EMC Technologies Pty. Ltd. ABN 82 057 105 549

Melbourne 176 Harrick Road Keilor Park, Vic 3042

Sydney Unit 3/87 Station Road Seven Hills, NSW 2147 Tel: +61 3 9365 1000 Tel: +61 2 9624 2777

Email: emc-general@emctech.com.au Web: www.emctech.com.au

# **RADIO TEST REPORT**

REPORT NUMBER: M2111032-3

- TEST STANDARD: FCC PART 15 SUBPART C **SECTION 15.247 ISED RSS-247 SECTION 5.0** 
  - CLIENT: AUTOMATIC TECHNOLOGY AUSTRALIA PTY.LTD.
  - **DEVICE: WIRELESS BASE STATION** MODULE

**MODEL: GDL2V2** 

- FCC ID: X4K-GDWLABS01
  - IC: 8880A-GDWLABS01

# DATE OF ISSUE: 17 MARCH 2022

EMC Technologies Pty Ltd reports apply only to the specific samples tested under stated test conditions. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. EMC Technologies Pty Ltd shall have no liability for any deductions, inferences or generalisations drawn by the client or others from EMC Technologies Pty Ltd issued reports. This report shall not be used to claim, constitute or imply product endorsement by EMC Technologies Pty Ltd.



Accredited for compliance with ISO/IEC 17025 - Testing. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.





# **REVISION TABLE**

| Version | Sec/Para<br>Changed | Change Made               | Date       |
|---------|---------------------|---------------------------|------------|
| 1       |                     | Initial issue of document | 17/03/2022 |
|         |                     |                           |            |
|         |                     |                           |            |
|         |                     |                           |            |

Page 2 of 36





# CONTENTS

| 1 | Test  | Summary                                                             | 7  |
|---|-------|---------------------------------------------------------------------|----|
| 2 | Test  | Facility                                                            | 7  |
|   | 2.1   | General                                                             | 7  |
|   | 2.2   | Test Laboratory/Accreditations                                      | 7  |
| 3 | Test  | Equipment Calibration                                               | 8  |
| 4 | Mea   | surement Uncertainty                                                | 8  |
| 5 | Devi  | ce Details                                                          | 9  |
|   | 5.1   | EUT (Transmitter) Details                                           | 9  |
|   | 5.2   | EUT (Host) Details                                                  | 9  |
|   | 5.3   | Test Configuration                                                  | 9  |
|   | 5.4   | Modifications                                                       | 9  |
|   | 5.5   | Deviations from the Standard                                        | 9  |
| 6 | Resi  | ults                                                                | 10 |
|   | 6.1   | §15.203/ RSS-Gen 6.8 Antenna Requirement                            | 10 |
|   | 6.2   | §15.205/ RSS-Gen 8.10/ RSS-247 3.3 Restricted Bands of Operation    | 10 |
|   | 6.3   | §15.207/ RSS-Gen 8.8 Conducted Limits                               | 10 |
|   | 6.4   | §15.209/ RSS-Gen 8.9 Radiated Emission Limits; General Requirements | 10 |
|   | 6.5   | §15.247(a)(1)/ RSS-247 5.1(a) 20 dB bandwidth                       | 10 |
|   | 6.5.1 | I Test Procedure                                                    | 10 |
|   | 6.5.2 | 2 Limits                                                            | 10 |
|   | 6.5.3 | 3 Results                                                           | 10 |
|   | 6.6   | §15.247(a)(1)/ RSS-247 5.1(b) Carrier Frequency Separation          | 12 |
|   | 6.6.1 | I Test Procedure                                                    | 12 |
|   | 6.6.2 | 2 Limits                                                            | 12 |
|   | 6.6.3 | 3 Results                                                           | 12 |
|   | 6.7   | §15.247(a)(1)(iii)/ RSS-247 5.1(d) Number of Hopping Frequencies    | 13 |
|   | 6.7.1 | I Test Procedure                                                    | 13 |
|   | 6.7.2 | 2 Limits                                                            | 13 |
|   | 6.7.3 | 3 Results                                                           | 13 |
|   | 6.8   | §15.247(a)(1)(iii)/ RSS-247 5.1(d) Average Time of Occupancy        | 14 |
|   | 6.8.1 | I Test Procedure                                                    | 14 |
|   | 6.8.2 | 2 Limits                                                            | 14 |
|   | 6.8.3 | 3 Results                                                           | 14 |
|   | 6.9   | §15.247(b)/ RSS-247 5.4 Peak Output Power                           |    |
|   | 6.9.1 | I Test Procedure                                                    | 16 |
|   | 6.9.2 | 2 Limits                                                            | 16 |
|   | 6.9.3 | 3 Results                                                           | 16 |
|   | 6.10  | §15.247(d)/ RSS-247 5.5 Out-of-Band/Spurious Emission               | 18 |
|   | 6.10  | .1 Test procedure                                                   | 18 |
|   | 6.10  | .2 Evaluation of field strength                                     | 18 |





| 6.10. | 3    | Limits                                                   | 18 |
|-------|------|----------------------------------------------------------|----|
| 6.10. | 4    | Transmitter Spurious Emissions: 9 kHz to 30 MHz          | 19 |
| 6.10. | 5    | Transmitter Spurious Emissions: 30 - 1000 MHz            | 20 |
| 6.10. | 6    | Transmitter Spurious Emissions: 1 - 18 GHz               | 22 |
| 6.10. | 7    | Transmitter Spurious Emissions: 18 – 26 GHz              | 28 |
| 6.11  | §15. | 247(d)/ §RSS-247 5.5 Band Edge Emission Measurements     | 31 |
| 6.12  | §15. | 247(i)/ RSS-Gen 3.4/RSS-102 Maximum Permissible Exposure | 34 |
| 6.13  | §15. | 215/ RSS-Gen 6.7 Occupied Bandwidth – 99% power          | 35 |
| 6.13. | 1    | Test procedure                                           | 35 |
| 6.13. | 2    | Limits                                                   | 35 |
| 6.13. | 3    | Results                                                  | 35 |



## GRAPHS

| Graph 6-1: 20 dB bandwidth, 2405 MHz                                       |    |
|----------------------------------------------------------------------------|----|
| Graph 6-2: 20 dB bandwidth, 2440 MHz                                       |    |
| Graph 6-3: 20 dB bandwidth, 2480 MHz                                       | 12 |
| Graph 6-4: Carrier Frequency Separation                                    | 13 |
| Graph 6-5: Number of Hopping Frequencies                                   |    |
| Graph 6-6: Single Pulse                                                    | 15 |
| Graph 6-7: Number of hops in 0.2s period                                   | 15 |
| Graph 6-8: Maximum Peak Power, 2405MHz                                     |    |
| Graph 6-9: Maximum Peak Power, 2440MHz                                     | 17 |
| Graph 6-10: Maximum Peak Power, 2480MHz                                    | 17 |
| Graph 6-11: Transmitter Spurious Emissions, 9 kHz – 30 MHz, 2405 MHz       | 19 |
| Graph 6-12: Transmitter Spurious Emissions, 9 kHz – 30 MHz, 2440 MHz       | 19 |
| Graph 6-13: Transmitter Spurious Emissions, 9 kHz – 30 MHz, 2480 MHz       | 20 |
| Graph 6-14: Transmitter Spurious Emissions, 30 – 1000 MHz, 2405 MHz        | 20 |
| Graph 6-15: Transmitter Spurious Emissions, 30 – 1000 MHz, 2440 MHz        | 21 |
| Graph 6-16: Transmitter Spurious Emissions, 30 – 1000 MHz, 2480 MHz        | 22 |
| Graph 6-17: Transmitter Spurious Emissions, 1 – 18 GHz, 2405 MHz, Peak     | 22 |
| Graph 6-18: Transmitter Spurious Emissions, 1 – 18 GHz, 2440 MHz, Peak     | 23 |
| Graph 6-19: Transmitter Spurious Emissions, 1 – 18 GHz, 2480 MHz, Peak     | 24 |
| Graph 6-20: Transmitter Spurious Emissions, 1 – 18 GHz, 2405 MHz, Average  | 25 |
| Graph 6-21: Transmitter Spurious Emissions, 1 – 18 GHz, 2440 MHz, Average  | 26 |
| Graph 6-22: Transmitter Spurious Emissions, 1 – 18 GHz, 2480 MHz, Average  | 27 |
| Graph 6-23: Transmitter Spurious Emissions, 18 – 26 GHz, 2405 MHz, Peak    | 28 |
| Graph 6-24: Transmitter Spurious Emissions, 18 – 26 GHz, 2440 MHz, Peak    | 28 |
| Graph 6-25: Transmitter Spurious Emissions, 18 – 26 GHz, 2480 MHz, Peak    | 29 |
| Graph 6-26: Transmitter Spurious Emissions, 18 – 26 GHz, 2405 MHz, Average |    |
| Graph 6-27: Transmitter Spurious Emissions, 18 – 26 GHz, 2440 MHz, Average | 30 |
| Graph 6-28: Transmitter Spurious Emissions, 18 – 26 GHz, 2480 MHz, Average | 30 |
| Graph 6-29: Band Edge Emission, Lower Band-edge, Hopping off               | 31 |
| Graph 6-30: Band Edge Emission, Lower Band-edge, Hopping on                | 31 |
| Graph 6-31: Band Edge Emission, Upper Band-edge, Peak, Hopping off         | 32 |
| Graph 6-32: Band Edge Emission, Upper Band-edge, Peak, Hopping on          | 33 |
| Graph 6-33: Band Edge Emission, Upper Band-edge, Average, Hopping off      | 33 |
| Graph 6-34: Band Edge Emission, Upper Band-edge, Average, Hopping on       | 34 |
| Graph 6-35: Occupied bandwidth, 2405 MHz                                   | 35 |
| Graph 6-36: Occupied bandwidth, 2440 MHz                                   |    |
| Graph 6-37: Occupied bandwidth, 2480 MHz                                   | 36 |

# **TABLES**

| Table 6-1: 20 dB Bandwidth                                                | 10 |
|---------------------------------------------------------------------------|----|
| Table 6-2: Carrier Frequency Separation                                   | 12 |
| Table 6-3: Number of Hopping Frequencies                                  | 13 |
| Table 6-4: Average Time of Occupancy                                      | 14 |
|                                                                           | 16 |
| Table 6-6: Transmitter Spurious Emissions, 30 – 1000 MHz, 2405 MHz        | 21 |
| Table 6-7: Transmitter Spurious Emissions, 30 – 1000 MHz, 2440 MHz        | 21 |
| Table 6-8: Transmitter Spurious Emissions, 1 – 18 GHz, 2405 MHz, Peak     | 23 |
| Table 6-9: Transmitter Spurious Emissions, 1 – 18 GHz, 2440 MHz, Peak     | 23 |
| Table 6-10: Transmitter Spurious Emissions, 1 – 18 GHz, 2480 MHz, Peak    | 24 |
| Table 6-11: Transmitter Spurious Emissions, 1 – 18 GHz, 2405 MHz, Average | 25 |
| Table 6-12: Transmitter Spurious Emissions, 1 – 18 GHz, 2440 MHz, Average | 26 |
| Table 6-13: Transmitter Spurious Emissions, 1 – 18 GHz, 2480 MHz, Average | 27 |
| Table 6-14: Band Edge Emission, Lower Band-edge                           | 32 |
| Table 6-15: Band Edge Emission, Upper Band-edge                           | 34 |
| Table 6-16: Occupied Bandwidth                                            | 35 |





|                                                                | TEST CERTIFICATE                                                                                                                                                                                               |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Device:<br>Model Number:<br>Manufacturer:<br>Address:          | Wireless Base Station Module<br>GDL2V2<br>Countermast Technology (Dalian) Co., Ltd.<br>Building 7#, Zhongqing Industrial Park, Dalian Area of China Polit Free<br>Trade Zone, Liaoning Province, China, 116600 |
| Radio:<br>FCC ID:<br>IC:                                       | 2.4 GHz RF transceiver<br>X4K-GDWLABS01<br>8880A-GDWLABS01                                                                                                                                                     |
| Tested for:<br>Address:<br>Phone Number:<br>Contact:<br>Email: | Automatic Technology Australia Pty.Ltd.<br>6-8 Fiveways Boulevard, Keysborough, Victoria 3173, Australia<br>+61 3 9791 0275<br>Nikolai Klepikov<br>Nikolai.Klepikov@ata-aust.com.au                            |
| Standard:                                                      | FCC Part 15, Subpart C, Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz                                                                                              |
|                                                                | ISED RSS-247, Issue 2, Section 5 Standard specifications for frequency hopping systems and digital transmission systems operating in the bands 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz                  |
| Result:                                                        | The Wireless Base Station Module complied with the applicable requirements of the above standards. Refer to Report M2111032-3 for full details.                                                                |
| Test Date:                                                     | 25 January 2022 - 17 February 2022                                                                                                                                                                             |
| Issue Date:                                                    | 17 March 2022                                                                                                                                                                                                  |
|                                                                |                                                                                                                                                                                                                |
| Test Engineer:                                                 | lan Paul Ng                                                                                                                                                                                                    |
| Attestation:                                                   | I hereby certify that the device(s) described herein were tested as described in this report and that the data included is that which was obtained during such testing.                                        |
|                                                                | Wilson XMAN                                                                                                                                                                                                    |
| Authorised Signatory:                                          | Wilson Xiao<br>Lead Engineer - Radio                                                                                                                                                                           |
| E-mail: <u>er</u>                                              | Issued by: EMC Technologies Pty. Ltd.,<br>176 Harrick Road, Keilor Park, VIC, 3042, Australia.<br>Phone: +61 3 9365 1000<br>mc-general@emctech.com.au<br>Web: www.emctech.com.au                               |
|                                                                |                                                                                                                                                                                                                |





## RADIO TEST REPORT

Page 7 of 36

## 1 TEST SUMMARY

| Sec. | Description                                    | FCC           | ISED           | Result(s)      |
|------|------------------------------------------------|---------------|----------------|----------------|
| 6.1  | Antenna Requirement                            | §15.203       | RSS-Gen 6.8    | Complied       |
| 6.2  | Restricted Bands of Operation                  | §15.205       | RSS-Gen 8.10   | Complied       |
| 6.3  | Conducted Limits                               | §15.207       | RSS-Gen 8.8    | Not Applicable |
| 6.4  | Radiated emission limits; general requirements | §15.209       | RSS-Gen 8.9    | Complied       |
| 6.5  | 20 dB Bandwidth                                | §15.247(a)(1) | RSS-247 5.1(a) | Complied       |
| 6.6  | Carrier Frequency Separation                   | §15.247(a)(1) | RSS-247 5.1(b) | Complied       |
| 6.7  | Number of Hopping Frequencies                  | §15.247(a)(1) | RSS-247 5.1(d) | Complied       |
| 6.8  | Average Time of Occupancy                      | §15.247(a)(1) | RSS-247 5.1(d) | Complied       |
| 6.9  | Peak Output Power                              | §15.247(b)    | RSS-247 5.4    | Complied       |
| 6.10 | Out-of-Band/Spurious Emissions                 | §15.247(d)    | RSS-247 5.5    | Complied       |
| 6.11 | Band-Edge Emission Measurements                | §15.247(d)    | RSS-247 5.5    | Complied       |
| 6.12 | Maximum Permissible Exposure                   | §15.247(i)    | RSS-102        | Complied       |
| 6.13 | Occupied Bandwidth – 99% power                 | §15.215       | RSS-Gen 6.7    | Complied       |

## 2 TEST FACILITY

### 2.1 General

EMC Technologies Pty Ltd is accredited by the FCC as a test laboratory able to perform compliance testing for the public. EMC Technologies Pty Ltd has also been designated as a Conformity Assessment Body (CAB) by Australian Communications and Media Authority (ACMA) under the APECTEL MRA and is designated to perform compliance testing on equipment subject to Declaration of Conformity (DoC) and Certification under Parts 15 and 18 of the FCC Commission's rules – **Registration Number 494713 & Designation number AU0001**.

EMC Technologies Pty Ltd is also an ISED Canada recognized testing laboratory – **ISED** company number: 3569B and CAB identifier number: AU0001.

## 2.2 Test Laboratory/Accreditations

NATA is the Australian National laboratory accreditation body and has accredited EMC Technologies to operate to the IEC/ISO17025 requirements. A major requirement for accreditation is the assessment of the company and its personnel as being technically competent in testing to the standards. This requires fully documented test procedures, continued calibration of all equipment to the National Standard at the National Measurements Institute (NMI) and an internal quality system similar to ISO 9002. NATA has mutual recognition agreements with the National Voluntary Laboratory Accreditation Program (NVLAP) and the American Association for Laboratory Accreditation (A<sup>2</sup>LA).

All testing in this report has been conducted in accordance with EMC Technologies' scope of NATA accreditation to ISO 17025 for both testing and calibration and ISO 17020 for Inspection – **Accreditation Number 5292**.

The current full scope of accreditation can be found on the NATA website: <u>www.nata.com.au</u>





## 3 TEST EQUIPMENT CALIBRATION

Measurement instrumentation and transducers were calibrated in accordance with the applicable standards by an independent NATA registered laboratory such as Keysight Technologies (Australia) Pty Ltd or the National Measurement Institute (NMI) or in-house. All equipment calibration is traceable to Australian national standards at the National Measurements Institute.

| Equipment<br>Type    | Make/Model/Serial Number                             | Last Cal.<br>dd/mm/yyyy | Due Date<br>dd/mm/yyyy | Cal.<br>Interval     |
|----------------------|------------------------------------------------------|-------------------------|------------------------|----------------------|
| Chamber              | Frankonia SAC-3-2<br>(R-144)                         | 10/08/2020              | 10/08/2023             | 3 Year <sup>*1</sup> |
|                      |                                                      |                         |                        |                      |
| EMI Receiver         | R&S ESW26<br>Sn: 101306 (R-143)                      | 21/06/2021              | 21/06/2022             | 1 Year*2             |
|                      |                                                      |                         |                        |                      |
|                      | EMCO 6502 Active Loop Antenna<br>Sn: 2021 (A-310)    | 31/08/2020              | 31/08/2022             | 2 Year <sup>*2</sup> |
| Antennas             | SUNOL JB1<br>Sn. A052518 (A-434)                     | 13/11/2020              | 13/11/2022             | 2 Year <sup>*2</sup> |
|                      | EMCO 3115 Horn Antenna<br>Sn: 9501-4398 (A-406)      | 10/01/2022              | 10/01/2025             | 3 Year <sup>*1</sup> |
|                      | ETS-Lindgren 3160-09 Horn Antenna<br>Sn:66032 (A307) | 30/04/2021              | 30/04/2024             | 3 Year <sup>*1</sup> |
|                      |                                                      |                         |                        |                      |
|                      | Huber & Suhner Sucoflex 104A<br>Sn: 503055 (C-457)   | 26/11/2021              | 26/11/2022             | 1 Year <sup>*1</sup> |
| Cables* <sup>3</sup> | Huber & Suhner Sucoflex 104A<br>Sn: 800448 (C-520)   | 26/11/2021              | 26/11/2022             | 1 Year <sup>*1</sup> |
|                      | Huber & Suhner Sucoflex 104A<br>Sn: 27319 (C-273)    | 29/06/2021              | 29/06/2022             | 1 Year <sup>*1</sup> |

Note \*1. Internal NATA calibration.

Note \*2. External NATA / A2LA calibration.

Note \*3. Cables are verified before measurements are taken.

## 4 MEASUREMENT UNCERTAINTY

EMC Technologies has evaluated the equipment and the methods used to perform the emissions testing. The estimated measurement uncertainties for emissions tests shown within this report are as follows:

| Radiated Emissions: | 9 kHz to 30 MHz     | ±4.1 dB |
|---------------------|---------------------|---------|
|                     | 30 MHz to 300 MHz   | ±5.1 dB |
|                     | 300 MHz to 1000 MHz | ±4.7 dB |
|                     | 1 GHz to 18 GHz     | ±4.6 dB |
|                     | 18 GHz to 40 GHz    | ±4.6 dB |
| Peak Output Power:  |                     | ±1.5 dB |

The above expanded uncertainties are based on standard uncertainties multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

#### Application of measurement uncertainty for this report:

The referenced uncertainty standard specifies that determination of compliance shall be based on measurements <u>without</u> taking into account measurement instrumentation uncertainty. However, the measurement uncertainty shall appear in the test report.





### 5 Device Details

(Information supplied by the Client)

## 5.1 EUT (Transmitter) Details

| Radio:               | 2.4 GHz RF transceiver                                                   |
|----------------------|--------------------------------------------------------------------------|
| Frequency band:      | 2400 – 2483.5 MHz                                                        |
| Number of Channels:  | 16                                                                       |
| Operating Frequency: | Low Channel: 2405 MHz<br>Mid Channel: 2440 MHz<br>High Channel: 2480 MHz |
| Modulation:          | GFSK                                                                     |
| Antenna:             | $\ensuremath{^{1\!\!\!/}}\xspace$ wavelength monopole, soldered to PCB   |
| Antenna gain:        | -1.0 dBi                                                                 |

## 5.2 EUT (Host) Details

Test Sample:Wireless Base Station ModuleModel Number:GDL2V2

Supply Rating: 5VDC, 30mA

## 5.3 Test Configuration

Testing was performed with the EUT's Transceiver set to transmit continuously at Low Channel (2405 MHz), Mid Channel (2440 MHz) and High Channel (2480 MHz) or normal Hopping On mode.

## 5.4 Modifications

No modifications were required to achieve compliance.

## 5.5 Deviations from the Standard

No deviation from the standard.





## 6 **RESULTS**

## 6.1 §15.203/ RSS-Gen 6.8 Antenna Requirement

The test sample's radio module incorporates a ¼ wavelength monopole which is soldered to PCB and cannot be replaced by another type.

Antenna Type: ¼ wavelength monopole Antenna Peak Gain: -1.0 dBi Connector: N/A, soldered to PCB

The above installation will prevent any unauthorised switching of antennas.

#### 6.2 §15.205/ RSS-Gen 8.10/ RSS-247 3.3 Restricted Bands of Operation

The provisions of the §15.205/ RSS-Gen 8.10/ RSS-247 3.3 restricted bands of operation and §15.209 radiated emissions limits have been met, refer to section 6.10.

## 6.3 §15.207/ RSS-Gen 8.8 Conducted Limits

The device is battery powered (DC) and does not connect directly to the AC mains network. Test was not applicable.

# 6.4 §15.209/ RSS-Gen 8.9 Radiated Emission Limits; General Requirements

The provisions of the §15.205/ RSS-Gen 8.10/ RSS-247 3.3 restricted bands of operation and §15.209/ RSS-Gen 8.9 radiated emissions limits have been met, refer to section 6.10.

## 6.5 §15.247(a)(1)/ RSS-247 5.1(a) 20 dB bandwidth

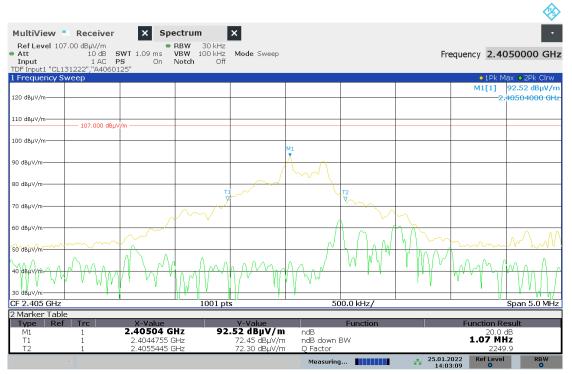
#### 6.5.1 Test Procedure

The tests were performed in accordance with ANSI C63.10: 2013 Clause 6.9.

The 20 dB bandwidth was measured while the device was transmitting with typical modulation applied. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised when measuring the bandwidth.

#### 6.5.2 Limits

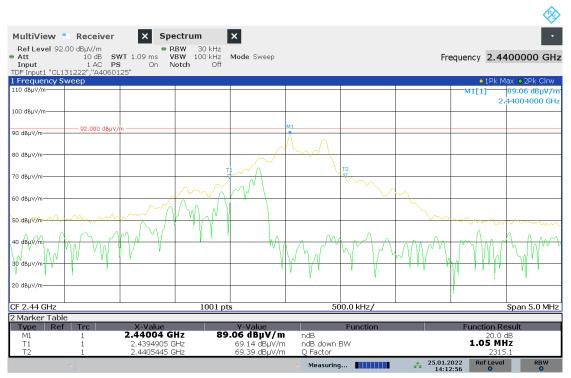
In the band 2400-2483.5MHz, the maximum 20 dB Bandwidth is not specified.


#### 6.5.3 Results

#### Table 6-1: 20 dB Bandwidth

| Frequency (MHz) | 20 dB Bandwidth (MHz) |
|-----------------|-----------------------|
| 2405            | 1.07                  |
| 2440            | 1.05                  |
| 2480            | 1.06                  |








Page 11 of 36

14:03:10 25.01.2022





14:12:57 25.01.2022

Graph 6-2: 20 dB bandwidth, 2440 MHz





|                                                | Receiver                               | × Spectru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | ×                                      |                                           |          |         |                 | •                                              |
|------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------|-------------------------------------------|----------|---------|-----------------|------------------------------------------------|
| Ref Level 92<br>Att<br>Input<br>DF Input1 "CL1 |                                        | WT 1.09 ms VBW<br>G On Notch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30 kHz<br>100 kHz I<br>Off | Mode Sweep                             |                                           |          | Fre     | equency 2.4     | 800000 GH                                      |
| Frequency S                                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                                        |                                           |          |         |                 | lax O2Pk Clrw                                  |
| то аврууш                                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                                        |                                           |          |         | M1[1]2          | 82.67 dBµ∀/ı<br>.48004000 G⊦                   |
| 00 dBµV/m───                                   |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                                        |                                           |          |         |                 |                                                |
|                                                |                                        | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |                                        |                                           |          |         |                 |                                                |
| ) dBµV/m───                                    | . 92,000 uBHV/                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                                        | M1                                        |          |         |                 |                                                |
| 0 dBµV/m                                       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                                        | X                                         |          |         |                 |                                                |
| о аврууш                                       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | $\sim$                                 | $\int$                                    |          |         |                 |                                                |
| ) dBµV/m                                       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | $\sim$                                 |                                           |          |         |                 |                                                |
|                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ti<br>V                    | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                           | T2       |         |                 |                                                |
| 0 dBµV/m───                                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\sim$                     | -/\/                                   |                                           |          | ~       |                 |                                                |
| 0 dByV/m                                       |                                        | $ \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{$ | A 'M                       |                                        |                                           |          | han     |                 |                                                |
| A                                              | www.www.www.www.www.www.www.www.www.ww |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 / YI                     | N . I                                  | 0.0                                       |          |         | A               | an when we |
|                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                                        | $ \longrightarrow $                       | And f    | LAA A M | alla Asi        | A A                                            |
| - W W W V I                                    | MhALL I                                | I V VM I .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                          | ¥6                                     | $\Lambda \Lambda \Lambda \Lambda \Lambda$ |          |         |                 |                                                |
| 0 dBµV/m                                       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | 140                                    |                                           | 1 1      |         |                 |                                                |
| 0 dBµV/m                                       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                                        |                                           | 1 1      | 1.1     |                 | '                                              |
| 1                                              |                                        | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | · · · ·                                |                                           |          |         |                 |                                                |
| F 2.48 GHz                                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1001 pts                   |                                        | 50                                        | 0.0 kHz/ |         |                 | Span 5.0 MH                                    |
| Marker Tabl                                    |                                        | X-Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | Y-Value                                |                                           | Function |         | Function R      | ooult                                          |
| M1                                             | 1                                      | 2.48004 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 82.                        | 67 dBµV/m                              |                                           |          |         | 20.0            | dB                                             |
| T1<br>T2                                       | 1                                      | 2.4794955 GHz<br>2.4805544 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | 62.57 dBµV/m<br>62.54 dBµV/m           |                                           | ЗW       |         | 1.06 MI<br>2342 |                                                |
| 14                                             |                                        | 2.4000044 0112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | 02.04 000 97/11                        |                                           |          | 25.01.2 |                 |                                                |

14:14:52 25.01.2022

Graph 6-3: 20 dB bandwidth, 2480 MHz

## 6.6 §15.247(a)(1)/ RSS-247 5.1(b) Carrier Frequency Separation

#### 6.6.1 Test Procedure

The tests were performed in accordance to ANSI C63.10: 2013 clause 7.8.2.

#### 6.6.2 Limits

Hopping channel carrier frequencies separated by a minimum of 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

#### 6.6.3 Results

| Carrier Frequency Separation | Limit     | Results  |
|------------------------------|-----------|----------|
| 5.05 MHz                     | ≥ 713 kHz | Complied |





|                                                                                       |                                      |                                     |                               |             |                  |                                         | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------|-------------------------------|-------------|------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MultiView = Receiver                                                                  | r 🗙 Spectrum                         | ×                                   |                               |             |                  |                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Input 1 AC<br>TDF Input1 "A4060125","CL13                                             |                                      |                                     | ¢p                            |             | Fre              |                                         | 400000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2 Frequency Sweep                                                                     |                                      |                                     |                               |             |                  | • 1Pk M<br>D2[1]                        | lax • 2Pk Clrw<br>-0,17 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 120 dBµV/m                                                                            |                                      |                                     |                               |             |                  | 0.0[1]                                  | 5.0500 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 112.000 dB                                                                            | lut/m                                |                                     |                               |             |                  |                                         | 01.46 dBµV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 110 dBµV/m                                                                            | pp vym                               |                                     |                               |             |                  |                                         | 2.4400600 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| D2                                                                                    |                                      |                                     | M1<br>V                       |             |                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 100 dBµV/m                                                                            |                                      | ~                                   |                               |             |                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 901000/m                                                                              |                                      |                                     |                               | ~~~~        |                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| '80 dBµV/m                                                                            |                                      |                                     |                               |             |                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 70 dBµV/m                                                                             | بريم بالمستقبل مري                   | Withold and a second                | a deed a                      | and the set | 1 11 11 m        | the second                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                       | 1) H. Alasti di shi kufikela (Millek | AN MANANA MANANA MANA               | Manutra Martal                | WUNNING MAN | Mar Al Walk W    | DAN AN AMAY MAY                         | AN MANAMANA AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 60 dBµV/m                                                                             |                                      | tere de men                         |                               | · Y I       | . It coul        | 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( | and the second sec |
| 50 dBµV/m                                                                             |                                      |                                     |                               |             |                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 40 dBµV/m                                                                             |                                      |                                     |                               |             |                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 30 dBµV/m                                                                             |                                      |                                     |                               |             |                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CF 2.44 GHz                                                                           |                                      | .001 pts                            | 1.                            | .5 MHz/     |                  | 5                                       | Span 15.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1 Marker Table                                                                        |                                      | •                                   |                               |             |                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Type         Ref         Trc           M1         1           D2         M1         1 | X-Value<br>2.44006 GHz<br>-5.05 MHz  | ۲-Value<br>101.46 dBµV/r<br>-0.17 d | n<br>B                        | Function    |                  | Function R                              | esult                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ~                                                                                     | Instrument warmin                    |                                     | <ul> <li>Measuring</li> </ul> |             | 27.01.2<br>09:42 | 022 Ref Level<br>7:19 O                 | RBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Page 13 of 36

09:47:19 27.01.2022



## 6.7 §15.247(a)(1)(iii)/ RSS-247 5.1(d) Number of Hopping Frequencies

#### 6.7.1 Test Procedure

The tests were performed in accordance to ANSI C63.10: 2013 clause 7.8.3.

#### 6.7.2 Limits

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

#### 6.7.3 Results

Table 6-3: Number of Hopping Frequencies

| Number of Hopping Frequencies | Limit | Results  |
|-------------------------------|-------|----------|
| 16                            | ≥ 15  | Complied |





| lultiView                    | Receiver        | × Spe                                          | ctrum                               | ×                  |                               |         |                                 |                |                                             |
|------------------------------|-----------------|------------------------------------------------|-------------------------------------|--------------------|-------------------------------|---------|---------------------------------|----------------|---------------------------------------------|
| Ref Level 11<br>Att<br>Input |                 | WT 1.01 ms '<br>S On I                         | RBW 1MHz<br>VBW 3MHz M<br>Notch Off | Mode Auto Swee     | p                             |         | Fre                             | equency 2.4    | 417500 GH                                   |
| Frequency S                  |                 |                                                |                                     |                    |                               |         | D2                              | ● 1Pk №<br>[1] | 1ax • 2Pk Clrw<br>0.00 ¢                    |
| ) dBµV/m                     |                 |                                                |                                     |                    |                               |         |                                 |                | 0                                           |
|                              |                 |                                                |                                     |                    |                               |         | M1                              | [1]            | 77.81 dBµV/<br>2.4835000 G                  |
| ι dBµV/m−−−−                 | —— 112.000 dBµV | /m                                             |                                     |                    |                               |         |                                 |                |                                             |
| I dBµV/m                     |                 |                                                |                                     |                    |                               |         |                                 |                |                                             |
|                              |                 | $\left[ \left[ \left[ \right] \right] \right]$ |                                     | $ \left[ \right] $ |                               |         | $\left[ \right] \left[ \right]$ |                | $\left  \right\rangle \left  \right\rangle$ |
| dBµV/m                       |                 |                                                |                                     | Ha I               |                               |         |                                 |                |                                             |
| dBµV/m                       | Y               | I W                                            | W                                   | N N                |                               |         |                                 | II II          | ľ                                           |
| dBµV/m                       | . 1 .           |                                                |                                     |                    | ./                            | . A arr |                                 |                |                                             |
| ави́лхий <u>ни го</u>        | www.collander.  | Wath May 44                                    | www.www.                            | WWW                | P Pwn                         | MAN MAN |                                 |                |                                             |
| dBµV/m                       | [ ] [ ]         |                                                |                                     |                    |                               | 1 1     |                                 |                | 1                                           |
| dBµV∕m                       |                 |                                                |                                     |                    |                               |         |                                 |                |                                             |
| dBµV/m                       |                 |                                                |                                     |                    |                               |         |                                 |                |                                             |
| 4 GHz                        | 1               |                                                | 1001 pt                             | S                  | 8.                            | 35 MHz/ | 1                               | 1              | 2.4835 G                                    |
|                              | ▽               | Instrumer                                      | nt warming up                       |                    | <ul> <li>Measuring</li> </ul> |         | + 27.01.2<br>09:48              | 022 Ref Level  | RBW                                         |

09:48:52 27.01.2022



## 6.8 §15.247(a)(1)(iii)/ RSS-247 5.1(d) Average Time of Occupancy

#### 6.8.1 Test Procedure

The tests were performed in accordance to ANSI C63.10: 2013 clause 7.8.4.

#### 6.8.2 Limits

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

#### 6.8.3 Results

#### Table 6-4: Average Time of Occupancy

| Single Pulse<br>(ms) | Number of hops in<br>0.2s period | Number of hops in<br>6.4s period* | Average Time of Occupancy<br>(ms) | Limit<br>(ms) | Results  |
|----------------------|----------------------------------|-----------------------------------|-----------------------------------|---------------|----------|
| 0.344                | 26                               | 832                               | 286.208                           | ≤ 400         | Complied |

\***Note:** Number of hops in the period specified in the requirements = (number of hops on spectrum analyzer) × (period specified in the requirements / analyzer sweep time)

Time of Occupancy = 832 × 0.344 ms = 286.208 ms





|                                                 |               |                                                           |                       |          |                          |            |            |                                                |      |                          |                     | <b></b>                     |
|-------------------------------------------------|---------------|-----------------------------------------------------------|-----------------------|----------|--------------------------|------------|------------|------------------------------------------------|------|--------------------------|---------------------|-----------------------------|
| 1ultiView                                       | Receive       | er 🗙                                                      | Spectrum              |          | ×                        |            |            |                                                |      |                          |                     | •                           |
| Ref Level 11:<br>Att<br>Input<br>RG:VID TDF Inj | 10 dB<br>1 AC |                                                           | n Notch               | Hz       |                          |            |            |                                                |      | Fre                      | equency 2.4         | 400000 GHz                  |
| Zero Span                                       | Jaci A40001   | 20,001012                                                 |                       |          |                          |            |            |                                                |      |                          | 01Pk                | ∕lax ●2Pk Clrw              |
| LO dBµV/m───                                    |               |                                                           |                       |          |                          |            |            |                                                |      |                          | D2[1]-              | -25.26 dB                   |
|                                                 |               |                                                           |                       |          |                          |            |            |                                                |      |                          |                     | 344.00 µs                   |
| 00 dBµV/m                                       |               |                                                           |                       |          |                          |            |            |                                                |      |                          | M1[1]               | 99.67 dBµV/m                |
| o app 1711                                      |               |                                                           |                       |          |                          |            |            |                                                |      |                          |                     | 0 s                         |
| ) dBµV/m                                        |               | 00 dBµV/m                                                 |                       |          |                          |            |            |                                                |      |                          |                     |                             |
|                                                 |               |                                                           |                       |          |                          |            |            |                                                |      |                          |                     |                             |
| ) dBµ∨/m                                        |               |                                                           |                       |          |                          |            |            |                                                |      |                          |                     |                             |
|                                                 | 1             | unannan                                                   | amakershow ray        | m        |                          |            | hamment    | no man sha | hyph |                          |                     | manuth                      |
| ) dBµV/m                                        |               | <u>. #1. h 1</u> . h. | All and Alder         | wat had  | At a literate land       | Huk        | to to day  | di wall me                                     | mil  | ender statistic ender an | AL WARD A HALA      | M MARK M. C. H.             |
|                                                 |               | WA disdicate this                                         | That We have a second | ahadh ha | all <b>a</b> am. maanama | landik bak | children i | la albert andles s d                           | r ya | Adduction                | halikana . A. Alaba | dfhilfait a McAnador, actor |
|                                                 |               | 1                                                         |                       |          | 1                        |            |            |                                                |      | 1                        |                     |                             |
| ) dBµV/m−−−−                                    |               |                                                           |                       |          | 1                        |            |            |                                                |      |                          |                     |                             |
|                                                 |               |                                                           |                       |          |                          |            |            |                                                |      |                          |                     |                             |
| ) dBµV/m−−−−                                    |               |                                                           |                       |          |                          |            |            |                                                |      |                          |                     |                             |
|                                                 |               |                                                           |                       |          |                          |            |            |                                                |      |                          |                     |                             |
| ) dBµV/m                                        |               |                                                           |                       |          |                          |            |            |                                                |      |                          |                     |                             |
|                                                 |               |                                                           |                       |          |                          |            |            |                                                |      |                          |                     |                             |
| ) dBµV/m                                        |               |                                                           |                       |          |                          |            |            |                                                |      |                          |                     |                             |
| э uoµv/m                                        |               |                                                           |                       |          |                          |            |            |                                                |      |                          |                     |                             |
|                                                 |               |                                                           |                       |          |                          |            |            |                                                |      |                          |                     |                             |
| ) dBµV/m                                        |               |                                                           |                       |          |                          |            |            |                                                |      |                          |                     |                             |
| G                                               |               |                                                           |                       |          |                          |            |            |                                                |      |                          |                     |                             |
| F 2.44 GHz                                      |               |                                                           |                       |          | 100                      | l pts      |            |                                                |      |                          |                     | 200.0 µs/                   |
|                                                 | ~             |                                                           |                       |          |                          | ~          |            |                                                |      | 27.01.2                  | 022 Ref Leve        | I RBW                       |

Page 15 of 36

09:51:52 27.01.2022

Graph 6-6: Single Pulse

| Zero Span                 | out1 "A4060125","     |                    | Notch Off         |                          |             |               |                | o tek M            | ax o2Pk Clrv              |
|---------------------------|-----------------------|--------------------|-------------------|--------------------------|-------------|---------------|----------------|--------------------|---------------------------|
| 10 dBµV/m                 |                       |                    |                   |                          |             |               |                |                    |                           |
|                           |                       |                    |                   |                          |             |               |                |                    |                           |
| 00 dBµ∨/m                 |                       | IV/m               |                   |                          |             |               |                |                    |                           |
| D dBµV/m                  |                       |                    | _                 |                          |             |               |                |                    |                           |
|                           |                       |                    |                   |                          |             |               |                |                    |                           |
| ) dBµV/m                  |                       |                    |                   |                          |             |               |                |                    |                           |
| N/WW/WWww/WWW<br>D dBµV/m | 1 Million Marchalul 4 | peder Million from | White March all h | phismital approximations | whomshadowh | UN Walking wh | WIN IN THE WAY | llowlford from the | h liputen prilitica il ba |
|                           |                       |                    |                   |                          |             |               |                |                    |                           |
| ) dBµV/m                  |                       |                    |                   |                          |             |               |                |                    |                           |
| ) dBµV/m                  |                       |                    |                   |                          |             |               |                |                    |                           |
| 5 dbp1/11                 |                       |                    |                   |                          |             |               |                |                    |                           |
| ) dBµ∨/m                  |                       |                    |                   |                          |             |               |                |                    |                           |
|                           |                       |                    |                   |                          |             |               |                |                    |                           |
| ) dBµV/m                  |                       |                    |                   |                          |             |               |                |                    |                           |
|                           |                       |                    |                   |                          |             |               |                |                    |                           |

10:37:07 27.01.2022

Graph 6-7: Number of hops in 0.2s period

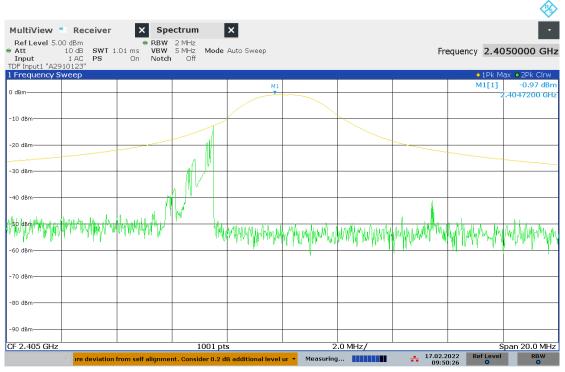




## 6.9 §15.247(b)/ RSS-247 5.4 Peak Output Power

#### 6.9.1 Test Procedure

The maximum peak conducted output power was measured in accordance to ANSI C63.10: 2013 clause 7.8.5


#### 6.9.2 Limits

The maximum peak conducted output power at 2400-2483.5 MHz is 0.125 Watt.

#### 6.9.3 Results

Table 6-5: Maximum Peak Power

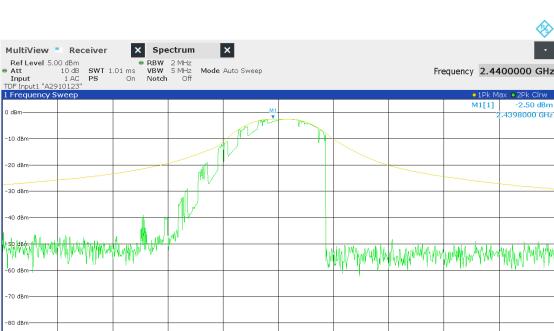
| Freq. | Conducted Ou |          | Desults   |          |
|-------|--------------|----------|-----------|----------|
| (MHz) | (dBm)        | (W)      | Limit (W) | Results  |
| 2405  | -0.97        | 0.000799 | 0.125     | Complied |
| 2440  | -2.50        | 0.000562 | 0.125     | Complied |
| 2480  | -4.70        | 0.000338 | 0.125     | Complied |



09:50:27 17.02.2022

Graph 6-8: Maximum Peak Power, 2405MHz




Span 20.0 MHz

. .

RBW

17.02.2022 Ref Level 09:48:01 O

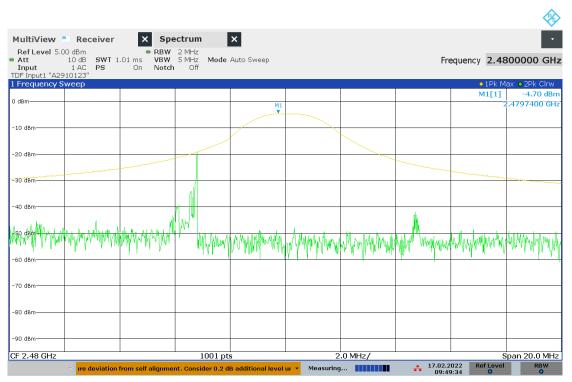




Page 17 of 36

09:48:01 17.02.2022

-90 dBm


CF 2.44 GHz



2.0 MHz/

Measuring...

1001 pts



09:49:34 17.02.2022

Graph 6-10: Maximum Peak Power, 2480MHz





## 6.10 §15.247(d)/ RSS-247 5.5 Out-of-Band/Spurious Emission

#### 6.10.1 Test procedure

Radiated out-of-band/spurious emissions measurements were performed in a semi-anechoic chamber compliant with ANSI C63.4: 2014.

The test frequency range was sub-divided into smaller bands with the defined resolution bandwidths to permit reliable display and identification of emissions.

| Frequency range<br>(MHz) | Measurement<br>Bandwidth<br>(kHz) | Measurement<br>Distance<br>(m) | Antenna                    |
|--------------------------|-----------------------------------|--------------------------------|----------------------------|
| 0.009 to 0.150           | 0.2                               | 3                              | 0.6 metre loop antenna     |
| 0.150 to 30              | 9                                 | 3                              | 0.6 metre loop antenna     |
| 30 to 1000               | 120                               | 3                              | Biconilog hybrid           |
| 1000 to 18 000           | 1000                              | 3                              | Standard gain or broadband |
| 18 000 to 40 000         | 1000                              | 1                              | horn                       |

EUT was set at a height of 0.8 m for measurements below 1000 MHz and set at a height of 1.5 m for measurements above 1000 MHz.

The sample was slowly rotated with the spectrum analyser set to Max-Hold. This was performed for at least two antenna heights. When an emission was located, it was positively identified and its maximum level was found by rotating the automated turntable and by varying the antenna height. For below 1000 MHz the emissions were measured with a Quasi-Peak detector, and for above 1000 MHz the emissions were measured with Peak and Average detectors.

EUT was investigated on all three axes (x, y, and z). Only measurements on the worst axis are presented.

The measurement data for each frequency range was corrected for cable losses, antenna factors and preamplifier gain. This process was performed for both horizontal and vertical polarisations of the measurement antenna.

#### 6.10.2 Evaluation of field strength

Field strengths were calculated automatically by the software using pre-stored calibration data. The method of calculation is shown below:

$$E = V + AF - G + L$$

Where:  $E = \text{Radiated Field Strength in } dB\mu V/m$ .

V = EMI Receiver Voltage in dBµV.

AF = Antenna Factor in dB/m (stored as a data array).

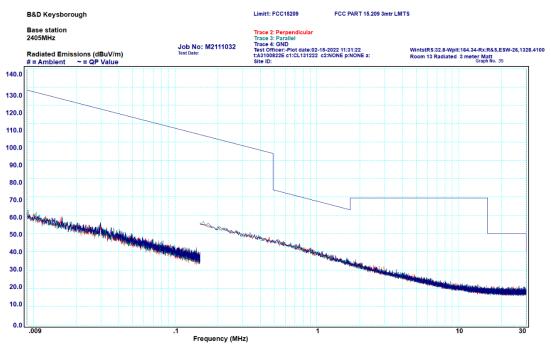
G = Preamplifier Gain in dB (stored as a data array).

L = Cable loss in dB (stored as a data array of Insertion Loss versus frequency).

#### 6.10.3 Limits

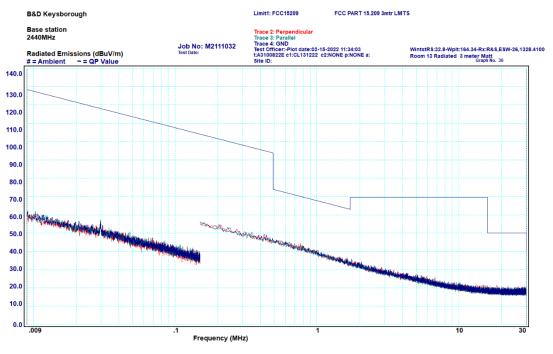
The limit applied is in accordance with the out-of-band/spurious emissions limit defined in §15.247(d).

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.


However, the general limits of §15.209 apply for the restricted bands of operation defined in §15.205.






#### 6.10.4 Transmitter Spurious Emissions: 9 kHz to 30 MHz

All emissions measured in the frequency band 9kHz - 30MHz complied with the requirements of the standard.



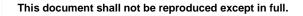
Graph 6-11: Transmitter Spurious Emissions, 9 kHz - 30 MHz, 2405 MHz

No peaks were measured within 10 dB of the limit.



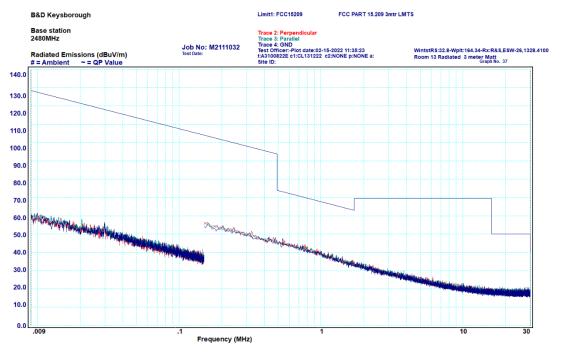
Graph 6-12: Transmitter Spurious Emissions, 9 kHz - 30 MHz, 2440 MHz

No peaks were measured within 10 dB of the limit.


NATA

Accreditation No.5292

m<sup>n</sup>µµ

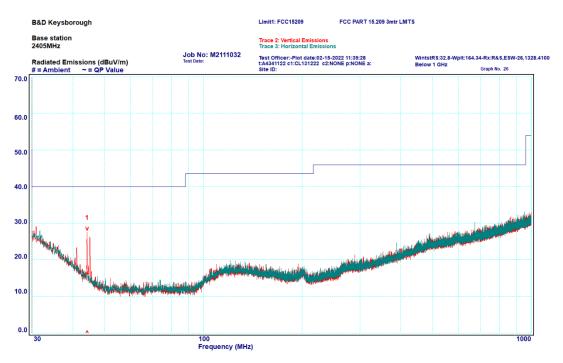

IC-MRA

hilalah



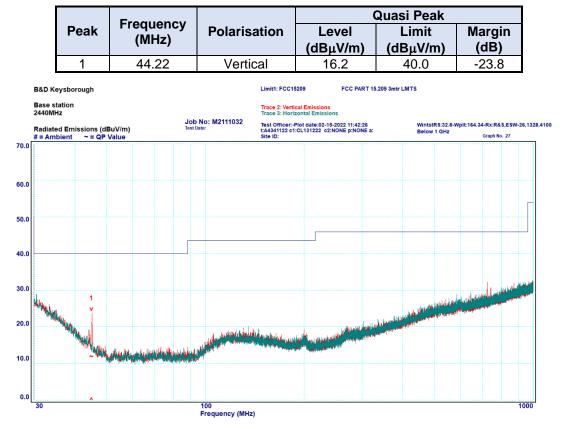







Graph 6-13: Transmitter Spurious Emissions, 9 kHz - 30 MHz, 2480 MHz

No peaks were measured within 10 dB of the limit.


#### 6.10.5 Transmitter Spurious Emissions: 30 - 1000 MHz

All emissions measured in the frequency band 30 - 1000 MHz complied with the requirements of the standard.



Graph 6-14: Transmitter Spurious Emissions, 30 - 1000 MHz, 2405 MHz





#### Table 6-6: Transmitter Spurious Emissions, 30 – 1000 MHz, 2405 MHz

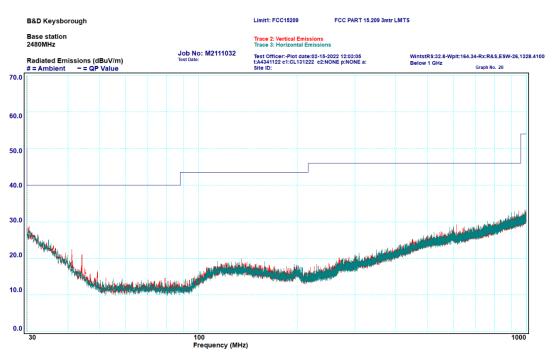



Table 6-7: Transmitter Spurious Emissions, 30 – 1000 MHz, 2440 MHz

| Peak | Frequency          |              | (                 | Quasi Peak        |                |
|------|--------------------|--------------|-------------------|-------------------|----------------|
|      | Frequency<br>(MHz) | Polarisation | Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
| 1    | 44.95              | Vertical     | 11.9              | 40.0              | -28.1          |





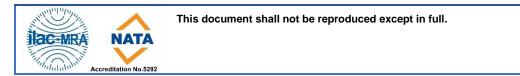


Page 22 of 36

Graph 6-16: Transmitter Spurious Emissions, 30 – 1000 MHz, 2480 MHz

No peaks were measured within 10 dB of the limit.

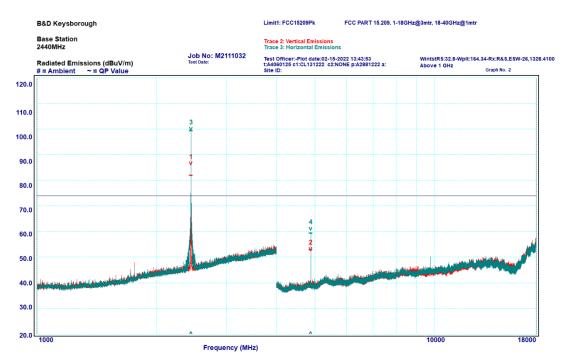
#### 6.10.6 Transmitter Spurious Emissions: 1 - 18 GHz


All emissions measured in the frequency band 1 - 18 GHz complied with the requirements of the standard.



#### **Peak Measurement:**

Frequency (MHz)





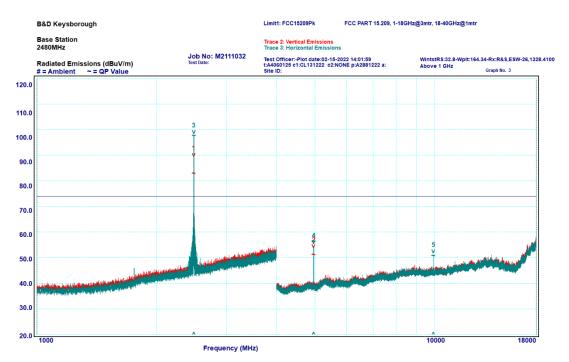



| Γ |      | Fraguanay          |              |                   | Peak           |       |
|---|------|--------------------|--------------|-------------------|----------------|-------|
|   | Peak | Frequency<br>(MHz) | Polarisation | Level<br>(dBµV/m) | Margin<br>(dB) |       |
|   | *1   | 2405.06            | Vertical     |                   |                |       |
|   | 2    | 4810.09            | Vertical     | 54.4              | 74.0           | -19.6 |
|   | *3   | 2405.04            | Horizontal   |                   |                |       |

\*Note: Peaks above the limit are the fundamental transmission and not subject to the spurious emissions limit of the standard



Graph 6-18: Transmitter Spurious Emissions, 1 – 18 GHz, 2440 MHz, Peak


| Table 6-9: Transmitter Spurious Emissions, | s, 1– 18 GHz, 2440 MHz, Peak |
|--------------------------------------------|------------------------------|
|--------------------------------------------|------------------------------|

|      | Frequency          |              |                   | Peak              |                |
|------|--------------------|--------------|-------------------|-------------------|----------------|
| Peak | Frequency<br>(MHz) | Polarisation | Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
| *1   | 2440.04            | Vertical     |                   |                   |                |
| 2    | 4880.11            | Vertical     | 52.7              | 74.0              | -21.3          |
| *3   | 2440.04            | Horizontal   |                   |                   |                |
| 4    | 4880.28            | Horizontal   | 59.3              | 74.0              | -14.7          |

\*Note: Peaks above the limit are the fundamental transmission and not subject to the spurious emissions limit of the standard.







Page 24 of 36

Graph 6-19: Transmitter Spurious Emissions, 1 – 18 GHz, 2480 MHz, Peak

|      | Frequency          |              |                   | Peak              |                |
|------|--------------------|--------------|-------------------|-------------------|----------------|
| Peak | Frequency<br>(MHz) | Polarisation | Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
| *1   | 2480.05            | Vertical     |                   |                   |                |
| 2    | 4960.11            | Vertical     | 51.1              | 74.0              | -22.9          |
| *3   | 2480.08            | Horizontal   |                   |                   |                |
| 4    | 4960.14            | Horizontal   | 56.2              | 74.0              | -17.8          |
| 5    | 9921.38            | Horizontal   | 50.8              | 74.0              | -23.2          |

\*Note: Peaks above the limit are the fundamental transmission and not subject to the spurious emissions limit of the standard.

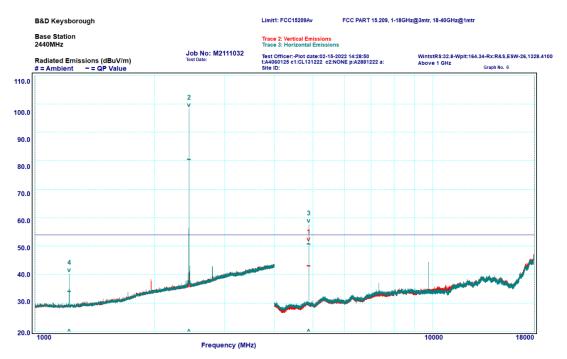




#### Average Measurement:



Graph 6-20: Transmitter Spurious Emissions, 1 – 18 GHz, 2405 MHz, Average


Table 6-11: Transmitter Spurious Emissions, 1 – 18 GHz, 2405 MHz, Average

|      | Frequency          |              |                   | Average           |                |
|------|--------------------|--------------|-------------------|-------------------|----------------|
| Peak | Frequency<br>(MHz) | Polarisation | Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
| 1    | 4810.36            | Vertical     | 42.2              | 54.0              | -11.8          |
| *2   | 2405.21            | Horizontal   |                   |                   |                |
| 3    | 4810.44            | Horizontal   | 51.8              | 54.0              | -2.2           |
| 4    | 1202.62            | Horizontal   | 35.2              | 54.0              | -18.8          |

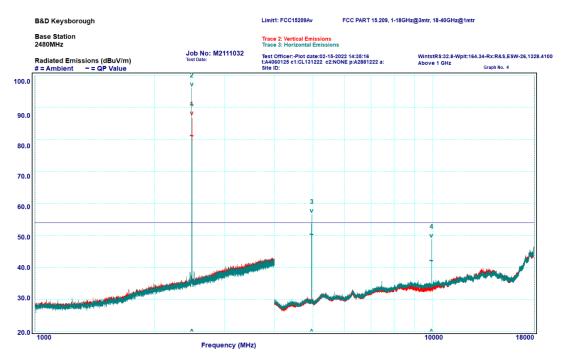
\*Note: Peak 2 is the fundamental transmission and not subject to the spurious emissions limit of the standard







Graph 6-21: Transmitter Spurious Emissions, 1 – 18 GHz, 2440 MHz, Average


| Table 6-12: Transmitte | r Spurious Emi | ssions, 1 – 18 GHz | , 2440 MHz, Average |
|------------------------|----------------|--------------------|---------------------|
|------------------------|----------------|--------------------|---------------------|

|      | Frequency          |              |                   | Average           |                |
|------|--------------------|--------------|-------------------|-------------------|----------------|
| Peak | Frequency<br>(MHz) | Polarisation | Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
| 1    | 4880.37            | Vertical     | 43.0              | 54.0              | -11.0          |
| *2   | 2440.21            | Horizontal   |                   |                   |                |
| 3    | 4880.36            | Horizontal   | 50.6              | 54.0              | -3.4           |
| 4    | 1220.12            | Horizontal   | 33.9              | 54.0              | -20.1          |

\*Note: Peak 2 is the fundamental transmission and not subject to the spurious emissions limit of the standard.





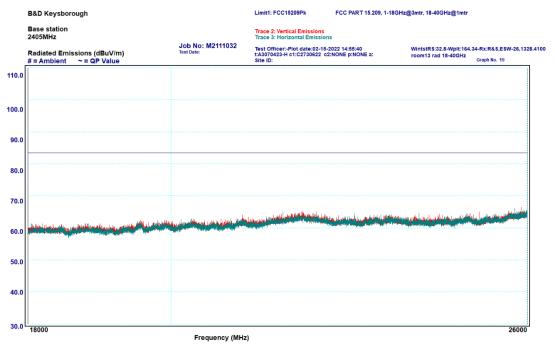


Graph 6-22: Transmitter Spurious Emissions, 1 – 18 GHz, 2480 MHz, Average

| Table 6-13: Transmitter Spurio | us Emissions, 1 – | 18 GHz, 2480 MHz, Average |
|--------------------------------|-------------------|---------------------------|
|--------------------------------|-------------------|---------------------------|

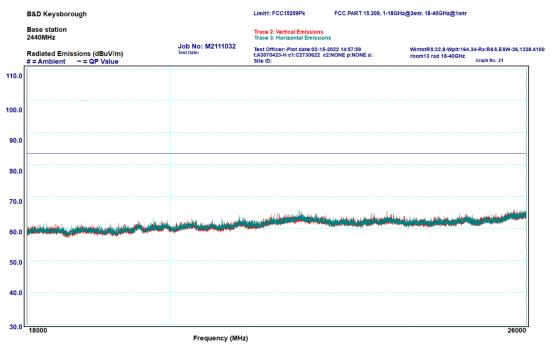
|      | Frequency          |              |                   | Average           |                |
|------|--------------------|--------------|-------------------|-------------------|----------------|
| Peak | Frequency<br>(MHz) | Polarisation | Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
| *1   | 2480.23            | Vertical     |                   |                   |                |
| *2   | 2480.22            | Horizontal   |                   |                   |                |
| 3    | 4960.45            | Horizontal   | 50.2              | 54.0              | -3.8           |
| 4    | 9921.40            | Horizontal   | 42.0              | 54.0              | -12.0          |

\*Note: Peaks 1 and 2 are the fundamental transmission and not subject to the spurious emissions limit of the standard






#### 6.10.7 Transmitter Spurious Emissions: 18 – 26 GHz


All emissions measured in the frequency band 18 - 26 GHz complied with the requirements of the standard.

#### **Peak Measurement:**



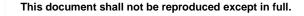
Graph 6-23: Transmitter Spurious Emissions, 18 – 26 GHz, 2405 MHz, Peak

#### No peaks were measured within 10 dB of the limit.

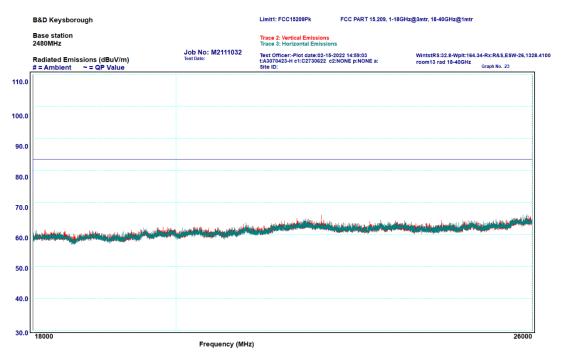


Graph 6-24: Transmitter Spurious Emissions, 18 – 26 GHz, 2440 MHz, Peak

No peaks were measured within 10 dB of the limit.


NATA

Accreditation No.5292


huluh

IC-MRA

hilalah



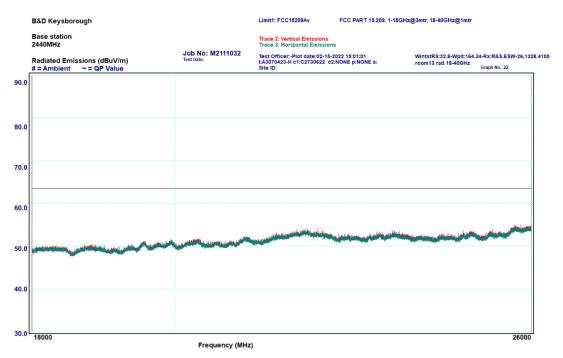




Graph 6-25: Transmitter Spurious Emissions, 18 – 26 GHz, 2480 MHz, Peak

No peaks were measured within 10 dB of the limit.

#### Average Measurement:




Graph 6-26: Transmitter Spurious Emissions, 18 – 26 GHz, 2405 MHz, Average

No peaks were measured within 10 dB of the limit.





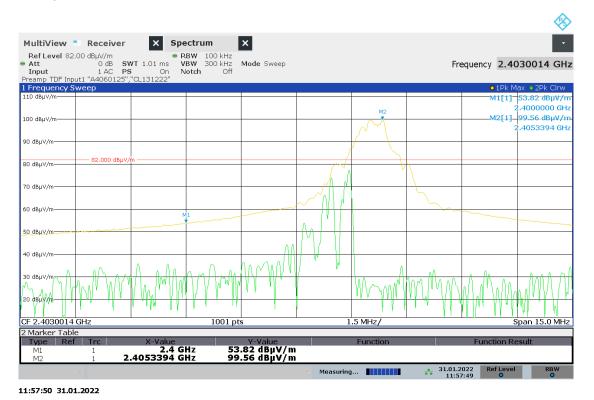


Graph 6-27: Transmitter Spurious Emissions, 18 – 26 GHz, 2440 MHz, Average

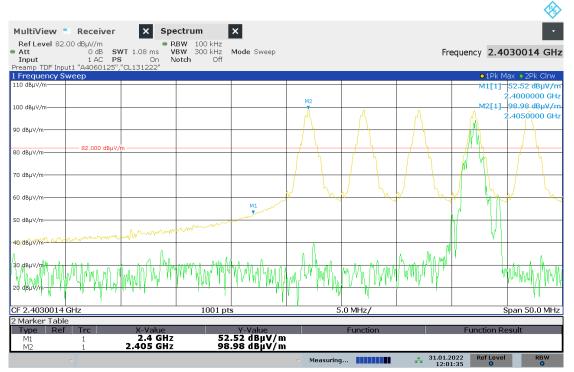
No peaks were measured within 10 dB of the limit.



Graph 6-28: Transmitter Spurious Emissions, 18 – 26 GHz, 2480 MHz, Average


No peaks were measured within 10 dB of the limit.






## 6.11 §15.247(d)/ §RSS-247 5.5 Band Edge Emission Measurements

Band-edge measurements were done using radiated in accordance to ANSI C63.10 clause 6.10. All emissions measured near the lower and higher band edge complied with the requirements of §15.247/ RSS-247 5.0.







12:01:36 31.01.2022

Graph 6-30: Band Edge Emission, Lower Band-edge, Hopping on



 Table 6-14: Band Edge Emission, Lower Band-edge

 Measurement
 Freg
 Measurement
 Limit

| Operating<br>Mode | Measurement<br>Type | Freq<br>(MHz) | Measurement<br>(dBµV/m) | Limit<br>(dBµV/m) | Result   |
|-------------------|---------------------|---------------|-------------------------|-------------------|----------|
| Hopping off       | Peak                | 2400          | 53.82                   | 74                | Complied |
| Hopping on        | Peak                | 2400          | 52.52                   | 74                | Complied |



12:16:35 31.01.2022

Graph 6-31: Band Edge Emission, Upper Band-edge, Peak, Hopping off





| MultiView                                        | Receiver                              | X Spe                      | ctrum    | ×          |           |              |                       |              |                   |
|--------------------------------------------------|---------------------------------------|----------------------------|----------|------------|-----------|--------------|-----------------------|--------------|-------------------|
| Ref Level 82.<br>Att<br>Input<br>Preamp TDF Inpu | 0 dB SV<br>1 AC PS<br>ut1 "A4060125", | • R<br>/T 1.01 ms V<br>0 N | BW 1 MHz | ode Sweep  |           |              | Fre                   |              | 300000 GHz        |
| 1 Frequency Sv                                   | weep                                  |                            |          |            |           |              |                       |              | lax o 2Pk Clrw    |
| 110 dBµV/m                                       |                                       |                            |          |            |           |              |                       |              | 72.01 dBµV/m      |
|                                                  |                                       |                            |          |            |           |              |                       | :            | 2.4835000 GHz     |
| 100 dBµV/m                                       |                                       |                            |          | M          | 1         |              |                       | M1[1]_       | 94.47 dBµV/m      |
|                                                  |                                       |                            |          |            | 1         |              |                       | :            | 2.4800000 GHz     |
| 90 dBµV/m                                        |                                       |                            |          |            | $\sim$    |              |                       |              |                   |
| so dop v/m                                       |                                       |                            |          |            | N I       |              |                       |              |                   |
| 80 dBµV/m                                        | —— <mark>82.000 ф</mark> ВµV/I        | n <u> </u>                 |          |            |           |              |                       |              |                   |
|                                                  | $\sim$                                |                            | $\sim$   |            | M2        |              |                       |              |                   |
| 70 dBµV/m                                        |                                       |                            |          |            |           |              |                       |              |                   |
|                                                  |                                       |                            |          |            |           | Jun - may    |                       |              |                   |
| 60 dBµV/m                                        |                                       |                            |          | n /        | Νh        |              | the ball of the stand | Jun mary     | Warman www.       |
| 50 dBµV/m                                        |                                       |                            |          |            |           |              |                       |              | <u> </u>          |
| +bildeux/hh-ft+ift                               | riter Made & land                     |                            | a. duala |            | here      | a . him died | Mate in all           |              | allowed it is not |
|                                                  | MANAMA San                            | ANNAAA Amaaa               |          | WW 11      | 1 albert  | Ant will all | <u>Ald Duddad</u>     | Alton All Al | Maria Madda, ana  |
| 30 dBµV/m                                        |                                       | 1 1                        | 111111   |            |           |              | 1 1                   |              | · 1               |
|                                                  |                                       |                            |          |            |           |              |                       |              |                   |
| 20 dBµV/m                                        |                                       |                            |          |            |           |              |                       |              |                   |
|                                                  |                                       |                            |          |            |           |              |                       |              |                   |
| <br>CF 2,48 GHz                                  |                                       |                            | 1001 pts |            | 5         | .0 MHz/      |                       | <u> </u>     | pan 50.0 MHz      |
| 2 Marker Table                                   |                                       |                            | 1001 pts | <b>,</b>   | 5         |              |                       |              | ppart 30.0 MHZ    |
| Type Ref                                         |                                       | X-Value                    |          | Y-Value    |           | Function     |                       | Function R   | acult             |
| M1                                               |                                       | 2.48 GHz                   | 94.      | .47 dBµV/m |           | Tuncaun      |                       | TUNCTOTIK    | suit              |
| M2                                               |                                       | 2.4835 GHz                 | 72       | 01 dBµV/m  |           |              |                       |              |                   |
|                                                  | ~                                     |                            |          |            | Measuring |              | 31.01.2               |              |                   |
|                                                  |                                       |                            |          |            | measaring |              | 12:0                  | 5:45 0       | 0                 |

Page 33 of 36

12:05:45 31.01.2022



| MultiView =                   | Receiver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X Spe              | ectrum    | ×               |                   |             |         |             |                                           |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|-----------------|-------------------|-------------|---------|-------------|-------------------------------------------|
| Ref Level 102<br>Att<br>Input | 2.00 dBµV/m<br>0 dB <b>S</b><br>1 AC P<br>60125","CL1312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WT 1.01 ms<br>S On | RBW 1 MHz | Mode Auto Sweep | SGL<br>Count 2000 | /2000       | Fre     | equency 2.4 | 826000 GH                                 |
| Frequency Sv                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |           |                 |                   | 1           | l       |             | ●1Rm Avg                                  |
| L20 dBµV/m                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |           |                 |                   |             |         | M2[1]       | 9 <del>3.33 dBµV/r</del><br>2.48025000 GH |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |           |                 |                   |             |         | M1[1]       | 1                                         |
| .10 dBµV/m                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |           |                 |                   |             |         |             | 2.48350000 GH                             |
|                               | 100 000 10 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |           |                 |                   |             |         |             |                                           |
| .00 dBµV/m                    | —— 102.000 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |           |                 |                   |             |         |             |                                           |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M2                 |           |                 |                   |             |         |             |                                           |
| 90 dBµV/m                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | <u> </u>  |                 |                   |             |         |             |                                           |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |           |                 |                   |             |         |             |                                           |
| 30 dBµV/m                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |           |                 |                   |             |         |             |                                           |
|                               | and the second sec |                    |           |                 |                   |             |         |             |                                           |
| 70 dBµV/m                     | Part and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |           |                 |                   |             |         |             |                                           |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |           |                 |                   |             |         |             |                                           |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |           |                 |                   |             |         |             |                                           |
| 50 dBµV/m                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |           |                 |                   |             |         |             |                                           |
| and the second second         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |           | When a          | м1                |             |         |             |                                           |
| 50 dBµV/m                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |           | 1               |                   | Muthinghour | who man | hampentheme | -                                         |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |           |                 |                   |             |         |             |                                           |
| 40 dBµV/m                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |           |                 |                   |             |         |             |                                           |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |           |                 |                   |             |         |             |                                           |
| 30 dBµV/m                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |           |                 |                   |             |         |             |                                           |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |           |                 |                   |             |         |             |                                           |
| LF 2.4826 GHz                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | 1001 pt   | s               | 1                 | .0 MHz/     | I       |             | Span 10.0 MH                              |
|                               | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |           |                 | Ready             |             | 31.01.2 |             | el RBW                                    |

11:47:00 31.01.2022

Graph 6-33: Band Edge Emission, Upper Band-edge, Average, Hopping off





|                                |                  |                        |                                    |                          |                        |          |          |               | <b></b>      |
|--------------------------------|------------------|------------------------|------------------------------------|--------------------------|------------------------|----------|----------|---------------|--------------|
| 1ultiView                      | Receiver         | × Spe                  | ectrum                             | ×                        |                        |          |          |               | -            |
| Ref Level 82.4<br>Att<br>Input |                  | /T 1.01 ms V<br>On N   | BW 1 MHz<br>BW 3 MHz M<br>otch Off |                          | 3GL<br>Count 5000/5000 | )        | Fre      | quency 2.48   | :00000 GH:   |
| Frequency Sv                   |                  | OLIVILL                |                                    |                          |                        |          |          |               | o1Rm Avg     |
| O dBµV/m───                    |                  |                        |                                    |                          |                        |          |          | M2[1]         | 37.78 dBµV∕n |
|                                |                  |                        |                                    |                          |                        |          |          | 2             | .4835000 GH  |
| ) dBµV/m                       |                  |                        |                                    |                          |                        |          |          | M1[1]         | 78.27 dBµV/r |
|                                |                  |                        |                                    |                          |                        |          |          | 2             | .4800000 GH  |
| dBµV/m                         |                  |                        |                                    |                          |                        |          |          |               |              |
|                                |                  |                        |                                    |                          |                        |          |          |               |              |
| dBµV/m-                        | —— 82.000 dBµV/i | m                      |                                    |                          | -M1                    |          |          |               |              |
| uspv/m                         |                  |                        |                                    |                          | $\Lambda$              |          |          |               |              |
| /                              |                  |                        | $ \lambda  = 1$                    | $ \lambda  = 1$          | (1)                    |          |          |               |              |
| dBµV/m                         | $\rightarrow$ /  | $\uparrow$             |                                    |                          |                        |          |          |               |              |
| $\lambda = I = I$              |                  |                        | $  \rangle   \rangle$              |                          |                        |          |          |               |              |
| I dBµV/m                       |                  |                        |                                    |                          | + +                    |          |          |               |              |
|                                |                  |                        |                                    | $  \rangle  $            |                        |          |          |               |              |
| dBµV/m                         | V                |                        |                                    |                          | M2                     |          |          |               |              |
| dBµ∨∕m                         |                  |                        |                                    |                          | herrow                 | u        |          |               |              |
|                                |                  |                        |                                    |                          |                        |          |          |               |              |
| dBµV/m                         |                  |                        |                                    |                          |                        |          |          |               |              |
|                                |                  |                        |                                    |                          |                        |          |          |               |              |
| dBµV/m                         |                  |                        |                                    |                          |                        |          |          |               |              |
|                                |                  |                        |                                    |                          |                        |          |          |               |              |
| 2.48 GHz                       |                  | I                      | 1001 pt                            | S                        | 5                      | .0 MHz/  |          | S             | pan 50.0 MH  |
| Marker Table                   | 2                |                        |                                    |                          |                        |          |          |               |              |
| Type Ref                       |                  | X-Value                |                                    | Y-Value                  |                        | Function |          | Function Re   | sult         |
| M1<br>M2                       | 1                | 2.48 GHz<br>2.4835 GHz | 78<br>37                           | .27 dBµV/1<br>.78 dBµV/1 | m<br>m                 |          |          |               |              |
|                                | ~                |                        |                                    |                          | Ready                  |          | 31.01.20 | 022 Ref Level | RBW          |
|                                |                  |                        |                                    |                          | Keady                  |          | 12:07    | :22 0         | 0            |

Page 34 of 36

12:07:23 31.01.2022

Hopping off

Hopping on

Graph 6-34: Band Edge Emission, Upper Band-edge, Average, Hopping on

| Table 6-15: Band Edge Emission, Upper Band-edge |                     |               |                         |                   |          |  |  |
|-------------------------------------------------|---------------------|---------------|-------------------------|-------------------|----------|--|--|
| Operating<br>Mode                               | Measurement<br>Type | Freq<br>(MHz) | Measurement<br>(dBμV/m) | Limit<br>(dBµV/m) | Result   |  |  |
| Hopping off                                     | Peak                | 2483.5        | 73.09                   | 74                | Complied |  |  |
| Hopping on                                      | Peak                | 2483.5        | 72.01                   | 74                | Complied |  |  |
|                                                 |                     |               |                         |                   |          |  |  |

2483.5

2483.5

Average

Average

Table 6-15: Band Edge Emission, Upper Band-edge

48.37

37.78

54

54

Complied

Complied

## 6.12 §15.247(i)/ RSS-Gen 3.4/RSS-102 Maximum Permissible Exposure

The EUT complied with the applicable maximum permissible exposure levels. Refer to EMC Technologies report M2111032-7 and M2111032-8.





## 6.13 §15.215/ RSS-Gen 6.7 Occupied Bandwidth – 99% power

#### 6.13.1 Test procedure

The bandwidth containing 99% power of the transmitted signal was measured using the procedure from ANSI C63.10 section 6.9.

#### 6.13.2 Limits

The 99% power should be contained within the frequency band 2400 – 2483.5 MHz.

#### 6.13.3 Results

| Table | 6-16: | Occupied | Bandwidth |
|-------|-------|----------|-----------|
|-------|-------|----------|-----------|

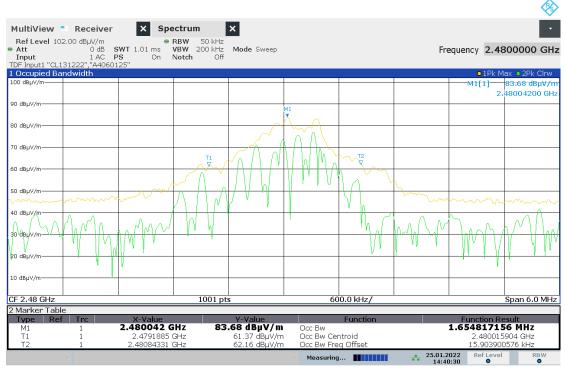
| Freq.<br>(MHz) | 99% Bandwidth<br>(MHz) | Lower Frequency<br>(MHz) | Upper Frequency<br>(MHz) | Result   |
|----------------|------------------------|--------------------------|--------------------------|----------|
| 2405           | 1.60                   | 2404.2                   | 2405.8                   | Complied |
| 2440           | 1.61                   | 2439.2                   | 2440.8                   | Complied |
| 2480           | 1.65                   | 2479.1                   | 2480.8                   | Complied |



14:41:42 25.01.2022

Graph 6-35: Occupied bandwidth, 2405 MHz








Page 36 of 36

14:42:58 25.01.2022





14:40:30 25.01.2022

Graph 6-37: Occupied bandwidth, 2480 MHz

#### END OF REPORT

