in the table above means t reading of emissions are attenuated more than 20dB below the permissible limits or the fit strength is too small to be measured.         (5) A preamp and high pass filter were used for this test in order to provide sufficie measurement sensitivity.         (6) EUT Orthogonal Axis :       "X" - denotes Laid on Table ; "Y" - denotes Vertical Stand : "Z" - denotes Side Stand         80.0       dew/m | -           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Peak                                                                                                                                                                   | AV                                                                                                                                        |                                                                                                                    | Peak                                                                                                                 |                                                                                                                |                                                                                                                    |                                                                                                                       | Peak                                                                                                     | AV                                                                                                                       | No                                                |
| <ul> <li>(1) All readings are Peak unless otherwise stated QP in column of "Note ". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement did perform •</li> <li>(2) Measuring frequency range from 1000MHz to 6000MHz or the 10th harmonic of higher fundamental frequency. "F" denotes fundamental frequency, "H" denotes spurious frequenc "E" denotes band edge frequency. (This judgment method includes the Band Ed Requirement.)</li> <li>(3) Radiated emissions measured in frequency range above 1000MHz were made with a instrument using Peak detector mode and AV detector mode of the emission •</li> <li>(4) Data of measurement within this frequency range shown " * " in the table above means t reading of emissions are attenuated more than 20dB below the permissible limits or the fit strength is too small to be measured.</li> <li>(5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.</li> <li>(6) EUT Orthogonal Axis :         "X" - denotes Laid on Table : "Y" - denotes Vertical Stand : "Z" - denotes Side Stand         <ul> <li>#40</li> </ul> </li> </ul>                                                                                                                     | <b>\</b> /  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , ,                                                                                                                                                                    | · /                                                                                                                                       |                                                                                                                    | · /                                                                                                                  | ,                                                                                                              | · /                                                                                                                | •                                                                                                                     | / (                                                                                                      |                                                                                                                          | / X/                                              |
| 80.0 dBuV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (<br>(<br>( | <ul> <li>that the performance of the performance of</li></ul> | ne Peak<br>rm suring free<br>imental f<br>lenotes<br>irement.<br>ated emi<br>ment us<br>of meas<br>of meas<br>ng of em<br>gth is too<br>eamp an<br>surement<br>Orthogo | reading<br>equency<br>frequent<br>band<br>)<br>issions<br>ing Pea<br>suremer<br>hissions<br>o small f<br>nd high<br>t sensiti<br>nal Axis | y range<br>cy∘"F" de<br>edge fre<br>measure<br>ak detect<br>to twithin<br>are atte<br>to be me<br>n pass<br>ivity. | from 100<br>enotes fur<br>equency.<br>ed in frec<br>or mode a<br>this freque<br>nuated me<br>easured.<br>filter were | the QP Li<br>OMHz to<br>Idamenta<br>(This juc<br>quency ra<br>and AV de<br>ency rang<br>ore than 2<br>e used f | mits and t<br>6000MHz<br>I frequence<br>Igment m<br>inge abov<br>tector mod<br>ge shown<br>20dB belo<br>or this te | then QP N<br>c or the f<br>cy; "H" den<br>nethod in<br>we 1000N<br>de of the<br>" * " in th<br>w the per<br>est in or | Node me<br>10th harr<br>notes spu<br>cludes<br>1Hz were<br>emission<br>e table a<br>missible<br>der to p | asurement<br>monic of higurious frequent<br>the Band<br>e made with<br>n o<br>bove mean<br>limits or the<br>provide suff | ghes<br>ency<br>Edge<br>th ai<br>s the<br>s field |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 80.0 dB     | uV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                        |                                                                                                                                           |                                                                                                                    |                                                                                                                      |                                                                                                                |                                                                                                                    |                                                                                                                       |                                                                                                          |                                                                                                                          | ]                                                 |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                        |                                                                                                                                           |                                                                                                                    |                                                                                                                      |                                                                                                                |                                                                                                                    |                                                                                                                       |                                                                                                          |                                                                                                                          |                                                   |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                        |                                                                                                                                           |                                                                                                                    |                                                                                                                      |                                                                                                                |                                                                                                                    |                                                                                                                       |                                                                                                          |                                                                                                                          |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                        |                                                                                                                                           |                                                                                                                    |                                                                                                                      |                                                                                                                |                                                                                                                    |                                                                                                                       |                                                                                                          |                                                                                                                          |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                        |                                                                                                                                           |                                                                                                                    |                                                                                                                      |                                                                                                                |                                                                                                                    |                                                                                                                       |                                                                                                          |                                                                                                                          | 1                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                        |                                                                                                                                           |                                                                                                                    |                                                                                                                      |                                                                                                                |                                                                                                                    |                                                                                                                       |                                                                                                          |                                                                                                                          |                                                   |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                        |                                                                                                                                           |                                                                                                                    |                                                                                                                      |                                                                                                                |                                                                                                                    |                                                                                                                       |                                                                                                          |                                                                                                                          |                                                   |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                        |                                                                                                                                           |                                                                                                                    |                                                                                                                      |                                                                                                                |                                                                                                                    |                                                                                                                       |                                                                                                          |                                                                                                                          |                                                   |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                        |                                                                                                                                           |                                                                                                                    |                                                                                                                      |                                                                                                                |                                                                                                                    |                                                                                                                       |                                                                                                          |                                                                                                                          |                                                   |
| 1000.000 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 0 3550.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6100.0                                                                                                                                                                 | 0 865                                                                                                                                     | 0.00 11                                                                                                            | 200.00 13                                                                                                            | 750.00 16                                                                                                      | 300.00 18                                                                                                          | 850.00 21                                                                                                             | 400.00                                                                                                   | 26500.00                                                                                                                 | _ <br>)MHz                                        |

#### 5. NUMBER OF HOPPING CHANNEL

#### 5.1 APPLIED PROCEDURES / LIMIT

| FCC Part15 (15.247) , Subpart C |                              |                          |        |  |  |  |  |
|---------------------------------|------------------------------|--------------------------|--------|--|--|--|--|
| Section                         | Test Item                    | Frequency Range<br>(MHz) | Result |  |  |  |  |
| 15.247<br>(a)(1)(iii)           | Number of Hopping<br>Channel | 2400-2483.5              | PASS   |  |  |  |  |

#### 5.1.1 MEASUREMENT INSTRUMENTS LIST AND SETTING

| lte | em | Kind of Equipment | Manufacturer | Type No. | Serial No. | Calibrated until |
|-----|----|-------------------|--------------|----------|------------|------------------|
|     | 1  | Spectrum Analyzer | R&S          | FSP 40   | 100185     | Nov.25.2012      |

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of Equipment List is One Year.

| Spectrum Parameters | Setting                     |
|---------------------|-----------------------------|
| Attenuation         | Auto                        |
| Span Frequency      | > Operating Frequency Range |
| RB                  | 100 kHz                     |
| VB                  | 100 kHz                     |
| Detector            | Peak                        |
| Trace               | Max Hold                    |
| Sweep Time          | Auto                        |

#### 5.1.2 TEST PROCEDURE

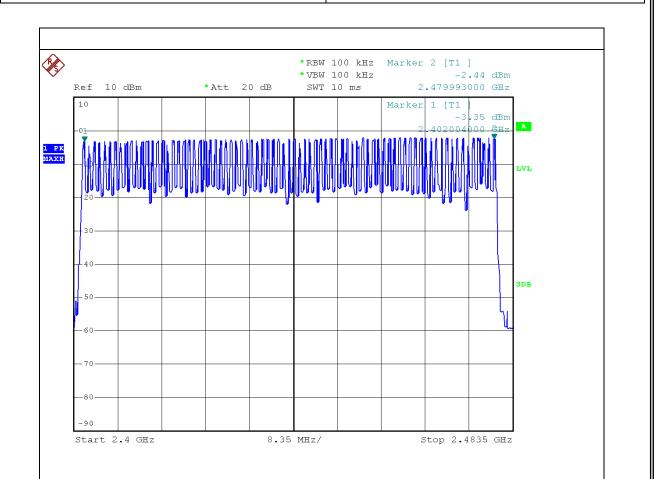
- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW=100KHz, Sweep time = Auto.

#### 5.1.3 DEVIATION FROM STANDARD

No deviation.

#### 5.1.4 TEST SETUP

| EUT | SPECTRUM |
|-----|----------|
|     | ANALYZER |


#### 5.1.5 EUT OPERATION CONDITIONS



| EUT :         | Afterglow Remote For Wii | Model Name :        | PL-7624A |
|---------------|--------------------------|---------------------|----------|
| Temperature : | <b>25</b> ℃              | Relative Humidity : | 58 %     |
| Pressure :    | 1009 hPa                 | Test Voltage :      | DC 3V    |
| Test Mode :   | Hopping Mode -1Mbps      |                     |          |

79

#### Number of Hopping Channel



Date: 12.SEP.2012 21:08:38

#### 6. AVERAGE TIME OF OCCUPANCY

#### 6.1 APPLIED PROCEDURES / LIMIT

| FCC Part15 (15.247), Subpart C |                              |        |                          |        |
|--------------------------------|------------------------------|--------|--------------------------|--------|
| Section                        | Test Item                    | Limit  | Frequency Range<br>(MHz) | Result |
| 15.247<br>(a)(1)(iii)          | Average Time<br>of Occupancy | 0.4sec | 2400-2483.5              | PASS   |

#### 6.1.1 MEASUREMENT INSTRUMENTS LIST

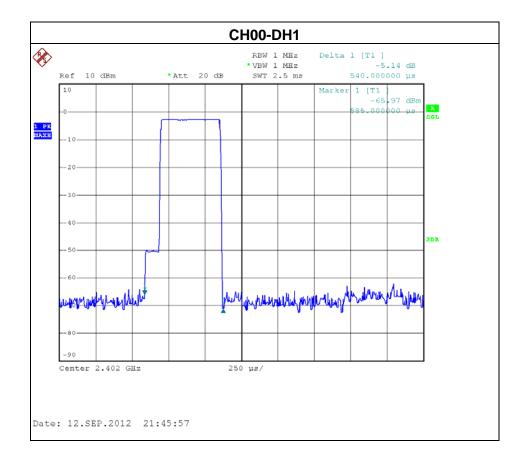
| Item | Kind of Equipment | Manufacturer | Type No. | Serial No. | Calibrated until |
|------|-------------------|--------------|----------|------------|------------------|
| 1    | Spectrum Analyzer | R&S          | FSP 40   | 100185     | Nov.25.2012      |

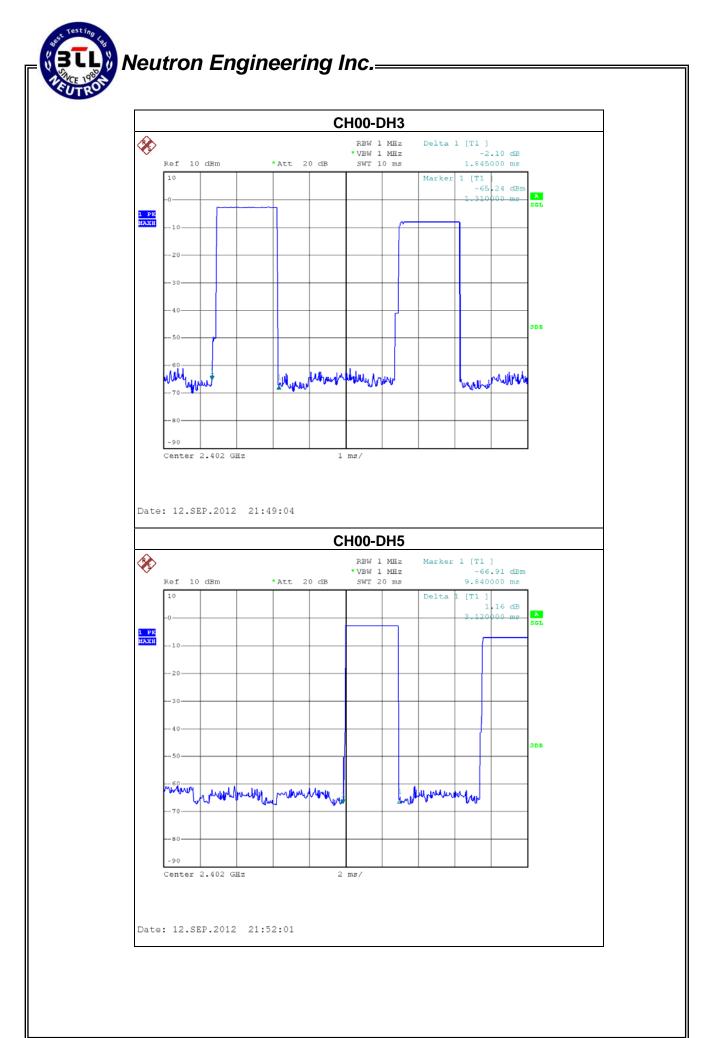
Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of Equipment List is One Year.

#### 6.1.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- $\tilde{h}$ . Measure the maximum time duration of one single pulse.
- i. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 3.37 x 31.6 = 106.6 within 31.6 seconds.
- j. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 5.06 x 31.6 = 160 within 31.6 seconds.
- k. DH1 Packet permit maximum 1600 / 79 /2 = 10.12 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times 10.12 x 31.6 = 320 within 31.6 seconds.

#### 6.1.3 DEVIATION FROM STANDARD

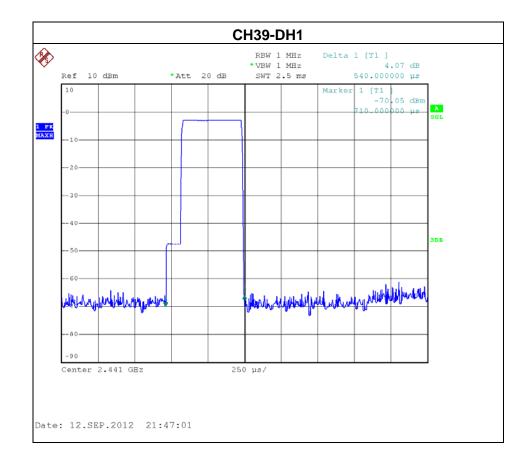

No deviation.


| s Testing ly                                  |                                                  |
|-----------------------------------------------|--------------------------------------------------|
| Neutron Engineering                           | g Inc                                            |
| .4 TEST SETUP                                 |                                                  |
|                                               |                                                  |
| EUT                                           | SPECTRUM                                         |
|                                               | ANALYZER                                         |
| .5 EUT OPERATION CONDITIONS                   |                                                  |
| e EUT tested system was configured as t       | he statements of 4.1.6 Unless otherwise a specia |
| erating condition is specified in the follows | s during the testing.                            |
|                                               |                                                  |
|                                               |                                                  |
|                                               |                                                  |
|                                               |                                                  |
|                                               |                                                  |
|                                               |                                                  |
|                                               |                                                  |
|                                               |                                                  |
|                                               |                                                  |
|                                               |                                                  |
|                                               |                                                  |
|                                               |                                                  |
|                                               |                                                  |
|                                               |                                                  |
|                                               |                                                  |
|                                               |                                                  |
|                                               |                                                  |
|                                               |                                                  |

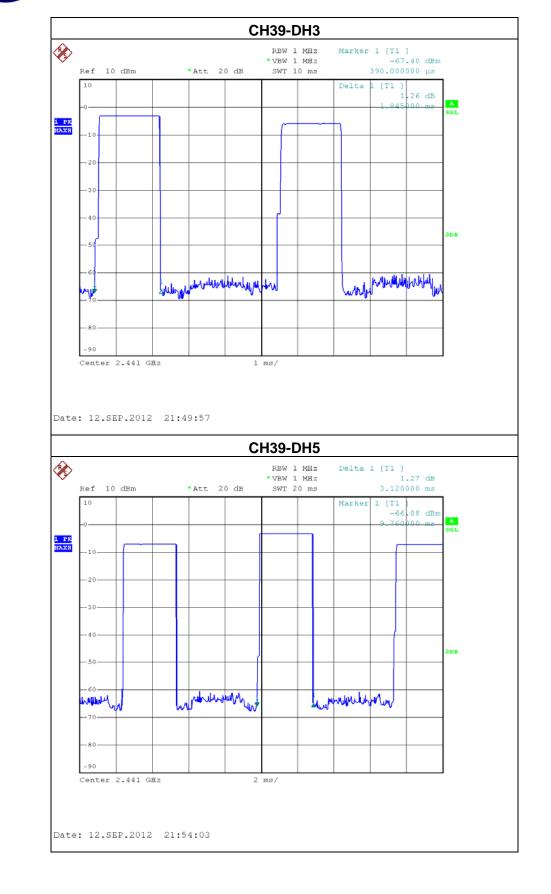


| EUT :         | Afterglow Remote For Wii | Model Name :        | PL-7624A |
|---------------|--------------------------|---------------------|----------|
| Temperature : | <b>25</b> ℃              | Relative Humidity : | 58 %     |
| Pressure :    | 1009 hPa                 | Test Voltage :      | DC 3V    |
| Test Mode :   | CH00-DH1/DH3/DH5 -1Mbps  |                     |          |

| Data Packet | Frequency | Pulse Duration<br>(ms) | Dwell Time<br>(s) | Limits<br>(s) |
|-------------|-----------|------------------------|-------------------|---------------|
| DH5         | 2402 MHz  | 3.1200                 | 0.3328            | 0.4000        |
| DH3         | 2402 MHz  | 1.8450                 | 0.2952            | 0.4000        |
| DH1         | 2402 MHz  | 0.5400                 | 0.1728            | 0.4000        |

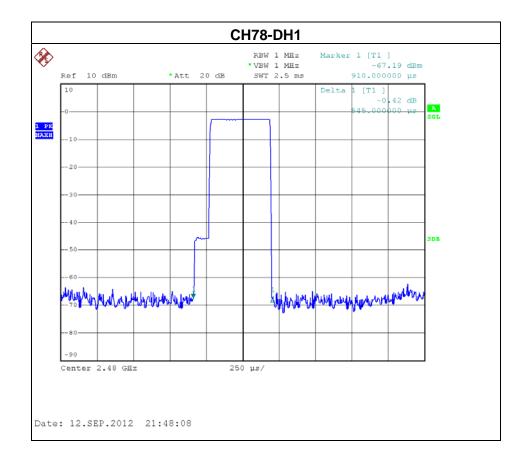


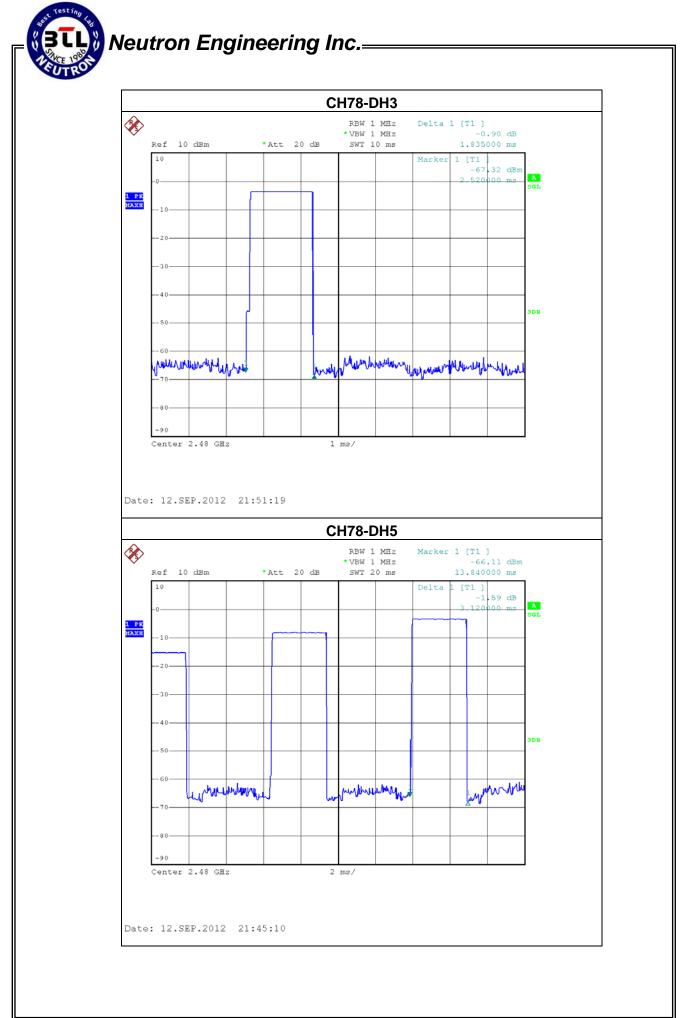




Report No.: NEI-FICP-1-1209C023

| EUT :         | Afterglow Remote For Wii | Model Name :        | PL-7624A |
|---------------|--------------------------|---------------------|----------|
| Temperature : | <b>25</b> ℃              | Relative Humidity : | 58 %     |
| Pressure :    | 1009 hPa                 | Test Voltage :      | DC 3V    |
| Test Mode :   | CH39 -DH1/DH3/DH5 -1Mbps |                     |          |

| Data Packet | Frequency | Pulse Duration<br>(ms) | Dwell Time<br>(s) | Limits<br>(s) |
|-------------|-----------|------------------------|-------------------|---------------|
| DH5         | 2441 MHz  | 3.1200                 | 0.3328            | 0.4000        |
| DH3         | 2441 MHz  | 1.8450                 | 0.2952            | 0.4000        |
| DH1         | 2441 MHz  | 0.5400                 | 0.1728            | 0.4000        |






| EUT :         | Afterglow Remote For Wii | Model Name :        | PL-7624A |
|---------------|--------------------------|---------------------|----------|
| Temperature : | <b>25</b> ℃              | Relative Humidity : | 58 %     |
| Pressure :    | 1009 hPa                 | Test Voltage :      | DC 3V    |
| Test Mode :   | CH78 -DH1/DH3/DH5-1Mbps  |                     |          |

| Data Packet | Frequency | Pulse Duration<br>(ms) | Dwell Time<br>(s) | Limits<br>(s) |
|-------------|-----------|------------------------|-------------------|---------------|
| DH5         | 2480 MHz  | 3.1200                 | 0.3328            | 0.4000        |
| DH3         | 2480 MHz  | 1.8350                 | 0.2936            | 0.4000        |
| DH1         | 2480 MHz  | 0.5450                 | 0.1744            | 0.4000        |







#### 7. HOPPING CHANNEL SEPARATION MEASUREMENT

#### 7.1 APPLIED PROCEDURES / LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

#### 7.1.1 MEASUREMENT INSTRUMENTS LIST AND SETTING

| Item | Kind of Equipment | Manufacturer | Type No. | Serial No. | Calibrated until |
|------|-------------------|--------------|----------|------------|------------------|
| 1    | Spectrum Analyzer | R&S          | FSP 40   | 100185     | Nov.25.2012      |

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of Equipment List is One Year.

| Spectrum Parameter                                           | Setting  |
|--------------------------------------------------------------|----------|
| Attenuation                                                  | Auto     |
| Span Frequency > Measurement Bandwidth or Channel Separation |          |
| RB                                                           | 30 kHz   |
| VB                                                           | 100 kHz  |
| Detector                                                     | Peak     |
| Trace                                                        | Max Hold |
| Sweep Time                                                   | Auto     |

#### 7.1.2 TEST PROCEDURE

- a. The EUT must have its hopping function enabled
- b. Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW Sweep = auto Detector function = peak Trace = max hold

#### 7.1.3 DEVIATION FROM STANDARD

No deviation.

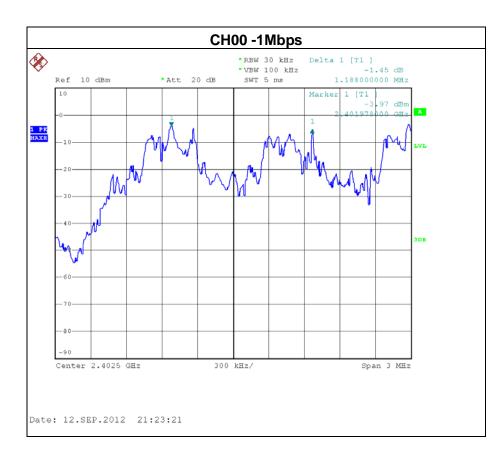
#### 7.1.4 TEST SETUP

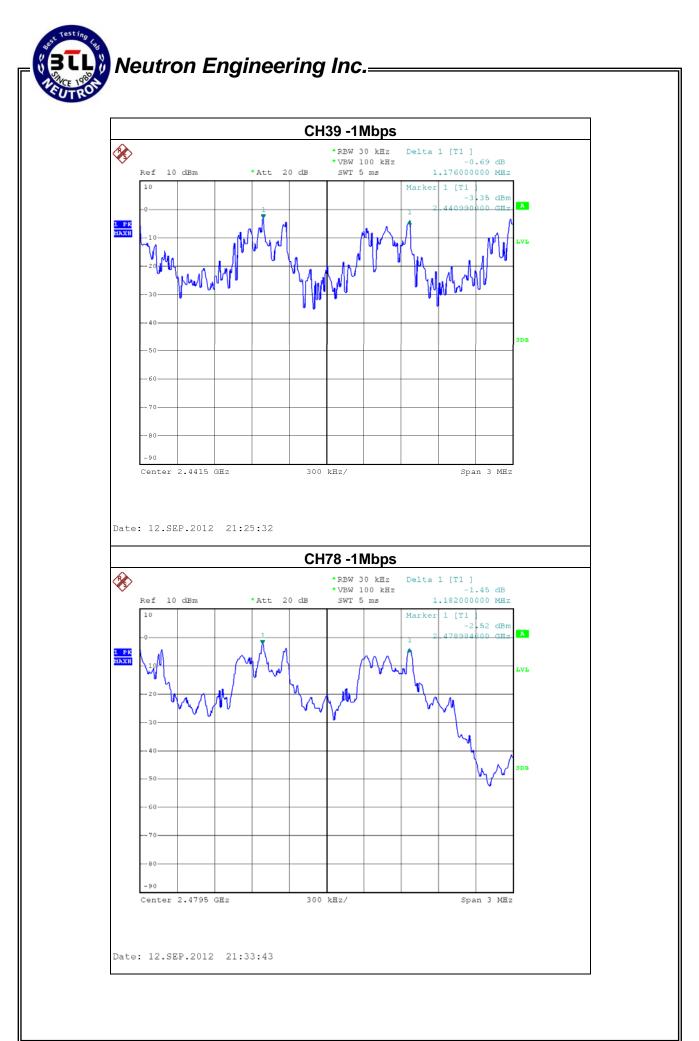


Spectrum Analayzer

EUT

#### 7.1.5 EUT OPERATION CONDITIONS


The EUT was programmed to be in hopping mode.




| EUT :         | Afterglow Remote For Wii | Model Name :        | PL-7624A |
|---------------|--------------------------|---------------------|----------|
| Temperature : | <b>25</b> ℃              | Relative Humidity : | 58 %     |
| Pressure :    | 1009 hPa                 | Test Voltage :      | DC 3V    |
| Test Mode :   | CH00 / CH39 /CH78-1Mbps  |                     |          |

| Frequency | Ch. Separation<br>(MHz) | 20dB Bandwidth<br>(MHz) | Result   |
|-----------|-------------------------|-------------------------|----------|
| 2402 MHz  | 1                       | 1.05                    | Complies |
| 2441 MHz  | 1                       | 1.03                    | Complies |
| 2480 MHz  | 1                       | 1.03                    | Complies |

#### Ch. Separation Limits: >20dB bandwidth or >2/3 of 20dB bandwidth





#### 8. BANDWIDTH TEST

#### 8.1 APPLIED PROCEDURES / LIMIT

|   | FCC Part15 (15.247), Subpart C |           |                              |                          |        |
|---|--------------------------------|-----------|------------------------------|--------------------------|--------|
| S | Section                        | Test Item | Limit                        | Frequency Range<br>(MHz) | Result |
|   | 15.247<br>(a)(2)               | Bandwidth | <= 1 MHz<br>(20dB bandwidth) | 2400-2483.5              | PASS   |

#### 8.1.1 MEASUREMENT INSTRUMENTS LIST AND SETTING

| Item | Kind of Equipment | Manufacturer | Type No. | Serial No. | Calibrated until |
|------|-------------------|--------------|----------|------------|------------------|
| 1    | Spectrum Analyzer | R&S          | FSP 40   | 100185     | Nov.25.2012      |

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of Equipment List is One Year.

| Spectrum Parameter | Setting                                                 |
|--------------------|---------------------------------------------------------|
| Attenuation        | Auto                                                    |
| Span Frequency     | > Measurement Bandwidth or Channel Separation           |
| RB                 | 30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)   |
| VB                 | 100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation) |
| Detector           | Peak                                                    |
| Trace              | Max Hold                                                |
| Sweep Time         | Auto                                                    |

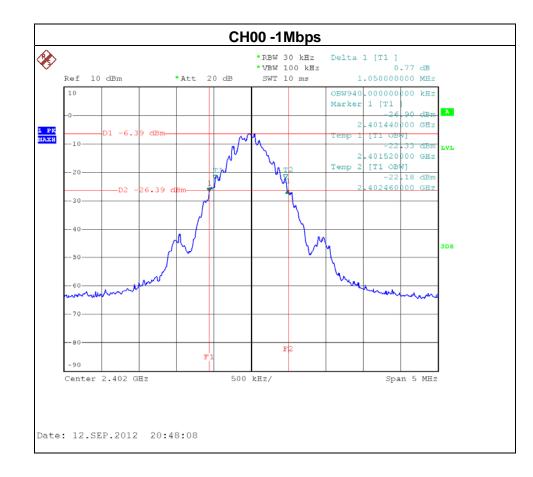
#### 8.1.2 TEST PROCEDURE

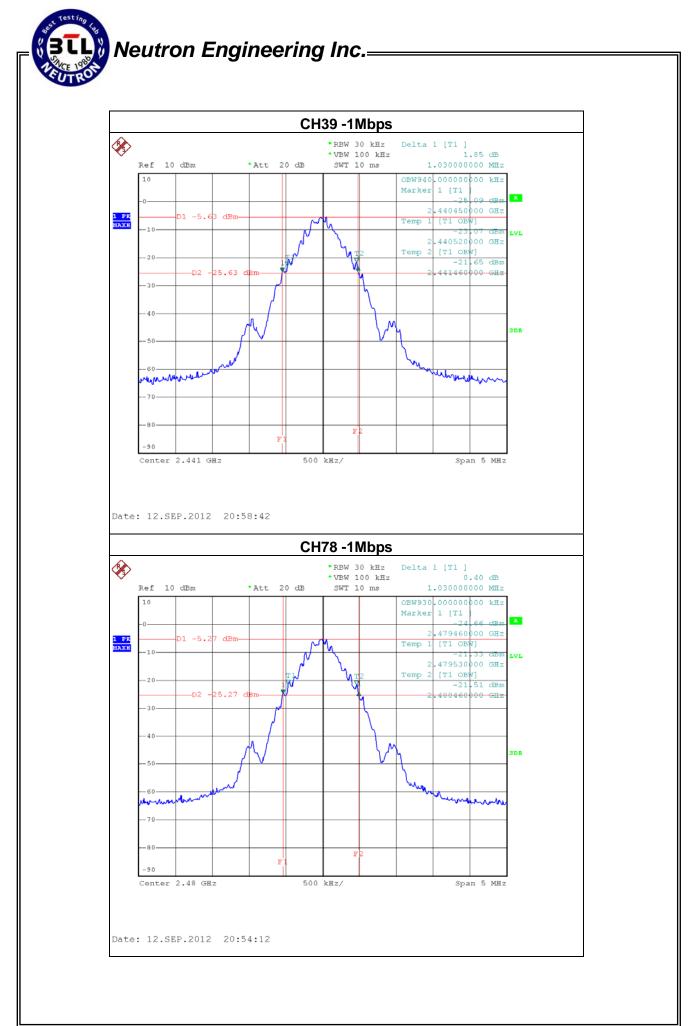
- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 30KHz, VBW=100KHz, Sweep time = Auto.

#### 8.1.3 DEVIATION FROM STANDARD

No deviation.

#### 8.1.4 TEST SETUP


| EUT | SPECTRUM | [ |
|-----|----------|---|
|     | ANALYZER |   |


#### 8.1.5 EUT OPERATION CONDITIONS



|               | Afterniew Demote Fer Mi  | Madal Nama          |          |
|---------------|--------------------------|---------------------|----------|
| EUT :         | Afterglow Remote For Wii | Model Name :        | PL-7624A |
| Temperature : | <b>25</b> ℃              | Relative Humidity : | 58 %     |
| Pressure :    | 1009 hPa                 | Test Voltage :      | DC 3V    |
| Test Mode :   | CH00 / CH39 /CH78-1Mbps  |                     |          |

| Frequency | 20dB Bandwidth<br>(MHz) | 99% OBW<br>(MHz) | Channel Separation<br>(MHz) | Result |
|-----------|-------------------------|------------------|-----------------------------|--------|
| 2402 MHz  | 1.05                    | 0.94             | <= 1MHz                     | PASS   |
| 2441 MHz  | 1.03                    | 0.94             | <= 1MHz                     | PASS   |
| 2480 MHz  | 1.03                    | 0.93             | <= 1MHz                     | PASS   |





#### 9. PEAK OUTPUT POWER TEST

#### 9.1 APPLIED PROCEDURES / LIMIT

| FCC Part15 (15.247) , Subpart C |                      |                        |                          |        |
|---------------------------------|----------------------|------------------------|--------------------------|--------|
| Section                         | Test Item            | Limit                  | Frequency Range<br>(MHz) | Result |
| 15.247<br>(b)(1)                | Peak Output<br>Power | 0.125 watt or<br>21dBm | 2400-2483.5              | PASS   |

#### 9.1.1 MEASUREMENT INSTRUMENTS LIST AND SETTING

| Item | Kind of Equipment | Manufacturer | Type No. | Serial No. | Calibrated until |
|------|-------------------|--------------|----------|------------|------------------|
| 1    | Spectrum Analyzer | R&S          | FSP 40   | 100185     | Nov.25.2012      |

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of Equipment List is One Year.

#### 9.1.2 TEST PROCEDURE

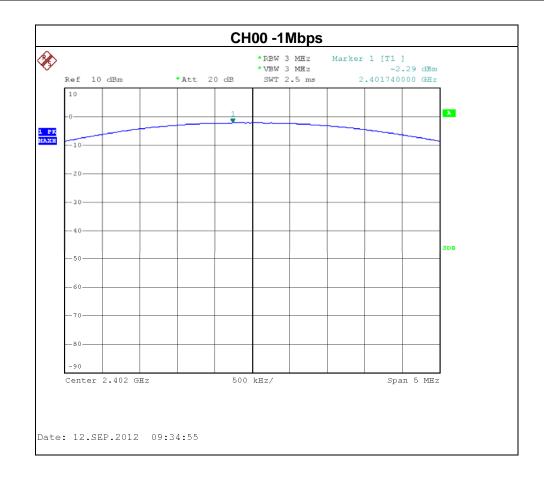
a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,

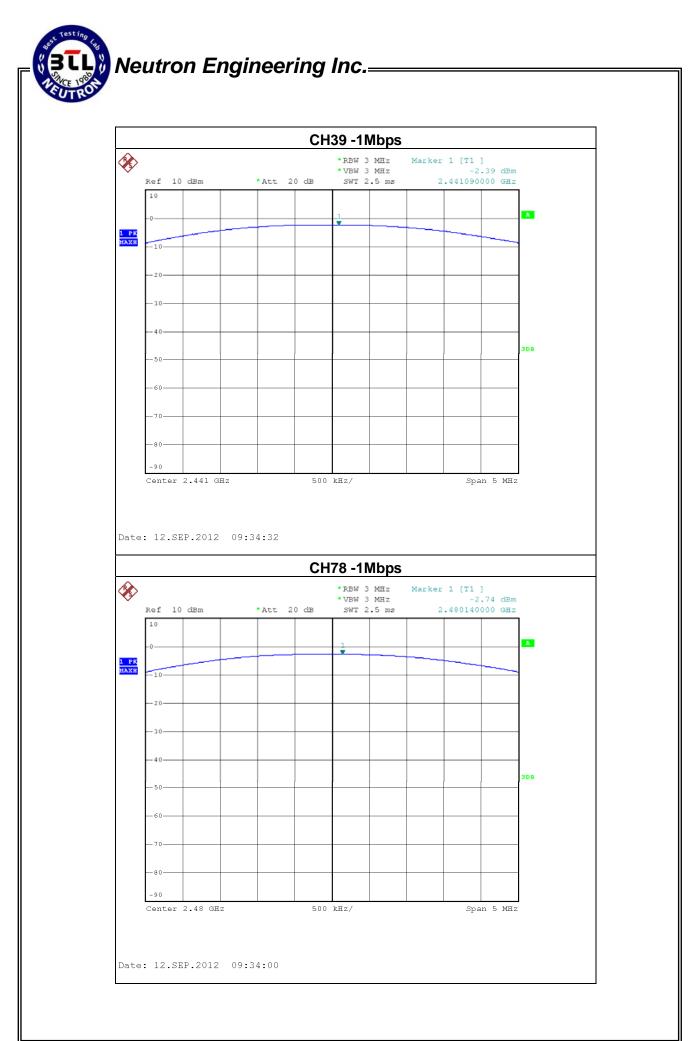
b. Spectrum Setting : RBW= 3MHz, VBW= 3MHz, Sweep time = Auto.

#### 9.1.3 DEVIATION FROM STANDARD

No deviation.

#### 9.1.4 TEST SETUP





#### 9.1.5 EUT OPERATION CONDITIONS



| EUT :         | Afterglow Remote For Wii | Model Name :        | PL-7624A |
|---------------|--------------------------|---------------------|----------|
| Temperature : | <b>25</b> ℃              | Relative Humidity : | 58 %     |
| Pressure :    | 1009 hPa                 | Test Voltage :      | DC 3V    |
| Test Mode :   | CH00/ CH39 /CH78 -1Mbps  |                     |          |

| Test Channel | Frequency<br>(MHz) | Peak Output Power<br>(dBm) | LIMIT<br>(dBm) | LIMIT<br>(W) |
|--------------|--------------------|----------------------------|----------------|--------------|
| CH00         | 2402               | -2.29                      | 21             | 0.125        |
| CH39         | 2441               | -2.39                      | 21             | 0.125        |
| CH78         | 2480               | -2.74                      | 21             | 0.125        |





#### **10. ANTENNA CONDUCTED SPURIOUS EMISSION**

#### **10.1 APPLIED PROCEDURES / LIMIT**

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

| Frequencies<br>(MHz) | Field Strength<br>(micorvolts/meter) | Measurement Distance<br>(meters) |
|----------------------|--------------------------------------|----------------------------------|
| 0.009~0.490          | 2400/F(KHz)                          | 300                              |
| 0.490~1.705          | 24000/F(KHz)                         | 30                               |
| 1.705~30.0           | 30                                   | 30                               |
| 30~88                | 100                                  | 3                                |
| 88~216               | 150                                  | 3                                |
| 216~960              | 200                                  | 3                                |
| Above 960            | 500                                  | 3                                |

#### 10.1.1 MEASUREMENT INSTRUMENTS LIST AND SETTING

| Ite | m Kind of Equipment | Manufacturer | Type No. | Serial No. | Calibrated until |
|-----|---------------------|--------------|----------|------------|------------------|
|     | Spectrum Analyzer   | R&S          | FSP 40   | 100185     | Nov.25.2012      |

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of Equipment List is One Year.

#### 10.1.2 TEST PROCEDURE

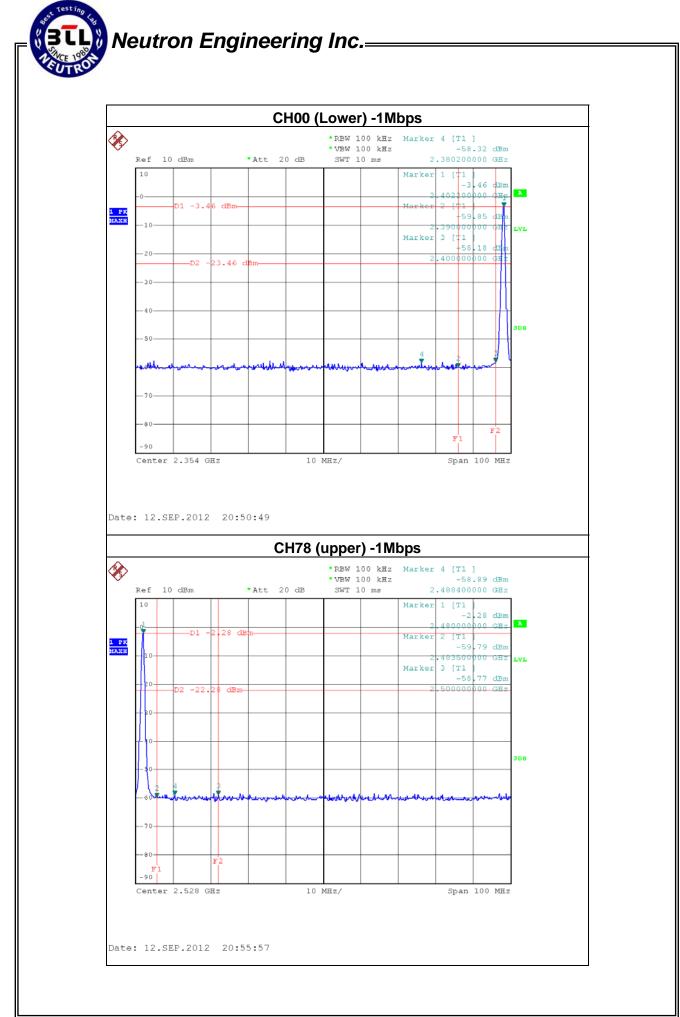
- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW=100KHz, Sweep time = Auto.

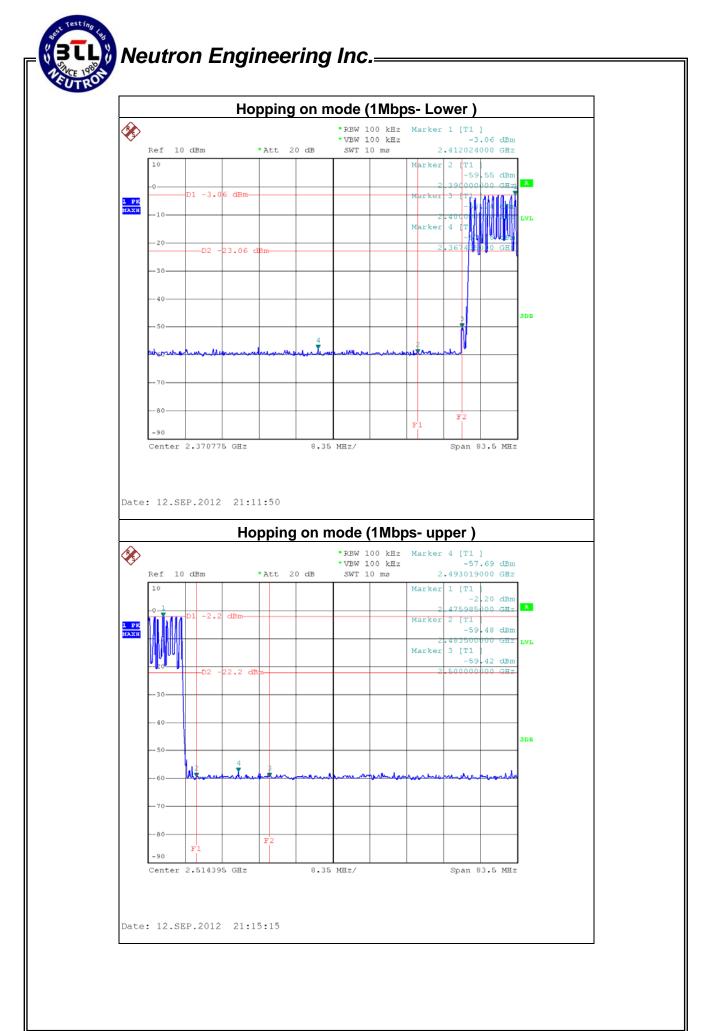
#### **10.1.3 DEVIATION FROM STANDARD**

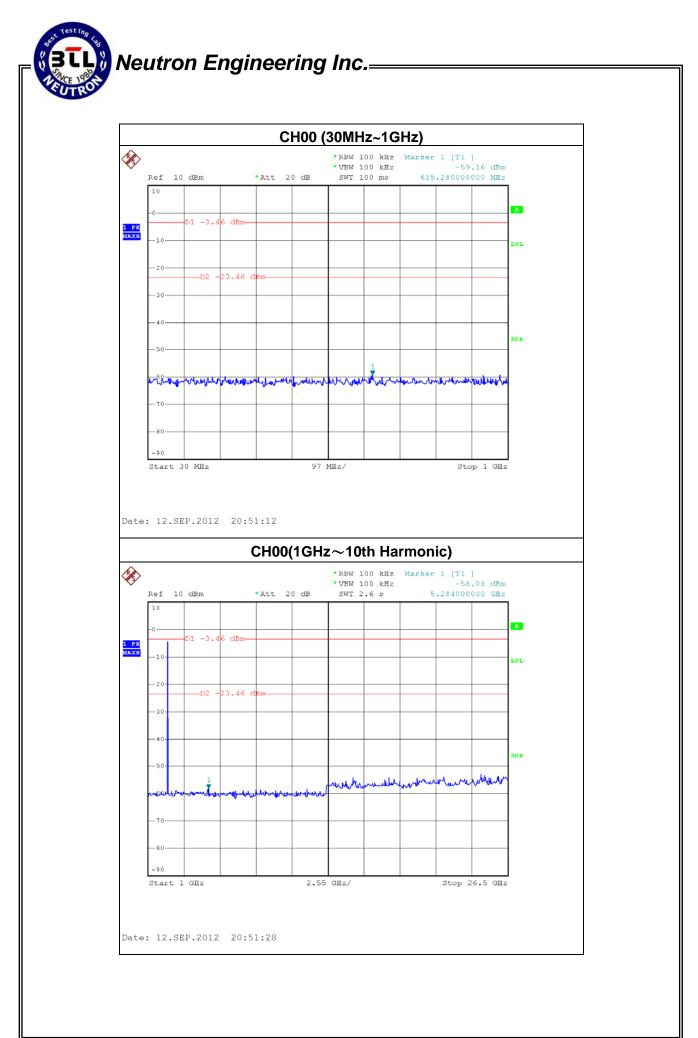
No deviation.

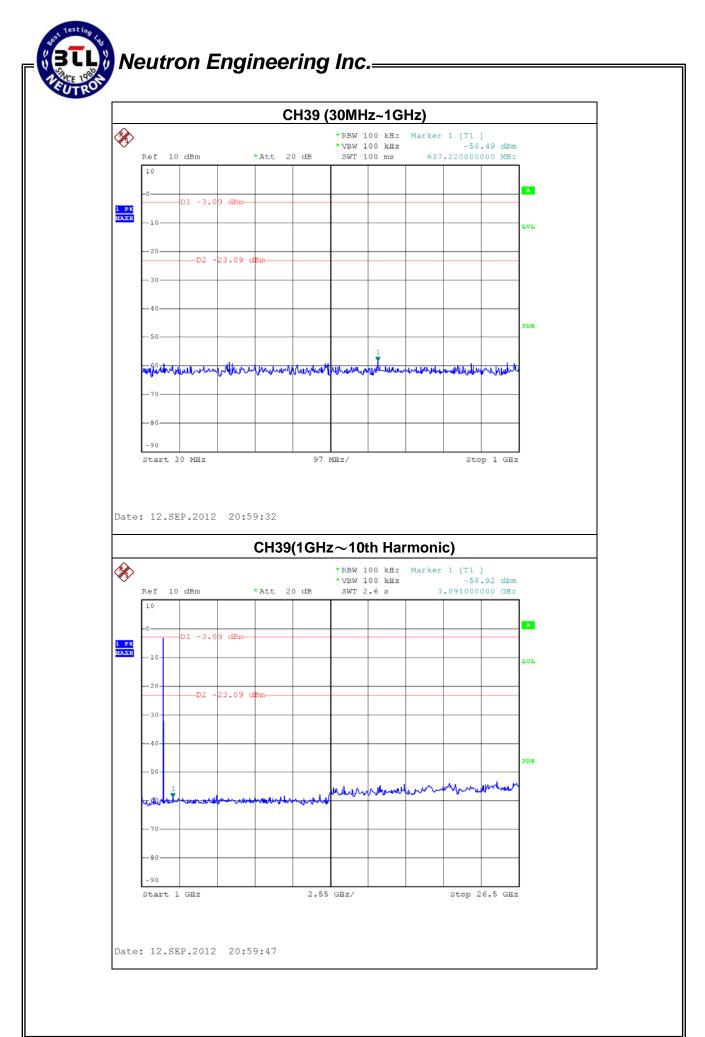
#### 10.1.4 TEST SETUP

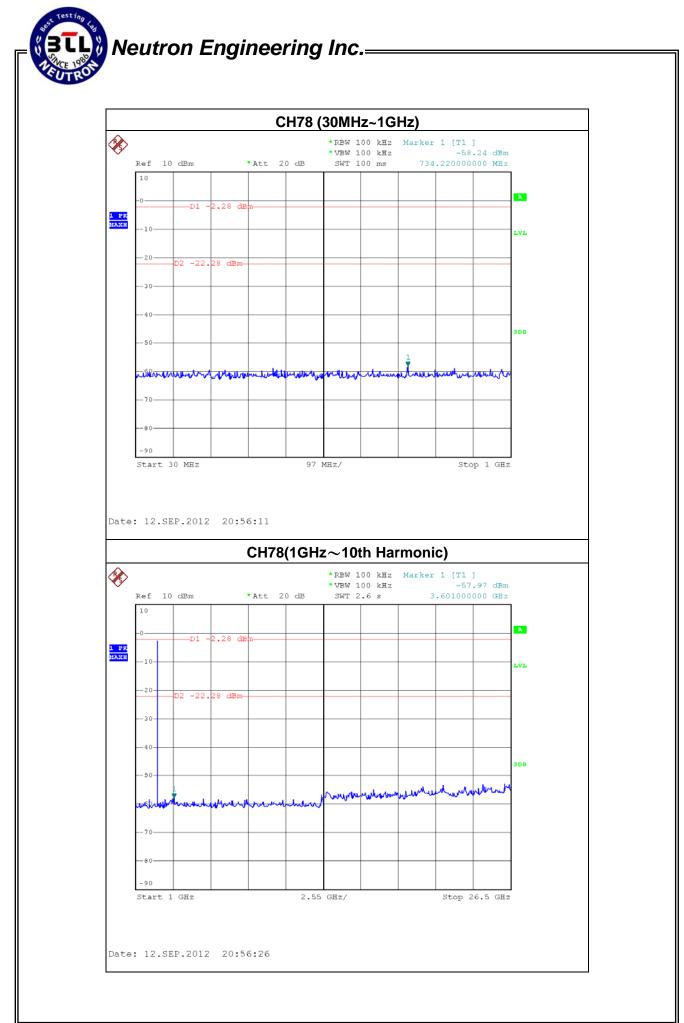
| EUT | SPECTRUM |  |
|-----|----------|--|
|     | ANALYZER |  |


#### 10.1.5 EUT OPERATION CONDITIONS





| EUT :         | Afterglow Remote For Wii                          | Model Name :        | PL-7624A |
|---------------|---------------------------------------------------|---------------------|----------|
| Temperature : | <b>25</b> ℃                                       | Relative Humidity : | 58 %     |
| Pressure :    | 1009 hPa                                          | Test Voltage :      | DC 3V    |
| Test Mode :   | CH00 / CH39/ CH78-1Mbps & Hopping on mode (1Mbps) |                     |          |


| The max. radio frequency power in any 100kHz bandwidth within the frequency band |            | The max. radio frequency power in any 100 kHz bandwidth within the frequency band. |            |  |
|----------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------|------------|--|
| FREQUENCY(MHz)                                                                   | POWER(dBm) | FREQUENCY(MHz)                                                                     | POWER(dBm) |  |
| 2400.00                                                                          | -58.18     | 2500.00                                                                            | -58.77     |  |
| Result                                                                           |            |                                                                                    |            |  |


In any 100kHz bandwidth outside the frequency band, the radio frequency power is at least 20dB below that in the 100kHz bandwidth within the band that contains the highest lever of the desired power.













#### **11. EUT TEST PHOTO**

#### Radiated Measurement Photos 9K-30MHz







### Radiated Measurement Photos 30-1000MHz





Page 72 of 73



#### Radiated Measurement Photos Above 1000MHz





Page 73 of 73