

FCC &ISED Radio Test Report

FCC ID: X5B-500234 IC: 8814A-500234

The report concerns: Original Grant

Report Reference No	23EESS05010 04201
Date Sample(s) Received:	2023-06-05
Date of Tested	From 2023-06-05 to 2023-06-16
Date of issue:	2023-06-16
Testing Laboratory	DongGuanShuoXin Electronic Technology Co., Ltd. Zone A, 1F, No. 6, XinGang Road YuanGang Street, XinAn District, ChangAn Town, DongGuan City, GuangDong, China
Applicant's name: Address for: Manufacturer	PERFORMANCE DESIGNED PRODUCTS, LLC 14144 Ventura Blvd, Suite 200 Sherman. Oaks CA 91423 United States Of America PERFORMANCE DESIGNED PRODUCTS, LLC
Equipment: Trade Mark: Model	
Model	500-234

Ratings I/P: DC 5V Charged

DC 3.7V Li-ion Battery

Test Engineer:

Responsible Engineer :

Blue Qiu Blue Qiu Smile Wonng

Smile Wang

Authorized Signatory:

kingwang

King Wang

Table of Contents	Page
1. TEST REPORT DECLARE	5
2. SUMMARY OF TEST RESULTS	6
2.1. MEASUREMENT UNCERTAINTY	7
3. GENERAL INFORMATION	8
3.1. GENERAL DESCRIPTION OF EUT	8
3.2. DESCRIPTION OF TEST MODES	10
3.3. PARAMETERS OF TEST SOFTWARE	11
3.4. BLOCKDIAGRAMSHOWINGTHECONFIGURATIONOFSYSTEMTESTED	11
3.5. SUPPORT UNITS	11
3.6. TEST ENVIRONMENT CONDITIONS	12
4. AC POWER LINE CONDUCTED EMISSIONS TEST	13
4.1. LIMIT	13
4.2. TEST PROCEDURE	13
4.3. MEASUREMENT INSTRUMENTS LIST	13
4.4. TESTSETUP	14
4.5. EUT OPERATING CONDITIONS	14
4.6. TEST RESULTS	15
5. RADIATED EMISSION TEST	17
5.1. LIMIT	17
5.2. TEST PROCEDURE AND SETTING	18
5.3. MEASUREMENT INSTRUMENTS LIST	19
5.4. TESTSETUP	19
5.5. EUT OPERATING CONDITIONS	20
5.6. TEST RESULTS - 9 KHZ TO 30MHZ	21
5.7. TEST RESULTS- 30 MHZ TO 1000MHZ	22
5.8. TEST RESULTS - ABOVE 1000MHZ(BAND EDGE)	24
5.9. TEST RESULTS - ABOVE 1000MHZ(HARMONIC)	32
6. NUMBER OF HOPPING FREQUENCY	44
6.1. LIMIT	44
6.2. TEST PROCEDURE AND SETTING	44
6.3. MEASUREMENT INSTRUMENTS LIST	44
6.4. TEST SETUP	44

Table of Contents	Page
6.5. EUT OPERATION CONDITIONS	44
6.6. TEST RESULTS	45
7. AVERAGE TIME OF OCCUPANCY	46
7.1. LIMIT	46
7.2. TEST PROCEDURE AND SETTING	46
7.3. MEASUREMENT INSTRUMENTS LIST	46
7.4. TEST SETUP	46
7.5. EUT OPERATION CONDITIONS	46
7.6. TEST RESULTS	47
8. HOPPING CHANNEL SEPARATION MEASUREMENT	49
8.1. LIMIT	49
8.2. TEST PROCEDURE AND SETTING	49
8.3. MEASUREMENT INSTRUMENTS LIST	49
8.4. TEST SETUP	49
8.5. EUT OPERATION CONDITIONS	49
8.6. TEST RESULTS	50
9. BANDWIDTH TEST	52
9.1. LIMIT	52
9.2. TEST PROCEDURE AND SETTING	52
9.3. MEASUREMENT INSTRUMENTS LIST	52
9.4. TEST SETUP	52
9.5. EUT OPERATION CONDITIONS	52
9.6. TEST RESULTS	53
10. MAXIMUM OUTPUT POWER	55
10.1. LIMIT	55
10.2. TEST PROCEDURE AND SETTING	55
10.3. MEASUREMENT INSTRUMENTS LIST	55
10.4. TEST SETUP	55
10.5. EUT OPERATION CONDITIONS	55
10.6. TEST RESULTS	56
11. CONDUCTED SPURIOUS EMISSION	59
11.1. LIMIT	59
11.2. TEST PROCEDURE AND SETTING	59
11.3. MEASUREMENT INSTRUMENTS LIST	59

Table of Contents	Page	
11.4. TEST SETUP	59	
11.5. EUT OPERATION CONDITIONS	59	
11.6. TEST RESULTS	60	
12. FREQUENCY STABILITY MEASUREMENT	62	
12.1. LIMIT	62	
12.2. TEST PROCEDURE	62	
12.3. MEASUREMENT INSTRUMENTS LIST	62	
12.4. TEST SETUP	62	
12.5. EUT OPERATION CONDITIONS	62	
12.6. TEST RESULTS	63	

1. TEST REPORT DECLARE

r	
Applicant for FCC	PERFORMANCE DESIGNED PRODUCTS, LLC
Address for FCC	14144 Ventura Blvd, Suite 200 Sherman. Oaks CA 91423 United States Of America
Manufacturer	PERFORMANCE DESIGNED PRODUCTS, LLC
Address	14144 Ventura Blvd, Suite 200 Sherman. Oaks CA 91423 United States Of America
Factory	PERFORMANCE DESIGNED PRODUCTS, LLC
Addresse	14144 Ventura Blvd, Suite 200 Sherman. Oaks CA
Address	91423 United States Of America
Equipment	REALMz WIRELESS CONTROLLER for Nintendo Switch
Model No.	500-234
Trade Mark	1
Standard	FCC Part15, Subpart C (15.247) RSS-247 Issue 2, Feb. 2017 RSS-Gen Issue 5, Apr. 2018 ANSI C63.10-2013

We Declare:

The equipment described above is tested by DongGuanShuoXin Electronic Technology Co., Ltd(ATT). and in the configuration tested the equipment complied with the standards specified above. The test results are contained in this test report and DongGuanShuoXin Electronic Technology Co., Ltd.(ATT) is assumed of full responsibility for the accuracy and completeness of these tests.

ATT is not responsible for the sampling stage, so the results only apply to the sample as received.

ATT's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. ATT shall have no liability for any declarations, inferences or generalizations drawn by the client or others from ATT issued reports.

2. SUMMARY OF TEST RESULTS

The EUT have been tested according to the applicable standards as referenced below:

Standard(s) Section		Test Item	Judgment	Remark
FCC	ISED	rest item	Judgment	Kemark
15.207	RSS-Gen8.8	AC Power Line Conducted Emissions	PASS	
15.247(d) 15.205(a) 15.209(a)	RSS-247 5.5 RSS-Gen 8.9 RSS-Gen 8.10	Radiated Emission	PASS	
15.247(a)(1)(iii)	RSS-247 5.1 (d)	Number of Hopping Frequency	PASS	
15.247(a)(1)(iii)	RSS-247 5.1 (d)	Average Time Of Occupancy	PASS	
15.247(a)(1)	RSS-247 5.1 (b)	Hopping Channel Separation	PASS	
15.247(a)(1)	RSS-247 5.1 (a) RSS-Gen 6.7	Bandwidth	PASS	
15.247(a)(1)	RSS-247 5.1 (b)	Maximum Output Power	PASS	
15.247(d)	RSS-247 5.5	Conducted Spurious Emission	PASS	
-	RSS-Gen6.11	Frequency Stability	PASS	
15.203	-	Antenna Requirement	PASS	Note(2)

Note:

- (1) "N/A" denotes test is not applicable in this test report
- (2) The device what use a permanently attached antenna were considered sufficient to comply with the provisions of 15.203.

2.1 MEASUREMENT UNCERTAINTY

Test Item	Uncertainty
Uncertainty for Conduction emission test (9kHz-150kHz)	3.7 dB
Uncertainty for Conduction emission test (150kHz-30MHz)	3.3 dB
Uncertainty for Padiation Emission test (2011, 2001, 147)	4.60 dB (Polarize: V)
Uncertainty for Radiation Emission test (30MHz-200MHz)	4.60 dB (Polarize: H)
Uncortainty for Padiation Emission test (200MHz 1CHz)	6.10 dB (Polarize: V)
Uncertainty for Radiation Emission test (200MHz-1GHz)	5.08 dB (Polarize: H)
Upportainty for Padiation Emission test (10Hz 60Hz)	5.01 dB (Polarize: V)
Uncertainty for Radiation Emission test (1GHz-6GHz)	5.01 dB (Polarize: H)
Upportainty for Dadiation Emission toot (6047, 19047)	5.26 dB (Polarize: V)
Uncertainty for Radiation Emission test (6GHz-18GHz)	5.26 dB (Polarize: H)
Uncertainty for Dediction Emission test (1901 - 4001 -	5.06 dB (Polarize: V)
Uncertainty for Radiation Emission test (18GHz-40GHz)	5.06 dB (Polarize: H)
Uncertainty for radio frequency	±0.048kHz
Uncertainty for conducted RF Power	±0.32dB

Note:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test Facility:

The Test site used by DongGuanShuoXin Electronic Technology Co., Ltd. to collect test data is located on the Zone A, 1F, No. 6, XinGang Road YuanGang Street, XinAn District, ChangAn Town, DongGuan City, GuangDong, China

The test facility is recognized, certified, or accredited by the following organizations:

Item	Registration No.	Expiration Date
CNAS	L3098	2024-08-27
A2LA	4893.01	2024-06-30
Innovation, Science and Economic Development Canada (ISED)	11033A CAB identifer:CN0083	2024-06-30
Federal Communications Commission (FCC)	171688 Designation No.:CN1235	2024-06-30

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	REALMZ WIRELESS CONTROI	LER for Nintendo Switch	
Brand Name	1		
Test Model	500-234		
Series Model	N/A		
Model Difference(s)	N/A		
Hardware Version	1.0		
Software Version	1.0		
Power Source	Battery		
Power Rating	DC 5V Charger DC 3.7V Li-ion Battery		
Operation Frequency	2402 MHz ~ 2480 MHz		
Modulation Technology	GFSK, π/4-DQPSK, 8-DPSK		
Bit Rate of Transmitter	1Mbps /2Mbps /3Mbps		
Antenna Information	Antenna Type: PCB Maximum Peak Gain:1.63dBi		
Max. Output Power	1Mbps: 0.177dBm (0.00104W) 2Mbps: 2.102dBm (0.00162W) 3Mbps: 2.452dBm (0.00176W)		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

3.2 DESCRIPTION OF TEST MODES

The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode.

Pretest Mode	Description	
Mode 1	TX Mode NOTE (1)	
Mode 2	TX Mode Channel 01_3Mbps	

Following mode(s) was (were) found to be the worst case(s) and selected for the final test.

AC power line conducted emissions test		
Final Test Mode	Description	
Mode 2	TX Mode Channel 01_3Mbps	

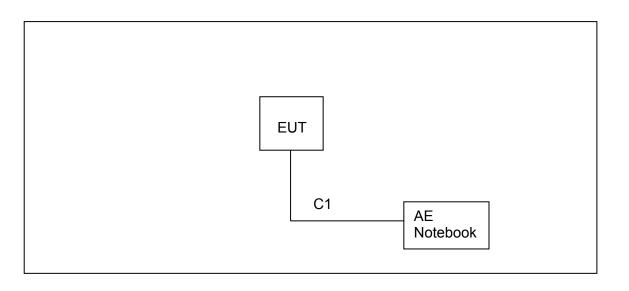
Radiated emissions test - Below 1GHz					
Final Test Mode Description					
Mode 2 TX Mode Channel 01_3Mbps					

Radiated emissions test - Above 1GHz					
Final Test Mode Description					
Mode 1 TX Mode NOTE (1)					

Conducted test				
Final Test Mode Description				
Mode 1	TX Mode NOTE (1)			

Note:

- (1) The measurements are performed at the high, middle, low available channels.
- (2) The measurements for Hopping Channel Separation, Bandwidth and Maximum Output Power were tested during 1Mbps, 2Mbps and 3Mbps, the worst case are 1Mbps and 3Mbps, only worst case was documented.



3.3 PARAMETERS OF TEST SOFTWARE

During testing, channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS

Test Software	N/A				
Frequency (MHz)	2402	2441	2480		
Parameters(1Mbps)	Default	Default	Default		
Parameters(3Mbps)	Default	Default	Default		

3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

3.5SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.
AE	Notebook	Lenovo	/	/

Item	Cable Type	Shielded Type	Ferrite Core	Length
C1	DC Cable	NO	NO	0.8m

3.6 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage
AC Power Line Conducted Emissions	25°C	53%	DC 5V
Radiated Emissions-9K-30MHz	25°C	60%	DC 5V
Radiated Emissions-30 MHz to 1GHz	24°C	68%	DC 5V
Radiated Emissions-Above 1000 MHz	24°C	68%	DC 5V
Number of Hopping Frequency	24.8°C	40.9%	DC 5V
Average Time Of Occupancy	24.8°C	40.9%	DC 5V
Hopping Channel Separation	24.8°C	40.9%	DC 5V
Bandwidth	24.8°C	40.9%	DC 5V
Maximum Output Power	24.8°C	40.9%	DC 5V
Conducted Spurious Emission	24.8°C	40.9%	DC 5V

4. AC POWER LINE CONDUCTED EMISSIONS TEST

4.1 LIMIT

Frequency of Emission (MHz)	Limit (dBµV)			
Frequency of Emission (MHz)	Quasi-peak	Average		
0.15 - 0.50	66 to 56*	56 to 46*		
0.50 - 5.0	56	46		
5.0 - 30.0	60	50		

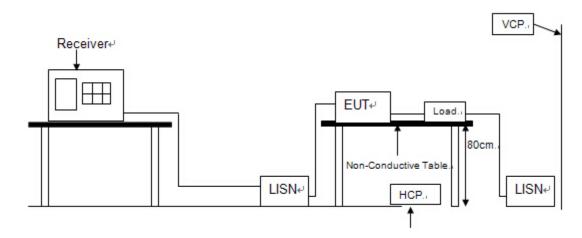
Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting		
Attenuation	10 dB		
Start Frequency	0.15 MHz		
Stop Frequency	30 MHz		
IF Bandwidth	9 kHz		

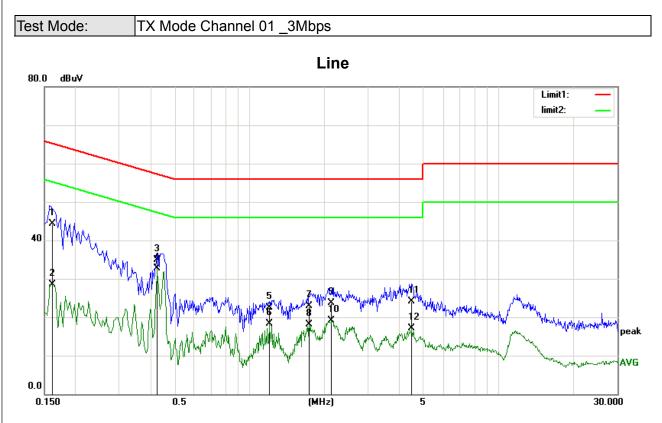
4.2 TEST PROCEDURE


- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.

4.3 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Pulse Limiter	MTS-systemtec hnik	MTS-IMP-136	261115-010-0024	12/11/2023
2	EMI Test Receiver	R&S	ESCI	101308	12/12/2023
3	LISN	AFJ	LS16	16011103219	08/15/2024
4	LISN	Schwarzbeck	NSLK 8127	8127-432	12/11/2023
5	Measurement Software	Farad	EZ-EMC (Ver.ATT-03A)	N/A	N/A

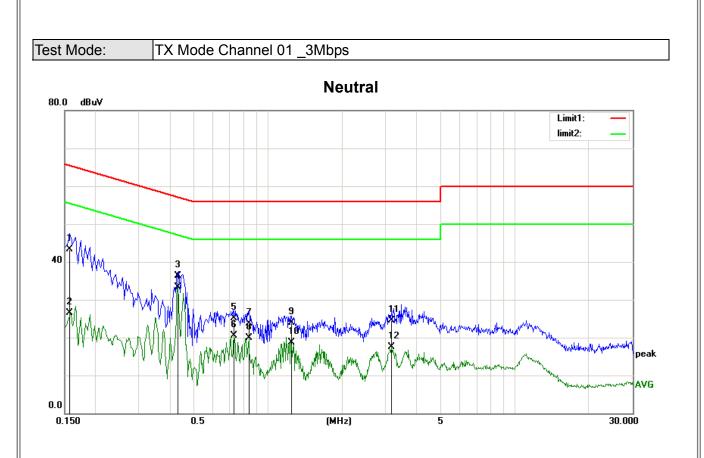
4.4 TESTSETUP



4.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical function (as a customer would normally use it), EUT was programmed to be in continuously transmitting data or hopping on mode.

4.6TEST RESULTS



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1620	33.88	10.39	44.27	65.36	-21.09	QP
2	0.1620	18.10	10.39	28.49	55.36	-26.87	AVG
3	0.4260	24.51	10.44	34.95	57.33	-22.38	QP
4	0.4260	22.21	10.44	32.65	47.33	-14.68	AVG
5	1.2020	12.15	10.43	22.58	56.00	-33.42	QP
6	1.2020	7.82	10.43	18.25	46.00	-27.75	AVG
7	1.7380	12.37	10.47	22.84	56.00	-33.16	QP
8	1.7380	7.61	10.47	18.08	46.00	-27.92	AVG
9	2.1380	13.14	10.48	23.62	56.00	-32.38	QP
10	2.1380	8.70	10.48	19.18	46.00	-26.82	AVG
11	4.4899	13.64	10.51	24.15	56.00	-31.85	QP
12	4.4899	6.56	10.51	17.07	46.00	-28.93	AVG

Remarks:

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1580	32.88	10.40	43.28	65.56	-22.28	QP
2	0.1580	16.10	10.40	26.50	55.56	-29.06	AVG
3	0.4300	25.81	10.44	36.25	57.25	-21.00	QP
4	0.4300	22.80	10.44	33.24	47.25	-14.01	AVG
5	0.7300	14.75	10.40	25.15	56.00	-30.85	QP
6	0.7300	10.14	10.40	20.54	46.00	-25.46	AVG
7	0.8380	13.32	10.41	23.73	56.00	-32.27	QP
8	0.8380	9.42	10.41	19.83	46.00	-26.17	AVG
9	1.2420	13.42	10.43	23.85	56.00	-32.15	QP
10	1.2420	8.28	10.43	18.71	46.00	-27.29	AVG
11	3.1619	14.05	10.46	24.51	56.00	-31.49	QP
12	3.1619	7.14	10.46	17.60	46.00	-28.40	AVG

Remarks:

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

5 RADIATED EMISSION TEST

5.1 LIMIT

In case the emission fall within the restricted band specified on15.205(a) &RSS-Gen 8.10, then the 15.209(a) &RSS-Gen 8.9 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (9 kHz-1000MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (9 kHz-30 MHz)

Frequency	Magnetic field strength (H-Field)	Measurement Distance
(MHz)	(μA/m)	(meters)
0.009-0.490	6.37/F(kHz)	300
0.490-1.705	6.37/F(kHz)	30
1.705-30.0	0.08	30

LIMITS OF RADIATED EMISSION MEASUREMENT (30 MHz-1000MHz)

Frequency	Field Strength					
(MHz)	(µV/m at 3m)					
30-88	100					
88-216	150					
216-960	200					
Above 960	500					

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

Frequency (MHz)	(dBuV/m at 3 m)			
	Peak	Average		
Above 1000	74	54		

Note:

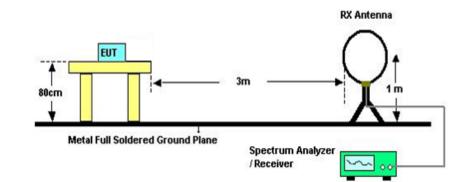
- (1) The limit for radiated test was performed according to FCC PART 15C and RSS-247.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

5.2 TEST PROCEDURE AND SETTING

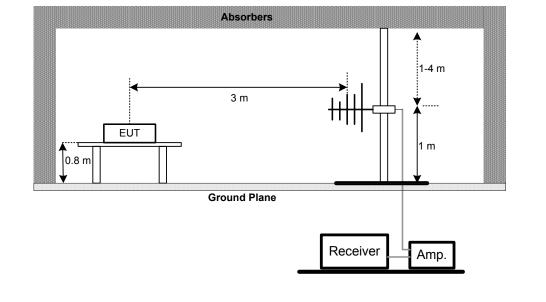
- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. The test result is calculated as the following:
 - (1) Result = Reading + Correct Factor
 - (2) Correct Factor = Antenna Factor + Cable Loss Amplifier Gain + Attenuator
 - (3) Margin = Result Limit

Spectrum Parameter	Setting			
Attenuation	Auto			
Start Frequency	1000 MHz			
Stop Frequency	10th carrier harmonic			
RBW / VBW	RBW 1MHz VBW 3MHz peak detector for Pk value			
(Emission in restricted band)	RMS detector for AV value			

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9 kHz~90 kHz for PK/AVG detector
Start ~ Stop Frequency	90 kHz~110 kHz for QP detector
Start ~ Stop Frequency	110 kHz~490 kHz for PK/AVG detector
Start ~ Stop Frequency	490 kHz~30 MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

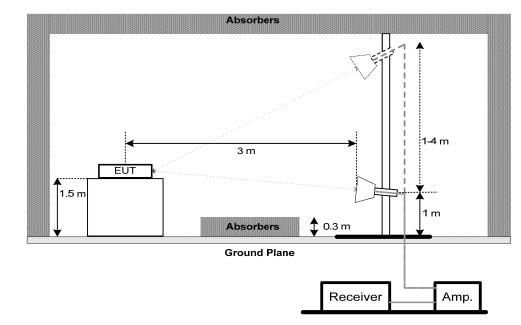


Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	EMI Test Receiver	R&S	ESCI	101307	12/11/2023
2	Spectrum Analyzer	Agilent	E4407B	US40240708	11/10/2023
3	Loop antenna	SCHWARZBECK K	FMZB1519	1519-062	01/15/2024
4	Broadband antenna	SCHWARZBECK	VULB9168	VULB9168-192	07/04/2023
5	HORN ANTENNA	SCHWARZBECK	BBHA9120D	9120D 1065	04/09/2024
6	Preamplifier Amplifier	HP	8447F	3113A05680	12/19/2023
7	PRE-AMPLIFIER	EMEC	EM01G26G	980136	04/05/2024
8	RF Cable	R&S	Test Cable 4	4	12/11/2023
9	RF Cable	R&S	Test Cable 5	5	12/11/2023
10	RF Cable	R&S	Test Cable 9	9	04/09/2024
11	RF Cable	R&S	Test Cable 10	10	04/09/2024
12	Measurement Software	Farad	EZ-EMC (Ver.ATT-03A)	N/A	N/A


5.3 MEASUREMENT INSTRUMENTS LIST

5.4 TESTSETUP

9 kHz-30 MHz



30 MHz to 1 GHz

Above 1 GHz

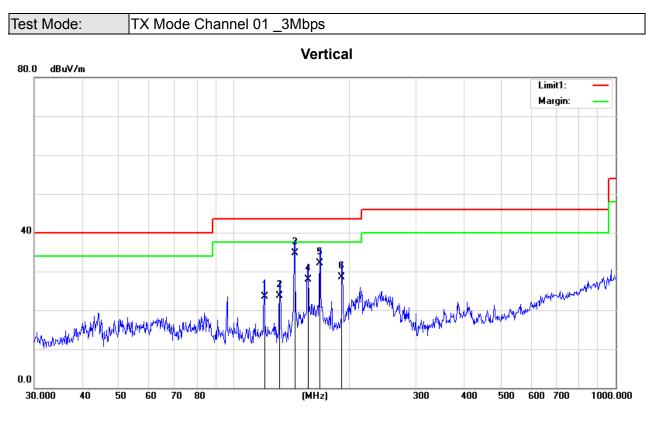
5.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULTS - 9 kHz TO 30MHz

Toot	Mada
rest	Mode:

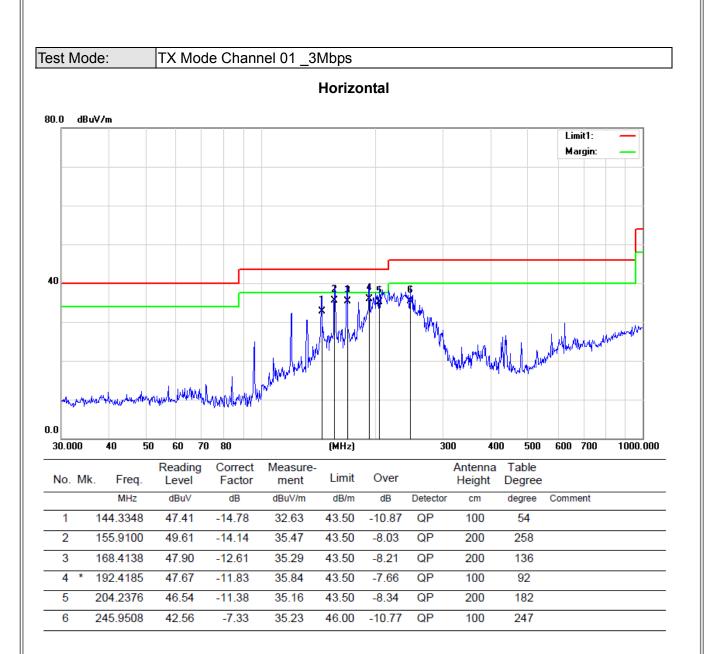
TX Mode Channel 01 _3Mbps


Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				Р
				Р

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

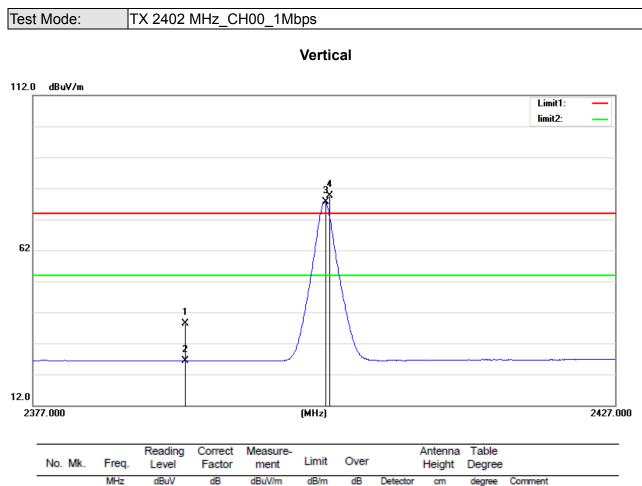
Distance extrapolation factor =20 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor


5.7 TEST RESULTS- 30 MHz TO 1000MHz

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1	120.2766	37.98	-14.47	23.51	43.50	-19.99	QP	100	258	
2	131.7576	37.67	-14.04	23.63	43.50	-19.87	QP	100	147	
3 *	144.3348	48.67	-13.92	34.75	43.50	-8.75	QP	200	325	
4	156.4577	41.75	-13.92	27.83	43.50	-15.67	QP	100	63	
5	167.8242	44.61	-12.42	32.19	43.50	-11.31	QP	100	142	
6	191. 74 50	42.29	-13.78	28.51	43.50	-14.99	QP	100	57	

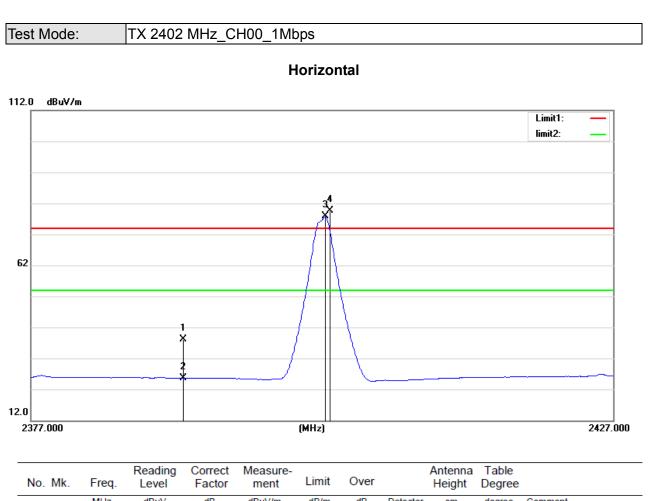
*:Maximum data x:Over limit !:over margin

Reference Only

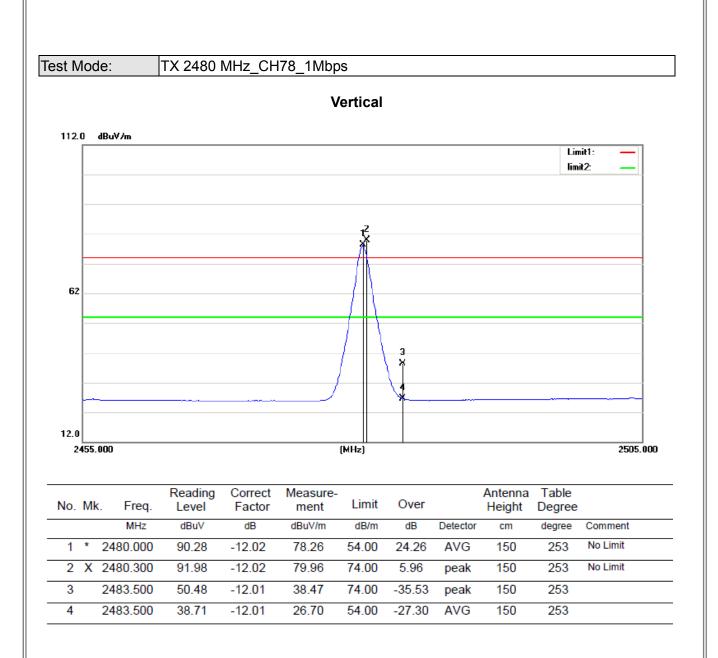


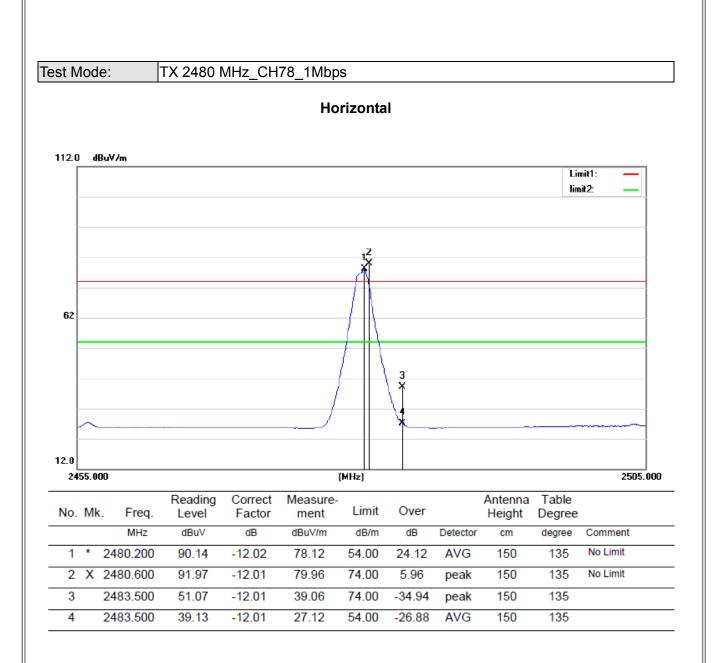
*:Maximum data x:Over limit !:over margin

(Reference Only

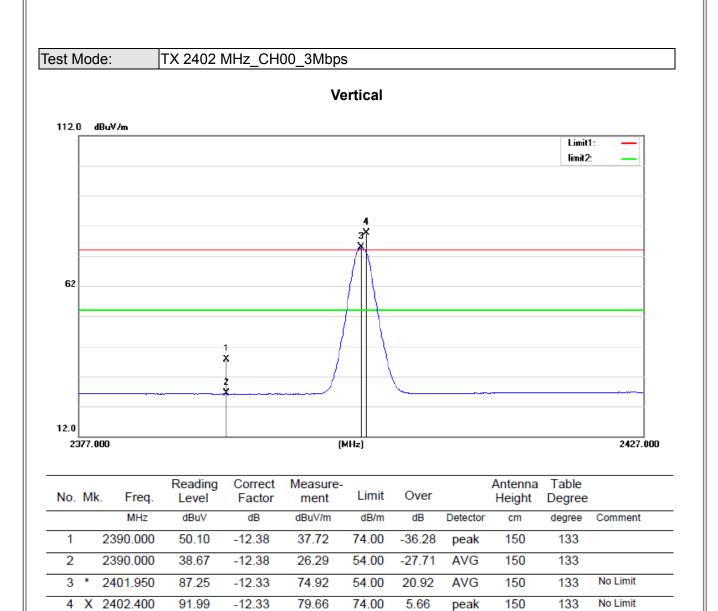


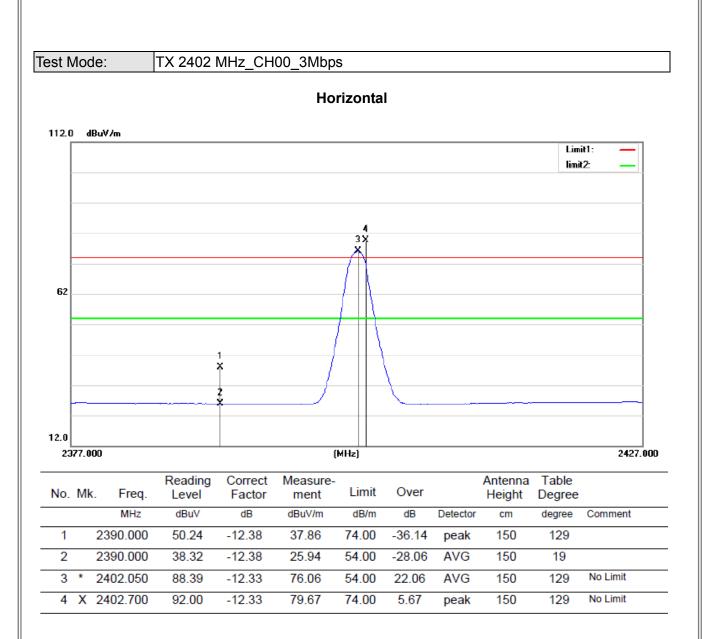
5.8 TEST RESULTS - ABOVE 1000MHz(BAND EDGE)

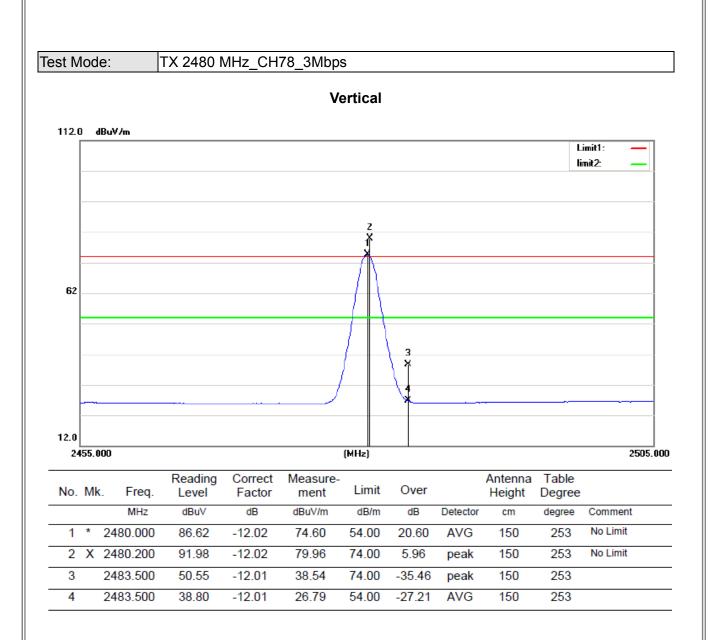

	MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1	2390.000	50.82	-12.38	38.44	74.00	-35.56	peak	150	134	
2	2390.000	38.74	-12.38	26.36	54.00	-27.64	AVG	150	134	
3 *	2402.050	90.00	-12.33	77.67	54.00	23.67	AVG	150	134	No Limit
4 X	2402.400	91,99	-12.33	79.66	74.00	5.66	peak	150	134	No Limit

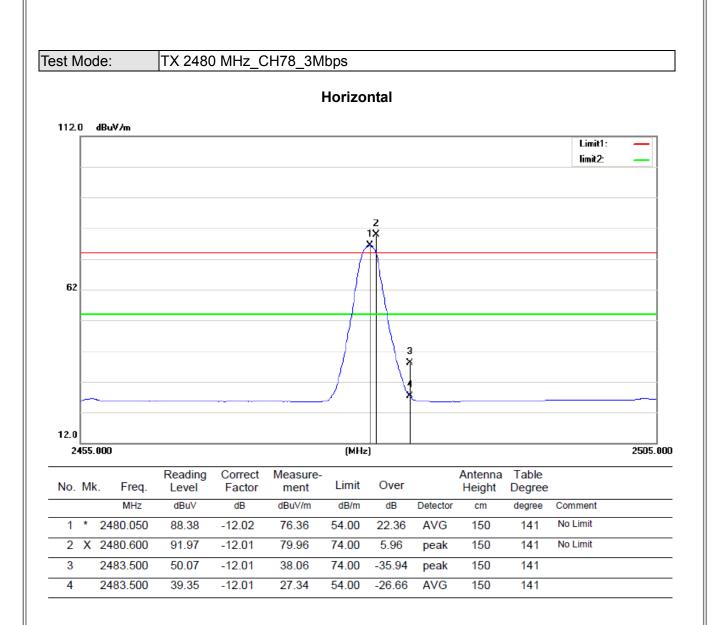


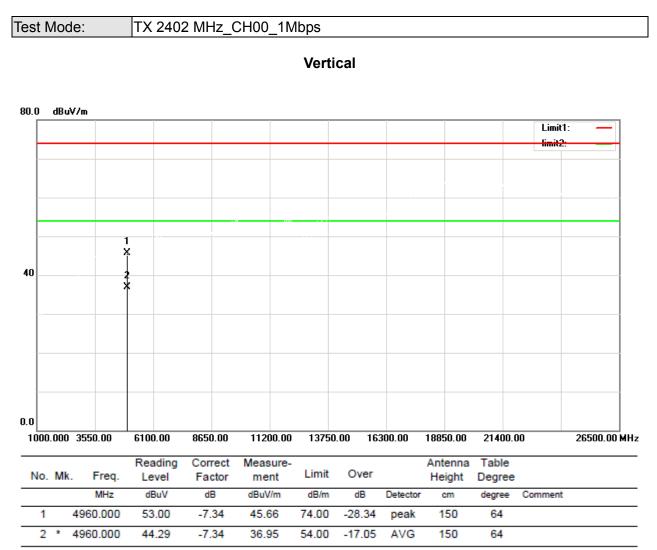
	MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1	2390.000	50.52	-12.38	38.14	74.00	-35.86	peak	150	155	
2	2390.000	38.03	-12.38	25.65	54.00	-28.35	AVG	150	155	
3 '	2402.200	90.23	-12.33	77.90	54.00	23.90	AVG	150	155	No Limit
4)	X 2402.600	92.00	-12.33	79.67	74.00	5.67	peak	150	155	No Limit

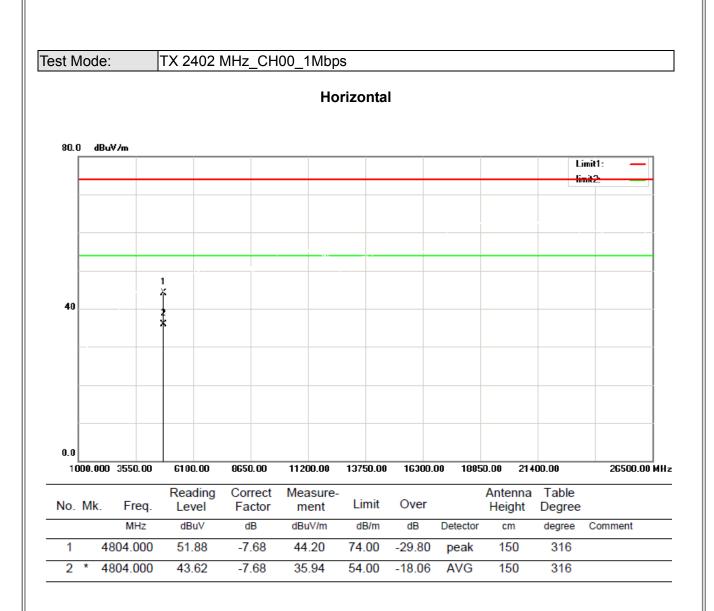


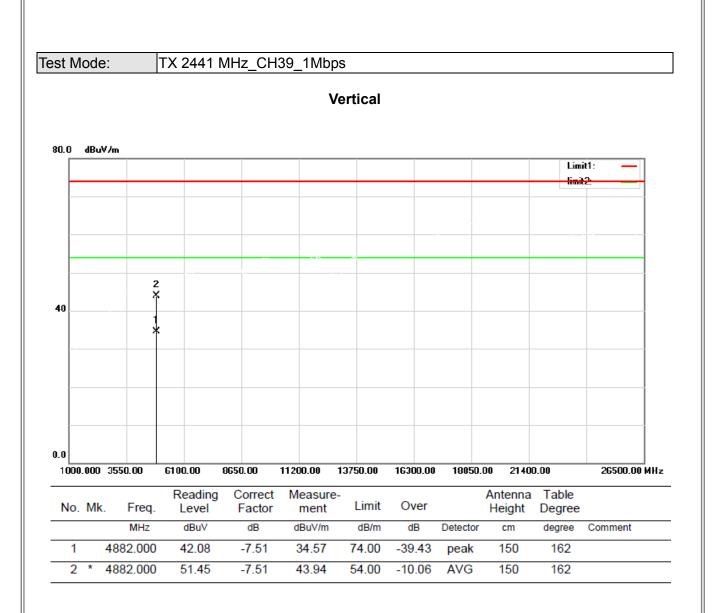


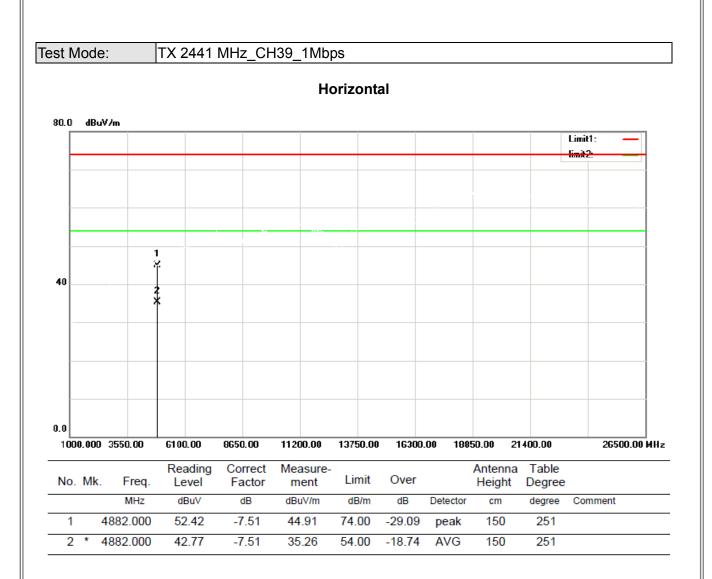


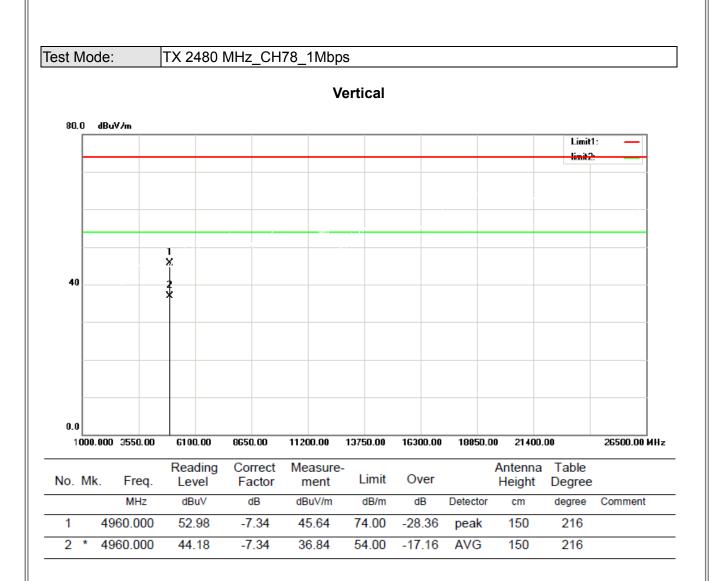


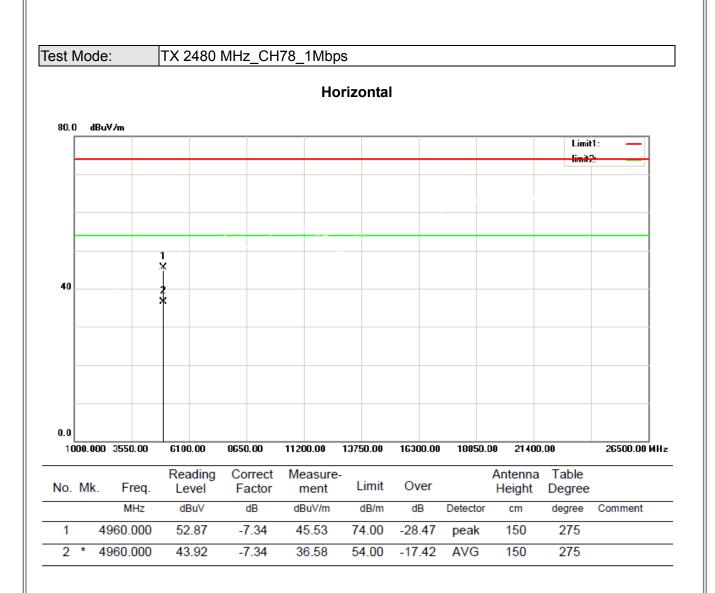




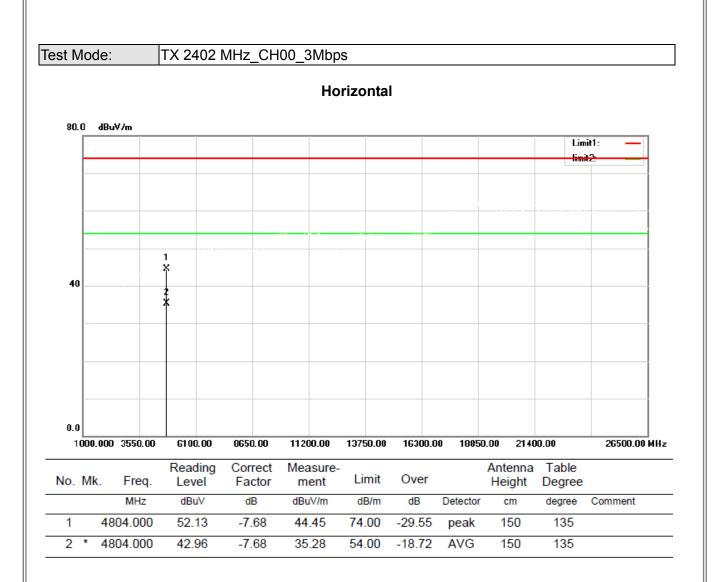

5.9TEST RESULTS - ABOVE 1000MHz(HARMONIC)

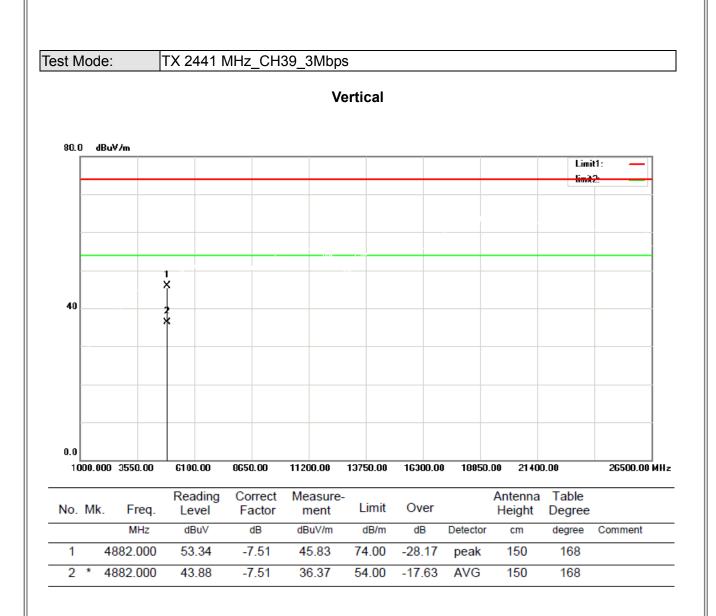


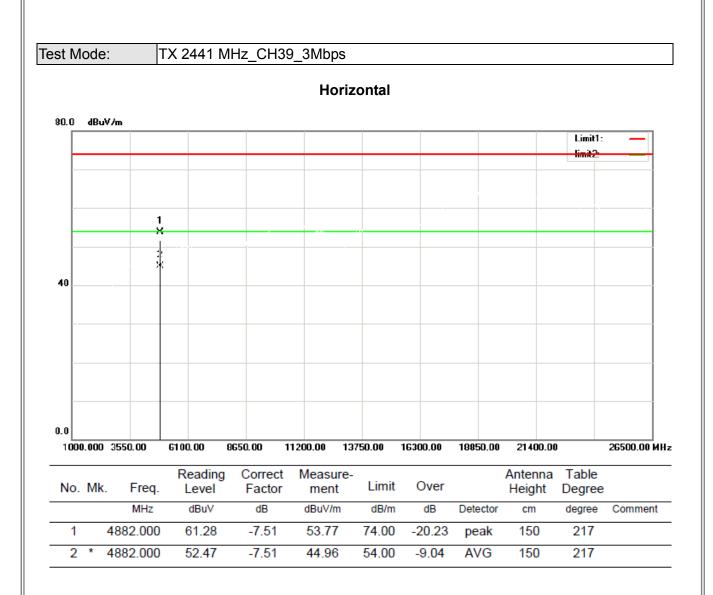


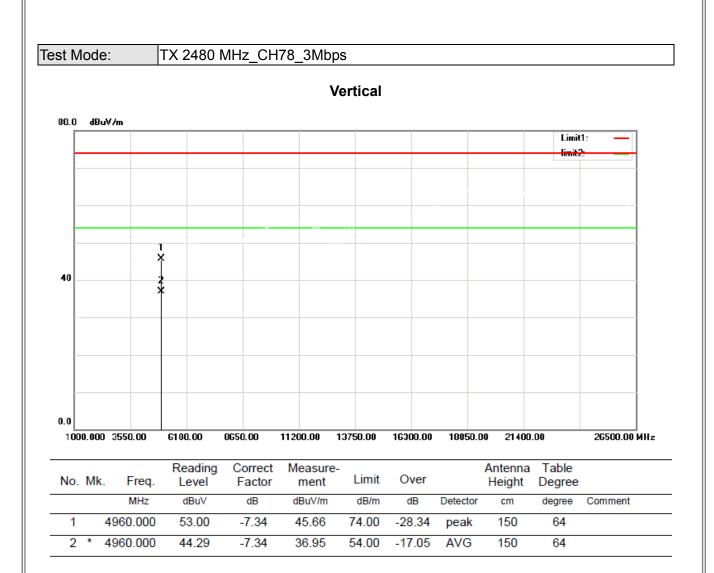


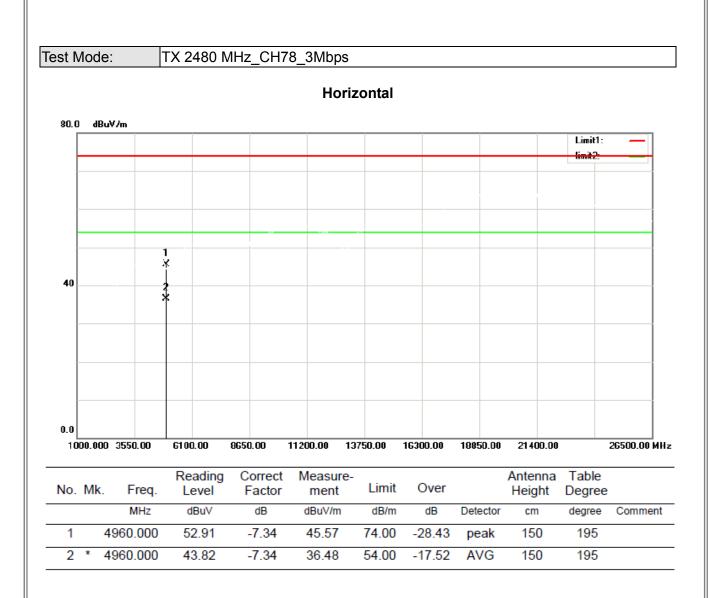












6. NUMBER OF HOPPING FREQUENCY

6.1 LIMIT

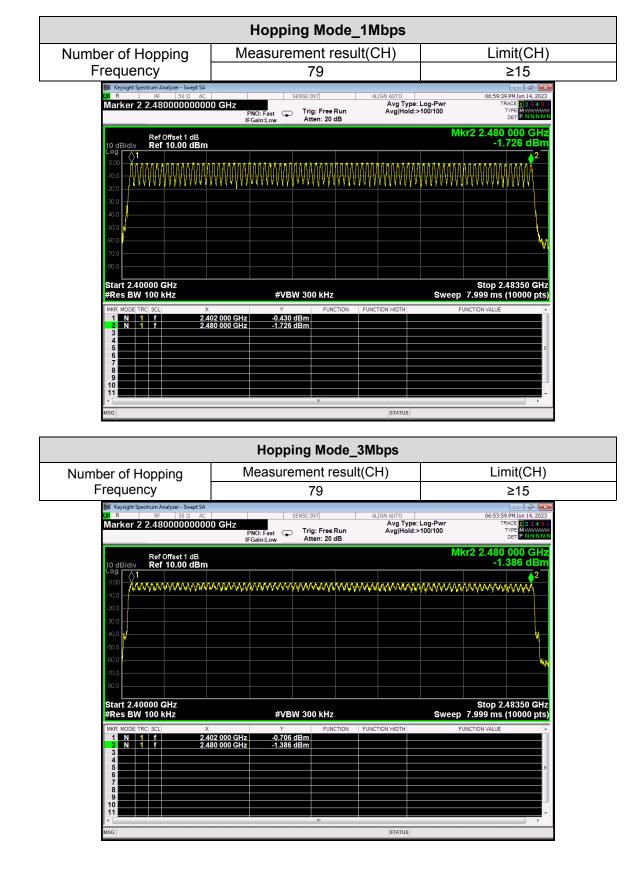
FCC Part15, Subpart C (15.247)&RSS-247		
Section Test Item		
15.247(a)(1)(iii) RSS-247 5.1 (d)	Number of Hopping Frequency	

6.2 TEST PROCEDURE AND SETTING

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW=100 kHz, VBW=300 kHz, Sweep time = Auto.

Spectrum Parameters	Setting	
Attenuation	Auto	
Span Frequency	> Operating Frequency Range	
RBW	100kHz	
VBW	300kHz	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

6.3 MEASUREMENT INSTRUMENTS LIST


Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum analyzer	KEYSIGHT	N9010A	MY55150427	2024/05/25
2	Attenuator	Mini-Circuits	BW-S10W2	101109	N/A
3	RF Cable	Mi-cable	C10-01-01-1	100309	N/A

6.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.5 EUT OPERATION CONDITIONS

7. AVERAGE TIME OF OCCUPANCY

7.1 LIMIT

FCC Part15, Subpart C (15.247)&RSS-247					
Section Test Item Limit					
15.247(a)(1)(iii) RSS-247 5.1 (d)	14960				

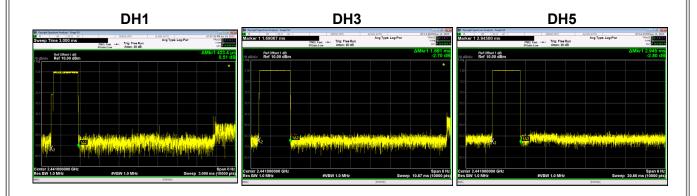
7.2 TEST PROCEDURE AND SETTING

a. The transmitter output (antenna port) was connected to the spectrum analyzer

- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses
- d. Sweep Time is more than once pulse time
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span
- f. Measure the maximum time duration of one single pulse
- g. Set the EUT for DH1, DH3 and DH5 packet transmitting
- h. Measure the maximum time duration of one single pulse
- i. DH1 Packet permit maximum 1600 / 79 /2 = 10.12 hops per second in each channel (1 time slot TX, 1 time slot RX).So, the dwell time is the time duration of the pulse times $10.12 \times 31.6 = 320$ within 31.6 seconds
- j. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots TX, 1 time slot RX).So, the dwell time is the time duration of the pulse times 5.06 x 31.6 = 160 within 31.6 seconds
- k. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots TX, 1 time slot RX).So, the dwell time is the time duration of the pulse times 3.37 x 31.6 = 106.6 within 31.6 seconds

7.3 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum analyzer	KEYSIGHT	N9010A	MY55150427	2024/05/25
2	Attenuator	Mini-Circuits	BW-S10W2	101109	N/A
3	RF Cable	Mi-cable	C10-01-01-1	100309	N/A


7.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

7.5 EUT OPERATION CONDITIONS

TX Mode_1Mbps				
Mode	Channel Frequency	Pulse Time	Dwell Time	Limit
INIOUE	(MHz)	(ms)	(ms)	(ms)
DH1	2441	0.423	135.4	400
DH3	2441	1.691	270.6	400
DH5	2441	2.945	314.1	400

TX Mode_3Mbps				
Mode	Channel Frequency	Pulse Time	Dwell Time	Limit
woue	(MHz)	(ms)	(ms)	(ms)
DH1	2441	0.429	137.3	400
DH3	2441	1.687	269.9	400
DH5	2441	2.941	313.7	400

8. HOPPING CHANNEL SEPARATION MEASUREMENT

8.1 LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

8.2 TEST PROCEDURE AND SETTING

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW Sweep = Auto Detector function = Peak Trace = Max Hold

Spectrum Parameter	Setting	
Attenuation	Auto	
Span Frequency	> Measurement Bandwidth or Channel Separation	
RBW	10 kHz	
VBW	30 kHz	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

8.3 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum analyzer	KEYSIGHT	N9010A	MY55150427	2024/05/25
2	Attenuator	Mini-Circuits	BW-S10W2	101109	N/A
3	RF Cable	Mi-cable	C10-01-01-1	100309	N/A

8.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

8.5 EUT OPERATION CONDITIONS

	TX Mode_1Mbps					
Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result		
CH00	2402	1.0024	>(25KHz or 2/3*20dB Bandwidth)	PASS		
CH39	2441	1.0000	>(25KHz or 2/3*20dB Bandwidth)	PASS		
CH78	2480	0.9976	>(25KHz or 2/3*20dB Bandwidth)	PASS		

	TX Mode_3Mbps					
Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result		
CH00	2402	1.0081	>(25KHz or 2/3*20dB Bandwidth)	PASS		
CH39	2441	0.9931	>(25KHz or 2/3*20dB Bandwidth)	PASS		
CH78	2480	1.0009	>(25KHz or 2/3*20dB Bandwidth)	PASS		

9. BANDWIDTH TEST

9.1 LIMIT

FCC Part15, Subpart C (15.247)&RSS-247				
Section	Test Item			
15.247(a)(1) RSS-Gen 6.7 RSS-247 5.1 (a)	Bandwidth			

9.2 TEST PROCEDURE AND SETTING

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 30 kHz, VBW=100 kHz, Sweep Time = Auto.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> Measurement Bandwidth
RBW	30kHz
VBW	100kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

9.3 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum analyzer	KEYSIGHT	N9010A	MY55150427	2024/05/25
2	Attenuator	Mini-Circuits	BW-S10W2	101109	N/A
3	RF Cable	Mi-cable	C10-01-01-1	100309	N/A

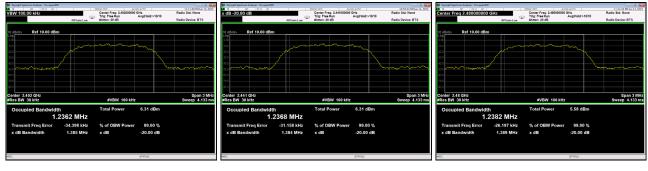
9.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

9.5 EUT OPERATION CONDITIONS

	TX Mode_1Mbps						
Channel	Frequency	20dB Bandwidth	99 % Emission Bandwidth	Result			
	(MHz)	(MHz)	(MHz)				
CH00	2402	0.9612	0.9056	PASS			
CH39	2441	0.9627	0.9056	PASS			
CH78	2480	0.9610	0.9051	PASS			

Report No.: 23EESS05010 04201



TX Mode_3Mbps						
Channel	Frequency	20dB Bandwidth	99 % Emission Bandwidth	Result		
	(MHz)	(MHz)	(MHz)			
CH00	2402	1.3850	1.2362	PASS		
CH39	2441	1.3840	1.2368	PASS		
CH78	2480	1.3890	1.2382	PASS		

2402MHz

244<u>1MHz</u>

2480MHz

10. MAXIMUM OUTPUT POWER

10.1 LIMIT

FCC Part15 , Subpart C (15.247)&RSS-247				
Section Test Item Limit				
15.247(a)(1) RSS-247 5.1 (b)	Maximum Output Power	0.125Watt or 21dBm		

Note:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB band width of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

10.2 TEST PROCEDURE AND SETTING

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 1MHz/3MHz, VBW= 1MHz/3MHz, Sweep time = Auto.

10.3 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum analyzer	KEYSIGHT	N9010A	MY55150427	2024/05/25
2	Attenuator	Mini-Circuits	BW-S10W2	101109	N/A
3	RF Cable	Mi-cable	C10-01-01-1	100309	N/A

10.4 TEST SETUP

EUT	SPECTRUM	
	ANALYZER	

10.5 EUT OPERATION CONDITIONS

	TX Mode_1Mbps						
Channel	Frequency	Output Power	Output Power	Result			
Channel	(MHz)	(dBm)	(W)	Result			
CH00	2402	0.004	0.00100	PASS			
CH39	2441	0.177	0.00104	PASS			
CH78	2480	-0.395	0.00091	PASS			
Limit	21dBm /0.125W						

CH00

CH39

CH78

TX Mode_2Mbps					
Channel	Frequency	Output Power	Output Power	Result	
	(MHz)	(dBm)	(W)	Result	
CH00	2402	2.027	0.00159	PASS	
CH39	2441	2.102	0.00162	PASS	
CH78	3 2480 1.246 0.00133		PASS		
Limit	21dBm /0.125W				

CH00

CH39

CH78

Image: Section Analysis: Section 2 <th< th=""><th>Bit Expering Segment Avage: - Input Avage:</th><th>If Logit Station Advers: Statis IA Logit Adversion Logit Adversion Logit Adversion Marker 1 2.47695370000000 GHZ Trips Free Name Adversion Adversion Marker 1000 Marker 10 Statis IN Trips Free Name Adversion Adversion Marker 1000</th></th<>	Bit Expering Segment Avage: - Input Avage:	If Logit Station Advers: Statis IA Logit Adversion Logit Adversion Logit Adversion Marker 1 2.47695370000000 GHZ Trips Free Name Adversion Adversion Marker 1000 Marker 10 Statis IN Trips Free Name Adversion Adversion Marker 1000
Ref Offset 1 dB Mkr1 2.401 901 GHz 10 gB/dv Ref 10.00 dBm 2.027 dBm	Ref Officet 1 dB Mkr1 2.441 003 5 GHz 10 dB/dW Ref 10.00 dBm 2.102 dBm	Ref Offset 1 dB Mkr1 2.479 937 GHz 10 dBidly Ref 10.00 dBm 1.246 dBm
		330
200		200
300		30.0
49.0	40.0	
		40.0
43.0	-0.0	40.0
-70.0	-0.0	0.0
40.0	800	400
Center 2.402000 GHz Span 3.000 MHz	Center 2.441000 GHz Span 3.000 MHz	Center 2.480000 GHz Span 3.000 MHz
Span <th< th=""><th>Part 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th><th>Center 2450000 GHz Span 3.000 WHz Spa</th></th<>	Part 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Center 2450000 GHz Span 3.000 WHz Spa

TX Mode_3Mbps					
Channel	Frequency	Output Power	Output Power	Result	
Channel	(MHz)	(dBm)	(W)	Nesul	
CH00	2402	2.452	0.00176	PASS	
CH39	2441	2.409	0.00174	PASS	
CH78	2480 1.588 0.		0.00144	PASS	
Limit	21dBm /0.125W				

CH00

CH39

CH78 R 10 50 0 4C Marker 1 2.440971947195 G er 1 2.40198 Avg Type: Log-Pwr Avg Hold>100/100 Avg Type: Log-Pwr Avg/Hold.>100'100 Avg Type: Log-Pwr Avg Hold>100/100 rker 1 2.4798 Trig: Free Run #Atten: 20 dB Trig: Free Run Atten: 20 dB H Trig: Free Run #Atten: 20 dB ter Offset 1 dB Ref 10.00 dBs Ref Offset 1 dB Ref Offset 1 dB Ref 10.00 dB Center 2.441000 GHz #Res BW 3.0 MHz Span 3.0 1.333 ms (10 Span 3.000 MH p 1.000 ms (1001 pt Span 3.0 ep 1.000 ms (10 nter 2.480000 GH es BW 3.0 MHz 402000 3.0 MH

11. CONDUCTED SPURIOUS EMISSION

11.1 LIMIT

For FCC

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak Output Power limits. If the transmitter complies with the Output Power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

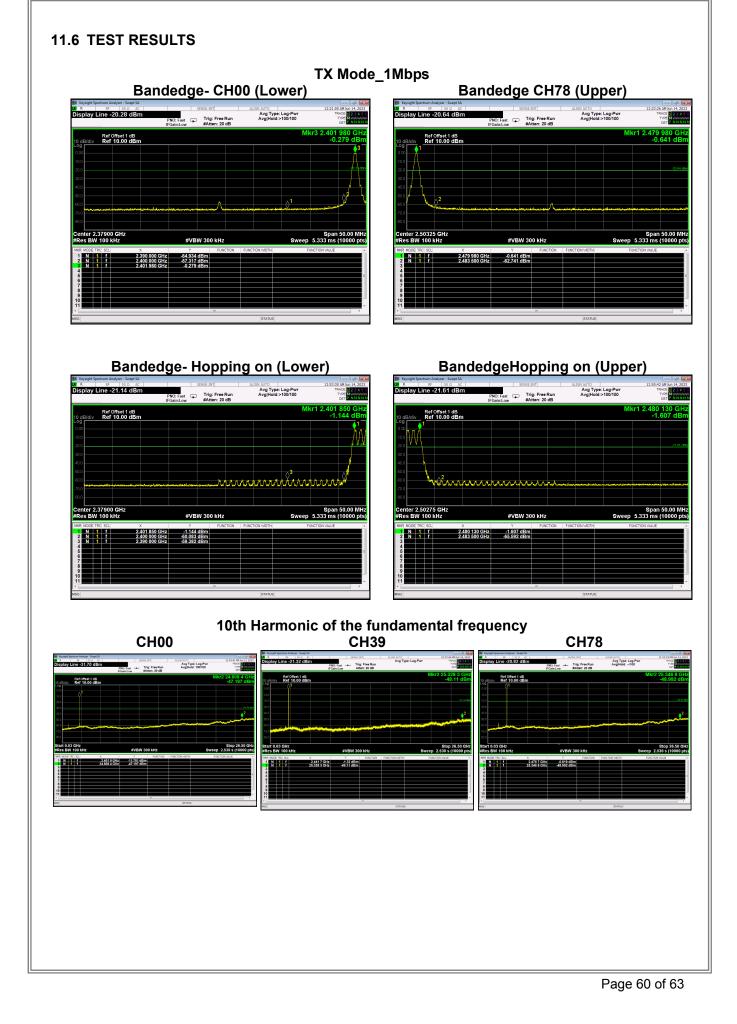
For ISED

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak Output Power limits. If the transmitter complies with the Output Power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

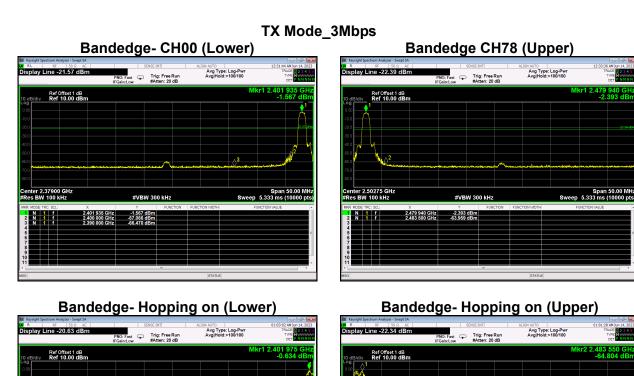
11.2 TEST PROCEDURE AND SETTING

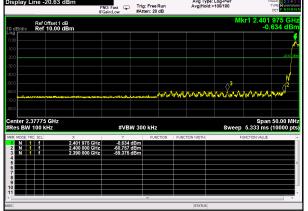
- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 100 kHz, VBW=300 kHz, Sweep time = Auto.

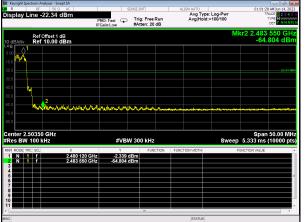
11.3 MEASUREMENT INSTRUMENTS LIST

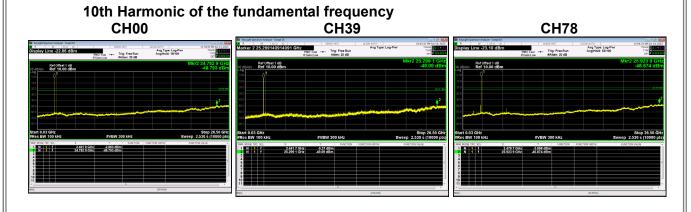

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum analyzer	KEYSIGHT	N9010A	MY55150427	2024/05/25
2	Attenuator	Mini-Circuits	BW-S10W2	101109	N/A
3	RF Cable	Mi-cable	C10-01-01-1	100309	N/A

11.4 TEST SETUP


EUT	SPECTRUM
	ANALYZER


11.5 EUT OPERATION CONDITIONS



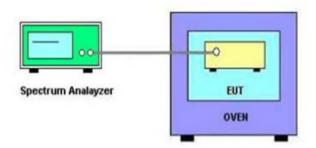


12. FREQUENCY STABILITY MEASUREMENT

12.1 LIMIT

RSS-Gen				
Section	Test Item	Limit	Frequency Range (MHz)	
RSS-Gen 6.11	Frequency Stability	Specified in the user's manual	2402-2480	

12.2 TEST PROCEDURE


- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting:

Spectrum Parameter	Setting	
Attenuation	Auto	
Span Frequency	Entire absence of modulation emissions	
Span Frequency	bandwidth	
RBW	10 kHz	
VBW	10kHz	
Sweep Time	Auto	

12.3 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum analyzer	KEYSIGHT	N9010A	MY55150427	2024/05/25
2	Attenuator	Mini-Circuits	BW-S10W2	101109	N/A
3	RF Cable	Mi-cable	C10-01-01-1	100309	N/A
4	Temperature conditioning	Guan Jian.HTH1000	-20-130 ℃	GJ1000-10D001	N/A
5	DC Power Supply	G.KE	IPR-10010D	010931954	N/A

12.4 TEST SETUP

12.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

	Temperature vs. Frequency Stability		
Voltage	Temperature	Measurement Frequency (MHz)	
	(°C)	2402	
3.7V	0	2401.9696	
5.7 V	25	2401.9696	
	40	2401.9696	
2.9V	25	2401.9696	
Max. De	viation (MHz)	-0.0304	
Max. De	viation (ppm)	-12.66	

Note:2.9V is the end point voltage, and products below 2.9V will cease working.

END OF TEST REPORT