

FCC & ISED Radio Test Report

FCC ID: X5B-052022 IC:8814A-052022

The report concerns: Original Grant

Report Reference No	23EFSB12014 00151
Date Sample(s) Received:	2023-12-19
Date of Tested	From 2023-12-19 to 2024-01-05
Date of issue	2024-01-09
Testing Laboratory	DongGuanShuoXin Electronic Technology Co., Ltd.
Address:	Zone A, 1F, No. 6, XinGang Road YuanGang Street, XinAn District, ChangAn Town, DongGuan City, GuangDong, China
Applicant's name:	PERFORMANCE DESIGNED PRODUCTS, LLC
Address	14144 Ventura Blvd, Suite 200 Sherman. Oaks CA 91423 United States Of America
Manufacturer	PERFORMANCE DESIGNED PRODUCTS, LLC
Equipment:	AFTERGLOW WAVE DUAL CHARGER -PS5
Trade Mark	/
Model:	052-022
Ratings:	I/P: 5Vdc
	O/P: 5Vdc up to 1000mA*1/500mA*2

Test Engineer:

Blue Qiu Blue Qiu Smile Wong Smile Wang

Responsible Engineer :

ingwang King Wang

Authorized Signatory:

Table of Contents	Page
1TEST REPORT DECLARE	4
2 SUMMARY OF TEST RESULTS	5
2.1MEASUREMENT UNCERTAINTY	6
3 GENERAL INFORMATION	7
3.1 GENERAL DESCRIPTION OF EUT	7
3.2DESCRIPTION OF TEST MODES	9
3.3PARAMETERS OF TEST SOFTWARE	9
3.4BLOCKDIAGRAMSHOWINGTHECONFIGURATIONOFSYSTEMTESTED	10
3.5SUPPORT UNITS	10
3.6TEST ENVIRONMENT CONDITIONS	10
4 AC POWER LINE CONDUCTED EMISSIONS TEST	11
4.1 LIMIT	11
4.2 TEST PROCEDURE	11
4.3 MEASUREMENT INSTRUMENTS LIST	11
4.4 TESTSETUP	12
4.5 EUT OPERATING CONDITIONS	12
4.6 TEST RESULTS	13
5 RADIATED EMISSION TEST	15
5.1LIMIT	15
5.2TEST PROCEDURE	16
5.3MEASUREMENT INSTRUMENTS LIST	17
5.4TESTSETUP	17
5.5EUT OPERATING CONDITIONS	18
5.6 TEST RESULT- 9KHZ TO 30MHZ	19
5.7 TEST RESULT- 30MHZ TO 1000MHZ	20
5.8 TEST RESULT- ABOVE 1000MHZ(BAND EDGE)	22
5.9TEST RESULTS - ABOVE 1000MHZ(HARMONIC)	30
6BANDWIDTH TEST	42
6.1LIMIT	42
6.2TEST PROCEDURE AND SETTING	42
6.3MEASUREMENT INSTRUMENTS LIST	42
6.4TEST SETUP	42
6.5EUT OPERATION CONDITIONS	42
6.6TESTRESULTS	43

Table of Contents	Page
7MAXIMUM OUTPUT POWER	45
7.1LIMIT	45
7.2TEST PROCEDURE	45
7.3MEASUREMENT INSTRUMENTS LIST	45
7.4TEST SETUP	45
7.5EUT OPERATION CONDITIONS	45
7.6TESTRESULTS	46
8CONDUCTED SPURIOUS EMISSION	48
8.1LIMIT	48
8.2TEST PROCEDURE	48
8.3MEASUREMENT INSTRUMENTS LIST	48
8.4TEST SETUP	48
8.5EUT OPERATION CONDITIONS	48
8.6 TEST RESULTS	49
9POWER SPECTRAL DENSITY TEST	53
9.1LIMIT	53
9.2TEST PROCEDURE	53
9.3MEASUREMENT INSTRUMENTS LIST	53
9.4TEST SETUP	53
9.5EUT OPERATION CONDITIONS	53
9.6 TEST RESULTS	54
10FREQUENCY STABILITY MEASUREMENT	56
10.1LIMIT	56
10.2TEST PROCEDURE	56
10.3MEASUREMENT INSTRUMENTS LIST	56
10.4TEST SETUP	56
10.5EUT OPERATION CONDITIONS	56
10.6 TEST RESULTS	57

1TEST REPORT DECLARE

PERFORMANCE DESIGNED PRODUCTS, LLC
4144 Ventura Blvd, Suite 200 Sherman. Oaks CA
1423 United States Of America
PERFORMANCE DESIGNED PRODUCTS, LLC
4144 Ventura Blvd, Suite 200 Sherman. Oaks CA
1423 United States Of America
PERFORMANCE DESIGNED PRODUCTS, LLC
4144 Ventura Blvd, Suite 200 Sherman. Oaks CA
1423 United States Of America
FTERGLOW WAVE DUAL CHARGER -PS5
52-022
CC Part15, Subpart C (15.247)
SS-247 Issue 3 August. 2023
SS-Gen Issue 5, Mar. 2019
NSI C63.10-2013

We Declare:

The equipment described above is tested by DongGuanShuoXin Electronic Technology Co., Ltd(ATT). and in the configuration tested the equipment complied with the standards specified above. The test results are contained in this test report and DongGuanShuoXin Electronic Technology Co., Ltd.(ATT) is assumed of full responsibility for the accuracy and completeness of these tests.

ATT is not responsible for the sampling stage, so the results only apply to the sample as received.

ATT's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. ATT shall have no liability for any declarations, inferences or generalizations drawn by the client or others from ATT issued reports.

2SUMMARY OF TEST RESULTS

The EUT have been tested according to the applicable standards as referenced below:

Standard(s) Section		Test Item	Judgment	Remark
FCC	ISED	restitem	Judgment	Kennark
15.207	RSS-Gen8.8	AC Power Line Conducted Emissions	N/A	
15.247(d) 15.205(a) 15.209(a)	RSS-247 5.5 RSS-Gen8.9 RSS-Gen8.10	Radiated Emissions	PASS	
15.247(a)(2)	RSS-247 5.2 (a) RSS-Gen6.7	Bandwidth	PASS	
15.247(b)(3)	RSS-247 5.4 (d)	Maximum Output Power	PASS	
15.247(d)	RSS-247 5.5	ConductedSpurious Emission	PASS	
15.247(e)	RSS-247 5.2 (b)	Power Spectral Density	PASS	
-	RSS-Gen 6.11	Frequency Stability	PASS	
15.203	-	Antenna Requirement	PASS	Note(2)

Note:

- (1) "N/A" denotes test is not applicable to this device.
- (2) The device what use a permanently attached antenna were considered sufficient tocomply with the provisions of 15.203.

2.1MEASUREMENT UNCERTAINTY

Test Item	Uncertainty
Uncertainty for Conductionemission test (9kHz-150kHz)	3.7 dB
Uncertainty for Conduction emission test (150kHz-30MHz)	3.3 dB
Uncertainty for Rediction Emission test (2011, 2001, 147)	4.60 dB (Polarize: V)
Uncertainty for Radiation Emission test (30MHz-200MHz)	4.60 dB (Polarize: H)
Upcortainty for Padiation Emission test (200MHz 1CHz)	6.10 dB (Polarize: V)
Uncertainty for Radiation Emission test (200MHz-1GHz)	5.08 dB (Polarize: H)
Uncertainty for Rediction Emission test (10Hz 60Hz)	5.01 dB (Polarize: V)
Uncertainty for Radiation Emission test (1GHz-6GHz)	5.01 dB (Polarize: H)
Upportainty for Dediction Emission test (CCUT 19CUT)	5.26 dB (Polarize: V)
Uncertainty for Radiation Emission test (6GHz-18GHz)	5.26 dB (Polarize: H)
Uncertainty for Dediction Emission test (1901 - 4001 -	5.06 dB (Polarize: V)
Uncertainty for Radiation Emission test (18GHz-40GHz)	5.06 dB (Polarize: H)
Uncertainty for radio frequency	±0.048kHz
Uncertainty for conducted RF Power	±0.32dB

Note:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test Facility:

The Test site used by DongGuanShuoXin Electronic Technology Co., Ltd. to collect test data is located on the Zone A, 1F, No. 6, XinGang Road YuanGang Street, XinAn District, ChangAn Town, DongGuan City, GuangDong, China

The test facility is recognized, certified, or accredited by the following organizations:

Item	Registration No.	Expiration Date
CNAS	L3098	2024-08-27
A2LA	4893.01	2024-06-30
Innovation, Science and Economic Development Canada (ISED)	11033A CAB identifer:CN0083	2024-06-30
Federal Communications Commission (FCC)	171688 Designation No.:CN1235	2024-06-30

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	AFTERGLOW WAVE DUAL CHARGER -PS5		
Brand Name	/		
Test Model	052-022		
Series Model	Engineer Sample		
Model Difference(s)	N/A		
Hardware Version	V1.0		
Software Version	V1.0		
PowerSource	Supplied from DC.		
Power Rating	5Vdc		
Operation Frequency	2402 MHz ~ 2480 MHz		
Modulation Technology	GFSK		
Bit Rate of Transmitter	2Mbps		
Antenna Information	Antenna Type: Chip antenna	Maximum Peak Gain: 2dBi	
Max. Output Power	3.811dBm(0.002405W) 1Mbps 3.754dBm(0.002374W) 2Mbps		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Channel List:

Channel	Frequency	Channel	Frequency
Chainer	(MHz)	Ondrinor	(MHz)
00	2402	20	2442
01	2404	21	2444
02	2406	22	2446
03	2408	23	2448
04	2410	24	2450
05	2412	25	2452
06	2414	26	2454
07	2416	27	2456
08	2418	28	2458
09	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

3.2DESCRIPTION OF TEST MODES

The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode.

Pretest Mode	Description
Mode 1	TX Mode 1M PHY NOTE (1)
Mode 2	TX Mode 2M PHY NOTE (1)

Following mode(s) as (were) found to be the worst case(s) and selected for the final test.

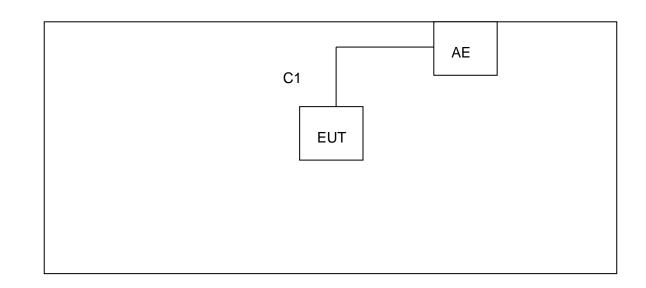
Radiated emissions test - Below 1GHz		
Final Test Mode Description		
Mode 1	TX Mode	

Radiated emissions test - Above 1GHz		
Final Test Mode Description		
Mode 1	Mode 1 TX Mode 1M PHY NOTE (1)	
Mode 2	TX Mode 2M PHY NOTE (1)	

Conducted test		
Final Test Mode Description		
Mode 1	TX Mode 1M PHY NOTE (1)	
Mode 2	TX Mode 2M PHY NOTE (1)	

Note:

(1) The measurements are performed at the high, middle, low available channels.


3.3PARAMETERS OF TEST SOFTWARE

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of BT LE

Test Software	FCC T	esting Softwar	e V1.0.0
Frequency (MHz)	2402	2440	2480
Parameters-1Mbps	37	37	37

3.4BLOCKDIAGRAMSHOWINGTHECONFIGURATIONOFSYSTEMTESTED

3.5SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.
AE	Computer	ASUS	FL5700U	/

Item	Cable Type	Shielded Type	Ferrite Core	Length
C1	USB-C Cable	Ν	Ν	1m

3.6TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage
AC Power Line Conducted Emissions	23.5°C	61%	AC 120V 60Hz
Radiated Emissions-9K-30MHz	23.5°C	61%	5Vdc
Radiated Emissions-30 MHz to 1GHz	23.5°C	61%	5Vdc
Radiated Emissions-Above 1000 MHz	23.5°C	61%	5Vdc
Bandwidth	22.9°C	58%	5Vdc
Maximum Output Power	22.9°C	58%	5Vdc
ConductedSpurious Emission	22.9°C	58%	5Vdc
Power Spectral Density	22.9°C	58%	5Vdc

4AC POWER LINE CONDUCTED EMISSIONS TEST

4.1LIMIT

Frequency of Emission (MHz)	Limit (d	BμV)
	Quasi-peak	Average
0.15 - 0.50	66 to 56*	56 to 46*
0.50 - 5.0	56	46
5.0 - 30.0	60	50

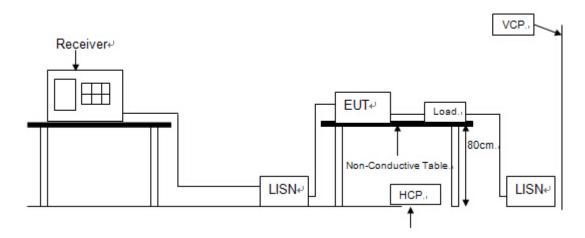
Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

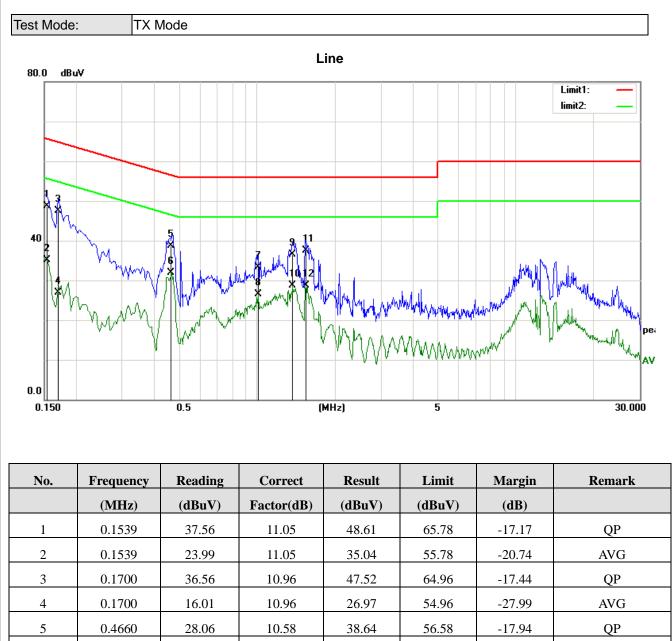
4.2TEST PROCEDURE


- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipmentpowered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the groundplane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.

4.3MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Pulse Limiter	MTS-systemtec hnik	MTS-IMP-136	261115-010-0024	12/04/2024
2	EMI Test Receiver	R&S	ESCI	101308	11/29/2024
3	LISN	AFJ	LS16	16011103219	08/11/2024
4	LISN	Schwarzbeck	NSLK 8127	8127-432	08/11/2024
5	Measurement Software	Farad	EZ-EMC (Ver.ATT-03A)	N/A	N/A

4.4TESTSETUP



4.5EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical function (as a customer would normally use it), EUT was programmed to be in continuouslytransmitting data or hopping on mode.

4.6TEST RESULTS

Remarks:

6 7

8

9

10

11 12

(1) Measurement Value = Reading Level + Correct Factor.

21.36

22.76

15.96

25.87

18.00

26.70

17.90

10.58

10.54

10.54

10.70

10.70

10.76

10.76

31.94

33.30

26.50

36.57

28.70

37.46

28.66

46.58

56.00

46.00

56.00

46.00

56.00

46.00

-14.64

-22.70

-19.50

-19.43

-17.30

-18.54

-17.34

(2) Margin Level = Measurement Value - Limit Value.

0.4660

1.0060

1.0060

1.3700

1.3700

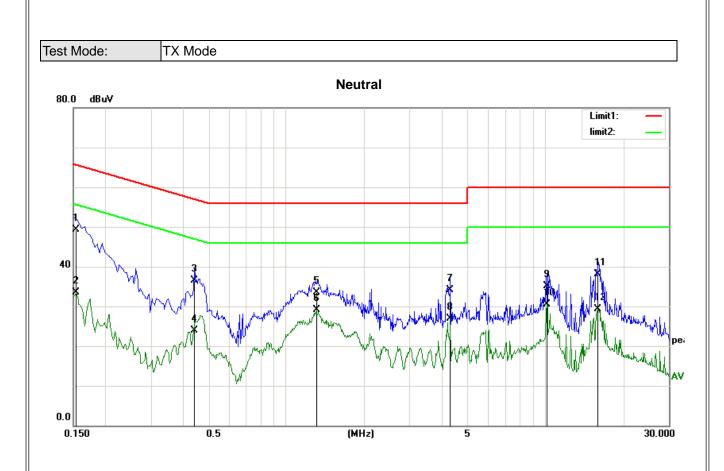
1.5380

1.5380

AVG

QP

AVG


OP

AVG

QP

AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1539	38.27	11.05	49.32	65.78	-16.46	QP
2	0.1539	22.37	11.05	33.42	55.78	-22.36	AVG
3	0.4390	25.89	10.54	36.43	57.08	-20.65	QP
4	0.4390	13.37	10.54	23.91	47.08	-23.17	AVG
5	1.3060	22.85	10.68	33.53	56.00	-22.47	QP
6	1.3060	18.46	10.68	29.14	46.00	-16.86	AVG
7	4.3060	23.25	10.76	34.01	56.00	-21.99	QP
8	4.3060	16.14	10.76	26.90	46.00	-19.10	AVG
9	10.1660	24.30	10.89	35.19	60.00	-24.81	QP
10	10.1660	19.68	10.89	30.57	50.00	-19.43	AVG
11	15.9580	27.29	10.85	38.14	60.00	-21.86	QP
12	15.9580	18.44	10.85	29.29	50.00	-20.71	AVG

Remarks:

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

5 RADIATED EMISSION TEST

5.1LIMIT

In case the emission fall within the restricted band specified on 15.205(a) and RSS-Gen 8.10, then the 15.209(a) and RSS-Gen 8.9 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (9 kHz-1000MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (9 kHz-30 MHz)

Frequency	Magnetic field strength (H-Field)	Measurement Distance
(MHz)	(μA/m)	(meters)
0.009-0.490	6.37/F(kHz)	300
0.490-1.705	6.37/F(kHz)	30
1.705-30.0	0.08	30

LIMITS OF RADIATED EMISSION MEASUREMENT (30 MHz-1000MHz)

Frequency	Field Strength
(MHz)	(μV/m at 3m)
30-88	100
88-216	150
216-960	200
Above 960	500

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	(dBuV/m at 3 m)				
Frequency (MHz)	Peak	Average			
Above 1000	74	54			

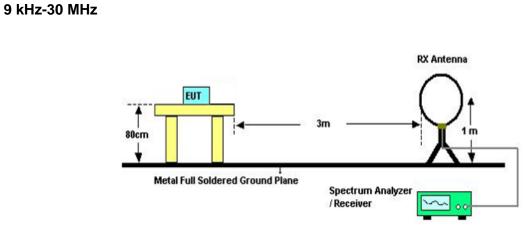
Note:

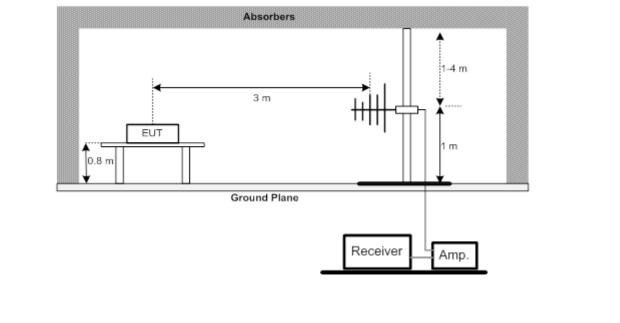
- (1) The limit for radiated test was performed according to FCC PART 15C and RSS-247.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

5.2TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3metersemi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m or 1.5m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. The test result is calculated as the following:
 - (1) Result = Reading + Correct Factor
 - (2) Correct Factor = Antenna Factor + Cable Loss Amplifier Gain + Attenuator
 - (3) Margin = Result Limit

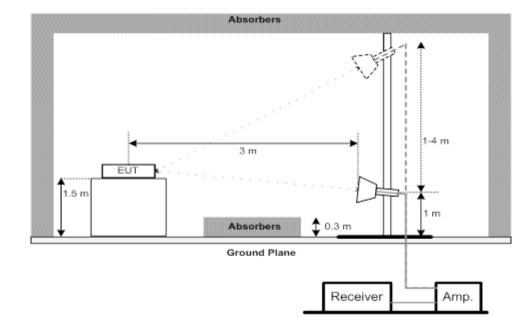
Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	RBW 1MHz VBW 3MHz peak detector for Pk value
(Emission in restricted band)	RMS detector for AV value


Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9 kHz~90 kHz for PK/AVG detector
Start ~ Stop Frequency	90 kHz~110 kHz for QP detector
Start ~ Stop Frequency	110 kHz~490 kHz for PK/AVG detector
Start ~ Stop Frequency	490 kHz~30 MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector


Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	EMI Test Receiver	R&S	ESCI	101307	11/29/2024
2	Spectrum Analyzer	Agilent	E4407B	US40240708	11/06/2024
3	Loop antenna	SCHWARZBECK K	FMZB1519	1519-062	01/15/2024
4	Broadband antenna	SCHWARZBECK	VULB9168	VULB9168-192	07/02/2024
5	HORN ANTENNA	SCHWARZBECK	BBHA9120D	9120D 1065	04/09/2024
6	Preamplifier Amplifier	HP	8447F	3113A05680	12/04/2024
7	PRE-AMPLIFIER	EMEC	EM01G26G	060679	04/05/2024
8	RF Cable	R&S	Test Cable 4	4	12/04/2024
9	RF Cable	R&S	Test Cable 5	5	12/04/2024
10	RF Cable	R&S	Test Cable 9	8	04/18/2024
11	RF Cable	R&S	Test Cable 10	9	04/18/2024
12	Measurement Software	Farad	EZ-EMC (Ver.ATT-03A)	N/A	N/A

5.3MEASUREMENT INSTRUMENTS LIST

5.4TESTSETUP



30 MHz to 1 GHz

Above 1 GHz

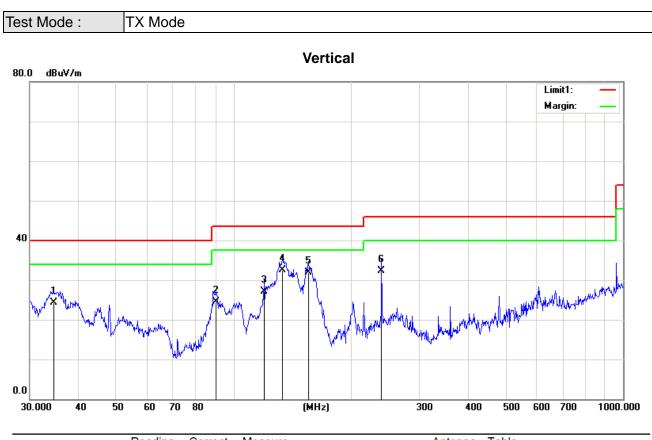
5.5EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULT- 9kHz TO 30MHz

Test	Mode:
rest	wode.

TX Mode


Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				Р
				Р

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =20 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor

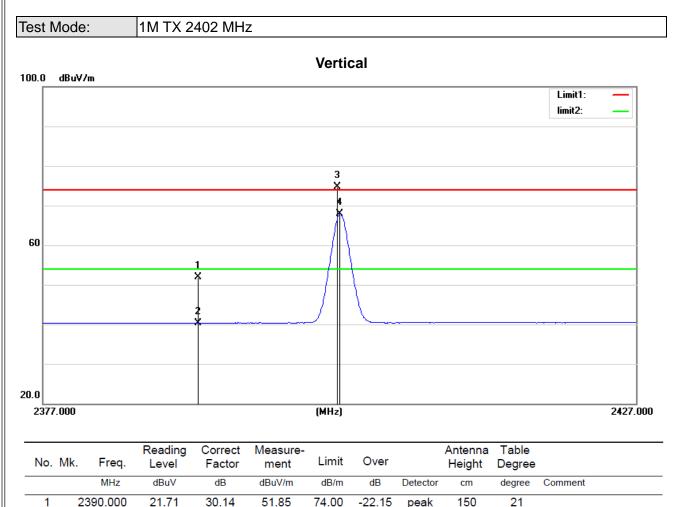
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1		34.6385	38.13	-13.92	24.21	40.00	-15.79	QP	200	214	
2		90.2205	40.63	-16.13	24.50	43.50	-19.00	QP	100	154	
3		119.8556	41.67	-14.59	27.08	43.50	-16.42	QP	100	79	
4	*	133.6188	45.99	-13.53	32.46	43.50	-11.04	QP	100	64	
5		155.9101	45.70	-13.87	31.83	43.50	-11.67	QP	300	311	
6		239.9874	41.45	-9.22	32.23	46.00	-13.77	QP	200	144	

5.7 TEST RESULT- 30MHz TO 1000MHz

*:Maximum data x:Over limit !:over margin

 $\langle Reference Only$

Test Mode : TX Mode Horizontal 80.0 dBu¥/m Limit1: Margin: 40 6 X 5 uh M Marchael other House 0.0 30.000 70 80 (MHz) 300 400 600 700 1000.000 40 500 50 60


MHz dBuV dB dBuV/m dB/m dB Detector cm degree Comment 1 * 119.8556 50.35 -15.59 34.76 43.50 -8.74 QP 200 312 2 136.9391 42.05 -14.59 27.46 43.50 -16.04 QP 200 28 3 216.0240 40.83 -10.61 30.22 46.00 -15.78 QP 100 59 4 239.9874 44.37 -7.22 37.15 46.00 -8.85 QP 100 158 5 360.4476 39.24 -8.85 30.39 46.00 -15.61 QP 300 247 6 480.5276 39.54 -6.92 32.62 46.00 -13.38 QP 100 187	No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
2 136.9391 42.05 -14.59 27.46 43.50 -16.04 QP 200 28 3 216.0240 40.83 -10.61 30.22 46.00 -15.78 QP 100 59 4 239.9874 44.37 -7.22 37.15 46.00 -8.85 QP 100 158 5 360.4476 39.24 -8.85 30.39 46.00 -15.61 QP 300 247			MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
3 216.0240 40.83 -10.61 30.22 46.00 -15.78 QP 100 59 4 239.9874 44.37 -7.22 37.15 46.00 -8.85 QP 100 158 5 360.4476 39.24 -8.85 30.39 46.00 -15.61 QP 300 247	1	*	119.8556	50.35	-15.59	34.76	43.50	-8.74	QP	200	312	
4 239.9874 44.37 -7.22 37.15 46.00 -8.85 QP 100 158 5 360.4476 39.24 -8.85 30.39 46.00 -15.61 QP 300 247	2		136.9391	42.05	-14.59	27.46	43.50	-16.04	QP	200	28	
5 360.4476 39.24 -8.85 30.39 46.00 -15.61 QP 300 247	3		216.0240	40.83	-10.61	30.22	46.00	-15.78	QP	100	59	
	4		239.9874	44.37	-7.22	37.15	46.00	-8.85	QP	100	158	
6 480.5276 39.54 -6.92 32.62 46.00 -13.38 QP 100 187	5		360.4476	39.24	-8.85	30.39	46.00	-15.61	QP	300	247	
	6		480.5276	39.54	-6.92	32.62	46.00	-13.38	QP	100	187	

*:Maximum data x:Over limit !:over margin

 $\langle Reference Only$

5.8 TEST RESULT- ABOVE 1000MHz(BAND EDGE)

40.30

74.61

67.92

54.00

74.00

54.00

-13.70

0.61

13.92

AVG

peak

AVG

150

150

150

21

21

21

NO LIMIT

NO LIMIT

*:Maximum data x:Over limit !:over margin

10.16

44.45

37.76

30.14

30.16

30.16

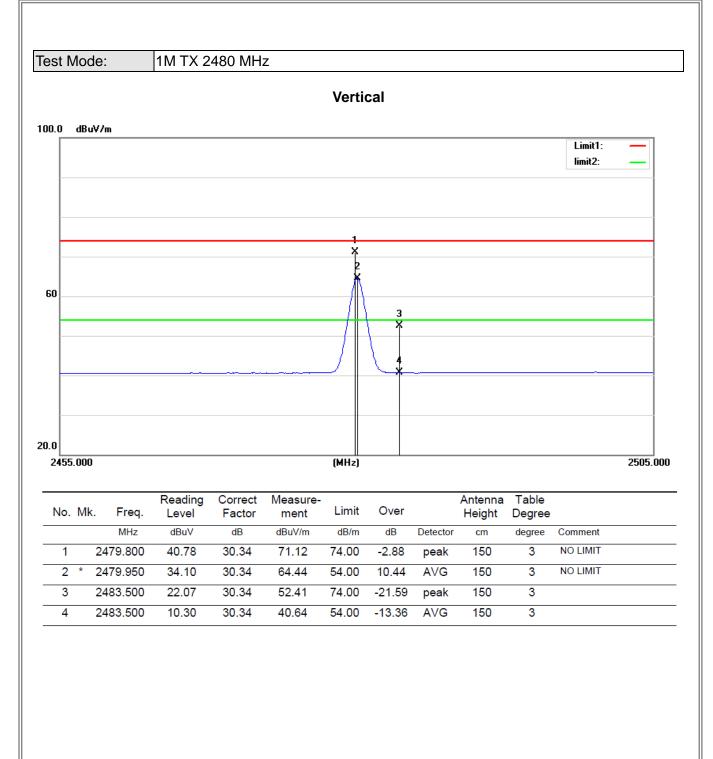
2390.000

2401.950

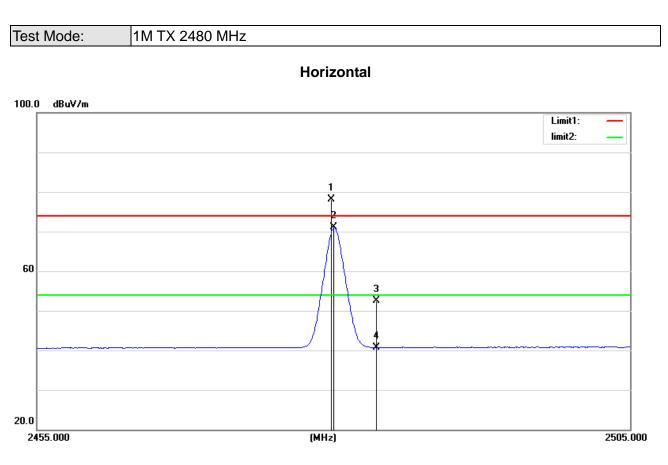
3 X 2401.750

2

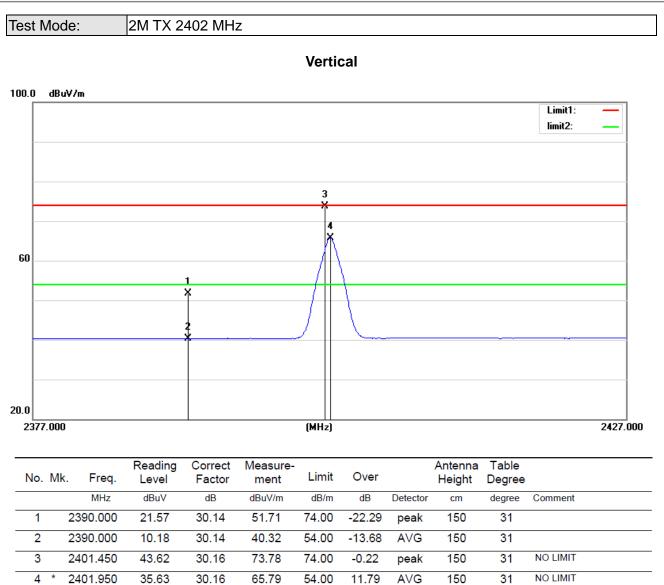
4 *

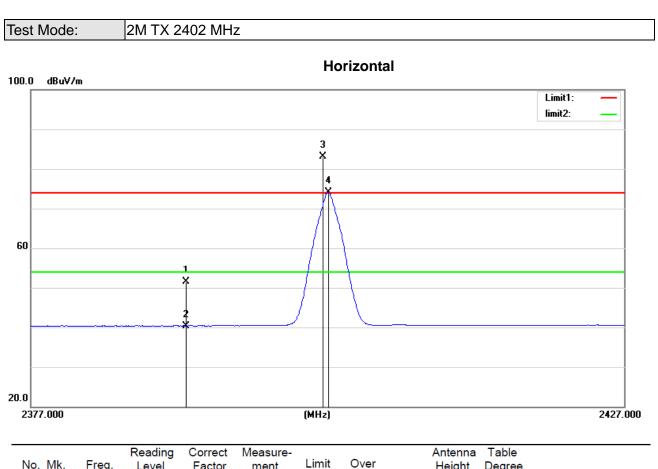


Test Mode: 1M TX 2402 MHz Horizontal

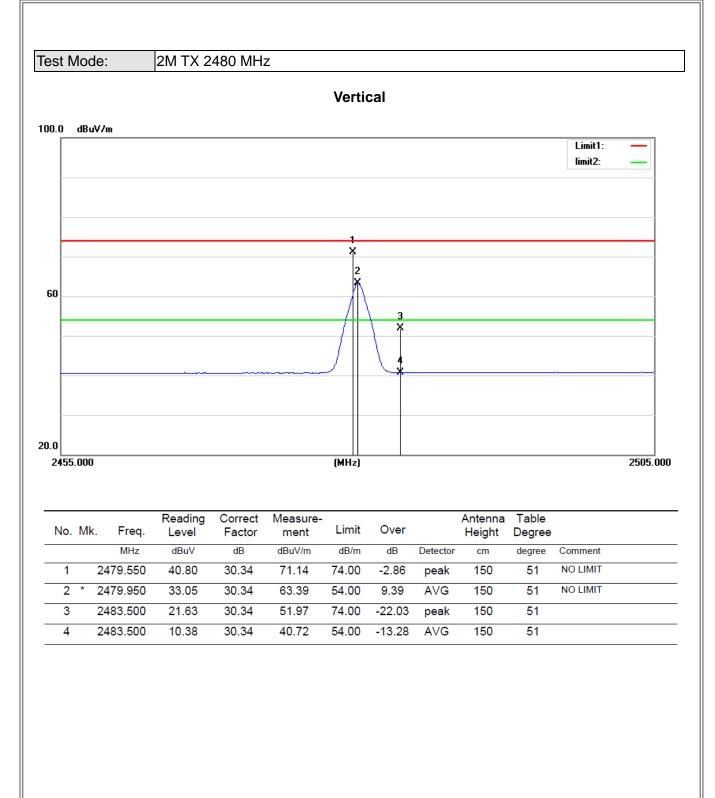

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1	1	2390.000	22.19	30.14	52.33	74.00	-21.67	peak	150	194	
2	2	2390.000	10.22	30.14	40.36	54.00	-13.64	AVG	150	194	
3	*	2401.950	44.25	30.16	74.41	54.00	20.41	AVG	150	194	NO LIMIT
4	X	2402.150	51.98	30.16	82.14	74.00	8.14	peak	150	194	NO LIMIT

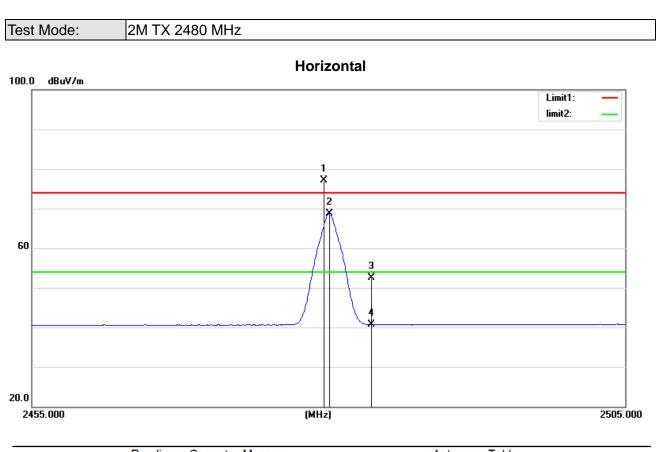
*:Maximum data x:Over limit !:over margin



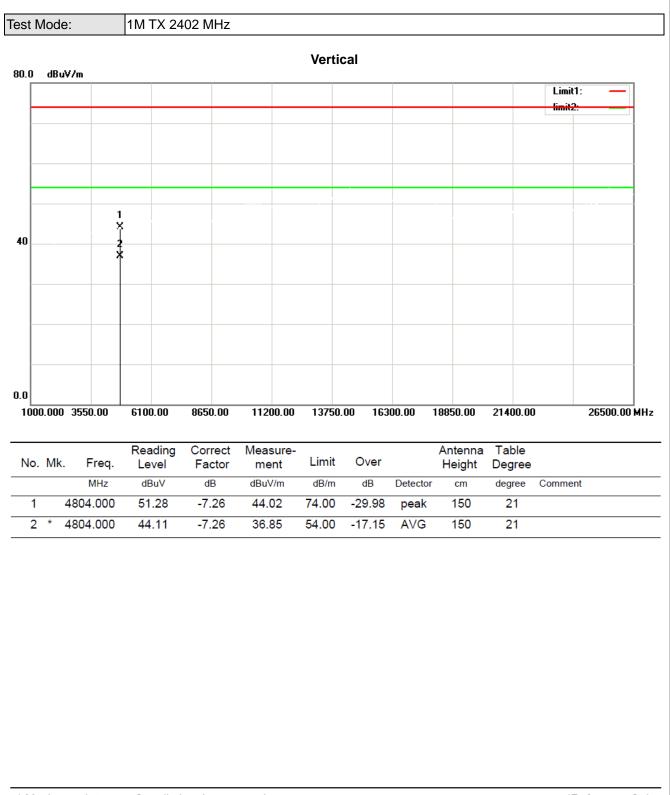


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1	Х	2479.700	47.77	30.34	78.11	74.00	4.11	peak	150	192	NO LIMIT
2	*	2479.950	40.69	30.34	71.03	54.00	17.03	AVG	150	192	NO LIMIT
3		2483.500	22.14	30.34	52.48	74.00	-21.52	peak	150	192	
4		2483.500	10.39	30.34	40.73	54.00	-13.27	AVG	150	192	

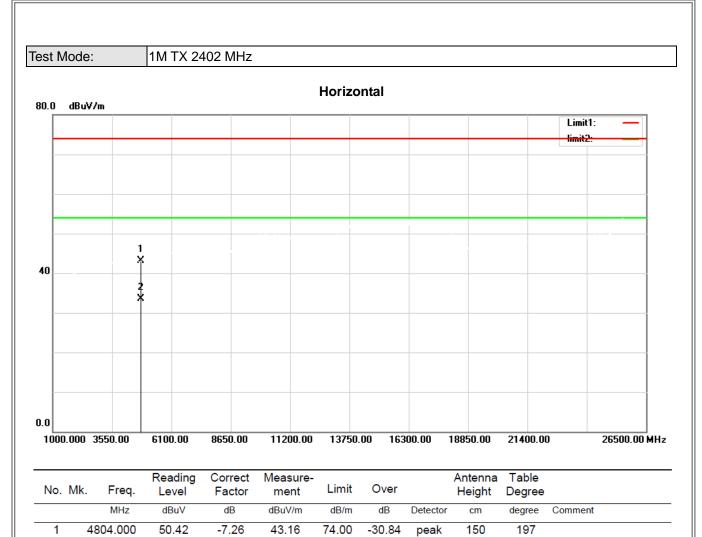



No.	Mk	. Freq.	Level	Factor	ment	Limit	Over		Height	Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1		2390.000	21.36	30.14	51.50	74.00	-22.50	peak	150	188	
2		2390.000	10.23	30.14	40.37	54.00	-13.63	AVG	150	188	
3	Х	2401.500	53.00	30.16	83.16	74.00	9.16	peak	150	188	NO LIMIT
4	*	2401.950	43.89	30.16	74.05	54.00	20.05	AVG	150	188	NO LIMIT

 $\langle \text{Reference Only} \rangle$



No.	Mł	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1	Х	2479.500	46.75	30.33	77.08	74.00	3.08	peak	150	207	NO LIMIT
2	*	2479.950	38.39	30.34	68.73	54.00	14.73	AVG	150	207	NO LIMIT
3		2483.500	22.12	30.34	52.46	74.00	-21.54	peak	150	207	
4		2483.500	10.33	30.34	40.67	54.00	-13.33	AVG	150	207	



5.9TEST RESULTS - ABOVE 1000MHz(HARMONIC)

*:Maximum data x:Over limit !:over margin

-7.26

33.56

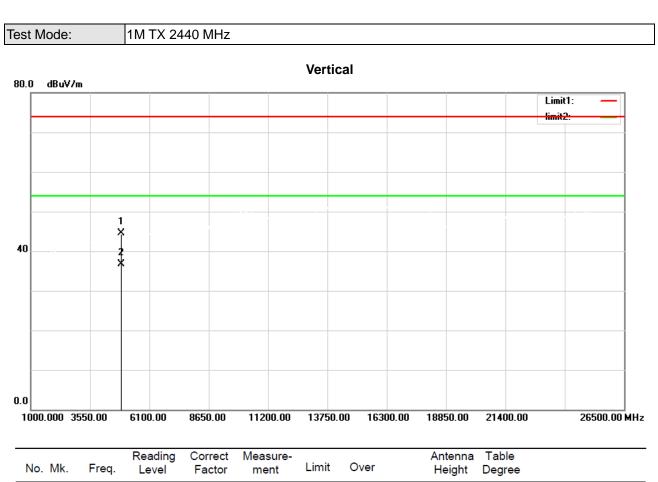
54.00

-20.44

AVG

150

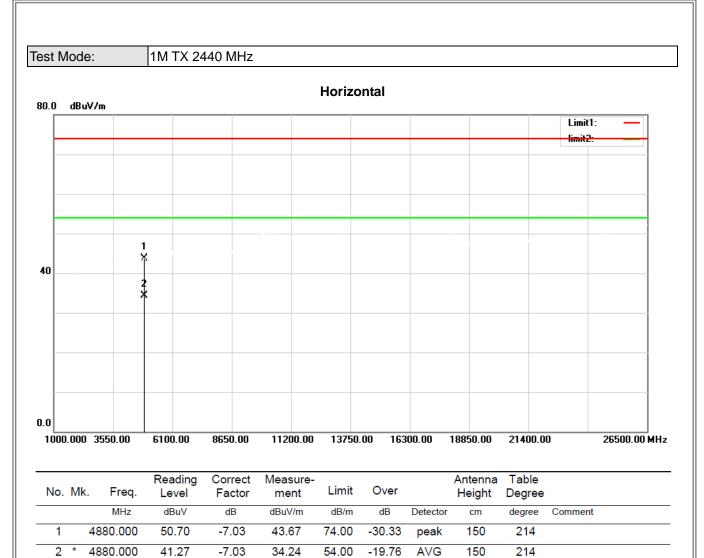
40.82

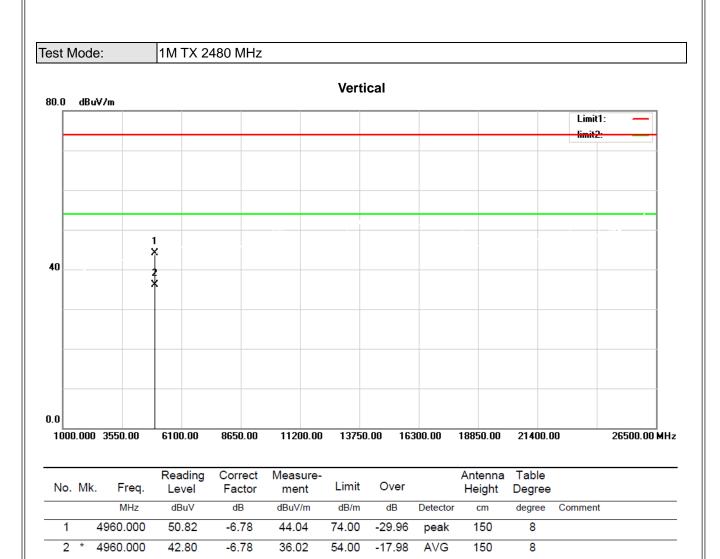

2 *

4804.000

Reference Only

197



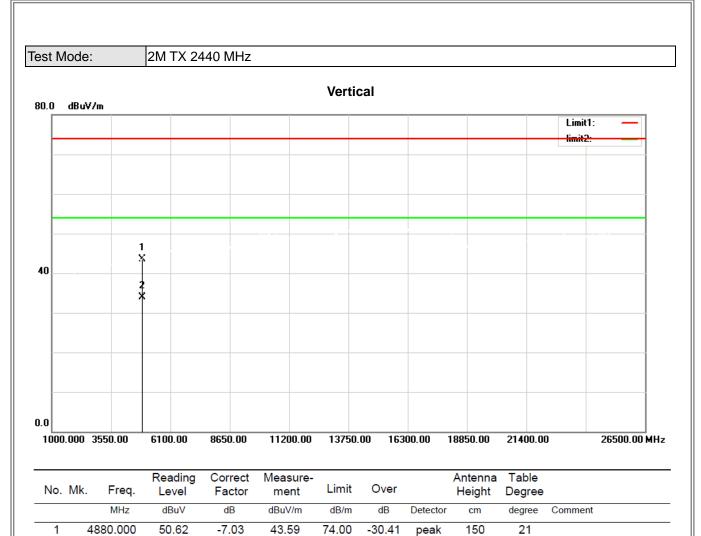

No.	Mk.	Freq.	Level	Factor	ment	Limit	Over		Height		
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1	4	880.000	51.50	-7.03	44.47	74.00	-29.53	peak	150	16	
2	* 4	880.000	43.82	-7.03	36.79	54.00	-17.21	AVG	150	16	

_

Image: Second system Image: Second system <th< th=""><th>.0 </th><th>dBuV/m</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Horizo</th><th>ntai</th><th></th><th></th><th></th><th></th><th>Limit</th><th>1: —</th><th>]</th></th<>	.0 	dBuV/m								Horizo	ntai					Limit	1: —]
X X	F															limitá	<u></u>	
X X																		
X X	╞																	Ĺ
X X																		1
Image: Second state of the second s																		
o. Mk. Freq. Reading Correct Measure- MHz dBuV dB dBuV/m dB/m dB Detector cm degree Comment 1 4960.000 49.69 -6.78 42.91 74.00 -31.09 peak 150 188			2	2														
o. Mk. Freq. Reading Correct Measure- MHz dBuV dB dBuV/m dB/m dB Detector cm degree Comment 1 4960.000 49.69 -6.78 42.91 74.00 -31.09 peak 150 188	_																	
o. Mk. Freq. Reading Correct Measure- MHz dBuV dB dBuV/m dB/m dB Detector cm degree Comment 1 4960.000 49.69 -6.78 42.91 74.00 -31.09 peak 150 188																		
o. Mk. Freq. Reading Correct Measure- MHz dBuV dB dBuV/m dB/m dB Detector cm degree Comment 1 4960.000 49.69 -6.78 42.91 74.00 -31.09 peak 150 188																		
o. Mk. Freq. Reading Correct Measure- MHz dBuV dB dBuV/m dB/m dB Detector cm degree Comment 1 4960.000 49.69 -6.78 42.91 74.00 -31.09 peak 150 188																		l
o. Mk. Freq. Reading Correct Measure- MHz dBuV dB dBuV/m dB/m dB Detector cm degree Comment 1 4960.000 49.69 -6.78 42.91 74.00 -31.09 peak 150 188		1 000 355	0 00	6100	חח ר	8650 0	n	11200	00	1375(00	163	00 00	18850 00	21400 (0	26500.00	
o. Mk. Freq. Level Factor ment Limit Over Height Degree MHz dBuV dB dBuV/m dB/m dB Detector cm degree Comment 1 4960.000 49.69 -6.78 42.91 74.00 -31.09 peak 150 188																		
1 4960.000 49.69 -6.78 42.91 74.00 -31.09 peak 150 188	۱o.	Mk.	Freq.	Rea Le	vel					Limit	Ov	er						
·	1						2									Commer	ıt	

								Vor	tical									
0.0 dB	u¥/m							VCI	licai									
																Limit1		-
0		1 X 																
		2 X																
0																		
1000.00	0 3550.00	610	0.00	8650).00	1120	00.00	1375	50.00	1630	0.00	1885	50.00	214	00.00		26500.0)0 m i

	No.	Mk.	Freq.	Level	Factor	ment	Limit	Over		Height	Degree	
-			MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
-	1	48	304.000	50.30	-7.26	43.04	74.00	-30.96	peak	150	15	
-	2	* 48	304.000	41.83	-7.26	34.57	54.00	-19.43	AVG	150	15	


 $\langle \text{Reference Only} \rangle$

(Reference Only

54.00

33.96

-20.04

AVG

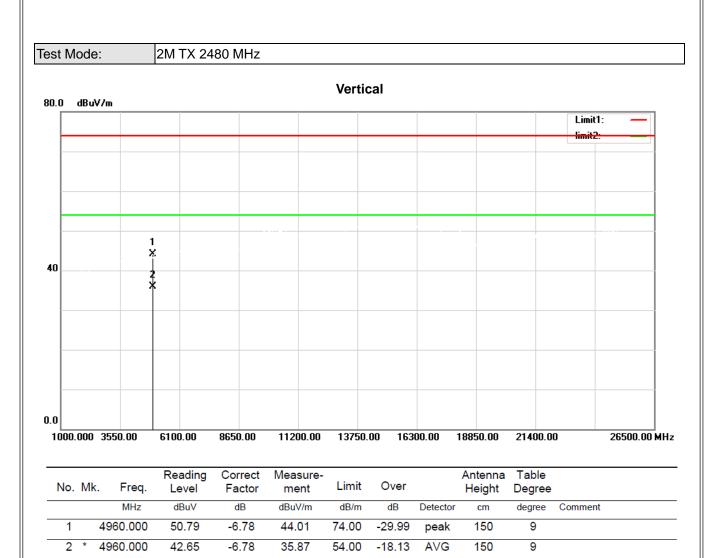
150

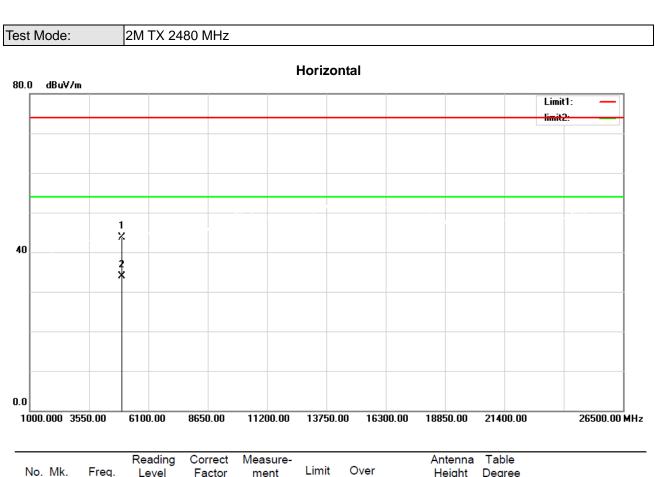
21

*:Maximum data x:Over limit !:over margin

-7.03

40.99


2 * 4880.000


(Reference Only

(Reference Only

No.	Mk.	Freq.	Level	Factor	ment	Limit	Over		Height	Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1		4960.000	50.40	-6.78	43.62	74.00	-30.38	peak	150	216	
2	*	4960.000	40.76	-6.78	33.98	54.00	-20.02	AVG	150	216	

*:Maximum data x:Over limit !:over margin

 $\langle Reference Only$

6BANDWIDTH TEST

6.1LIMIT

FCC Part15, S	ubpart C (15.247)& RSS-	Gen/ RSS-247
Section	Test Item	Limit
15.247(a)(2) RSS-Gen6.7 RSS-247 5.2 (a)	Bandwidth	>= 500 kHz (6dB bandwidth)

6.2TEST PROCEDURE AND SETTING

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting:

For 6dB Bandwidth RBW= 100 kHz, VBW=300 kHz, Sweep time =Auto. For 99% Bandwidth RBW=30kHz, VBW=100kHz, Sweep time =Auto for 1Mbps. RBW=100kHz, VBW=300kHz, Sweep time =Auto for 2Mbps.

6.3MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum analyzer	KEYSIGHT	N9010A	MY55150427	2024/05/23
2	Attenuator	Mini-Circuits	BW-S10W2	101109	N/A
3	RF Cable	Mi-cable	C10-01-01-1	100309	N/A

6.4TEST SETUP

EUT	SPECTRUM
	ANALYZER


6.5EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.5 unless otherwise a special operating condition is specified in the follows during the testing.

6.6TESTRESULTS

		TX Mode_1MI	ops	
Channel	Frequency (MHz)	6 dB bandwidth (MHz)	99%OBW (MHz)	Result
CH00	2402	0.7261	1.0596	PASS
CH19	2440	0.7228	1.0644	PASS
CH39	2480	0.7283	1.0658	PASS

Report No.: 23EFSB12014 00151

		TX Mode_2M	ops	
Channel	Frequency (MHz)	6 dB bandwidth (MHz)	99%OBW (MHz)	Result
CH00	2402	1.247	2.0587	PASS
CH19	2440	1.242	2.0741	PASS
CH39	2480	1.246	2.0767	PASS

7MAXIMUM OUTPUT POWER

7.1LIMIT

FCC P	art15, Subpart C (15.247)8	RSS-247
Section	Test Item	Limit
15.247(b)(3) RSS-2475.4 (d)	Maximum Output Power	1 watt or 30dBm

7.2TEST PROCEDURE

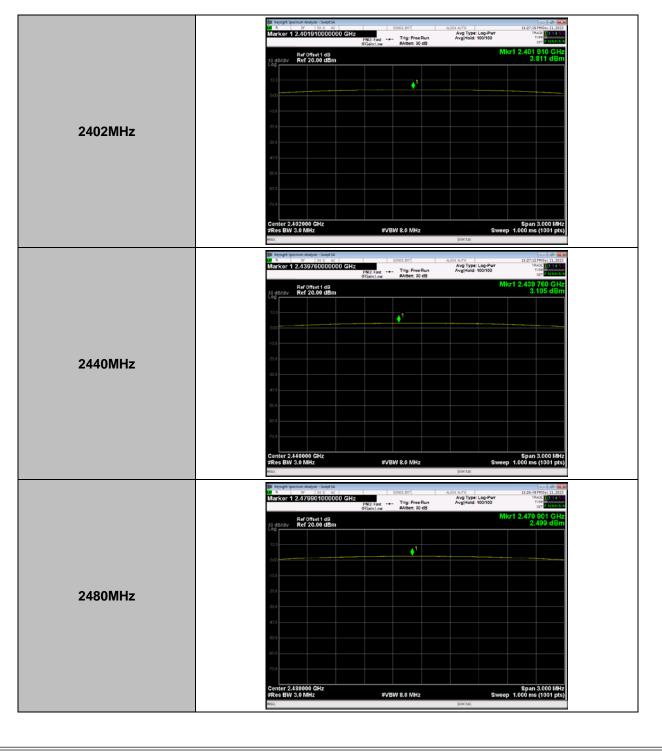
- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The maximum conducted output power was performed in accordance with method 11.9.1.3(for peak power)ofANSI C63.10-2013.

7.3MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum analyzer	KEYSIGHT	N9010A	MY55150427	2024/05/23
2	Attenuator	Mini-Circuits	BW-S10W2	101109	N/A
3	RF Cable	Mi-cable	C10-01-01-1	100309	N/A

7.4TEST SETUP

EUT	SPECTRUM
	ANALYZER


7.5EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.5 unless otherwise a special operating condition is specified in the follows during the testing.

7.6TESTRESULTS

		TX Mode_1Mbps		
Channel	Frequency	Output Power	Output Power	Deput
Channel	(MHz)	(dBm)	(W)	Result
CH00	2402	3.811	0.002405	PASS
CH19	2440	3.105	0.002044	PASS
CH39	2480	2.499	0.001778	PASS
Limit	30dBm / 1W			

Report No.: 23EFSB12014 00151

	-	TX Mode_2Mbps		
Channel	Frequency	Output Power	Output Power	Result
Channel	(MHz)	(dBm)	(W)	Result
CH00	2402	3.754	0.002374	PASS
CH19	2440	3.021	0.002005	PASS
CH39	2480	2.410	0.001742	PASS
Limit	30dBm / 1W			

	Keysgit spectrum Andyzer-Swept SA
	Marker 12.4017/03000000 GH2 Morker 12.5017/03000000 GH2 Morker 2000 FH2 FND: Fest FND: Fest
	Bef Offeet 1 dB Mkr1 2,401 703 GHz
	10 dB/div Ref 20,00 dBm 3.754 dBm
	-330
2402MHz	-200
240211112	-00.0
	43.0
	63.0
	43.9
	73.0
	Center 2.402000 GHz Span 3.000 MHz #Res BW 3.0 MHz #VBW 8.0 MHz Sweep 1.000 ms (1001 pts)
	860 SAV6
	Kenget second Adapt - Sect Ad Mark Sor 14 - Sect Adapt - Se
	IFGalaciow #Atten: 30 dB Oct Division
	Ref 065rdfy Ref 20.00 dBm 3.021 dBm 3.021 dBm
2440MHz	-200
	-30.0
	400
	40.0
	43.0
	73.0
	Center 2.440000 GHz Span 3.000 MHz Span 3.000 MHz #VBW 8.0 MHz Sweep 1.000 ms (1001 pts)
	MSG STATUS
	30 Keyspit Spectrum Analyser - Swept SA CD-1-00- MA T1 24/20 PM (epc 2), 2222 4 FF 59.0-AC SD-62/2017 AL304 AUTO 11 24/20 PM (epc 2), 2222
	Marker 1 2.479724000000 GHz Avg Type Run Avg Type: LooPer Type Banker FRC Fest Trig: Free Run Avg Held: 100/100 Type Banker FGskit.com Adder 50 08
	Ref Offset 1 dB Mkr1 2.479 724 GHz 10 dBiddy Ref 20.00 dBm 2.410 dBm
	10.0
2480MHz	22.0
	-30.0
	-40.0
	60.0
	40.0
	73.0
	Center 2.450000 GHz Span 3.000 MHz Sweep 1.000 ms (1001 pts)

8CONDUCTED SPURIOUS EMISSION

8.1LIMIT

For FCC

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak Output Power limits. If the transmitter complies with the Output Power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

For ISED

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak Output Power limits. If the transmitter complies with the Output Power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

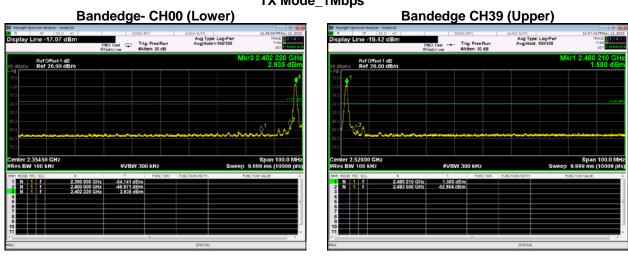
8.2TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting : RBW= 100 kHz, VBW=300 kHz, Sweep time = Auto.

8.3MEASUREMENT INSTRUMENTS LIST

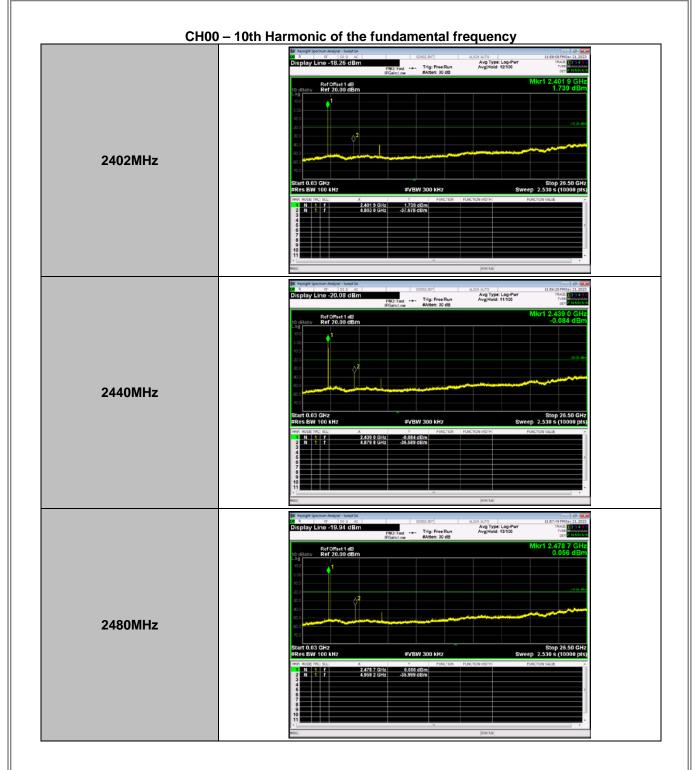
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum analyzer	KEYSIGHT	N9010A	MY55150427	2024/05/23
2	Attenuator	Mini-Circuits	BW-S10W2	101109	N/A
3	RF Cable	Mi-cable	C10-01-01-1	100309	N/A

8.4TEST SETUP

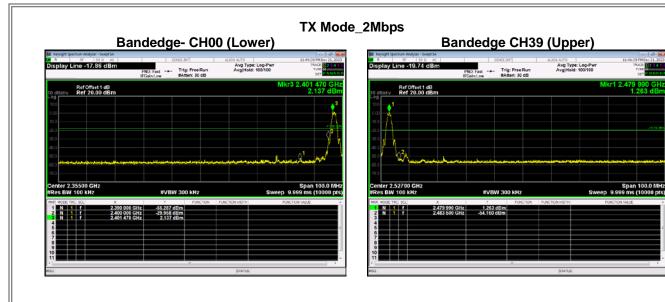

EUT	SPECTRUM
	ANALYZER

8.5EUT OPERATION CONDITIONS

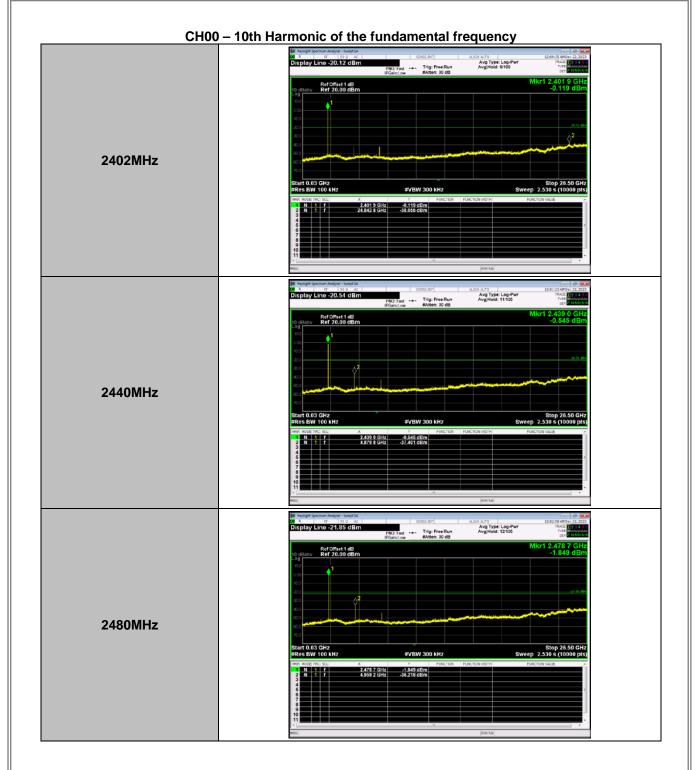
The EUT tested system was configured as the statements of 4.5unless otherwise a special operating condition is specified in the follows during the testing.



8.6 TEST RESULTS



TX Mode_1Mbps



Page 50 of 57

Page 52 of 57

9POWER SPECTRAL DENSITY TEST

9.1LIMIT

FCC Part15, Subpart C (15.247)&RSS-247				
Section Test Item Limi				
15.247(e) RSS-2475.2 (b)	Power Spectral Density	8 dBm (in any 3 kHz)		

9.2TEST PROCEDURE

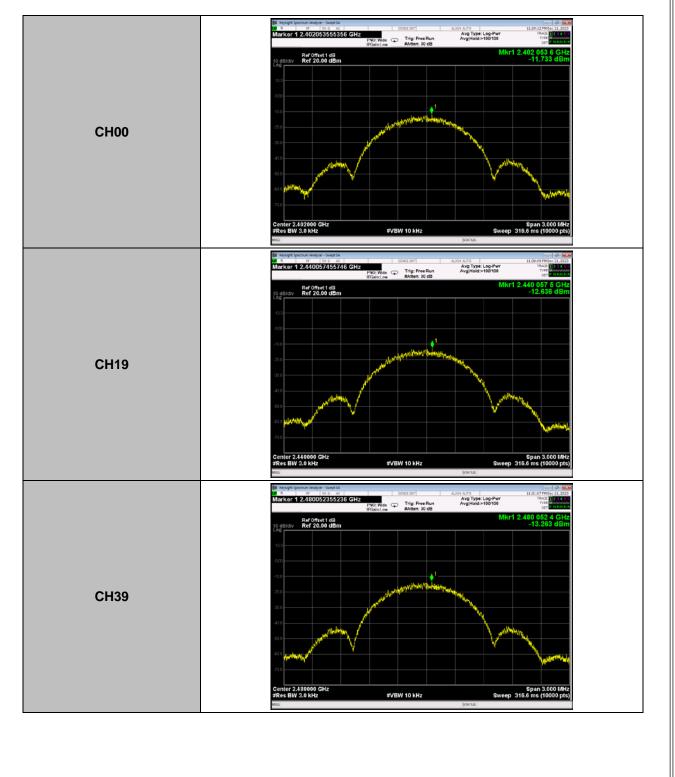
- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW=3 kHz, VBW=10kHz, Sweep time = auto.

9.3MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum analyzer	KEYSIGHT	N9010A	MY55150427	2024/05/23
2	Attenuator	Mini-Circuits	BW-S10W2	101109	N/A
3	RF Cable	Mi-cable	C10-01-01-1	100309	N/A

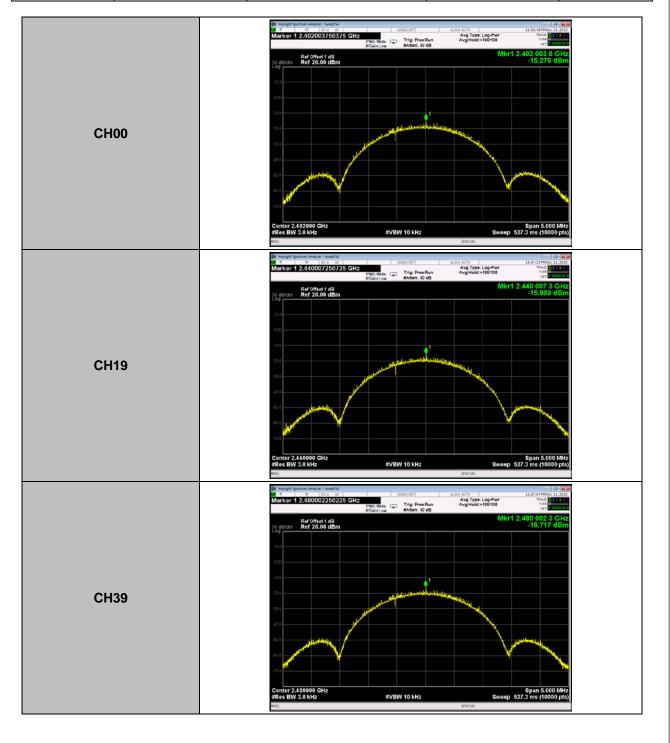
9.4TEST SETUP

EUT	SPECTRUM
	ANALYZER


9.5EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

9.6 TEST RESULTS


	TX Mode_1Mbps				
Channel	Frequency (MHz)	Power SpectralDensity (dBm/3 kHz)	Limit: <dbm 3khz<="" td=""><td>Result</td></dbm>	Result	
CH00	2402	-11.733	8	PASS	
CH19	2440	-12.636	8	PASS	
CH39	2480	-13.263	8	PASS	

Report No.: 23EFSB12014 00151

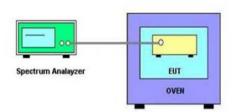
	TX Mode_2Mbps				
Channel	Frequency (MHz)	Power SpectralDensity (dBm/3 kHz)	Limit: <dbm 3khz<="" td=""><td>Result</td></dbm>	Result	
CH00	2402	-15.276	8	PASS	
CH19	2440	-15.989	8	PASS	
CH39	2480	-16.717	8	PASS	

10FREQUENCY STABILITY MEASUREMENT

10.1LIMIT

RSS-Gen				
Section	Test Item	Limit	Frequency Range (MHz)	
RSS-Gen 6.11	Frequency Stability	Specified in the user's manual	2402-2480	

10.2TEST PROCEDURE


- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting:

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Entire absence of modulationemissionsbandwidth
RBW	10 kHz
VBW	10kHz
Sweep Time	Auto

10.3MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum analyzer	KEYSIGHT	N9010A	MY55150427	2024/05/23
2	Attenuator	Mini-Circuits	BW-S10W2	101109	N/A
3	RF Cable	Mi-cable	C10-01-01-1	100309	N/A
4	Temperature conditioning	Guan Jian.HTH1000	-20-130°C	GJ1000-10D001	N/A
5	DC Power Supply	G.KE	IPR-10010D	010931954	N/A

10.4TEST SETUP

10.5EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

10.6 TEST RESULTS

	Temper	rature vs. Frequency Stability
Voltage	Temperature	Measurement Frequency (MHz)
	(°C)	2480
3.7V	-20	2401.9666
5.7 V	25	2401.9668
	50	2401.9670
2.3V	25	2401.9670
Max. Deviation (MHz)		-0.0334
Max. Dev	<i>r</i> iation (ppm)	-13.91

Note:2.3V is the end point voltage, and products below 2.3V will cease working.

END OF TEST REPORT