FCC 47 CFR PART 15 SUBPART C

TEST REPORT

For

Rugged Handheld Device

Model: IMX-2000

Trade Name:

Issued to

ADLINK TECHNOLOGY INC.

9F, No. 166 Jian Yi Road, Zhonghe District New Taipei City 235, Taiwan

Issued by
Compliance Certification Services Inc.
No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.) http://www.cesrf.com service@ccsrf.com Issued Date: February 4, 2013

[^0]
Revision History

| Rev. | Issue
 Date | | Effect
 Page | Revised By |
| :---: | :---: | :---: | :--- | :---: | :---: |
| 00 | February 4, 2013 | Initial Issue | ALL | Angel Cheng |

TABLE OF CONTENTS

1. TEST RESULT CERTIFICATION 4
2. EUT DESCRIPTION 5
3. TEST METHODOLOGY 6
3.1 EUT CONFIGURATION 6
3.2 EUT EXERCISE 6
3.3 GENERAL TEST PROCEDURES 6
3.4 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS 7
3.5 DESCRIPTION OF TEST MODES 8
4. INSTRUMENT CALIBRATION9
4.1 MEASURING INSTRUMENT CALIBRATION 9
4.2 MEASUREMENT EQUIPMENT USED 9
4.3 MEASUREMENT UNCERTAINTY 10
5. FACILITIES AND ACCREDITATIONS 11
5.1 FACILITIES 11
5.2 EQUIPMENT 11
5.3 TABLE OF ACCREDITATIONS AND LISTINGS 12
6. SETUP OF EQUIPMENT UNDER TEST 13
6.1 SETUP CONFIGURATION OF EUT 13
6.2 SUPPORT EQUIPMENT. 13
7. FCC PART 15.247 REQUIREMENTS 14
7.120 DB BANDWIDTH 14
7.2 PEAK POWER 21
7.3 BAND EDGES MEASUREMENT 22
7.4 FREQUENCY SEPARATION 40
7.5 NUMBER OF HOPPING FREQUENCY 45
7.6 TIME OF OCCUPANCY (DWELL TIME) 50
7.7 SPURIOUS EMISSIONS 58
7.8 POWERLINE CONDUCTED EMISSIONS 76
APPENDIX II PHOTOGRAPHS OF TEST SETUP 79
APPENDIX 1 - PHOTOGRAPHS OF EUT

1. TEST RESULT CERTIFICATION

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4: 2009 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements set forth in the above standards. The test results of this report relate only to the tested sample EUT identified in this report.

Approved by:

Miller Lee
Section Manager
Compliance Certification Services Inc.

Reviewed by:

Gina Lo
Section Manager
Compliance Certification Services Inc.

2. EUT DESCRIPTION

Product	Rugged Handheld Device
Trade Name	$\triangleq \underset{\text { TECHNOLOCYINE }}{\text { ADL }}$
Model Number	IMX-2000
Model Discrepancy	N/A
Received Date	December 21, 2012
Power Supply	Power from Power Adapter Model: STD-05035V I/P: $100-240 \mathrm{~V}, 47-63 \mathrm{~Hz}, 0.48 \mathrm{~A}$ MAX O/P: $5 \mathrm{~V}, 3.5 \mathrm{~A}, 17.5 \mathrm{~W}$ MAX
Frequency Range	2402 ~ 2480 MHz
Transmit Power	1.62 dBm
Modulation Technique	GFSK for 1Mbps; $\pi / 4-\mathrm{DQPSK}$ for 2Mbps; 8DPSK for 3Mbps
Number of Channels	79 Channels
Antenna Specification	Gain: 1.01 dBi
Antenna Designation	PIFA Antenna

Remark:

1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
2. This submittal(s) (test report) is intended for FCC ID: $\mathbf{X 4 D - I M X - 2 0 0 0}$ filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, 15.207, 15.209, 15.247 and DA00-705.

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4: 2009.

3.4 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

$\mathbf{M H z}$	$\mathbf{M H z}$	$\mathbf{M H z}$	$\mathbf{G H z}$
$0.090-0.110$	$16.42-16.423$	$399.9-410$	$4.5-5.15$
$0.495-0.505$	$16.69475-16.69525$	$608-614$	$5.35-5.46$
$2.1735-2.1905$	$16.80425-16.80475$	$960-1240$	$7.25-7.75$
$4.125-4.128$	$25.5-25.67$	$1300-1427$	$8.025-8.5$
$4.17725-4.17775$	$37.5-38.25$	$1435-1626.5$	$9.0-9.2$
$4.20725-4.20775$	$73-74.6$	$1645.5-1646.5$	$9.3-9.5$
$6.215-6.218$	$74.8-75.2$	$1660-1710$	$10.6-12.7$
$6.26775-6.26825$	$108-121.94$	$1718.8-1722.2$	$13.25-13.4$
$6.31175-6.31225$	$123-138$	$2200-2300$	$14.47-14.5$
$8.291-8.294$	$149.9-150.05$	$2310-2390$	$15.35-16.2$
$8.362-8.366$	$156.52475-$	$2483.5-2500$	$17.7-21.4$
$8.37625-8.38675$	156.52525	$2655-2900$	$22.01-23.12$
$8.41425-8.41475$	$156.7-156.9$	$3260-3267$	$23.6-24.0$
$12.29-12.293$	$162.0125-167.17$	$3332-3339$	$31.2-31.8$
$12.51975-12.52025$	$167.72-173.2$	$3345.8-3358$	$36.43-36.5$
$12.57675-12.57725$	$240-285$	$3600-4400$	$\left({ }^{2}\right)$
$13.36-13.41$	$322-335.4$		

${ }^{1}$ Until February 1, 1999, this restricted band shall be $0.490-0.510 \mathrm{MHz}$.
${ }^{2}$ Above 38.6
(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz , compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz , compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

3.5 DESCRIPTION OF TEST MODES

The EUT (model: IMX-2000) had been tested under operating condition.
Test program used to control the EUT for staying in continuous transmitting mode was programmed.
After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1 GHz and power line conducted emissions below 30 MHz , which worst case was in normal link mode only.

During the preliminary test, GFSK, $\pi / 4-$ QPSK \& 8DPSK with DH1 were pre-tested and found that 8DPSK emits the highest output power. Then the tests were carried on with DH1 compare to DH3 \& DH5 and found that 8DPSK with DH5 emit the highest output power, and therefore had been tested under operating condition.

Following channels were selected for the radiated emission testing only as listed below:

Tested Channel	Modulation Type	Packet Type	Data Rate
Low, Mid, High	GFSK	DH 5	1
Low, Mid, High	8DPSK	DH 5	3

The field strength of spurious emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (Y axis) and the worst case was recorded.

4. INSTRUMENT CALIBRATION

4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

4.2 MEASUREMENT EQUIPMENT USED

Equipment Used for Emissions Measurement

Remark: Each piece of equipment is scheduled for calibration once a year and Loop Antenna is scheduled for calibration once three years.

Conducted Emissions Test Site					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	E4446A	MY43360131	$03 / 16 / 2013$	
Power Meter	Anritsu	ML2495A	1012009	$04 / 26 / 2013$	
Power Sensor	Anritsu	MA2411B	0917072	$04 / 26 / 2013$	

Wugu 966 Chamber A					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	E4446A	US42510252	$11 / 01 / 2013$	
EMI Test Receiver	R\&S	ESCI	100064	$02 / 16 / 2013$	
Pre-Amplifier	Mini-Circults	ZFL-1000LN	SF350700823	$01 / 11 / 2014$	
Pre-Amplifier	MITEQ	AFS44-00102650- $42-10 P-44 ~$	1415367	$11 / 18 / 2013$	
Bilog Antenna	Sunol Sciences	JB3	A030105	$10 / 02 / 2013$	
Horn Antenna	EMCO	3117	00055165	$01 / 10 / 2014$	
Horn Antenna	EMCO	3116	00026370	$10 / 11 / 2013$	
Loop Antenna	EMCO	6502	$8905 / 2356$	$06 / 10 / 2013$	
Turn Table	CCS	CC-T-1F	N/A	N.C.R	
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	
Controller	CCS	CC-C-1F	N/A	N.C.R	
Site NSA	CCS	N/A	N/A	$12 / 24 / 2013$	
Test S/W					

Conducted Emission room \# A				
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R\&S	ESCI	101203	$09 / 13 / 2013$
LISN	R\&S	ESH3-Z5	$848773 / 014$	$12 / 10 / 2013$
ISN	FCC	FCC-TLISN-T4-02	20395	$05 / 31 / 2013$
ISN	FCC	FCC-TLISN-T8-02-09	101131	$09 / 05 / 2013$
Coaxial Cable	Commate	CFD300-NL	NA	$12 / 06 / 2013$
Test S/W	CCS-3A1-CE			

4.3 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
Powerline Conducted Emission	$+/-1.2159$
3M Semi Anechoic Chamber / 30M \sim 200M	$+/-4.0138$
3M Semi Anechoic Chamber / 200M $\sim 1000 \mathrm{M}$	$+/-3.9483$
3M Semi Anechoic Chamber / 1G~8G	$+/-2.5975$
3M Semi Anechoic Chamber / 8G~18G	$+/-2.6112$
3M Semi Anechoic Chamber / 18G~26G	$+/-2.7389$
3M Semi Anechoic Chamber / 26G~40G	$+/-2.9683$

Remark: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=2$.

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at
\square No.199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C.
Tel: 886-2-2217-0894 / Fax: 886-2-2217-1029

邓 No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)
Tel: 886-2-2299-9720 / Fax: 886-2-2298-4045
\square No.81-1, Lane 210, Bade 2nd Rd., Lujhu Township, Taoyuan County 33841, TAIWAN, R.O.C.

Tel: 886-3-324-0332 / Fax: 886-3-324-5235
The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 TABLE OF ACCREDITATIONS AND LISTINGS

$\left.\begin{array}{|l|l|l|l|}\hline \text { Country } & \text { Agency } & \text { Scope of Accreditation } & \text { Logo } \\ \hline \text { USA } & \text { FCC } & \begin{array}{l}\text { 3M Semi Anechoic Chamber (FCC MRA: TW1039) to perform } \\ \text { FCC Part 15 measurements }\end{array} & \begin{array}{l}\text { FCC MRA: TW1039 }\end{array} \\ \hline \text { Taiwan } & \text { TAF } & \begin{array}{l}\text { LP0002, RTTE01, FCC Method-47 CFR Part 15 Subpart C, D, E, } \\ \text { RSS-210, RSS-310 } \\ \text { IDA TS SRD, AS/NZS 4268, AS/NZS 4771, TS 12.1 \& 12,2, } \\ \text { ETSI EN 300 440-1, ETSI EN 300 440-2, ETSI EN 300 328, } \\ \text { ETSI EN 300 220-1, ETSI EN 300 220-2, ETSI EN 301 893, } \\ \text { ETSI EN 301 489-13/7/17 } \\ \text { FCC OET Bulletin 65 + Supplement C, } \\ \text { EN 50360, EN 50361, EN 50371, RSS 102, EN 50383, EN 50385, } \\ \text { EN 50392, IEC 62209, CNS 14958-1, CNS 14959 } \\ \text { FCC Method -47 CFR Part 15 Subpart B } \\ \text { IEC / EN 61000-3-2, IEC / EN 61000-3-3, } \\ \text { IEC / EN 61000-4-2/3/4/5/6/8/11 }\end{array} & \\ \hline \text { Canada } & \begin{array}{ll}\text { Industry } \\ \text { Canada }\end{array} & \begin{array}{l}\text { 3M Semi Anechoic Chamber (IC 2324G-1 / IC 2324G-2) to perform }\end{array} & \begin{array}{l}\text { Testing Laboratory } \\ \text { I309 }\end{array} \\ \text { IC 2324G-1 } \\ \text { IC 2324G-2 }\end{array}\right]$

[^1]
6. SETUP OF EQUIPMENT UNDER TEST

6.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

6.2 SUPPORT EQUIPMENT

No.	Device Type	Brand	Model	Series No.	FCC ID	Data Cable	Power Cord
	N/A						

Remark:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

7. FCC PART 15.247 REQUIREMENTS

7.120 DB BANDWIDTH

LIMIT

None; for reporting purposes only.
Test Configuration

TEST PROCEDURE

1. Place the EUT on the table and set it in the transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
3. Set the spectrum analyzer as $\mathrm{RBW}=30 \mathrm{kHz}$, VBW $=100 \mathrm{kHz}$, Sweep $=3.2 \mathrm{~ms}$.
4. Mark the peak frequency and 20dB (upper and lower) frequency.
5. Repeat until all the rest channels are investigated.

TEST RESULTS

No non-compliance noted.

Test Data

For GFSK / DH5

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
Low	2402	0.935
Mid	2441	0.99
High	2480	0.97

For 8DPSK / DH5

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
Low	2402	1.325
Mid	2441	1.275
High	2480	1.3

Test Plot

For GFSK / DH5

20dB Bandwidth (CH Low)

No.	Frequency(MHz)	Level(dBm)	Limit(dBm)	Margin(dBm)
1	2401.5600	-19.37	-19.14	-0.23
2	2402.0100	0.86	-19.14	20.00
3	2402.4950	-19.18	-19.14	-0.04

No.		\triangle Frequency(MHz)	\triangle Level(dB)
1	mk3-mk1	0.935	0.19

20dB Bandwidth (CH Mid)

No.	Frequency(MHz)	Level(dBm)	Limit(dBm)	Margin(dBm)
1	2440.5200	-22.72	-21.79	-0.93
2	2441.0300	-1.79	-21.79	20.00
3	2441.5100	-23.36	-21.79	-1.57

No.		\triangle Frequency(MHz)	\triangle Level(dB)
1	mk3-mk1	0.99	-0.64

20dB Bandwidth (CH High)

No.	Frequency(MHz)	Level(dBm)	Limit(dBm)	Margin(dBm)
1	2479.5400	-22.58	-22.11	-0.47
2	2480.1700	-2.11	-22.11	20.00
3	2480.5100	-22.44	-22.11	-0.33

No.		\triangle Frequency(MHz)	\triangle Level(dB)
1	mk3-mk1	0.97	0.14

For 8DPSK / DH5

20dB Bandwidth (CH Low)

No.	Frequency(MHz)	Level(dBm)	Limit(dBm)	Margin(dBm)
1	2401.3550	-24.22	-23.96	-0.26
2	2402.1950	-3.96	-23.96	20.00
3	2402.6800	-25.23	-23.96	-1.27

No.		\triangle Frequency(MHz)	\triangle Level(dB)
1	mk3-mk1	1.325	-1.01

20dB Bandwidth (CH Mid)

No.	Frequency(MHz)	Level(dBm)	Limit(dBm)	Margin(dBm)
1	2440.3650	-22.19	-21.28	-0.91
2	2441.0200	-1.28	-21.28	20.00
3	2441.6400	-22.58	-21.28	-1.30

No.		\triangle Frequency(MHz)	\triangle Level(dB)
1	mk3-mk1	1.275	-0.39

20dB Bandwidth (CH High)

No.	Frequency(MHz)	Level(dBm)	Limit(dBm)	Margin(dBm)
1	2479.3600	-23.51	-22.91	-0.60
2	2480.0400	-2.91	-22.91	20.00
3	2480.6600	-23.01	-22.91	-0.10

No.	mk3-mk1	\triangle Frequency(MHz)	\triangle Level(dB)
1	1.3	0.5	

7.2 PEAK POWER

LIMIT

The maximum peak output power of the intentional radiator shall not exceed the following:

1. According to $\S 15.247$ (a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW .
2. According to $\S 15.247$ (b)(3), for systems using digital modulation in the bands of $902-928 \mathrm{MHz}$, $2400-2483.5 \mathrm{MHz}$, and $5725-5850 \mathrm{MHz}$: 1 Watt.

Test Configuration

\longrightarrow EUT \longrightarrow| Power Meter |
| :--- |
| Power Sensor |

TEST PROCEDURE

The transmitter output is connected to the Power Meter. The Power Meter is set to the peak power detection.

TEST RESULTS

No non-compliance noted.

Test Data

For GFSK / DH5

Channel	Frequency $(\mathbf{M H z})$	Output Power $(\mathbf{d B m})$	Output Power $\mathbf{(W)}$	Limit $\mathbf{(W)}$	Result
Low	2402	1.62	0.0015		PASS
Mid	2441	1.28	0.0013	0.125	PASS
High	2480	0.58	0.0011		PASS

For 8DPSK / DH5

Channel	Frequency (MHz)	Output Power $(\mathbf{d B m})$	Output Power (W)	Limit (W)	Result
Low	2402	1.31	0.0014		PASS
Mid	2441	1.13	0.0013	0.125	PASS
High	2480	0.42	0.0011		PASS

7.3 BAND EDGES MEASUREMENT

LIMIT

According to $\S 15.247$ (d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB . Attenuation below the general limits specified in $\S 15.209$ (a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in $\S 15.205$ (a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Configuration

For Radiated

For Conducted

TEST PROCEDURE

For Radiated

1. The EUT is placed on a turntable, which is 0.8 m above the ground plane.
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
3. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emission.
4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
(a) PEAK: RBW $=1 \mathrm{MHz} / \mathrm{VBW}=3 \mathrm{MHz} /$ Sweep $=A U T O$
(b) AVERAGE: RBW $=1 \mathrm{MHz} / \mathrm{VBW}=10 \mathrm{~Hz} /$ Sweep=AUTO
5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

For Conducted

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.
The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 300 kHz . The video bandwidth is set to 300 kHz .

TEST RESULTS

Refer to attach spectrum analyzer data chart.

For GFSK / DH5

Band Edges (CH Low)

Detector mode: Peak
Agilent

Start 2.31000 GHz
\#Res BW 1 MHz
Detector mode: Average

* Agilent
\#VBW 3 MHz

Polarity: Vertical
R T
Mkr1 2.37627 GHz $48.18 \mathrm{~dB} \boldsymbol{\mathrm { V }} / \mathrm{m}$

Polarity: Vertical
R L
Mkr1 2.37613 GHz $33.37 \mathrm{~dB} \boldsymbol{\mathrm { V } / \mathrm { m }}$
Ref $119 \mathrm{~dB} \boldsymbol{\mu} / \mathrm{V} / \mathrm{m}$

Detector mode: Peak
Agilent

Start 2.31000 GHz
\#Res BW 1 MHz
Detector mode: Average
\#VBW 3 MHz

Agilent

Band Edges (CH High)

Detector mode: Peak
Agilent

Start 2.48350 GHz
\#Res BW 1 MHz
Detector mode: Average
\#VBW 3 MHz

Polarity: Vertical
R T
Mkr1 2.48353 GHz $49.25 \mathrm{~dB} \boldsymbol{\mu} / \mathrm{m}$

Stop 2.50000 GHz
\#Sweep 100 ms (601 pts)
Polarity: Vertical
R T
Mkr1 2.48353 GHz $34.73 \mathrm{~dB} \boldsymbol{\mathrm { V }} / \mathrm{m}$
Ref $119 \mathrm{~dB} \boldsymbol{\mu} / \mathrm{m}$

Detector mode: Peak
Agilent

Start 2.48350 GHz
\#Res BW 1 MHz
Detector mode: Average
\#VBW 3 MHz

Polarity: Horizontal
R T
Mkr1 2.48350 GHz $55.65 \mathrm{~dB} \boldsymbol{\mathrm { V }} / \mathrm{m}$

Stop 2.50000 GHz
\#Sweep 100 ms (601 pts)

Polarity: Horizontal

R T
Mkr1 2.48364 GHz $33.26 \mathrm{~dB} \boldsymbol{\mu} / \mathrm{m}$
Ref $119 \mathrm{~dB} \boldsymbol{\mu} / \mathrm{V} /$

For 8DPSK / DH5
Band Edges (CH Low)

Detector mode: Peak
Agilent

Start 2.31000 GHz
\#Res BW 1 MHz
Detector mode: Average
\#VBW 3 MHz

Agilent

Detector mode: Peak
Agilent

Start 2.31000 GHz
\#Res BW 1 MHz
Detector mode: Average
\#VBW 3 MHz

Polarity: Horizontal
R T
Mkr1 2.32987 GHz $47.26 \mathrm{~dB} \boldsymbol{\mathrm { V }} / \mathrm{m}$

Stop 2.39000 GHz
\#Sweep 100 ms (601 pts)

Polarity: Horizontal
R T
Mkr1 2.37627 GHz $32.45 \mathrm{~dB} \boldsymbol{\mu} / \mathrm{m}$
Ref $119 \mathrm{~dB} \boldsymbol{\mu} / \mathrm{m}$

Band Edges (CH High)

Detector mode: Peak
Agilent

Start 2.48350 GHz
\#Res BW 1 MHz
Detector mode: Average
\#VBW 3 MHz

Polarity: Vertical
R T
Mkr1 2.48350 GHz $53.24 \mathrm{~dB} \boldsymbol{\mathrm { V }} / \mathrm{m}$
\square

Detector mode: Peak
Agilent

Start 2.48350 GHz
\#Res BW 1 MHz
Detector mode: Average
\#VBW 3 MHz

Agilent

GFSK

Band Edges (CH Low)

No.	Frequency(MHz)	Level(dBm)	Limit(dBm)	Margin(dBm)
1	2400.0000	-45.64	-18.98	-26.66
2	2402.0000	1.02	-18.98	20.00

Band Edges (CH High)

No.	Frequency(MHz)	Level(dBm)	Limit(dBm)	Margin(dBm)
1	2479.8700	0.29	-19.71	20.00
2	2483.8300	-52.07	-19.71	-32.36

Hopping Mode

(CH Low)

No.	Frequency(MHz)	Level(dBm)	Limit(dBm)	Margin(dBm)
1	2399.9200	-48.09	-19.14	-28.95
2	2402.8400	0.86	-19.14	20.00

(CH High)

No.	Frequency(MHz)	Level(dBm)	Limit(dBm)	Margin(dBm)
1	2478.1833	0.23	-19.77	20.00
2	2483.9767	-58.27	-19.77	-38.50

8DPSK

Band Edges (CH Low)

No.	Frequency(MHz)	Level(dBm)	Limit(dBm)	Margin(dBm)
1	2399.6000	-39.63	-20.78	-18.85
2	2401.8400	-0.78	-20.78	20.00

Band Edges (CH High)

No.	Frequency(MHz)	Level(dBm)	Limit(dBm)	Margin(dBm)
1	2480.2000	-1.53	-21.53	20.00
2	2484.8567	-54.24	-21.53	-32.71

Hopping Mode

(CH Low)

No.	Frequency(MHz)	Level(dBm)	Limit(dBm)	Margin(dBm)
1	2399.5600	-40.29	-20.57	-19.72
2	2401.8400	-0.57	-20.57	20.00

(CH High)

No.	Frequency(MHz)	Level(dBm)	Limit(dBm)	Margin(dBm)
1	2478.1467	-1.53	-21.53	20.00
2	2483.7567	-51.56	-21.53	-30.03

7.4 FREQUENCY SEPARATION

LIMIT

According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the $2400-2483.5 \mathrm{MHz}$ band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW .

Test Configuration

TEST PROCEDURE

1. Place the EUT on the table and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
3. Set center frequency of spectrum analyzer = middle of hopping channel.
4. Set the spectrum analyzer as $\mathrm{RBW}=30 \mathrm{kHz}, \mathrm{VBW}=100 \mathrm{kHz}$, Sweep $=3.2 \mathrm{~ms}$.
5. Max hold, mark 3 peaks of hopping channel and record the 3 peaks frequency.

TEST RESULTS

No non-compliance noted

Test Data

For GFSK / DH5

Channel Separation (MHz)	two-thirds of the 20 dB bandwidth (kHz)	Channel Separation Limit	Result
1.025	660	>two-thirds of the 20 dB bandwidth	Pass

For 8DPSK / DH5

Channel Separation (MHz)	two-thirds of the 20 dB bandwidth (kHz)	Channel Separation Limit	Result
0.985	883.3333	>two-thirds of the 20 dB bandwidth	Pass

Test Plot

For GFSK / DH5

Measurement of Channel Separation

No.	Frequency(MHz)	Level(dBm)	Limit(dBm)	Margin(dBm)
1	2440.9950	-2.30		
2	2442.0200	-0.06		

No.		\triangle Frequency(MHz)	\triangle Level(dB)
1	mk2-mk1	1.025	2.24

Measurement of 20dB Bandwidth

No.	Frequency(MHz)	Level(dBm)	Limit(dBm)	Margin(dBm)
1	2440.5200	-22.72	-21.79	-0.93
2	2441.0300	-1.79	-21.79	20.00
3	2441.5100	-23.36	-21.79	-1.57

No.		\triangle Frequency(MHz)	\triangle Level(dB)
1	mk3-mk1	0.99	-0.64

For 8DPSK / DH5

Measurement of Channel Separation

No.	Frequency(MHz)	Level(dBm)	Limit(dBm)	Margin(dBm)
1	2441.0250	-5.45		
2	2442.0100	-1.65		

No.		\triangle Frequency(MHz)	\triangle Level(dB)
1	mk2-mk1	0.985	3.8

Measurement of 20dB Bandwidth

No.	Frequency(MHz)	Level(dBm)	Limit(dBm)	Margin(dBm)
1	2401.3550	-24.22	-23.96	-0.26
2	2402.1950	-3.96	-23.96	20.00
3	2402.6800	-25.23	-23.96	-1.27

No.		\triangle Frequency(MHz)	\triangle Level(dB)
1	mk3-mk1	1.325	-1.01

7.5 NUMBER OF HOPPING FREQUENCY

LIMIT

According to $\S 15.247$ (a)(1)(ii), Frequency hopping systems operating in the $2400 \mathrm{MHz}-2483.5 \mathrm{MHz}$ bands shall use at least 75 hopping frequencies.
According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands shall use at least 15 hopping frequencies.

Test Configuration

TEST PROCEDURE

1. Place the EUT on the table and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
3. Set spectrum analyzer Start $=2400 \mathrm{MHz}$, Stop $=2430.5 \mathrm{MHz}$, Sweep $=$ auto Start $=2430.5 \mathrm{MHz}$, Stop $=2460.5 \mathrm{MHz}$, Sweep $=$ auto and Start $=2460.5 \mathrm{MHz}$, Stop $=$ 2485.5 MHz , Sweep $=$ auto.
4. Set the spectrum analyzer as RBW, VBW $=510 \mathrm{kHz}$.
5. Max hold, view and count how many channel in the band.

TEST RESULTS

No non-compliance noted

Test Data

Result (No. of CH)	Limit (No. of CH)	Result
79	>15	PASS

Test Plot

For GFSK

Channel Number

For 8DPSK

Channel Number

7.6 TIME OF OCCUPANCY (DWELL TIME)

LIMIT

According to $\S 15.247$ (a)(1)(iii), Frequency hopping systems operating in the $2400 \mathrm{MHz}-2483.5 \mathrm{MHz}$ bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

Test Configuration

TEST PROCEDURE

1. Place the EUT on the table and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
3. Set center frequency of spectrum analyzer =operating frequency.
4. Set the spectrum analyzer as RBW, VBW $=1 \mathrm{MHz}$, Sweep $=1 \mathrm{~ms}$.
5. Repeat above procedures until all frequency measured were complete.

TEST RESULTS

No non-compliance noted

Test Data

For GFSK

DH 1: 0.4066 * (1600/2)/79 * 31.6 = 130.112 (ms)
DH 3: 1.67 * (1600/4)/79 * 31.6 = 267.200 (ms)
DH 5: 2.925 * (1600/6)/79 * $31.6=312.000$ (ms)

	Pulse Time $(\mathbf{m s})$	Total of Dwell $(\mathbf{m s})$	Period Time (\mathbf{s})	Limit $(\mathbf{m s})$	Result
DH 1	0.4066	130.112	31.60		PASS
DH 3	1.67	267.200	31.60	400.00	PASS
DH 5	2.925	312.000	31.60		PASS

For 8DPSK

DH 1: 0.425 * (1600/2)/79 * 31.6 = 136.000 (ms)
DH 3: 1.68 * (1600/4)/79 * 31.6 = 268.800 (ms)
DH 5: 2.9333 * (1600/6)/79 * 31.6 = 312.885 (ms)

	Pulse Time $(\mathbf{m s})$	Total of Dwell $(\mathbf{m s})$	Period Time (\mathbf{s})	Limit $(\mathbf{m s})$	Result
DH 1	0.425	136.000	31.60		PASS
DH 3	1.68	268.800	31.60		PASS
DH 5	2.9333	312.885	31.60		PASS

Test Plot

For GFSK

DH 1

No.	Sweep time(ms)	Level(dBm)	Limit(dBm)	Margin(dBm)
1	0.1967	-9.52		
2	0.2100	0.70		
3	0.6033	-11.26		

No.	TTime(ms)	\triangle Level(dB)	
1	mk3-mk1	0.4066	-1.74

DH 3

No.	Sweep time(ms)	Level(dBm)	Limit(dBm)	Margin(dBm)
1	0.7850	-20.43		
2	0.8050	0.69		
3	2.4550	-10.90		

No.		\triangle Time(ms)	\triangle Level(dB)
1	mk3-mk1	1.67	9.53

DH 5

No.	Sweep time(ms)	Level(dBm)	Limit(dBm)	Margin(dBm)
1	0.6417	-27.08		
2	1.5500	-7.74		
3	3.5667	-37.73		

No.		\triangle Time(ms)	\triangle Level(dB)
1	mk3-mk1	2.925	-10.65

For 8DPSK

DH 1

No.	Sweep time(ms)	Level(dBm)	Limit(dBm)	Margin(dBm)
1	0.1950	-12.58		
2	0.4350	-0.23		
3	0.6200	-13.20		

No.		\triangle Time(ms)	\triangle Level(dB)
1	mk3-mk1	0.425	-0.62

DH 3

No.	Sweep time(ms)	Level(dBm)	Limit(dBm)	Margin(dBm)
1	0.7850	-16.39		
2	1.9450	-0.24		
3	2.4650	-13.43		

No.		\triangle Time(ms)	\triangle Level(dB)
1	mk3-mk1	1.68	2.96

DH 5

No.	Sweep time(ms)	Level(dBm)	Limit(dBm)	Margin(dBm)
1	0.7750	-19.56		
2	1.0167	-1.38		
3	3.7083	-12.48		

No.	mk3-mk1	\triangle Time(ms)	\triangle Level(dB)
1	2.9333	7.08	

7.7 SPURIOUS EMISSIONS

7.7.1 Conducted Measurement

LIMIT

According to $\S 15.247(\mathrm{~d})$, in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

Test Configuration

TEST PROCEDURE

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.
The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz . The video bandwidth is set to 100 kHz .
Measurements are made over the 30 MHz to 26 GHz range with the transmitter set to the lowest, middle, and highest channels.

TEST RESULTS

No non-compliance noted

Test Plot

For GFSK / DH5

CH Low

No.	Frequency(MHz)	Level(dBm)	Limit(dBm)	Margin(dBm)
1	1611.4333	-56.41	-20.10	-36.31
2	2402.1500	-0.10	-20.10	20.00
3	23460.1833	-56.77	-20.10	-36.67

CH Mid

No.	Frequency(MHz)	Level(dBm)	Limit(dBm)	Margin(dBm)
1	1611.4333	-53.89	-19.54	-34.35
2	2443.7667	0.46	-19.54	20.00
3	23585.0333	-57.17	-19.54	-37.63

CH High

No.	Frequency(MHz)	Level(dBm)	Limit(dBm)	Margin(dBm)
1	1653.0500	-55.82	-20.57	-35.25
2	2485.3833	-0.57	-20.57	20.00
3	24375.7500	-55.89	-20.57	-35.32

For 8DPSK / DH5

CH Low

No.	Frequency(MHz)	Level(dBm)	Limit(dBm)	Margin(dBm)
1	1611.4333	-55.74	-21.02	-34.72
2	2402.1500	-1.02	-21.02	20.00
3	24292.5167	-56.93	-21.02	-35.91

CH Mid

No.	Frequency(MHz)	Level(dBm)	Limit(dBm)	Margin(dBm)
1	1611.4333	-53.82	-20.84	-32.98
2	2443.7667	-0.84	-20.84	20.00
3	3234.4833	-56.08	-20.84	-35.24

CH High

No.	Frequency(MHz)	Level(dBm)	Limit(dBm)	Margin(dBm)
1	1653.0500	-55.76	-26.72	-29.04
2	2485.3833	-6.72	-26.72	20.00
3	3317.7167	-55.98	-26.72	-29.26

7.7.2 Radiated Emissions

LIMIT

All spurious emissions shall comply with the limits of §15.209(a) and RSS-Gen Table 2 \& Table 5.

RSS-Gen Table 2 \& Table 5: General Field Strength Limits for Transmitters and Receivers at Frequencies Above $30 \mathrm{MHz}{ }^{\text {(Note) }}$

Frequency (MHz)	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)	
	Transmitters	Receivers
$30-88$	$100(3 \mathrm{nW})$	$100(3 \mathrm{nW})$
$88-216$	$150(6.8 \mathrm{nW})$	$150(6.8 \mathrm{nW})$
$216-960$	$200(12 \mathrm{nW})$	$200(12 \mathrm{nW})$
Above 960	$500(75 \mathrm{nW})$	$500(75 \mathrm{nW})$

Note: *Measurements for compliance with limits in the above table may be performed at distances other than 3 metres, in accordance with Section 7.2.7.
Transmitting devices are not permitted in Table 1 bands or, unless stated otherwise, in TV bands ($54-72 \mathrm{MHz}, 76-88 \mathrm{MHz}, 174-216 \mathrm{MHz}, 470-608 \mathrm{MHz}$ and $614-806 \mathrm{MHz}$).

RSS-Gen Table 6: General Field Strength Limits for Transmitters at Frequencies Below 30 MHz (Transmit)

Frequency	Field Strength (microvolts/m)	Magnetic (microamperes/m)	Measurement Distance (metres)
$9-490 \mathrm{kHz}$	$2,400 / \mathrm{F}(\mathrm{F}$ in kHz)	$2,400 / 377 \mathrm{~F}(\mathrm{~F}$ in kHz)	3000
$490-1,705 \mathrm{kHz}$	$24,000 / \mathrm{F}(\mathrm{F}$ in kHz)	$24,000 / 377 \mathrm{~F}(\mathrm{~F}$ in kHz)	30
$1.705-30 \mathrm{MHz}$	30	$\mathrm{~N} / \mathrm{A}$	30

Note: The emission limits for the bands $9-90 \mathrm{kHz}$ and $110-490 \mathrm{kHz}$ are based on measurements employing an average detector.

Test Configuration

$9 \mathrm{kHz} \sim 30 \mathrm{MHz}$

$\mathbf{3 0 M H z} \sim 1 \mathrm{GHz}$

Above $1 \mathbf{G H z}$

TEST PROCEDURE

1. The EUT is placed on a turntable, which is 0.8 m above ground plane.
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
3. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
6. Set the spectrum analyzer in the following setting as:

Below 1GHz:
RBW=100kHz / VBW=300kHz / Sweep=AUTO

Above 1GHz:
(a) PEAK: RBW $=1 \mathrm{MHz} / \mathrm{VBW}=3 \mathrm{MHz} /$ Sweep $=A U T O$
(b) AVERAGE: RBW $=1 \mathrm{MHz} / \mathrm{VBW}=10 \mathrm{~Hz} / \mathrm{Sweep}=\mathrm{AUTO}$
7. Repeat above procedures until the measurements for all frequencies are complete.

Below 1 GHz

Operation Mode:	Normal Link	Test Date:	January 15, 2013
Temperature:	$27^{\circ} \mathrm{C}$	Tested by:	Shawn Wu
Humidity:	53% RH	Polarity:	Ver. / Hor.

Frequency $\mathbf{(M H z)}$	Reading $(\mathbf{d B u} \mathbf{)}$	Correction Factor $\mathbf{(d B / m)}$	Result $(\mathbf{d B u V / m})$	Limit $(\mathbf{d B u V / m})$	Margin $\mathbf{(d B)}$	Remark	Ant.Pol. $(\mathbf{H} / \mathbf{V})$
41.3167	62.72	-28.78	33.94	40.00	-6.06	peak	V
99.5167	49.90	-31.82	18.08	43.50	-25.42	peak	V
217.5333	46.27	-29.96	16.31	46.00	-29.69	peak	V
409.9167	44.61	-25.27	19.34	46.00	-26.66	peak	V
448.7167	45.20	-24.24	20.96	46.00	-25.04	peak	V
537.6333	43.60	-22.94	20.66	46.00	-25.34	peak	V
41.3167	54.64	-28.78	25.86	40.00	-14.14	peak	H
240.1667	48.93	-29.81	19.12	46.00	-26.88	peak	H
442.2500	46.44	-24.41	22.03	46.00	-23.97	peak	H
710.6167	45.92	-20.21	25.71	46.00	-20.29	peak	H
749.4167	45.11	-19.53	25.58	46.00	-20.42	peak	H
786.6000	45.26	-19.17	26.09	46.00	-19.91	peak	H

Remark:

1. No emission found between lowest internal used/generated frequency to 30 MHz ($9 \mathrm{kHz} \sim 30 \mathrm{MHz}$)
2. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using peak/quasi-peak detector mode.
3. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit or as required by the applicant.
4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
5. $\operatorname{Margin}(d B)=$ Remark result $(d B u V / m)-$ Quasi-peak limit $(d B u V / m)$.

Above $1 \mathbf{G H z}$	
Operation Mode:	TX / GFSK / DH5 / CH Low
Temperature:	$27^{\circ} \mathrm{C}$
Humidity:	$53 \% \mathrm{RH}$

Test Date: January 16, 2013
Tested by: Shawn Wu
Polarity: Ver. / Hor.

Frequency $(\mathbf{M H z})$	Reading $(\mathbf{d B u V})$	Correction $(\mathbf{d B} / \mathbf{m})$	Result $(\mathbf{d B u V} / \mathbf{m})$	Limit $(\mathbf{d B u V} / \mathbf{m})$	Margin $(\mathbf{d B})$	Remark	Ant.Pol. $(\mathbf{H} / \mathbf{V})$
1966.667	66.94	-19.46	47.48	74.00	-26.52	peak	V
N/A							
							V
1973.333	68.67	-19.39	49.28	74.00	-24.72	peak	H
N/A							

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using peak/average detector mode.
3. Average test would be performed if the peak result were greater than the average limit .
4. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
6. \quad Margin $(d B)=$ Remark result (dBuV/m) - Average limit (dBuV/m).

Operation Mode: TX / GFSK / DH5 / CH Mid
Temperature: $\quad 27^{\circ} \mathrm{C}$
Humidity: $\quad 53$ \% RH

Test Date: January 16, 2013
Tested by: Shawn Wu
Polarity: Ver. / Hor.

Frequency $(\mathbf{M H z})$	Reading $(\mathbf{d B u V})$	Correction $(\mathbf{d B} / \mathbf{m})$	Result $(\mathbf{d B u V} / \mathbf{m})$	Limit $(\mathbf{d B u V} / \mathbf{m})$	Margin $(\mathbf{d B})$	Remark	Ant.Pol. $(\mathbf{H} / \mathbf{V})$
1966.667	65.77	-19.46	46.31	74.00	-27.69	peak	V
N/A							
1970.000	65.82	-19.42	46.40	74.00	-27.60	peak	H
N/A							

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using peak/average detector mode.
3. Average test would be performed if the peak result were greater than the average limit.
4. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
6. \quad Margin $(d B)=$ Remark result $(d B u V / m)-$ Average limit (dBuV/m).

Operation Mode: TX / GFSK / DH5 / CH High
Temperature: $\quad 27^{\circ} \mathrm{C}$
Humidity: $\quad 53$ \% RH

Test Date: January 16, 2013
Tested by: Shawn Wu
Polarity: Ver. / Hor.

Frequency $(\mathbf{M H z})$	Reading $(\mathbf{d B u V})$	Correction $(\mathbf{d B} / \mathbf{m})$	Result $(\mathbf{d B u V} / \mathbf{m})$	Limit $(\mathbf{d B u V} / \mathbf{m})$	Margin $(\mathbf{d B})$	Remark	Ant.Pol. $(\mathbf{H} / \mathbf{V})$
2266.667	67.59	-18.52	49.07	74.00	-24.93	peak	V
N/A							
1973.333	67.05	-19.39	47.66	74.00	-26.34	peak	H
2266.667	66.74	-18.52	48.22	74.00	-25.78	peak	H
N/A							

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using peak/average detector mode.
3. Average test would be performed if the peak result were greater than the average limit.
4. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
6. Margin $(d B)=$ Remark result $(d B u V / m)-$ Average limit $(d B u V / m)$.

Operation Mode: TX / 8DPSK / DH5 / CH Low
Temperature: $\quad 27^{\circ} \mathrm{C}$
Humidity: $\quad 53$ \% RH

Test Date: January 16, 2013
Tested by: Shawn Wu
Polarity: Ver. / Hor.

Frequency $(\mathbf{M H z})$	Reading $(\mathbf{d B u V})$	Correction $(\mathbf{d B} / \mathbf{m})$	Result $(\mathbf{d B u V} / \mathbf{m})$	Limit $(\mathbf{d B u V} / \mathbf{m})$	Margin $(\mathbf{d B})$	Remark	Ant.Pol. $(\mathbf{H} / \mathbf{V})$
2766.667	63.98	-17.23	46.75	74.00	-27.25	peak	V
N/A							
2466.667	64.67	-17.94	46.73	74.00	-27.27	peak	H
N/A							

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using peak/average detector mode.
3. Average test would be performed if the peak result were greater than the average limit.
4. Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
6. Margin $(d B)=$ Remark result $(d B u V / m)-$ Average limit $(d B u V / m)$.

Operation Mode: TX / 8DPSK / DH5 / CH Mid
Temperature: $\quad 27^{\circ} \mathrm{C}$
Humidity: $\quad 53$ \% RH

Test Date: January 16, 2013
Tested by: Shawn Wu
Polarity: Ver. / Hor.

Frequency $(\mathbf{M H z})$	Reading $(\mathbf{d B u V})$	Correction $(\mathbf{d B} / \mathbf{m})$	Result $(\mathbf{d B u V} / \mathbf{m})$	Limit $(\mathbf{d B u V} / \mathbf{m})$	Margin $(\mathbf{d B})$	Remark	Ant.Pol. $(\mathbf{H} / \mathbf{V})$
2810.000	64.21	-17.12	47.09	74.00	-26.91	peak	V
N/A							
2240.000	65.02	-18.58	46.44	74.00	-27.56	peak	H
N/A							

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using peak/average detector mode.
3. Average test would be performed if the peak result were greater than the average limit.
4. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
6. Margin $(d B)=$ Remark result $(d B u V / m)-$ Average limit $(d B u V / m)$.

Operation Mode: TX / 8DPSK / DH5 / CH High
Temperature: $\quad 27^{\circ} \mathrm{C}$
Humidity: $\quad 53$ \% RH

Test Date: January 16, 2013
Tested by: Shawn Wu
Polarity: Ver. / Hor.

Frequency $(\mathbf{M H z})$	Reading $(\mathbf{d B u V})$	Correction $(\mathbf{d B} / \mathbf{m})$	Result $(\mathbf{d B u V} / \mathbf{m})$	Limit $(\mathbf{d B u V} / \mathbf{m})$	Margin $(\mathbf{d B})$	Remark	Ant.Pol. $(\mathbf{H} / \mathbf{V})$
2783.333	64.06	-17.19	46.87	74.00	-27.13	peak	V
N/A							
2266.667	65.45	-18.52	46.93	74.00	-27.07	peak	H
N/A							

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using peak/average detector mode.
3. Average test would be performed if the peak result were greater than the average limit.
4. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
6. Margin $(d B)=$ Remark result $(d B u V / m)-$ Average limit $(d B u V / m)$.

7.8 POWERLINE CONDUCTED EMISSIONS

LIMIT

According to §15.207(a) \& RSS-Gen §7.2.4, except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a $50 \mu \mathrm{H} / 50$ ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency Range (MHz)	Limits (dB \boldsymbol{V})	
	Quasi-peak	Average
0.15 to 0.50	66 to 56^{*}	56 to 46*
0.50 to 5	56	46
5 to 30	60	50

* Decreases with the logarithm of the frequency.

Test Configuration

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

TEST PROCEDURE

1. The EUT was placed on a table, which is 0.8 m above ground plane.
2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
3. Repeat above procedures until all frequency measured were complete.

TEST RESULTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Test Data

Operation Mode:	Normal Link	Test Date: Tested by:	2013/1/31
Temperature:	$26^{\circ} \mathrm{C}$		Rex Huang

Humidity: $\quad 60 \%$ RH

Freq. $(\mathbf{M H z})$	QP Reading $(\mathbf{d B u V})$	AV Reading $(\mathbf{d B u V})$	Corr. factor $(\mathbf{d B})$	QP Result $(\mathbf{d B u V})$	AV Result $(\mathbf{d B u V})$	QP Limit $(\mathbf{d B u V})$	AV Limit $(\mathbf{d B u V})$	QP Margin $(\mathbf{d B})$	AV Margin $(\mathbf{d B})$	Note
0.1502	41.62	28.46	0.07	41.69	28.53	65.99	55.99	-24.30	-27.46	L1
0.1949	47.33	35.83	0.06	47.39	35.89	63.83	53.83	-16.44	-17.94	L1
0.2600	36.93	27.74	0.06	36.99	27.80	61.43	51.43	-24.44	-23.63	L1
0.3260	33.14	22.94	0.07	33.21	23.01	59.55	49.55	-26.34	-26.54	L1
0.4544	26.83	19.27	0.07	26.90	19.34	56.79	46.79	-29.89	-27.45	L1
16.9751	28.79	22.41	0.29	29.08	22.70	60.00	50.00	-30.92	-27.30	L1
0.1947	47.75	38.30	0.03	47.78	38.33	63.83	53.83	-16.05	-15.50	L2
0.3246	38.89	30.55	0.02	38.91	30.57	59.59	49.59	-20.68	-19.02	L2
0.4551	34.73	27.18	0.02	34.75	27.20	56.78	46.78	-22.03	-19.58	L2
0.6583	32.31	26.30	0.02	32.33	26.32	56.00	46.00	-23.67	-19.68	L2
1.1031	27.61	22.05	0.03	27.64	22.08	56.00	46.00	-28.36	-23.92	L2
16.6374	31.38	23.86	0.22	31.60	24.08	60.00	50.00	-28.40	-25.92	L2

Remark:

1. Measuring frequencies from 0.15 MHz to 30 MHz .
2. The emissions measured in frequency range from 0.15 MHz to 30 MHz were made with an instrument using Quasi-peak detector and average detector.
3. The IF bandwidth of SPA between 0.15 MHz to 30 MHz was 10 kHz ; the IF bandwidth of Test Receiver between 0.15 MHz to 30 MHz was 9 kHz ;
4. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line)
5. "-" means Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.

Test Plots

Conducted emissions (Line 1)

Conducted emissions (Line 2)

[^0]: Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

[^1]: * No part of this report may be used to claim or imply product endorsement by A2LA or any agency of the US Government.

