

FCC Test Report

Product Name	AG9 Wireless Headset for PS4
Model No	051-044R
FCC ID.	X5B-051-044R

Applicant	Performance Designed Products, LLC
Address	14144 Ventura Blvd., Suite 200 Sherman Oaks, CA91423 USA

Date of Receipt	July. 20, 2015			
Issue Date	Aug. 03, 2015			
Report No.	1570488R-RFUSP25V00			
Report Version	V1.0			
Testing Laboratory 3023				

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government. The test report shall not be reproduced without the written approval of QuieTek Corporation.

Test Report

Issue Date: Aug. 03, 2015 Report No.: 1570488R-RFUSP25V00

Product Name	AG9 Wireless Headset for PS4	
Applicant	Performance Designed Products, LLC	
Address	14144 Ventura Blvd., Suite 200 Sherman Oaks, CA91423 USA	
Manufacturer	Performance Designed Products, LLC	
Model No.	051-044R	
EUT Rated Voltage	DC 3.7V (Power by Battery)	
EUT Test Voltage	AC 120V/60Hz	
Trade Name	pdp, Afterglow	
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C: 2014	
	ANSI C63.4: 2014, ANSI C63.10: 2013	
	KDB 558074 D01 DTS Meas Guidance v03r03	
Test Result	Complied	

Documented By

:

:

:

Leven Huang

(Senior Adm. Specialist / Leven Huang)

Tested By

chiu om

(Engineer / Tom Chiu)

Approved By

(Director / Vincent Lin)

TABLE OF CONTENTS

1.GENERAL INFORMATION1.1.EUT Description1.2.Operational Description1.3.Tested System Details1.4.Configuration of Tested System1.5.EUT Exercise Software1.6.Test Facility2.Conducted Emission	5 7 8 8 8
 1.2. Operational Description	7
 1.2. Operational Description	7
 Tested System Details Configuration of Tested System EUT Exercise Software Test Facility 	
1.4.Configuration of Tested System1.5.EUT Exercise Software1.6.Test Facility	8 8
1.5. EUT Exercise Software 1.6. Test Facility	8
1.6. Test Facility	
2. Conducted Emission	
	10
2.1. Test Equipment	10
2.2. Test Setup	10
2.3. Limits	11
2.4. Test Procedure	11
2.5. Uncertainty	11
2.6. Test Result of Conducted Emission	12
3. Peak Power Output	14
3.1. Test Equipment	14
3.2. Test Setup	14
3.3. Limit	14
3.4. Test Procedure	14
3.5. Uncertainty	14
3.6. Test Result of Peak Power Output	15
4. Radiated Emission	16
4.1. Test Equipment	16
4.2. Test Setup	17
4.3. Limits	
4.4. Test Procedure	19
4.5. Uncertainty	
4.6. Test Result of Radiated Emission	
5. RF Antenna Conducted Test	24
5.1. Test Equipment	24
5.2. Test Setup	24
5.3. Limits	24
5.4. Test Procedure	24
5.5. Uncertainty	24
5.6. Test Result of RF antenna conducted test	25
6. Band Edge	28
6.1. Test Equipment	
6.2. Test Setup	29
6.3. Limit	
6.4. Test Procedure	30
6.5. Uncertainty	30
6.6. Test Result of Band Edge	

7.	Occupied Bandwidth	
7.1.	Test Equipment	
7.2.	Test Setup	
7.3.	Limits	
7.4.	Test Procedure	
7.5.	Uncertainty	
7.6.	Test Result of Occupied Bandwidth	
8.	Power Density	
8.1.	Test Equipment	
8.2.	Test Setup	
8.3.	Limits	
8.4.	Test Procedure	
8.5.	Uncertainty	
8.6.	Test Result of Power Density	
9.	EMI Reduction Method During Compliance Testing	43

Attachment 1:EUT Test PhotographsAttachment 2:EUT Detailed Photographs

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	AG9 Wireless Headset for PS4	
Trade Name	pdp, Afterglow	
Model No.	051-044R	
FCC ID.	X5B-051-044R	
Frequency Range	2403.35 – 2479.35MHz	
Channel Control	Auto	
Channel Separation	2MHz	
Antenna Gain	Refer to the table "Antenna List"	
Channel Number	39	
Type of Modulation	Pi/4 DQPSK	
Antenna Type	Printed on PCB	
USB Cable	Non-Shielded, 1.8m	
Audio Cable	Non-Shielded, 1.8m	

Antenna List

No.	Manufacturer	Part No.	Peak Gain
1	TATUNG	051-044R (Ant 1)	5.48dBi for 2.4 GHz
		051-044R (Ant 2)	

Note: The antenna of EUT is conform to FCC 15.203

Center Frequency of Each Channel:

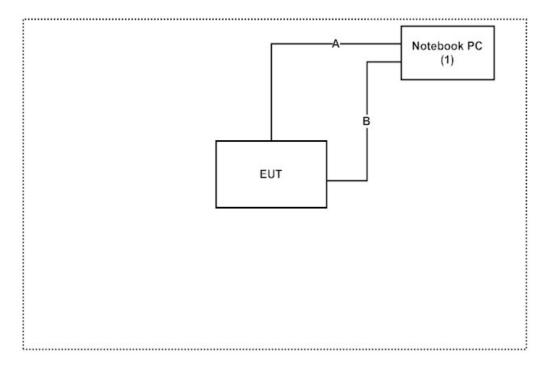
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 1:	2403.35 MHz	Channel 11:	2423.35 MHz	Channel 21:	2443.35 MHz	Channel 31:	2463.35 MHz
Channel 2:	2405.35 MHz	Channel 12:	2425.35 MHz	Channel 22:	2445.35 MHz	Channel 32:	2465.35 MHz
Channel 3:	2407.35 MHz	Channel 13:	2427.35 MHz	Channel 23:	2447.35 MHz	Channel 33:	2467.35 MHz
Channel 4:	2409.35 MHz	Channel 14:	2429.35 MHz	Channel 24:	2449.35 MHz	Channel 34:	2469.35 MHz
Channel 5:	2411.35 MHz	Channel 15:	2431.35 MHz	Channel 25:	2451.35 MHz	Channel 35:	2471.35 MHz
Channel 6:	2413.35 MHz	Channel 16:	2433.35 MHz	Channel 26:	2453.35 MHz	Channel 36:	2473.35 MHz
Channel 7:	2415.35 MHz	Channel 17:	2435.35 MHz	Channel 27:	2455.35 MHz	Channel 37:	2475.35 MHz
Channel 8:	2417.35 MHz	Channel 18:	2437.35 MHz	Channel 28:	2457.35 MHz	Channel 38:	2477.35 MHz
Channel 9:	2419.35 MHz	Channel 19:	2439.35 MHz	Channel 29:	2459.35 MHz	Channel 39:	2479.35 MHz
Channel 10:	2421.35 MHz	Channel 20:	2441.35 MHz	Channel 30:	2461.35 MHz		

Note:

- 1. The EUT is an AG9 Wireless Headset for PS4 with a built-in 2.4GHz WLAN transceiver.
- 2. Device contains a diversity function, only worst case is shown in the report.
- 3. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 4. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.
- 5. The EUT is using two the same SISO antennas(Ant1&Ant2) and only the worst case(Ant2) is shown in the report.
- 6. These tests are conducted on a sample for the purpose of demonstrating compliance of 2.4GHz transmitter with Part 15 Subpart C Paragraph 15.247 of spread spectrum devices

Test Mode:

Mode 1: Transmit


1.3. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

	Product	Manufacturer	Model No.	Serial No.	Power Cord
1	Notebook PC	DELL	PP18L	36119001664	Non-Shielded, 0.8m

Signal Cable Type		Signal cable Description	
A USB Cable		Non-Shielded, 1.8m	
В	Audio Cable	Non-Shielded, 1.8m	

1.4. Configuration of Tested System

1.5. EUT Exercise Software

- (1) Setup the EUT as shown in Section 1.4.
- (2) Execute "VMI debug.exe (v1.1.6.47)" on the Notebook PC.
- (3) Configure the test mode, the test channel, and the data rate.
- (4) Press "OK" to start the continuous Transmit.
- (5) Verify that the EUT works properly.

1.6. Test Facility

Ambient conditions in the laboratory:

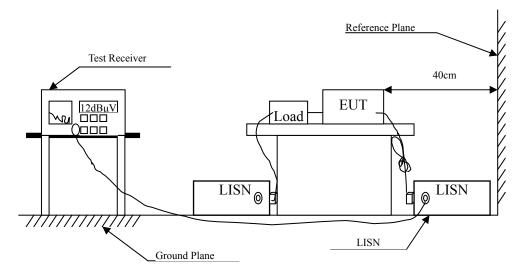
Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	50-65
Barometric pressure (mbar)	860-1060	950-1000

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site: <u>http://www.quietek.com/chinese/about/certificates.aspx?bval=5</u> The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: <u>http://www.quietek.com/</u>

Site Description:	File on
	Federal Communications Commission
	FCC Engineering Laboratory
	7435 Oakland Mills Road
	Columbia, MD 21046
	Registration Number: 92195
Site Name:	Quietek Corporation
Site Address:	No.5-22, Ruishukeng,
	Linkou Dist. New Taipei City 24451,
	Taiwan, R.O.C.
	TEL: 886-2-8601-3788 / FAX : 886-2-8601-3789
	E-Mail : <u>service@quietek.com</u>

FCC Accreditation Number: TW1014

2. Conducted Emission


2.1. Test Equipment

	Equipment	Manufacturer	Model No. / Serial No.	Last Cal.	Remark
Х	Test Receiver	R & S	ESCS 30 / 825442/018	Sep., 2014	
Х	Artificial Mains Network	R & S	ENV4200 / 848411/10	Feb., 2015	Peripherals
Х	LISN	R & S	ESH3-Z5 / 825562/002	Feb., 2015	EUT
	DC LISN	Schwarzbeck	8226 / 176	Mar., 2015	EUT
Х	Pulse Limiter	R & S	ESH3-Z2 / 357.8810.52	Feb., 2015	
	No.1 Shielded Room				

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked by "X" are used to measure the final test results.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBµV) Limit						
Frequency	Lir	nits				
MHz	QP	AV				
0.15 - 0.50	66-56	56-46				
0.50-5.0	56	46				
5.0 - 30	60	50				

Remarks: In the above table, the tighter limit applies at the band edges.

2.4. Test Procedure

The EUT and Peripherals are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

The EUT was setup to ANSI C63.4: 2014; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.

2.5. Uncertainty

± 2.26 dB

2.6. Test Result of Conducted Emission

Product	:	AG9 Wireless Headset for PS4
Test Item	:	Conducted Emission Test
Power Line	:	Line 1
Test Mode	:	Mode 1: Transmit (2441.35MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
Line 1					
Quasi-Peak					
0.154	9.763	29.680	39.443	-26.443	65.886
0.287	9.761	16.690	26.451	-35.635	62.086
0.509	9.779	21.610	31.389	-24.611	56.000
0.646	9.789	19.050	28.839	-27.161	56.000
3.474	9.953	22.410	32.363	-23.637	56.000
9.291	10.064	22.330	32.394	-27.606	60.000
Average					
0.154	9.763	18.350	28.113	-27.773	55.886
0.287	9.761	10.210	19.971	-32.115	52.086
0.509	9.779	16.240	26.019	-19.981	46.000
0.646	9.789	13.420	23.209	-22.791	46.000
3.474	9.953	17.100	27.053	-18.947	46.000
9.291	10.064	17.430	27.494	-22.506	50.000

Note:

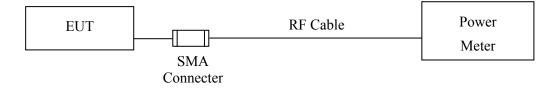
- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	AG9 Wireless Headset for PS4
Test Item	:	Conducted Emission Test
Power Line	:	Line 2
Test Mode	:	Mode 1: Transmit (2441.35MHz)

Frequency	Correct	Reading	Reading Measurement		Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
Line 2					
Quasi-Peak					
0.158	9.761	28.310	38.072	-27.699	65.771
0.189	9.754	23.240	32.994	-31.892	64.886
0.228	9.757	18.250	28.007	-35.764	63.771
0.291	9.762	16.030	25.792	-36.179	61.971
0.502	9.778	20.340	30.118	-25.882	56.000
2.662	9.928	23.580	33.508	-22.492	56.000
Average					
0.158	9.761	24.390	34.152	-21.619	55.771
0.189	9.754	15.850	25.604	-29.282	54.886
0.228	9.757	4.610	14.367	-39.404	53.771
0.291	9.762	7.440	17.202	-34.769	51.971
0.502	9.778	14.530	24.308	-21.692	46.000
2.662	9.928	18.200	28.128	-17.872	46.000

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

3. Peak Power Output


3.1. Test Equipment

_	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Х	Power Meter	Anritsu	ML2495A/6K00003357	May, 2015
Х	Power Sensor	Anritsu	MA2411B/0738448	Jun., 2015

Note: 1. All equipments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

3.2. Test Setup

3.3. Limit

The maximum peak power shall be less 1Watt.

3.4. Test Procedure

Tested according to DTS test procedure of KDB 558074 for compliance to FCC 47CFR 15.247 requirements. The maximum peak conducted output power using KDB 558074 section 9.1.2 PKPM1 Peak power meter method.

3.5. Uncertainty

± 1.27 dB

3.6. Test Result of Peak Power Output

Product	:	AG9 Wireless Headset for PS4
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
01	2403.35	3.69	<30dBm	Pass
20	2441.35	3.26	<30dBm	Pass
39	2479.35	2.01	<30dBm	Pass

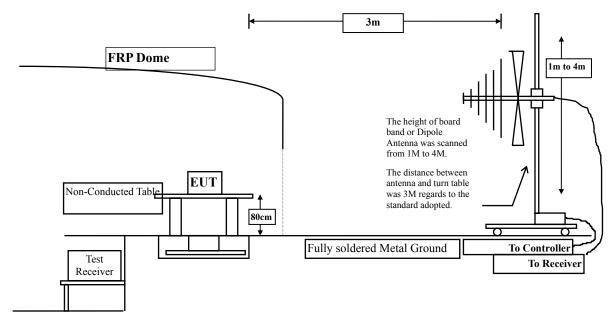
4. Radiated Emission

4.1. Test Equipment

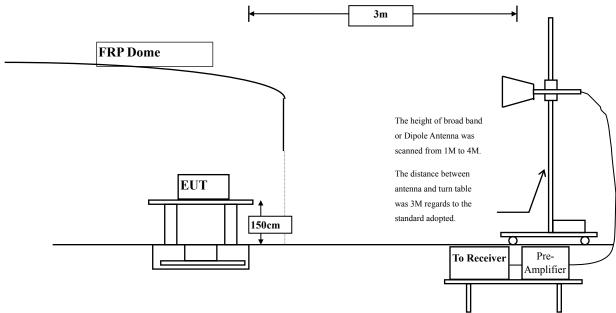
The following test equipments are used during the radiated emission test:

Test Site	Equipment		Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Х	Magnetic Loop Antenna	Teseq	HLA6121/ 37133	Sep, 2014
	Х	Bilog Antenna	Schaffner Chase	CBL6112B/ 2707	Jun, 2015
	Х	EMI Test Receiver	R&S	ESCS 30/838251/ 001	Jun, 2015
	Х	Coaxial Cable	QTK(Arnist)	RG 214/ LC003-RG	Jun, 2015
	Х	Coaxial signal switch	Arnist	MP59B/ 6200798682	Jun, 2015

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
CB # 8	Х	Spectrum Analyzer	R&S	FSP40/ 100339	Oct, 2014
	Х	Horn Antenna	ETS-Lindgren	3117/ 35205	Mar, 2015
	Х	Horn Antenna	Schwarzbeck	BBHA9170/209	Jan, 2015
	Х	Horn Antenna	TRC	AH-0801/95051	Aug, 2015
	Х	Pre-Amplifier	EMCI	EMC012630SE/980210	Jan, 2015
	Х	Pre-Amplifier	MITEQ	JS41-001040000-58-5P/153945	Jul, 2015
	Х	Pre-Amplifier	NARDA	DBL-1840N506/013	Jul, 2015


Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.


4.2. Test Setup

Below 1GHz

Above 1GHz

4.3. Limits

➤ General Radiated Emission Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15	FCC Part 15 Subpart C Paragraph 15.209 Limits				
Frequency MHz	Field strength	Measurement distance (meter)			
	(microvolts/meter)	(inclus)			
0.009-0.490	2400/F(kHz)	300			
0.490-1.705	24000/F(kHz)	30			
1.705-30	30	30			
30-88	100	3			
88-216	150	3			
216-960	200	3			
Above 960	500	3			

Remarks: 1. RF Voltage $(dB\mu V) = 20 \log RF$ Voltage (uV)

- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

4.4. Test Procedure

The EUT was setup according to ANSI C63.10: 2013 and tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements.

Measuring the frequency range below 1GHz, the EUT is placed on a turn table which is 0.8 meter above ground, when measuring the frequency range above 1GHz, the EUT is placed on a turn table which is 1.5 meter above ground.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2013 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and 30MHz~1GHz is 120kHz and above 1GHz is 1MHz.

Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement.

The measurement frequency range form 9kHz - 10th Harmonic of fundamental was investigated.

4.5. Uncertainty

± 3.9 dB above 1GHz

± 3.8 dB below 1GHz

4.6. Test Result of Radiated Emission

Product	:	AG9 Wireless Headset for PS4
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (2403.35MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4806.700	3.331	34.710	38.040	-35.960	74.000
7210.050	10.205	35.630	45.835	-28.165	74.000
9613.400	13.656	34.440	48.096	-25.904	74.000
Vertical					
Peak Detector:					
4806.700	6.623	33.880	40.502	-33.498	74.000
7210.050	11.071	33.920	44.991	-29.009	74.000
9613.400	14.063	34.820	48.883	-25.117	74.000

Note:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: Harmon : No.3 OA	reless Headset for ic Radiated Emiss ATS Transmit (2441.3	sion Data		
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4882.700	2.999	34.530	37.528	-36.472	74.000
7324.050	11.851	36.630	48.481	-25.519	74.000
9765.400	12.556	32.640	45.196	-28.804	74.000
Vertical					
Peak Detector:					
4882.700	5.706	33.990	39.695	-34.305	74.000
7324.050	12.736	34.240	46.977	-27.023	74.000
9765.400	13.019	32.740	45.759	-28.241	74.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	AG9 Wireless Headset for PS4
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (2479.35MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4958.700	2.764	35.670	38.434	-35.566	74.000
7438.050	12.548	37.000	49.548	-24.452	74.000
9917.400	13.441	33.780	47.222	-26.778	74.000
Vertical					
Peak Detector:					
4958.700	5.556	34.330	39.886	-34.114	74.000
7438.050	13.423	34.440	47.863	-26.137	74.000
9917.400	13.960	33.830	47.790	-26.210	74.000

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

4. Measurement Level = Reading Level + Correct Factor.

5. Correct Factor = Antenna factor + Cable loss – Amplifier gain.

6. The average measurement was not performed when the peak measured data under the limit of average detection.

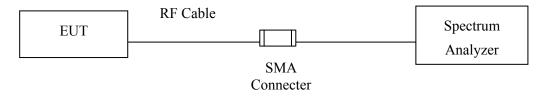
7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	AG9 Wireless Headset for PS4
Test Item	:	General Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (2441.35MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
195.884	2.358	34.166	36.524	-6.976	43.500
339.275	2.885	32.437	35.322	-10.678	46.000
410.971	3.102	34.341	37.443	-8.557	46.000
489.696	3.277	33.069	36.346	-9.654	46.000
633.087	3.606	29.157	32.763	-13.237	46.000
832.710	3.936	30.701	34.637	-11.363	46.000
Vertical					
179.014	5.780	33.583	39.363	-4.137	43.500
280.232	6.173	32.874	39.047	-6.953	46.000
350.522	6.349	28.395	34.744	-11.256	46.000
422.217	6.537	29.412	35.949	-10.051	46.000
633.087	7.029	27.734	34.763	-11.237	46.000
832.710	7.359	32.966	40.325	-5.675	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

5. **RF Antenna Conducted Test**


5.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun., 2015
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun., 2015
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2015

Note: 1. All equipments are calibrated every one year.

2. The test instruments Marked "X" are used to measure the final test results.

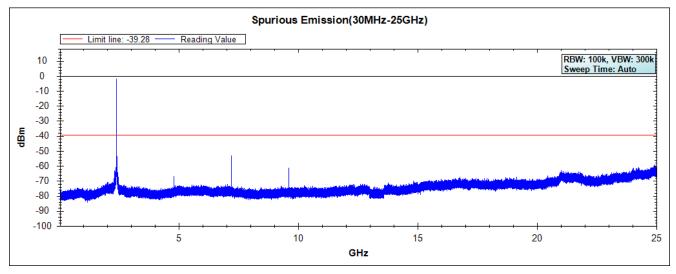
5.2. Test Setup

5.3. Limits

According to FCC Section 15.247(d). In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

5.4. Test Procedure

The EUT was tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements.

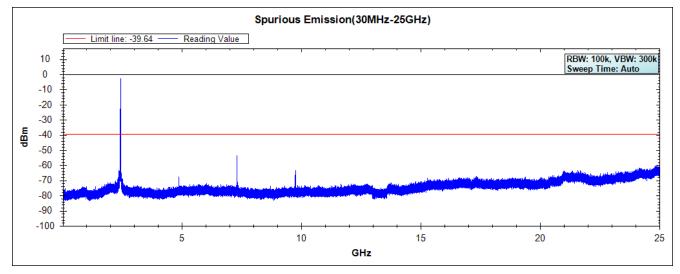

5.5. Uncertainty

± 150Hz

5.6. Test Result of RF antenna conducted test

Product	:	AG9 Wireless Headset for PS4
Test Item	:	RF antenna conducted test
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit

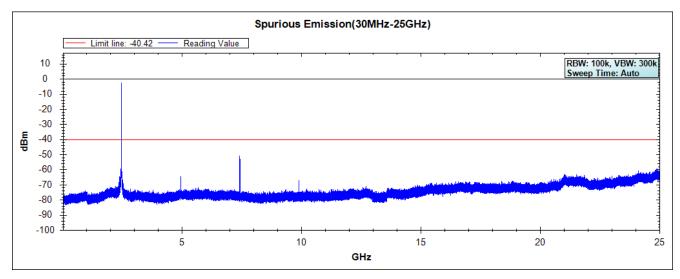
Channel 01 (2403.35MHz) 30M-25GHz



Note: The above test pattern is synthesized by multiple of the frequency range.

Product	:	AG9 Wireless Headset for PS4
Test Item	:	RF antenna conducted test
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit

Channel 20 (2441.35MHz) 30M-25GHz



Note: The above test pattern is synthesized by multiple of the frequency range.

Product	:	AG9 Wireless Headset for PS4
Test Item	:	RF antenna conducted test
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit

Channel 39 (2479.35MHz) 30M-25GHz

Note: The above test pattern is synthesized by multiple of the frequency range.

6. Band Edge

6.1. Test Equipment

RF Conducted Measurement

The following test equipments are used during the band edge tests:

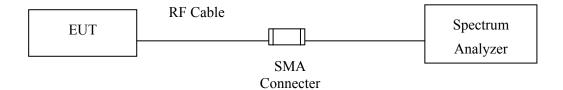
	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun., 2015
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun., 2015
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2015

RF Radiated Measurement:

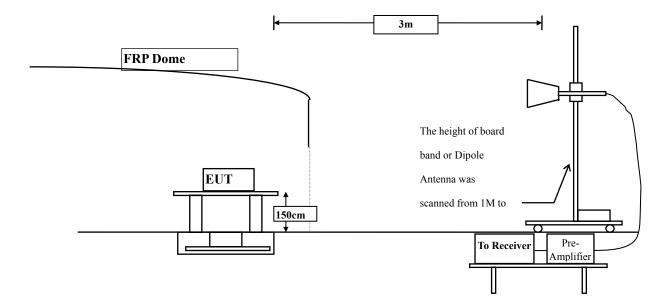
The following test equipments are used during the radiated emission test:

Test Site	Equipment		Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Х	Magnetic Loop Antenna	Teseq	HLA6121/ 37133	Sep, 2014
	X Bilog Antenna		Schaffner Chase	CBL6112B/ 2707	Jun, 2015
	Х	EMI Test Receiver	R&S	ESCS 30/838251/001	Jun, 2015
	Х	Coaxial Cable	QTK(Arnist)	RG 214/ LC003-RG	Jun, 2015
	Х	Coaxial signal switch	Arnist	MP59B/ 6200798682	Jun, 2015

Test Site	Equipment		Manufacturer	Model No./Serial No.	Last Cal.	
⊠CB # 8	Х	Spectrum Analyzer	R&S	FSP40/ 100339	Oct, 2014	
	X Horn Antenna		ETS-Lindgren	3117/ 35205	Mar, 2015	
	Х	Horn Antenna	Schwarzbeck	BBHA9170/209	Jan, 2015	
	Х	Horn Antenna	TRC	AH-0801/95051	Aug, 2015	
	Х	Pre-Amplifier	EMCI	EMC012630SE/980210	Jan, 2015	
	X Pre-Amplifier		MITEQ	JS41-001040000-58-5P/153945	Jul, 2015	
	Х	Pre-Amplifier	NARDA	DBL-1840N506/013	Jul, 2015	


Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.


6.2. Test Setup

RF Conducted Measurement

RF Radiated Measurement:

Above 1GHz

6.3. Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

6.4. Test Procedure

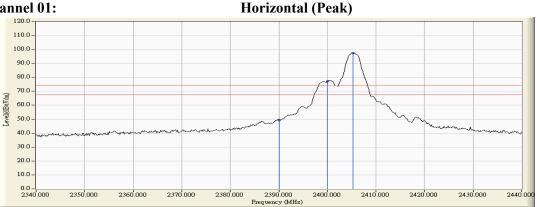
The EUT was setup according to ANSI C63.10, 2013 and tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.

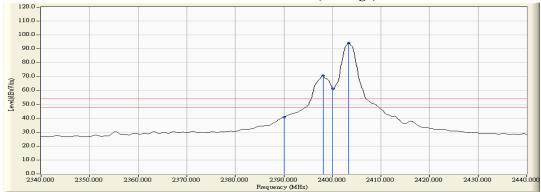
6.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz


6.6. Test Result of Band Edge

Product	:	AG9 Wireless Headset for PS4
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (2403.35MHz)

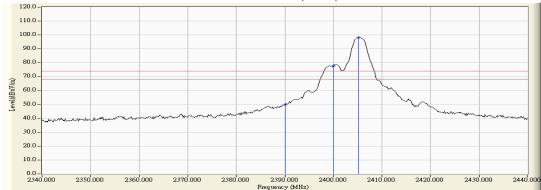
RF Radiated Measurement (Horizontal):

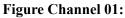

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
01 (Peak)	2390.000	-1.131	50.248	49.117	74.00	54.00	Pass
01 (Peak)	2400.000	-1.084	78.233	77.150			
01 (Peak)	2405.217	-1.055	98.441	97.386			
01 (Average)	2390.000	-1.131	42.118	40.987	74.00	54.00	Pass
01 (Average)	2398.116	-1.093	72.016	70.923			
01 (Average)	2400.000	-1.084	62.537	61.454			
01 (Average)	2403.333	-1.064	95.346	94.281			

Horizontal (Average)

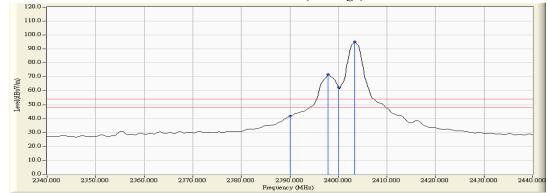
Note:1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	AG9 Wireless Headset for PS4
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (2403.35MHz)


RF Radiated Measurement (Vertical):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
01 (Peak)	2390.000	-1.725	51.513	49.788	74.00	54.00	Pass
01 (Peak)	2400.000	-1.733	79.744	78.012			
01 (Peak)	2405.072	-1.723	99.857	98.134			
01 (Average)	2390.000	-1.725	43.524	41.799	74.00	54.00	Pass
01 (Average)	2397.826	-1.736	73.528	71.792			
01 (Average)	2400.000	-1.733	64.026	62.294			
01 (Average)	2403.333	-1.725	96.870	95.144			

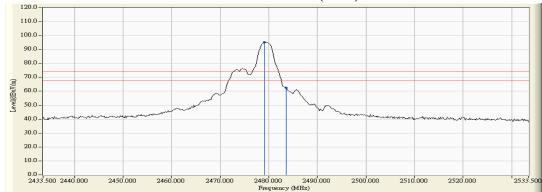


Vertical (Peak)

Vertical (Average)

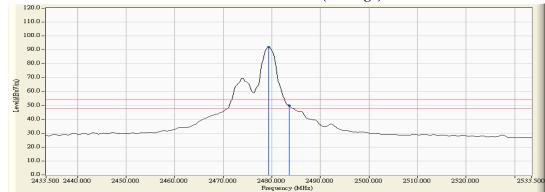
Note:

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	AG9 Wireless Headset for PS4
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (2479.35MHz)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
39 (Peak)	2479.152	-0.586	95.721	95.135			
39 (Peak)	2483.500	-0.558	62.845	62.287	74.00	54.00	Pass
39 (Average)	2479.297	-0.585	92.739	92.154			
39 (Average)	2483.500	-0.558	50.576	50.018	74.00	54.00	Pass


Figure Channel 39:

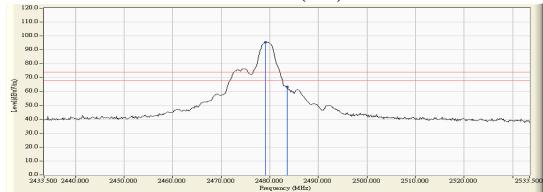
Horizontal (Peak)

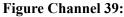
Figure Channel 39:

Horizontal (Average)

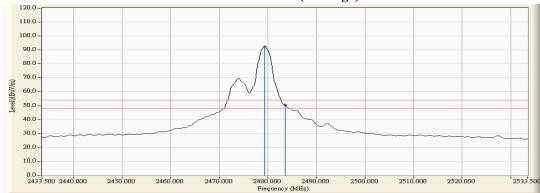
Note:1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	AG9 Wireless Headset for PS4
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (2479.35MHz)


RF Radiated Measurement (Vertical):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
39 (Peak)	2479.152	-1.329	96.932	95.603			
39 (Peak)	2483.500	-1.305	64.607	63.302	74.00	54.00	Pass
39 (Average)	2479.297	-1.328	93.805	92.477			
39 (Average)	2483.500	-1.305	51.850	50.545	74.00	54.00	Pass


Figure Channel 39:

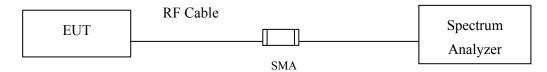
Vertical (Peak)

Vertical (Average)

Note:

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

7. Occupied Bandwidth


7.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun., 2015
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun., 2015
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2015

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

7.2. Test Setup

7.3. Limits

The minimum bandwidth shall be at least 500 kHz.

7.4. Test Procedure

The EUT was setup according to ANSI C63.10 2013; tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements. Set RBW = 100kHz , VBW≥3*RBW

7.5. Uncertainty

± 150Hz

7.6. **Test Result of Occupied Bandwidth**

Product	:	AG9 Wireless Headset for PS4
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (2403.35MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
01	2403.35	1670	>500	Pass

🥻 Keysight Spectrum Analyzer - Swept SA K RL RF 50 Ω AC 0 08:46:39 PM Jul 21, 2015 /r TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N ALIGN AUTO Avg Type: Log-Pwr Center Freq 2.403350000 GHz IFGain:Low Frequency Trig: Free Run #Atten: 30 dB Auto Tune Mkr2 2.402 54 GHz -6.48 dBm Ref 20.00 dBm 10 dB/div Log 10.0 **Center Freq ♦**² 2.403350000 GHz 0.00 -5.94 dB -10.C -20.0 Start Freq -30.0 2.398350000 GHz -40.C -50.0 Stop Freq -60.0 2.408350000 GHz -70 C **CF Step** 1.000000 MHz Man Center 2.403350 GHz Span 10.00 MHz Sweep 1.000 ms (1001 pts) #Res BW 100 kHz #VBW 300 kHz Auto MKR MODE TRC SCL FUNCTION FUNCTION WIDTH FUNCTION VALUE Y Х 2.403 29 GHz 2.402 54 GHz 2.404 21 GHz 0.06 dBm -6.48 dBm -6.20 dBm 1 N 1 f 2 N 1 f 3 N 1 f Freq Offset 0 Hz 6 8 9 10 11

STATUS

Figure Channel 01:

Product	:	AG9 Wireless Headset for PS4
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (2441.35MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
20	2441.35	1610	>500	Pass

Figure Channel 20:

🎉 Keysight Spectrum Analyzer - Swe	· · · · · · · · · · · · · · · · · · ·				
RL RF 50 Ω Center Freq 2.44135	0000 GHz	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	08:51:43 PM Jul 21, 2015 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
10 dB/div Ref 20.00 d	PNO: Wide 🖵 IFGain:Low	#Atten: 30 dB	Mkr	2 2.440 56 GHz -6.57 dBm	Auto Tune
		▶ ²	3	-6.41 dBm	Center Freq 2.441350000 GHz
-20.0			hanner	and the second s	Start Freq 2.436350000 GHz
-60.0					Stop Freq 2.446350000 GHz
Center 2.441350 GHz #Res BW 100 kHz	#VBW	300 kHz	Sweep 1	Span 10.00 MHz .000 ms (1001 pts) FUNCTION VALUE	CF Step 1.000000 MHz <u>Auto</u> Man
1 N 1 f 2 N 1 f 3 N 1 f 4 5 6	2.441 41 GHz 2.440 56 GHz 2.442 17 GHz	-0.40 dBm -6.57 dBm -6.47 dBm			Freq Offset 0 Hz
7 8 9 10 11					
MSG		III	STATU	5	

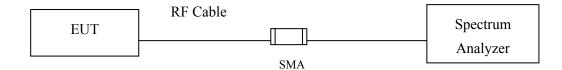
:	AG9 Wireless Headset for PS4
:	Occupied Bandwidth Data
:	No.3 OATS
:	Mode 1: Transmit (2479.35MHz)
	: : : :

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
39	2479.35	1660	>500	Pass

Figure Channel 39:

		1.54.6 8.			
🎉 Keysight Spectrum Analy	rzer - Swept SA				
K RL RF	50 Ω AC	SENSE:INT	ALIGN AUTO	08:56:39 PM Jul 21, 2015	Frequency
Center Freq 2.4		Trig: Free Run	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWW	rrequeriey
	PNO: Wide IFGain:Low	#Atten: 30 dB		DET P NNNNN	
	IF Galli.LOw	#ritten: oo ub			Auto Tun
			MKr	2 2.478 52 GHz	/1110 / 111
	0.00 dBm			-7.55 dBm	
Log					
10.0		^			Center Fre
0.00		2\`	A 3		2.479350000 GH
-10.0			<u> </u>	-7.49 dBm	
-10.0		P	X		
-20.0	~~~		h wh		Start Fre
-30.0			when I		2.474350000 GH
	mm			mont	2.474350000 GF
-40.0				man had	
-50.0					
-60.0					Stop Fre
					2.484350000 GH
-70.0					
0	0.11-			On an 40.00 Mile	
Center 2.479350			Owner 4	Span 10.00 MHz	CF Ste
#Res BW 100 kH	Z #VI	300 kHz	Sweep 1	.000 ms (1001 pts)	1.000000 MH <u>Auto</u> Ma
MKR MODE TRC SCL	Х	Y FU	INCTION FUNCTION WIDTH	FUNCTION VALUE	Auto Ma
1 N 1 f	2.479 15 GHz	-1.49 dBm			
2 N 1 f 3 N 1 f	2.478 52 GHz 2.480 18 GHz	-7.55 dBm -7.99 dBm			Freq Offs
3 N 1 T	2.480 18 GHZ	-7.99 dBm			0+
5				=	0 F
6					
7 8					
9					
10					
11					
•		III		•	
MSG			STATUS	5	
				1	

8. **Power Density**


8.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun., 2015
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun., 2015
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2015

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

8.2. Test Setup

8.3. Limits

The transmitted power density averaged over any 1 second interval shall not be greater +8dBm in any 3kHz bandwidth.

8.4. Test Procedure

The EUT was setup according to ANSI C63.10: 2013, the maximum power spectral density using KDB 558074 section 10.2 PKPSD (peak PSD) method.

8.5. Uncertainty

 \pm 1.27 dB

8.6. Test Result of Power Density

Product	:	AG9 Wireless Headset for PS4
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit(2403.35MHz)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
01	2403.35	1.047	< 8dBm	Pass

Figure Channel 01:

🚺 Keysight Spectrum Analyzer - Swept SA					
RefOffset 0.00 dB		SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	05:42:19 PM Jul 29, 2015 TRACE 1 2 3 4 5 6	Amplitude
10 dB/div Ref 20.00 dBm	PNO: Wide 🆵 IFGain:Low	Trig: Free Run Atten: 30 dB	Avg Hold:>100/100	1.047 dBm	Y Axis Unit dBm
10.0		▲1			Ref Lvl Offset 0.00 dB
-10.0	A second			manage and the second sec	
-20.0					
40.0					
50.0					
70.0					Mor
Center 2.403350 GHz #Res BW 100 kHz	#VBW	300 kHz	Sweep 1	Span 2.430 MHz .000 ms (1001 pts)	2 of 3
MSG			STATUS		

Product	:	AG9 Wireless Headset for PS4
Test Item	:	Power Density Data
Test Site	:	No.3OATS
Test Mode	:	Mode 1: Transmit (2441.35MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
20	2441.35	-0.518	< 8dBm	Pass

Figure Channel 20:

Keysight Sp	RF 50.0 AC	1					05 40 54 000		
enter F	RF 50 Ω AC Treq 2.44135000	DO GHz PNO: Wide G				ALIGN AUTO : Log-Pwr >100/100	TYPE	1 2 3 4 5 6 MWWWW P N N N N N	Trace/Detector
dB/div	Ref 20.00 dBm				1	Mkr1 2.4	441 384 (-0.51	02 GHz 8 dBm	Select Trace
0.0									Clear Wri
.00		r.m.m.	wwwwww	1 mm	where and	and a construction of the second			
0.0	man and a start						- Marine Marine	~~	Trace Avera
).0 •••••••								AND	Max Ho
1.0									Min Ho
.0									View Blan
.0									Trace O
I.O									M c 1 c
	441350 GHz 100 kHz	#VBW	/ 300 kHz			Sweep 1	Span 2.4 000 ms (1.		10
з						STATUS	3		

Product	:	AG9 Wireless Headset for PS4
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (2479.35MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
39	2479.35	-0.652	< 8dBm	Pass

Figure Channel 39:

Keysight Spectrum Analyzer - Swept S					
Center Freq 2.4793500	AC DOO GHz	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	05:44:38 PM Jul 29, 2015 TRACE 1 2 3 4 5 6	Trace/Detector
	PNO: Wide Trig	j: Free Run en: 30 dB	Avg Hold:>100/100		Select Trace
10 dB/div Ref 20.00 dB	m		WIKF1 2.4	479 170 18 GHz -0.652 dBm	1
10.0					Clear Write
	▲ 1				
0.00	www.	van for and the second	manness and the second	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Trace Average
-10.0				- www.	g
-20.0					Max Hold
-30.0					Max Hole
-40.0					
					Min Hold
-50.0					View Blank
-60.0					Trace On
-70.0					
Center 2.479350 GHz				Chap 2 420 MUs	More 1 of 3
#Res BW 100 kHz	#VBW 300	kHz	Sweep 1	Span 2.430 MHz .000 ms (1001 pts)	
MSG			STATUS	3	

9. EMI Reduction Method During Compliance Testing

No modification was made during testing.