FCC 47 CFR PART 15 SUBPART E

TEST REPORT

For

Rugged Tablet

Model: IMT-BT

Issued to

ADLINK TECHNOLOGY INC. 9F, No.166, Jian Yi Rd., Zhonghe Dist., New Taipei City, 235 Taiwan

Issued by

Compliance Certification Services Inc. No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.) http://www.ccsrf.com service@ccsrf.com Issued Date: August 31, 2016

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	August 31, 2016	Initial Issue	ALL	Becca Chen
01	October 21, 2016	 Modify FCC ID. Added EUT Antenna Transmitter description. (P6) 	ALL	Becca Chen

TABLE OF CONTENTS

1.	TES	T RESULT CERTIFICATION	4
2.	EUT	DESCRIPTION	5
3.	TES	T METHODOLOGY	6
3	8.1	EUT CONFIGURATION	6
3	3.2	EUT EXERCISE	6
3	3.3	GENERAL TEST PROCEDURES	6
3	3.4	FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS	7
3	8.5	DESCRIPTION OF TEST MODES	8
4.	INS	RUMENT CALIBRATION	10
4	1.1	MEASURING INSTRUMENT CALIBRATION	10
4	1.2	MEASUREMENT EQUIPMENT USED	10
4	1.3	MEASUREMENT UNCERTAINTY	11
5.	FAC	ILITIES AND ACCREDITATIONS	12
5	5.1	FACILITIES	12
5	5.2	EQUIPMENT	12
5	5.3	LABORATORY ACCREDITATIONS AND LISTING	12
5	5.4	TABLE OF ACCREDITATIONS AND LISTINGS	13
6.	SET	UP OF EQUIPMENT UNDER TEST	14
6	6.1	SETUP CONFIGURATION OF EUT	14
6	6.2	SUPPORT EQUIPMENT	14
7.	FCC	PART 15 REQUIREMENTS	15
7	7.1	99% BANDWIDTH	15
8.	FCC	PART 15 REQUIREMENTS	38
8	3.1	26 DB EMISSION BANDWIDTH	
8	3.2	MAXIMUM CONDUCTED OUTPUT POWER	60
8	3.3	BAND EDGES MEASUREMENT	64
8	3.4	PEAK POWER SPECTRAL DENSITY	122
8	3.5	RADIATED UNDESIRABLE EMISSION	144
8	8.6	POWERLINE CONDUCTED EMISSIONS	205
8	8.7	FREQUENCY STABILITY	
8	8.8	DYNAMIC FREQUENCY SELECTION	210
AP	PEN	DIX I PHOTOGRAPHS OF TEST SETUP	223

1. TEST RESULT CERTIFICATION

Applie	cant:	ADLINK TECHNOLOGY INC. 9F, No.166, Jian Yi Rd., Zhonghe Dist., New Taipei City, 235 Taiwan					
Manu	facturer:	ADLINK TECHNOLOGY INC. 9F, No.166, Jian Yi Rd., Zhonghe Dist., New Taipei City, 235 Taiwan					
Equip	ment Under Test:	Rugged Tablet					
Mode	I Number:	IMT-BT					
Trade	Name:						
Date of Test:		May 13 ~ August 31, 2016					
	APPLICABLE STANDARDS						

STANDARD	TEST RESULT			
FCC 47 CFR Part 15 Subpart E	No non-compliance noted			

We hereby certify that:

Compliance Certification Services Inc. tested the above equipment. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10: 2013 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15.407.

The test results of this report relate only to the tested sample identified in this report.

Approved by:

Villa Lee

Miller Lee Manager Compliance Certification Services Inc.

Tested by:

is. Li

Dennis Li Engineer Compliance Certification Services Inc.

2. EUT DESCRIPTION

Product	Rugged Table	ət	Rugged Tablet					
Model Number	IMT-BT	IMT-BT						
Trade Name								
Model Discrepancy	N/A							
Received Date	April 20, 2016	3						
Power supply	 VDC from Power Adapter SINPRO / HPU32A-105 I/P: 100-240Vac ~ 47-63Hz, 0.6-0.4A O/P: +12Vdc, 2.5A max. Power from Battery ADLINK / IMTBT-B6300L-1 Rating: 7.6V, 6300mAh (47.88Wh) 							
		Mode	Frequency Ran (MHz)	Numbe	r of Channels			
		IEEE 802.11a	5180 ~ 5240	4 (Channels			
	U-NII-1	IEEE 802.11n HT 20 MHz	5180 ~ 5240	4 (Channels			
	0-1111-1	IEEE 802.11n HT 40 MHz	5190 ~ 5230	2 (Channels			
		IEEE 802.11ac VHT 80 MHz	5210	1 (Channels			
Operating Frequency		IEEE 802.11a	5260 ~ 5320	4 (Channels			
Range &	U-NII-2A	IEEE 802.11n HT 20 MHz	5260 ~ 5320	4 (Channels			
Number of Channels	0-INII-ZA	IEEE 802.11n HT 40 MHz	5270 ~ 5310	2 (Channels			
		IEEE 802.11ac VHT 80 MHz	5290		Channel			
		IEEE 802.11a	5500 ~ 5700	8 (Channels			
	U-NII-2C	IEEE 802.11n HT 20 MHz	5500 ~ 5700	8 (Channels			
	0 111 20	IEEE 802.11n HT 40 MHz	5510 ~ 5670	-	Channels			
		IEEE 802.11ac VHT 80 MHz	5530		Channel			
		Mode	Frequency Range (MHz)	Output Power (dBm)	Output Power (w)			
		IEEE 802.11a	5180 ~ 5240	14.14	0.0259			
		IEEE 802.11n HT 20 MHz	5180 ~ 5240	14.14	0.0259			
	U-NII-1	IEEE 802.11n HT 40 MHz	5190 ~ 5230	13.47	0.0222			
		IEEE 802.11ac VHT 80 MHz	5210	11.07	0.0128			
Transmit Power		IEEE 802.11a	5260 ~ 5320	16.23	0.0420			
	U-NII-2A	IEEE 802.11n HT 20 MHz	5260 ~ 5320	14.99	0.0316			
	0-111-274	IEEE 802.11n HT 40 MHz	5270 ~ 5310	15.43	0.0349			
		IEEE 802.11ac VHT 80 MHz	5290	9.82	0.0096			
		IEEE 802.11a	5500 ~ 5700	15.73	0.0374			
	U-NII-2C	IEEE 802.11n HT 20 MHz	5500 ~ 5700	14.43	0.0277			
		IEEE 802.11n HT 40 MHz	5510 ~ 5670	16.87	0.0486			
		IEEE 802.11ac VHT 80 MHz	5530	11.77	0.0150			
Modulation Technique	OFDM (64QA	M, 16QAM, QPSK, BPSK	()					
Antenna Specification		69-D / Gain: 4.11dBi		SINBON Main: A9702470-D / Gain: 5.38dBi Aux: A9702469-D / Gain: 4.11dBi				

Remark: 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10: 2013 and FCC CFR 47 Part 15.207, 15.209, 15.407, KDB 644545 D03 v01 and KDB 789033 D02 General UNII Test Procedures New Rules v01r03.

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed for RF field strength measurement to meet the Commissions requirement, and is operated in a manner intended to generate the maximum emission in a continuous normal application.

3.2 EUT EXERCISE

The EUT is operated in the engineering mode to fix the Tx frequency for the purposes of measurement.

According to its specifications, the EUT must comply with the requirements of Section 15.407 under the FCC Rules Part 15 Subpart E.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

According to the requirements in ANSI C63.10: 2013, the conducted emission from the EUT is measured in the frequency range between 0.15 MHz and 30MHz, using the CISPR Quasi-Peak detector mode.

Radiated Emissions

The EUT is placed on the turntable, which is 1.5 m above the ground plane. The turntable is then rotated for 360 degrees to determine the proper orientation for the maximum emission level. The EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission level. And, each emission is to be maximized by changing the horizontal and vertical polarization of the receiving antenna. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in ANSI C63.10: 2013.

Antenna	ТΧ	RX
Main	V	Х
Aux	Х	V

EUT Antenna Transmitter description

3.4 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	(²)
13.36 - 13.41	322 - 335.4		

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

3.5 DESCRIPTION OF TEST MODES

The EUT (model: IMT-BT) had been tested under operating condition.

Software used to control the EUT for staying in continuous transmitting mode was programmed.

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz, which worst case was in normal link mode only.

U-NII-1:

IEEE 802.11a for 5180 ~ 5240MHz:

Channel Low (5180MHz), Channel Mid (5220MHz) and Channel High (5240MHz) with 6Mbps data rate were chosen for full testing.

IEEE 802.11n HT 20 MHz for 5180 ~ 5240MHz:

Channel Low (5180MHz), Channel Mid (5220MHz) and Channel High (5240MHz) with 6.5Mbps data rate were chosen for full testing.

IEEE 802.11n HT 40 MHz for 5190 ~ 5230MHz:

Channel Low (5190MHz) and Channel High (5230MHz) with 13.5Mbps data rate were chosen for full testing.

IEEE 802.11ac VHT 80 MHz for 5210MHz:

Channel Mid (5210MHz) with 29.3Mbps data rate were chosen for full testing.

U-NII-2A:

IEEE 802.11a for 5260 ~ 5320MHz:

Channel Low (5260MHz), Channel Mid (5280MHz) and Channel High (5320MHz) with 6Mbps data rate were chosen for full testing.

IEEE 802.11n HT 20 MHz for 5260 ~ 5320MHz:

Channel Low (5260MHz), Channel Mid (5280MHz) and Channel High (5320MHz) with 6.5Mbps data rate were chosen for full testing.

IEEE 802.11n HT 40 MHz for 5270 ~ 5310MHz:

Channel Low (5270MHz) and Channel High (5310MHz) with 13.5Mbps data rate were chosen for full testing.

IEEE 802.11ac VHT 80 MHz for 5290MHz:

Channel Mid (5290MHz) with 13.5Mbps data rate was chosen for full testing.

U-NII-2C:

IEEE 802.11a for 5500 ~ 5700MHz:

Channel Low (5500MHz), Channel Mid (5580MHz) and Channel High (5700MHz) with 6Mbps data rate were chosen for full testing.

IEEE 802.11n HT 20 MHz for 5500 ~ 5700MHz:

Channel Low (5500MHz), Channel Mid (5580MHz) and Channel High (5700MHz) with 6.5Mbps data rate were chosen for full testing.

IEEE 802.11n HT 40 MHz for 5510 ~ 5670MHz:

Channel Low (5510MHz), Channel Mid (5550MHz) and Channel High (5670MHz) with 13.5Mbps data rate were chosen for full testing.

IEEE 802.11ac VHT 80 MHz for 5530MHz:

Channel Low (5530MHz) with 13.5Mbps data rate was chosen for full testing.

For Conducted & Conduction

The field strength of spurious emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the worst case was recorded.

For Radiated

The field strength of spurious emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (Y axis) and the worst case was recorded.

4. INSTRUMENT CALIBRATION

4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

4.2 MEASUREMENT EQUIPMENT USED

Equipment Used for Emissions Measurement

Conducted Emissions Test Site						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Power Meter	Anritsu	ML2495A	1012009	2016/07/04	2017/07/03	
Power Meter	Anritsu	MA2411B	917072	2016/07/04	2017/07/03	
Spectrum Analyzer	R&S	FSV 40	101073	2016/08/01	2017/07/31	

Wugu 966 Chamber A						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Spectrum Analyzer	Agilent	E4446A	US42510252	2015/12/08	2016/12/07	
Loop Ant	COM-POWER	AL-130	121051	2016/02/25	2017/02/24	
Bilog Antenna	Sunol Sciences	JB1	A052609	2016/03/20	2017/03/21	
Pre-Amplifier	EMEC	EM330	60609	2016/06/08	2017/06/07	
Horn Antenna	ETC	MCTD 1209	DRH13M02003	2015/09/02	2016/09/01	
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	N.C.R	
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R	
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R	

Conducted Emission Room # B						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
LISN	R&S	ENV216	101054	2016/05/11	2017/05/10	
Receiver	R&S	ESCI	101073	2015/09/09	2016/09/08	
Software	CCS-3A1-CE					

Remark:

1. Each piece of equipment is scheduled for calibration once a year and Precision Dipole

is scheduled for calibration once three years.

2. N.C.R. = No Calibration Required.

4.3 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
Powerline Conducted Emission	+/- 1.2575
3M Semi Anechoic Chamber / 30M~200M	+/- 4.0138
3M Semi Anechoic Chamber / 200M~1000M	+/- 3.9483
3M Semi Anechoic Chamber / 1G~8G	+/- 2.5975
3M Semi Anechoic Chamber / 8G~18G	+/- 2.6112
3M Semi Anechoic Chamber / 18G~26G	+/- 2.7389
3M Semi Anechoic Chamber / 26G~40G	+/- 2.9683

Remark: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No.199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C.
 Tel: 886-2-2217-0894 / Fax: 886-2-2217-1029

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)
 Tel: 886-2-2299-9720 / Fax: 886-2-2298-4045

No.81-1, Lane 210, Bade 2nd Rd., Luchu Hsiang, Taoyuan Hsien 338, Taiwan

Tel: 886-3-324-0332 / Fax: 886-3-324-5235

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10: 2013 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, ridged waveguide, horn and/or Loop. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 LABORATORY ACCREDITATIONS AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by American Association for Laboratory Accreditation Program for the specific scope accreditation under Lab Code: 0824-01 to perform Electromagnetic Interference tests according to FCC Part 15 and CISPR 22 requirements. In addition, the test facilities are listed with Industry Canada, Certification and Engineering Bureau, IC 2324G-1 for 3M Semi Anechoic Chamber A, 2324G-2 for 3M Semi Anechoic Chamber B.

5.4 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3M Semi Anechoic Chamber (FCC MRA: TW1039) to perform FCC Part 15 measurements	FCC MRA: TW1039
Taiwan	TAF	LP0002, RTTE01, FCC Method-47 CFR Part 15 Subpart C, D, E, RSS-247, RSS-310 IDA TS SRD, AS/NZS 4268, AS/NZS 4771, TS 12.1 & 12,2, ETSI EN 300 440-1, ETSI EN 300 440-2, ETSI EN 300 328, ETSI EN 300 220-1, ETSI EN 300 220-2, ETSI EN 301 893, ETSI EN 301 489-1/3/7/17 FCC OET Bulletin 65 + Supplement C, EN 50360, EN 50361, EN 50371, RSS 102, EN 50383, EN 50385, EN 50392, IEC 62209, CNS 14958-1, CNS 14959 FCC Method –47 CFR Part 15 Subpart B IEC / EN 61000-3-2, IEC / EN 61000-3-3, IEC / EN 61000-4-2/3/4/5/6/8/11	Testing Laboratory 1309
Canada	Industry Canada	3M Semi Anechoic Chamber (IC 2324G-1 / IC 2324G-2) to perform	Canada IC 2324G-1 IC 2324G-2

* No part of this report may be used to claim or imply product endorsement by A2LA or any agency of the US Government.

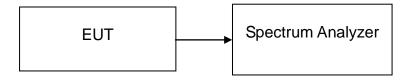
6. SETUP OF EQUIPMENT UNDER TEST

6.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix I for the actual connections between EUT and support equipment.

6.2 SUPPORT EQUIPMENT

No.	Device Type	Brand	Model	Series No.	FCC ID	Data Cable	Power Cord
	N/A						


Remark:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

7. FCC PART 15 REQUIREMENTS

7.1 99% BANDWIDTH

Test Configuration TEST PROCEDURE

The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used since a peak or, peak hold.

TEST RESULTS

Test mode: IEEE 802.11a mode / 5180 ~ 5240MHz

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	5180	17.0043
Mid	5220	16.9319
High	5240	17.0043

Test mode: IEEE 802.11n HT 20 mode / 5180 ~ 5240MHz

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	5180	18.0173
Mid	5220	17.9450
High	5240	17.9450

Test mode: IEEE 802.11n HT 40 MHz mode / 5190 ~ 5230MHz

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	5190	37.3950
High	5230	37.3950

Test mode: IEEE 802.11ac VHT 80 MHz mode / 5210MHz

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Mid	5210	75.4848

Test mode: IEEE 802.11a mode / 5260 ~ 5320MHz

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	5260	16.9030
Mid	5280	16.9030
High	5320	16.8451

Test mode: IEEE 802.11n HT 20 MHz mode / 5260 ~ 5320MHz

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	5260	17.9450
Mid	5280	17.8871
High	5320	17.9450

Test mode: IEEE 802.11n HT 40 MHz mode / 5270 ~ 5310MHz

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	5270	37.4819
High	5310	37.3371

Test mode: IEEE 802.11ac VHT 80 MHz mode / 5290MHz

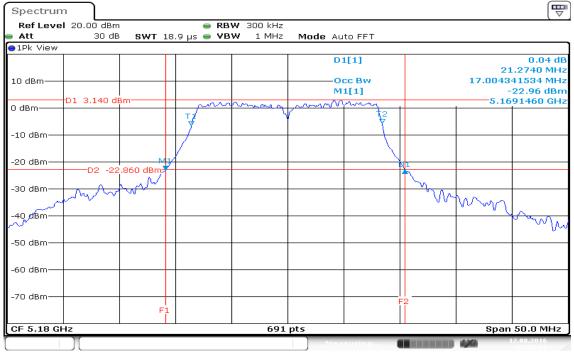
Channel	Frequency (MHz)	99% Bandwidth (MHz)
Mid	5290	75.4848

Test mode: IEEE 802.11a mode / 5500 ~ 5700MHz

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	5500	17.0188
Mid	5580	17.4529
High	5700	17.0188

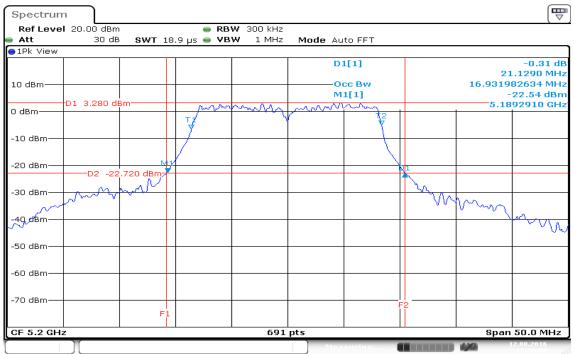
Test mode: IEEE 802.11n HT 20 MHz mode / 5500 ~ 5700MHz

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	5500	17.9450
Mid	5580	18.4081
High	5700	17.9450


Test mode: IEEE 802.11n HT 40 MHz mode / 5510 ~ 5670MHz

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	5510	37.3371
Mid	5550	37.0477
High	5670	37.9160

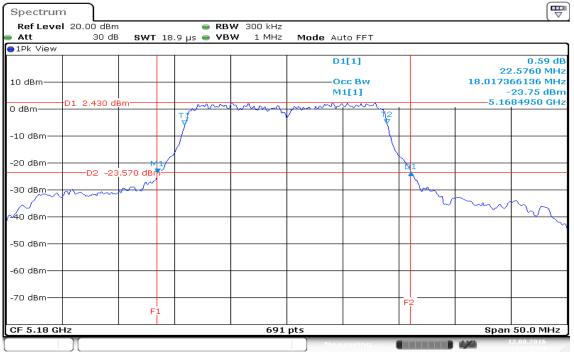
Test mode: IEEE 802.11ac VHT 80 MHz mode / 5530 MHz


Channel	Frequency (MHz)	99% Bandwidth (MHz)
Mid	5530	75.2532

IEEE 802.11a mode / 5180 ~ 5240MHz 99% Bandwidth (CH Low)

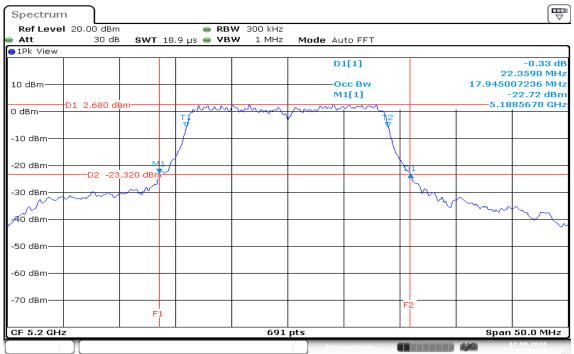
Date: 12.AUG.2016 13:30:11

99% Bandwidth (CH Mid)


Date: 12.AUG.2016 15:29:00

99% Bandwidth (CH High)

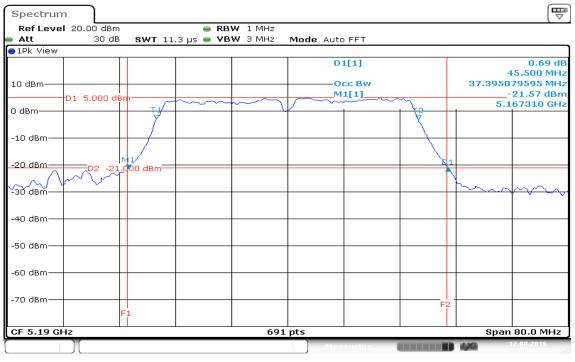
Ref Level 2	0.00 dBm		•	RBW	300 kHz					
Att	30 dB	SWT	18.9 µs 🖷	VBW	1 MHz	Mode Au	ito FFT			
●1Pk View										
						D	1[1]			0.67 d
10.10										1.4910 MH
10 dBm							CC BW 1[1]			41534 MH -21.68 dBr
	4.390 dE	3m	n	m	man		thing			290740 GH
0 dBm			τí		Ľ	<u> </u>	12			1
			l ∮							
-10 dBm							+			
-20 dBm	-D2 -21	.610 dBm	¥				,	<u></u>		
	m	$\sim \sim \sim$						WW		
-30 dBm	- ~u~								Ja way	
$\sim \sim 1$										m
-40 dBm										<u>~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-50 dBm										
-60 dBm										
-70 dBm								<u> </u>		
		F	1					F2		
			Ĩ I							
CF 5.24 GHz					691	pts			Span	1 50.0 MHz


Date: 12.AUG.2016 13:36:17

IEEE 802.11n HT 20 mode / 5180 ~ 5240MHz 99% Bandwidth (CH Low)

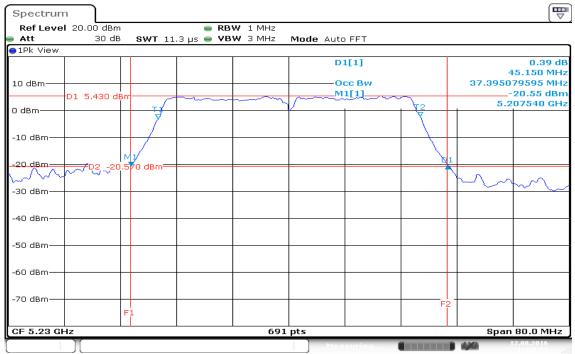
Date: 12.AUG.2016 13:38:34

99% Bandwidth (CH Mid)

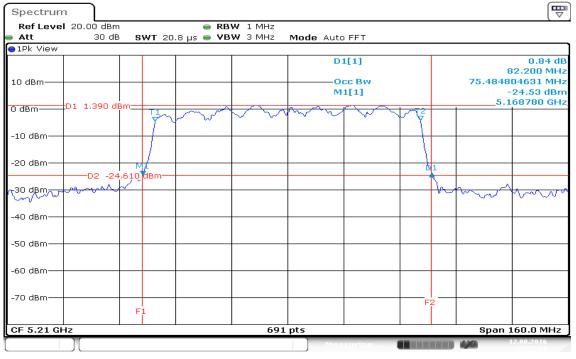

Date: 12.AUG.2016 15:31:28

99% Bandwidth (CH High)

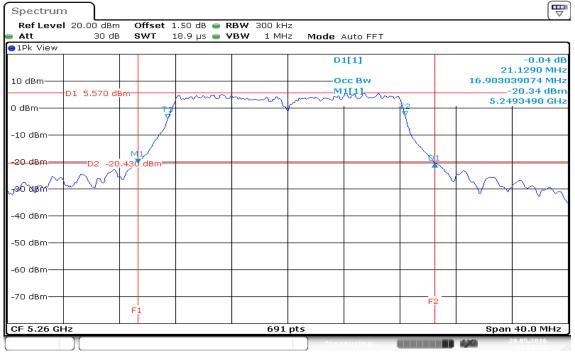
Ref Leve	el 20.00 dBm	1		RBW	300 kHz						
Att	30 dB	SWT	18.9 µs	VBW	1 MHz	Mode A	uto FFT				
∋1Pk View											
						E	01[1]				0.04 d
10 - 10							Dec Bw				2.4310 MH 07236 MH
10 dBm—							M1[1]				21.90 dBr
	D1 3.510 di	Bm —	-	min	mon	min					84230 GH
0 dBm——			Ţ		- <u></u>	C.	12				
			- I Σ				I Y				
-10 dBm—							+ \				
			. /				N N				
-20 dBm—	D2 _22		5					à	1		
_	D2 -22	W7V4						11	<i>کر</i> ا		
-30 d8m—	pm- ·							+	w	<u>~</u>	
										\sim	m
-40 dBm—								+			
-50 dBm—								\vdash			
-60 dBm—											
-70 dBm—								\downarrow			
		 F1						F	2		
		l İ									
CF 5.24 G	Hz				691	pts				Span	50.0 MHz


Date: 12.AUG.2016 13:42:39

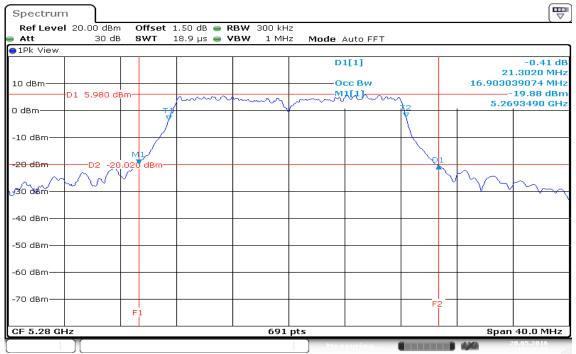
IEEE 802.11n HT 40 MHz mode / 5190 ~ 5230MHz 99% Bandwidth (CH Low)


Date: 12.AUG.2016 13:46:57

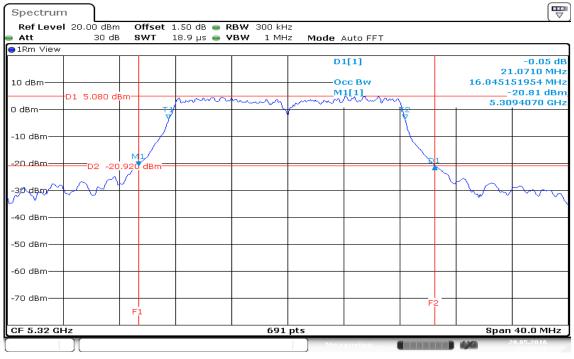
99% Bandwidth (CH High)


Date: 12.AUG.2016 13:48:56

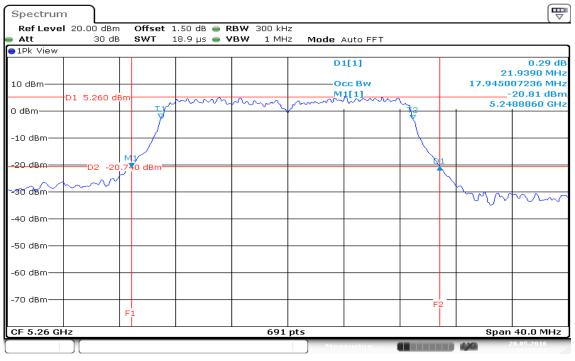
IEEE 802.11ac VHT 80 MHz mode / 5210MHz 99% Bandwidth (CH Mid)


Date: 12.AUG.2016 13:51:09

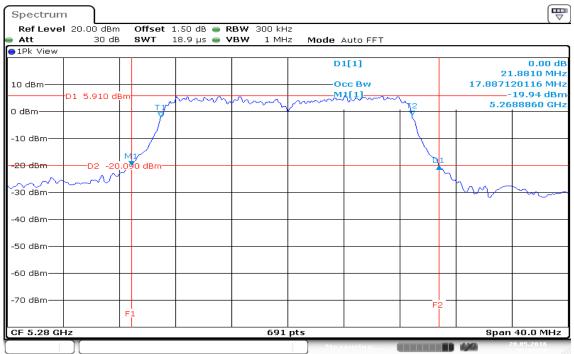
IEEE 802.11a mode / 5260 ~ 5320MHz 99% Bandwidth (CH Low)


Date: 20.MAY.2016 11:08:22

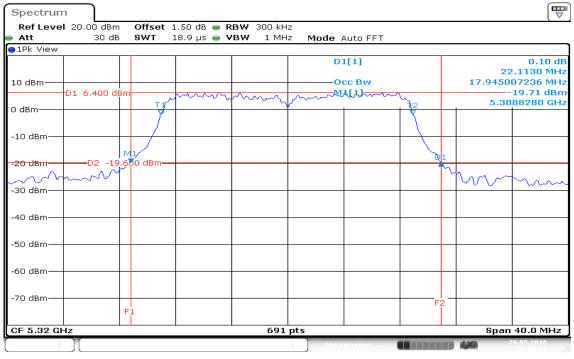
99% Bandwidth (CH Mid)


Date: 20.MAY.2016 11:10:35

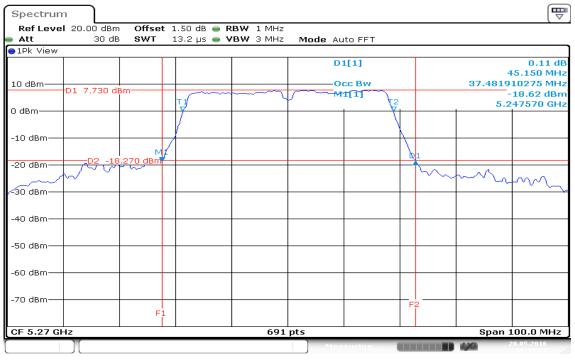
99% Bandwidth (CH High)


Date: 20.MAY.2016 12:03:28

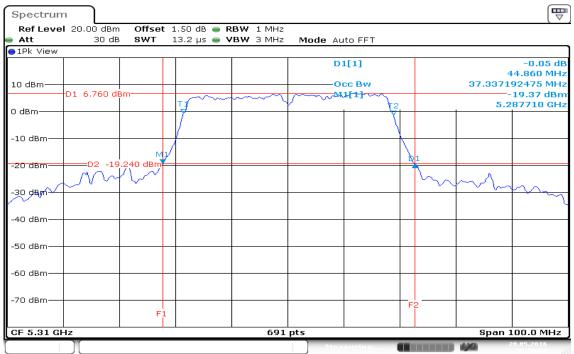
IEEE 802.11n HT 20 MHz mode / 5260 ~ 5320MHz 99% Bandwidth (CH Low)


Date: 20.MAY.2016 10:35:31

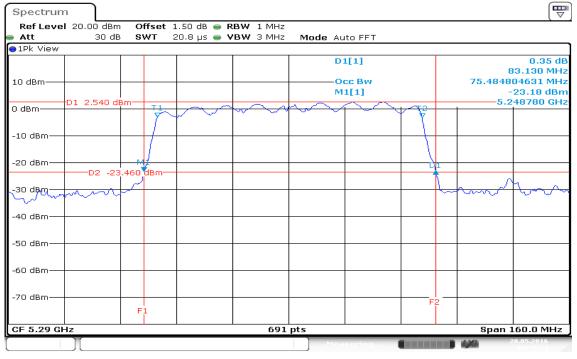
99% Bandwidth (CH Mid)


Date: 20.MAY.2016 10:37:58

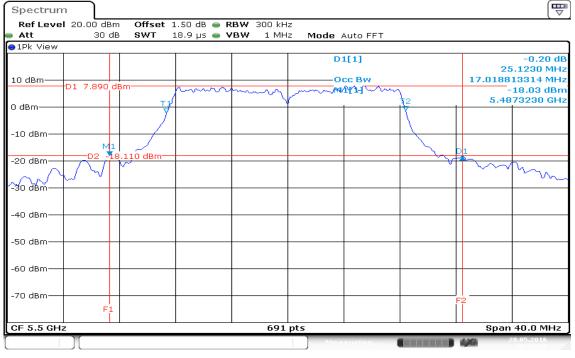
99% Bandwidth (CH High)


Date: 20.MAY.2016 10:42:55

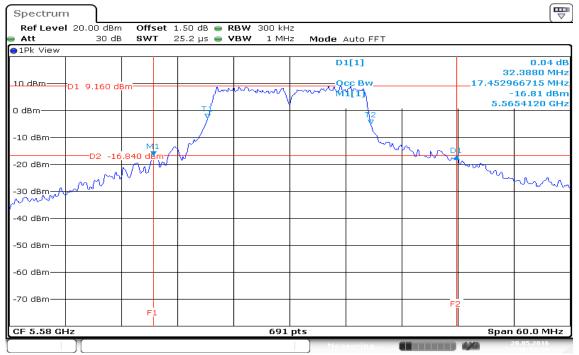
IEEE 802.11n HT 40 MHz mode / 5270 ~ 5310MHz 99% Bandwidth (CH Low)


Date: 20.MAY.2016 10:18:21

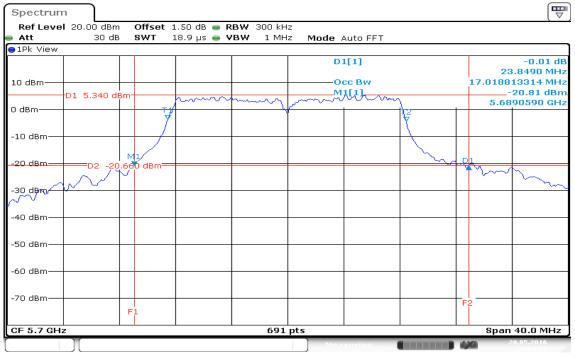
99% Bandwidth (CH High)


Date: 20.MAY.2016 10:25:20

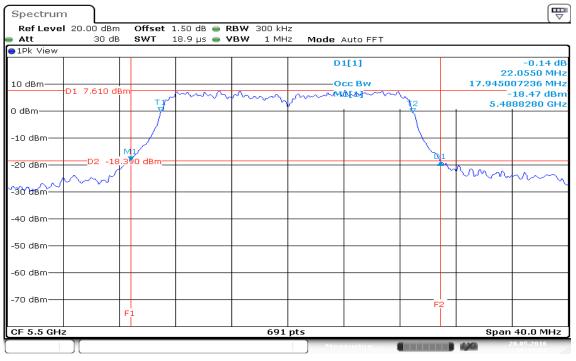
IEEE 802.11ac VHT 80 MHz mode / 5290MHz 99% Bandwidth (CH Mid)


Date: 20.MAY.2016 09:45:53

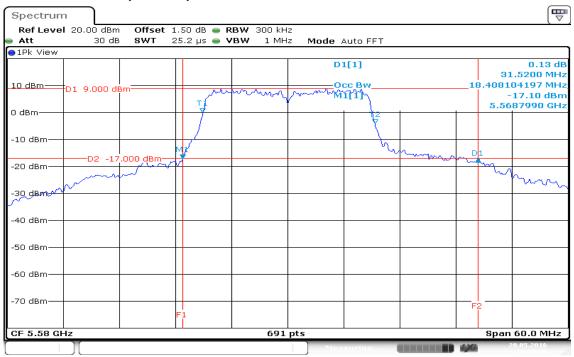
IEEE 802.11a mode / 5500 ~ 5700MHz 99% Bandwidth (CH Low)


Date: 20.MAY.2016 10:55:26

99% Bandwidth (CH Mid)


Date: 20.MAY.2016 10:59:20

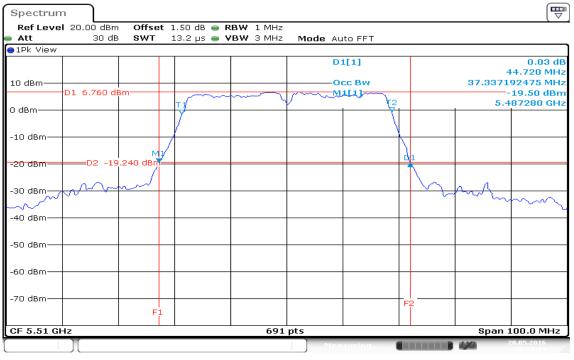
99% Bandwidth (CH High)


Date: 20.MAY.2016 11:04:51

IEEE 802.11n HT 20 MHz mode / 5500 ~ 5700MHz 99% Bandwidth (CH Low)

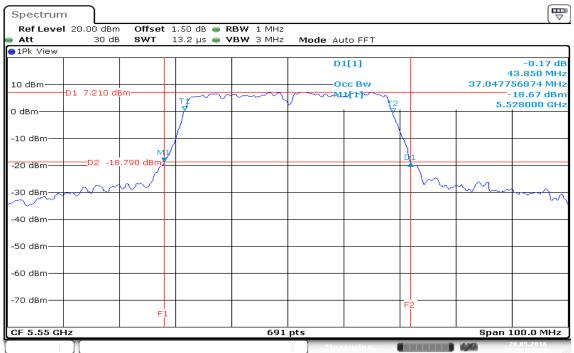
Date: 20.MAY.2016 10:45:08

99% Bandwidth (CH Mid)


Date: 20.MAY.2016 10:48:06

99% Bandwidth (CH High)

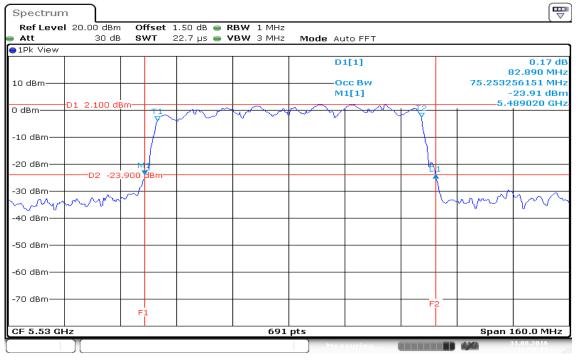
	l 20.00 dBm			L.50 dB 🥌								
Att	30 de	3	SWT :	18.9 µs 🧉	VBW	1 MHz	Mode /	Auto FFT				
∋1Pk View	1			1								
							D	1[1]			22	-0.05 d .2870 MH
10 dBm							0	cc Bw				07236 MH
							M	1[1]				22.22 dBr
0 dBm	D1 3.930 d	Bm.		m	www		$\sim\sim\sim\sim$	rin			5.68	87700 GH
			7			ľ			₹ 1			
-10 dBm—												
		M	. /									
-20 dBm—	D2 -22	2.07	0 dBm-						- <u>`</u>	1		
00 JD		M									m	m.
-30 dBm—	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~											
\sim	1											
-40 dBm—												
-50 dBm—												
-60 dBm—												
-70 dBm—									F	2		
		F	1									
CF 5.7 GH	z			1		691 pt	s	1			Span	40.0 MHz
,	1						Mea	surina			4.363	0.05.2016


Date: 20.MAY.2016 10:50:21

IEEE 802.11n HT 40 MHz mode / 5510 ~ 5670MHz 99% Bandwidth (CH Low)

Date: 20.MAY.2016 10:30:34

99% Bandwidth (CH Mid)


Date: 20.MAY.2016 10:32:22

99% Bandwidth (CH High)

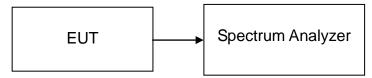
	el 20.00 dBm		1.50 dB 👄							
Att	30 dB	SWT	13.2 µs 👄	VBW	3 MHz	Mode	Auto FFT			
∋1Pk View										
							D1[1]			-1.46 d 58.900 MH
10 dBm	D1 9.680 dB						Occ Bw			063676 MH
to abili	DI 9.000 UB		T1	\sim	\sim	1 mm	M1[1]			-16.43 dBr
0 dBm			17		Ī			12	5.	646990 GH
U aBm			1					Y		
			1					N I		
-10 dBm—		M1⁄	/					Lan		
	D2 -16.	320 dBm-						m	- house	
-20 dBm—		. /	-	-						-p-vo
	m	$\Lambda \sim 1$								
-30 dBm-										
\sim $^{-}$										
-40 dBm—			_	_						
-50 dBm—										
-60 dBm—										
-70 dBm—										
, e abiii		 F1							F2	
		'Î								
CF 5.67 G	Hz				691	pts			Span	100.0 MHz

Date: 20.MAY.2016 10:14:46

IEEE 802.11ac VHT 80 MHz mode / 5530 MHz 99% Bandwidth (CH Mid)

Date: 31 AUG 2016 13:57:17

8. FCC PART 15 REQUIREMENTS


8.1 26 DB EMISSION BANDWIDTH

<u>LIMIT</u>

Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low-loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW > 1%EBW, VBW > RBW, Span >26dB bandwidth, and Sweep = auto.
- 4. Mark the peak frequency and –26dB (upper and lower) frequency.
- 5. Repeat until all the rest channels were investigated.

TEST RESULTS

No non-compliance noted

Test Data

Test mode: IEEE 802.11a mode / 5180 ~ 5240MHz

Channel	Frequency (MHz)	26db Bandwidth (MHz)
Low	5180	21.2740
Mid	5220	21.1290
High	5240	21.4910

Test mode: IEEE 802.11n HT 20 MHz mode / 5180 ~ 5240MHz

Channel	Frequency (MHz)	26db Bandwidth (MHz)
Low	5180	22.5760
Mid	5220	22.3590
High	5240	22.4310

Test mode: IEEE 802.11n HT 40 MHz mode / 5190 ~ 5230MHz

Channel	Frequency (MHz)	26db Bandwidth (MHz)
Low	5190	45.500
High	5230	45.150

Test mode: IEEE 802.11ac VHT 80 MHz mode / 5210MHz

Channel	Frequency (MHz)	26db Bandwidth (MHz)
Mid	5210	82.200

Test mode: IEEE 802.11a mode / 5260 ~ 5320MHz

Channel	Frequency (MHz)	26db Bandwidth (MHz)
Low	5260	21.1290
Mid	5280	21.3020
High	5320	21.0710

Test mode: IEEE 802.11n HT 20 MHz mode / 5260 ~ 5320MHz

Channel	Frequency (MHz)	26db Bandwidth (MHz)
Low	5260	21.9390
Mid	5280	21.8810
High	5320	22.1130

Test mode: IEEE 802.11n HT 40 MHz mode / 5270 ~ 5310MHz

Channel	Frequency (MHz)	26db Bandwidth (MHz)
Low	5270	45.150
High	5310	44.860

Test mode: IEEE 802.11ac VHT 80 MHz mode / 5290MHz

Channel	Frequency (MHz)	26db Bandwidth (MHz)
Mid	5290	83.130

Test mode: IEEE 802.11a mode / 5500 ~ 5700MHz

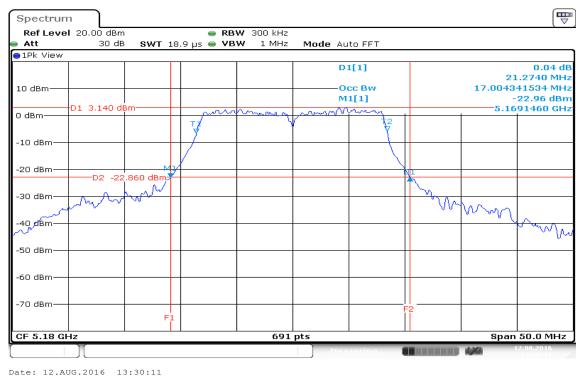
Channel	Frequency (MHz)	26db Bandwidth (MHz)
Low	5500	25.1230
Mid	5580	32.3880
High	5700	23.8490

Test mode: IEEE 802.11n HT 20 MHz mode / 5500 ~ 5700MHz

Channel	Frequency (MHz)	26db Bandwidth (MHz)
Low	5500	22.0550
Mid	5580	31.5200
High	5700	22.2870

Test mode: IEEE 802.11n HT 40 MHz mode / 5510 ~ 5670MHz

Channel	Frequency (MHz)	26db Bandwidth (MHz)
Low	5510	44.720
Mid	5550	43.850
High	5670	58.900


Test mode: IEEE 802.11ac VHT 80 MHz mode / 5530MHz

Channel	Frequency (MHz)	26db Bandwidth (MHz)
Low	5530	83.360

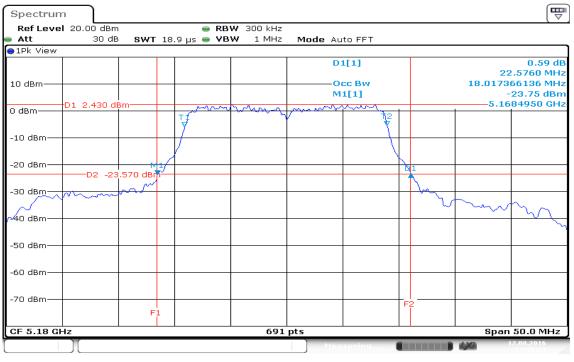

Test Plot

IEEE 802.11a mode / 5180 ~ 5240MHz

CH Low

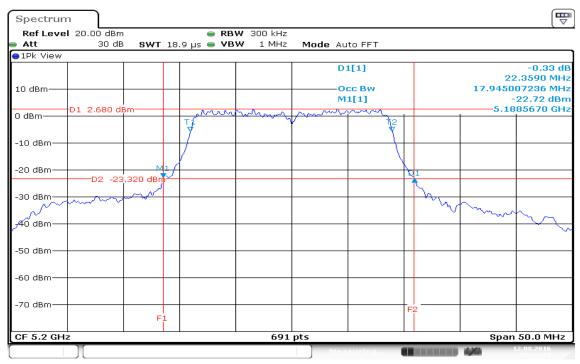
CH Mid

Date: 12.AUG.2016 15:29:00


CH High

Ref Level 20).00 dBm		e R	3W 300 kHz					
Att	30 dB	SWT 1	8.9 µs 👄 ٧	BW 1 MHz	Mode Au	ito FFT			
∋1Pk View									
					D	1[1]			0.67 di
									1.4910 MH
10 dBm						CC BW 1[1]			41534 MH -21.68 dBn
	4.390 de	m	m	mary	mm	thing			290740 GH
0 dBm			T.		r	12			
10 48-			1						
-10 dBm									
-20 dBm		M	1				01		
	-D2 -21	.610 dBm					No.		
	m	\mathcal{M}					ww	k	
-30 dBm								Mr your	
w .									m
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm							 F2		-
		F1							
CF 5.24 GHz				691	nts			Snar	 1 50.0 MHz
									12.08.2016

Date: 12.AUG.2016 13:36:17

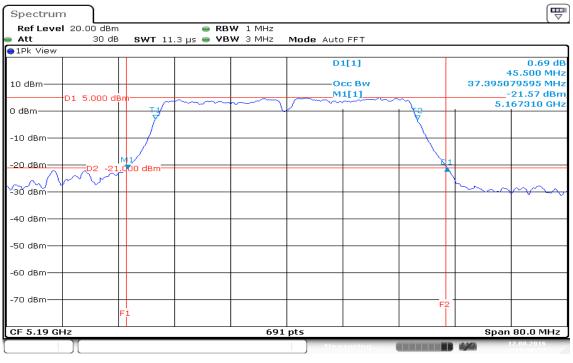

IEEE 802.11n HT 20 MHz mode / 5180 ~ 5240MHz

CH Low

Date: 12.AUG.2016 13:38:34

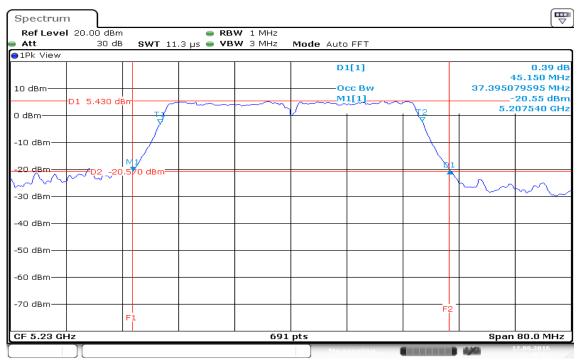
CH Mid

Date: 12.AUG.2016 15:31:28


CH High

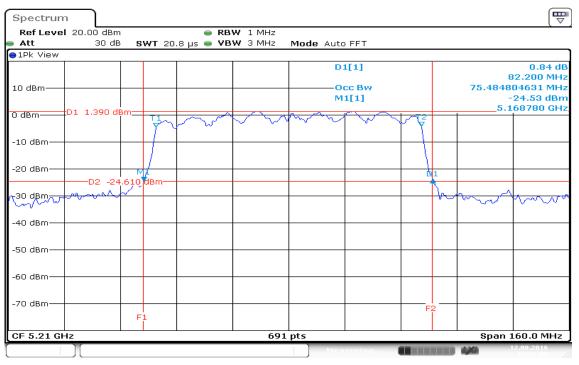
Ref Leve	l 20.00 dBm	1	-	RBW 300 kH	z				('
Att	30 dB	SWT	18.9 µs 👄			uto FFT			
∋1Pk View									
					C	01[1]			0.04 d
									2.4310 MH
10 dBm						Dec Bw			07236 MH
	D1 3.510 di	3m		man		41[1]			-21.90 dBr 284230 GH
0 dBm			TI	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Annual a	1 121	+	0122	
-10 dBm—			1			T T			
-10 UBIII			7						
-20 dBm—		MI					<u>b</u> 1		
	D2 -22	490 dBm /~~/ V					N	-	
-30 d8m—							ww	- www	m
-40 dBm									
-50 dBm—									
-60 dBm—									
-70 dBm—									
		F1					F2		
CF 5.24 G	⊥ Hz			69	1 pts		1	Span	 50.0 MHz
									12.08.2016

Date: 12.AUG.2016 13:42:39


IEEE 802.11n HT 40 MHz mode / 5190 ~ 5230MHz

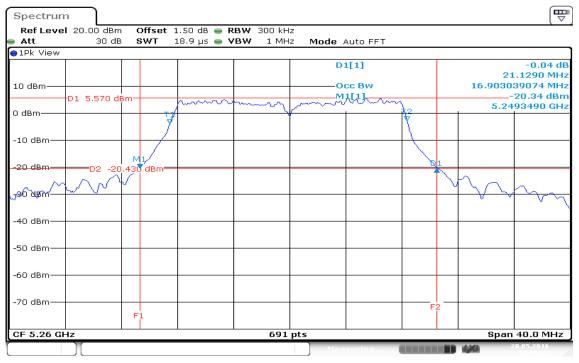
CH Low

Date: 12.AUG.2016 13:46:57

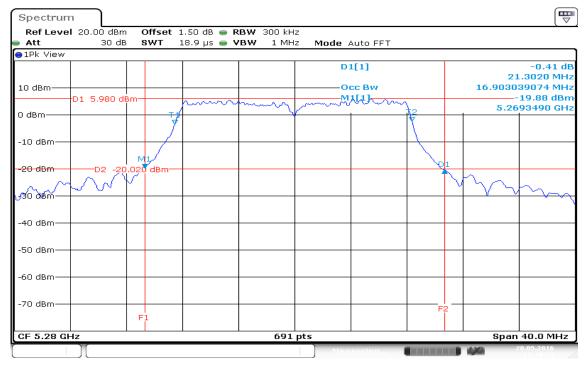

CH High

Date: 12.AUG.2016 13:48:56

IEEE 802.11ac VHT 80 MHz mode / 5210MHz

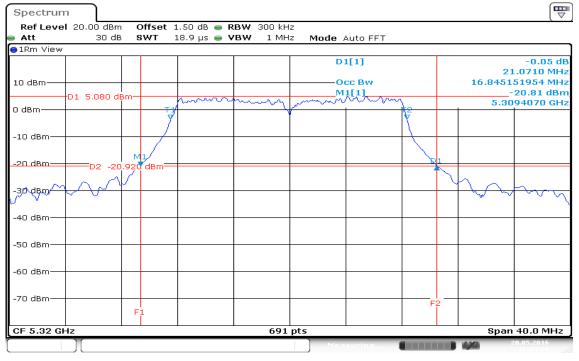


Date: 12.AUG.2016 13:51:09

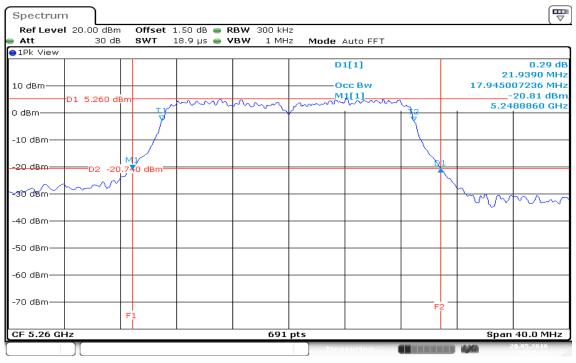

IEEE 802.11a mode / 5260 ~ 5320MHz

CH Low

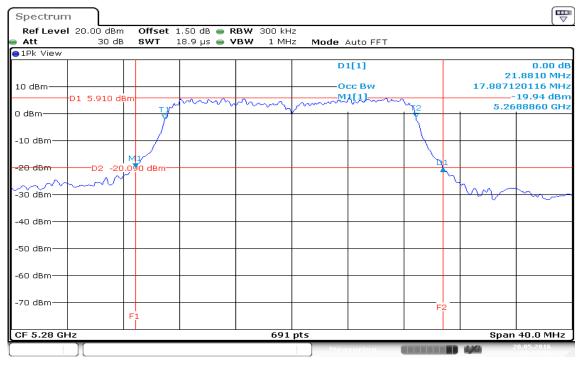
Date: 20.MAY.2016 11:08:22


CH Mid

Date: 20.MAY.2016 11:10:35

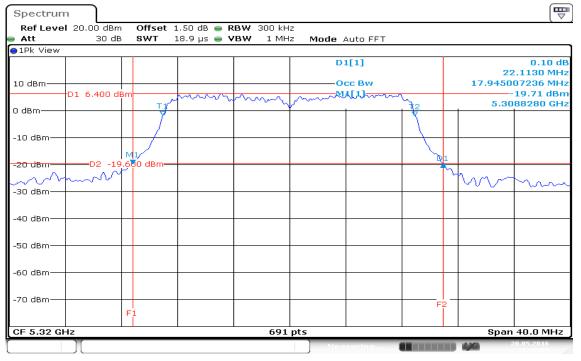

CH High

Date: 20.MAY.2016 12:03:28

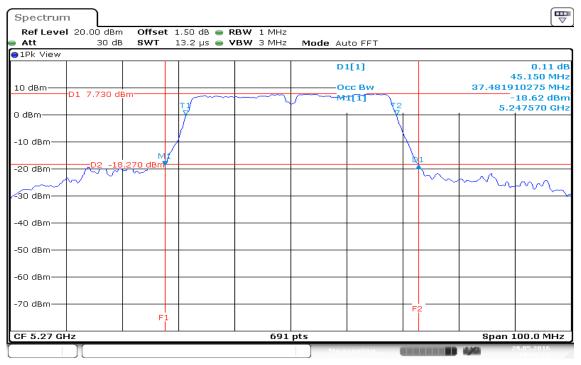

IEEE 802.11n HT 20 MHz mode / 5260 ~ 5320MHz

CH Low

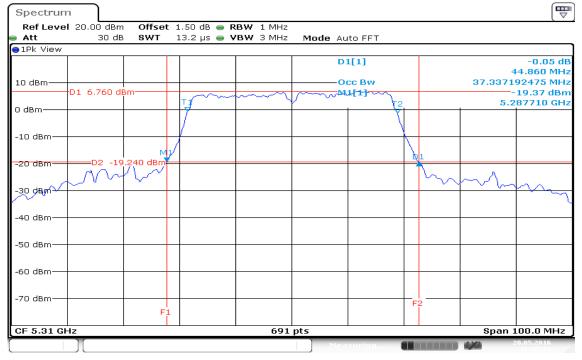
Date: 20.MAY.2016 10:35:31


CH Mid

Date: 20.MAY.2016 10:37:58

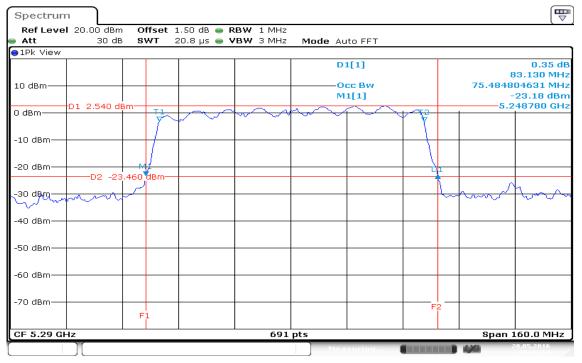

CH High

Date: 20.MAY.2016 10:42:55


IEEE 802.11n HT 40 MHz mode / 5270 ~ 5310MHz

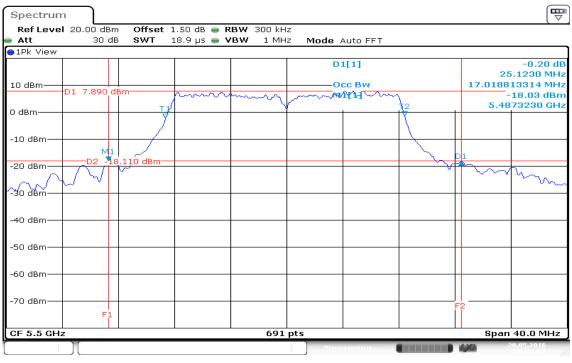
CH Low

Date: 20.MAY.2016 10:18:21

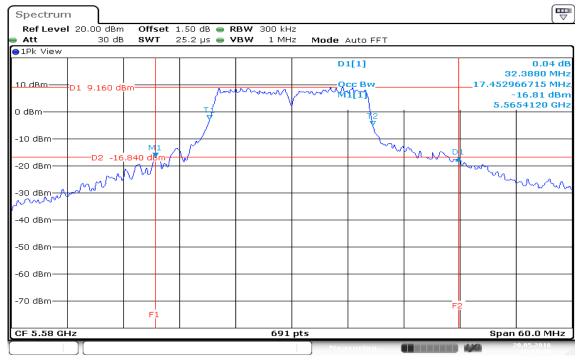

CH High

Date: 20.MAY.2016 10:25:20

IEEE 802.11ac VHT 80 MHz mode / 5290MHz

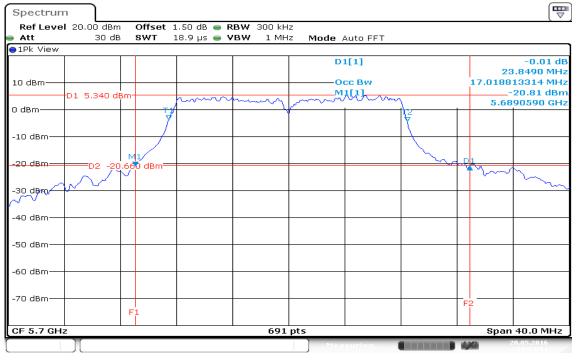

CH Mid

Date: 20.MAY.2016 09:45:53

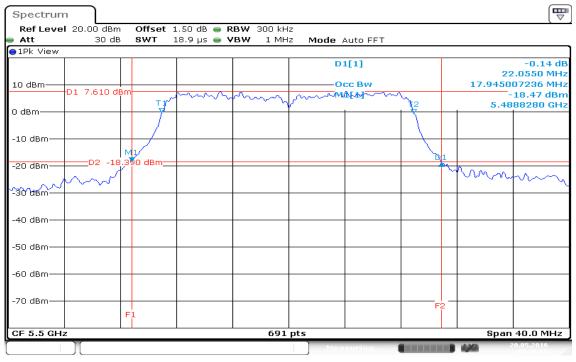

Test mode: IEEE 802.11a mode / 5500 ~ 5700MHz

CH Low

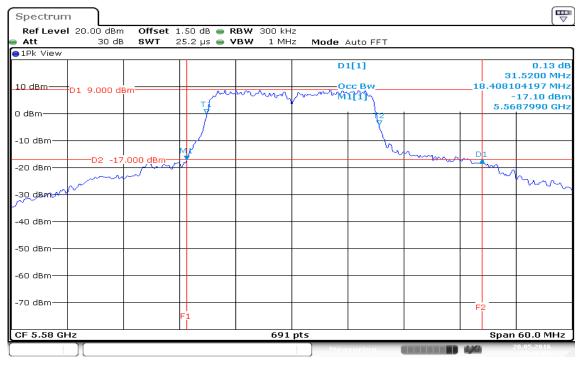
Date: 20.MAY.2016 10:55:26


CH Mid

Date: 20.MAY.2016 10:59:20

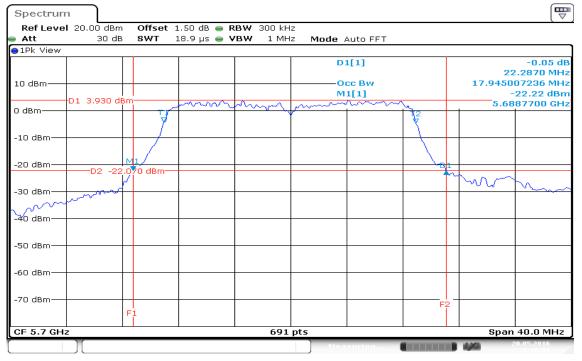

CH High

Date: 20.MAY.2016 11:04:51

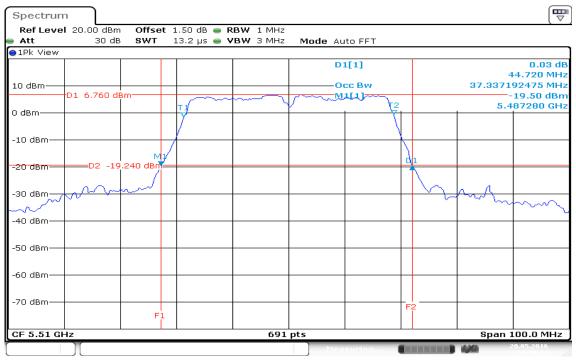

IEEE 802.11n HT 20 MHz mode / 5500 ~ 5700MHz

CH Low

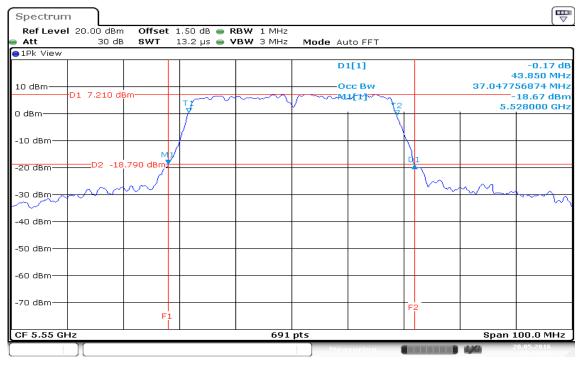
Date: 20.MAY.2016 10:45:08


CH Mid

Date: 20.MAY.2016 10:48:06

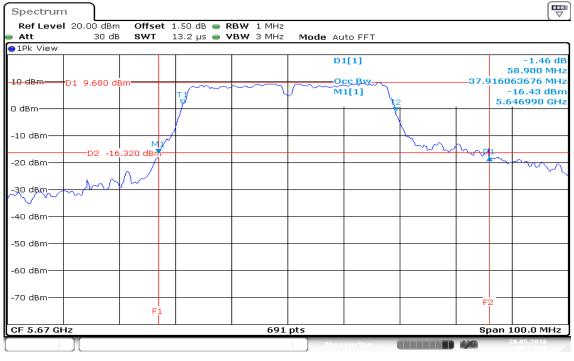

CH High

Date: 20.MAY.2016 10:50:21

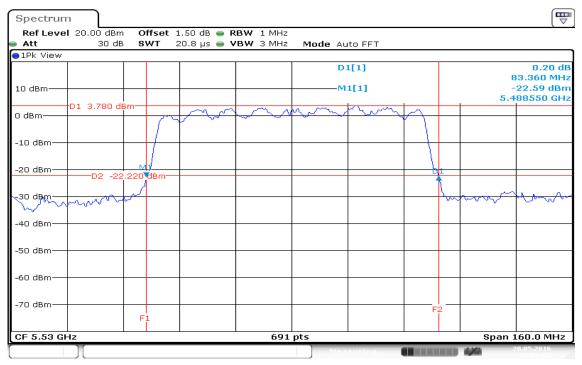

IEEE 802.11n HT 40 MHz mode / 5510 ~ 5670MHz

CH Low

Date: 20.MAY.2016 10:30:34


CH Mid

Date: 20.MAY.2016 10:32:22



CH High

Date: 20.MAY.2016 10:14:46

IEEE 802.11ac VHT 80 MHz mode / 5530MHz

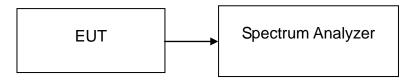
Date: 20.MAY.2016 09:50:06

8.2 MAXIMUM CONDUCTED OUTPUT POWER

<u>LIMIT</u>

According to §15.407(a)

For the band 5.15-5.25 GHz, 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10log B, where B is the 26 dB emission bandwidth in MHz.


If transmitting antennas of directional gain greater than 6dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi

In addition, devices with maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W. The peak power shall not exceed the limit as follow:

Test Configuration

The EUT was connected to a spectrum analyzer through a 50Ω RF cable.

TEST PROCEDURE

Set span to encompass the entire emission bandwidth (EBW) of the signal.

Set RBW = 1 MHz / Set VBW = 3 MHz.

Use sample detector mode if bin width (i.e., span/number of points in spectrum display) < 0.5 RBW. Otherwise use peak detector mode. Use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at full control power for entire sweep of every sweep. If the device transmits continuously, with no off intervals or reduced power intervals, the trigger may be set to "free run". Trace average 100 traces in power averaging mode. Compute power by integrating the spectrum across the 26 dB EBW of the signal. The integration can be performed using the spectrum analyzer's band power measurement function with band limits set equal to the EBW band edges or by summing power levels in each 1 MHz band in linear power terms. The 1 MHz band power levels to be summed can be obtained by averaging, in linear power terms, power levels in each frequency bin across the 1 MHz.

TEST RESULTS

No non-compliance noted

Test mode: IEEE 802.11a mode / 5180 ~ 5240MHz

Channel	Frequency (MHz)	Maximum Output Power (dBm)	Maximum Output Power (W)	Limit (dBm)
Low	5180	13.02	0.0200	24.00
Mid	5220	13.89	0.0245	24.00
High	5240	*14.14	0.0259	24.00

Test mode: IEEE 802.11n HT 20 MHz mode / 5180 ~ 5240MHz

Channel	Frequency (MHz)	Maximum Output Power (dBm)	Maximum Output Power (W)	Limit (dBm)
Low	5180	13.02	0.0200	24.00
Mid	5220	13.89	0.0245	24.00
High	5240	*14.14	0.0259	24.00

Test mode: IEEE 802.11n HT 40 MHz mode / 5190 ~ 5230MHz

Channel	Frequency (MHz)	Maximum Output Power (dBm)	Maximum Output Power (W)	Limit (dBm)
Low	5190	12.54	0.0179	24.00
High	5230	*13.47	0.0222	24.00

Test mode: IEEE 802.11ac VHT 80 MHz mode / 5210MHz

Channel	Frequency (MHz)	Maximum Output Power (dBm)	Maximum Output Power (W)	Limit (dBm)
Mid	5210	*11.07	0.0128	24.00

Test Data

Test mode: IEEE 802.11a mode / 5260 ~ 5320MHz

Channel	Frequency (MHz)	Maximum Output Power (dBm)	Maximum Output Power (W)	Limit (dBm)
Low	5260	*16.23	0.0420	24.00
Mid	5280	14.56	0.0286	24.00
High	5320	15.46	0.0352	24.00

Test mode: IEEE 802.11n HT 20 MHz mode / 5260 ~ 5320MHz

Channel	Frequency (MHz)	Maximum Output Power (dBm)	Maximum Output Power (W)	Limit (dBm)
Low	5260	14.33	0.0271	24.00
Mid	5280	14.64	0.0291	24.00
High	5320	*14.99	0.0316	24.00

Test mode: IEEE 802.11n HT 40 MHz mode / 5270 ~ 5310MHz

Channel	Frequency (MHz)	Maximum Output Power (dBm)	Maximum Output Power (W)	Limit (dBm)
Low	5270	*15.43	0.0349	24.00
High	5310	14.88	0.0308	24.00

Test mode: IEEE 802.11ac VHT 80 MHz mode / 5290MHz

Channel	Frequency (MHz)	Maximum Output Power (dBm)	Maximum Output Power (W)	Limit (dBm)
Mid	5290	*9.82	0.0096	24.00

Test mode: IEEE 802.11a mode / 5500 ~ 5700MHz

Channel	Frequency (MHz)	Maximum Output Power (dBm)	Maximum Output Power (W)	Limit (dBm)
Low	5500	14.15	0.0260	24.00
Mid	5580	14.53	0.0284	24.00
High	5700	*15.73	0.0374	24.00

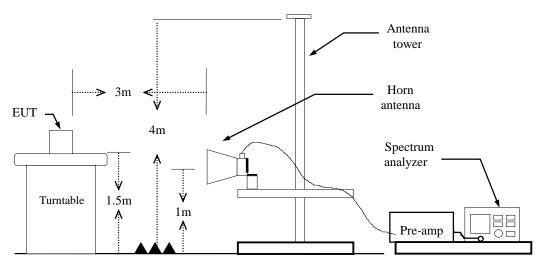
Test mode: IEEE 802.11n HT 20 MHz mode / 5500 ~ 5720MHz

Channel	Frequency (MHz)	Maximum Output Power (dBm)	Maximum Output Power (W)	Limit (dBm)
Low	5500	13.94	0.0248	24.00
Mid	5580	*14.43	0.0277	24.00
High	5700	14.39	0.0275	24.00

Test mode: IEEE 802.11n HT 40 MHz mode / 5510 ~ 5670MHz

Channel	Frequency (MHz)	Maximum Output Power (dBm)	Maximum Output Power (W)	Limit (dBm)
Low	5510	13.83	0.0242	24.00
Mid	5550	15.06	0.0321	24.00
High	5670	*16.87	0.0486	24.00

Test mode: IEEE 802.11ac VHT 80 MHz mode / 5530MHz


Channel	Frequency (MHz)	Maximum Output Power (dBm)	Power Power	
Low	5530	*11.77	0.0150	24.00

8.3 BAND EDGES MEASUREMENT

<u>LIMIT</u>

According to §15.407 §, in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

Test Configuration

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 1.5m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz, if duty cycle≥98%, VBW=10Hz. if duty cycle<98% VBW=1/T.</p>

IEEE 802.11a mode: ≥98%, VBW=10Hz

IEEE 802.11n HT 20 MHz mode: ≥98%, VBW=10Hz

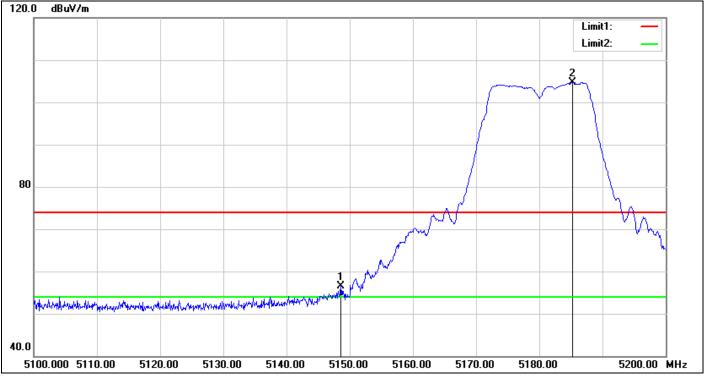
IEEE 802.11n HT 40 MHz mode: ≥98%, VBW=10Hz

IEEE 802.11ac VHT 80 MHz mode: \geq 98%, VBW=10Hz

- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.
- 6. Result = Spectrum Reading + cable loss(spectrum to Amp) Amp Gain + Cable loss(Amp to receive Ant)+ Receive Ant

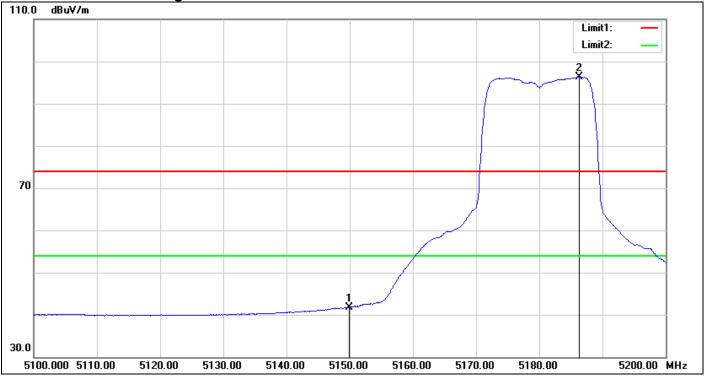
For Un-restricted Band Emissions

The peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

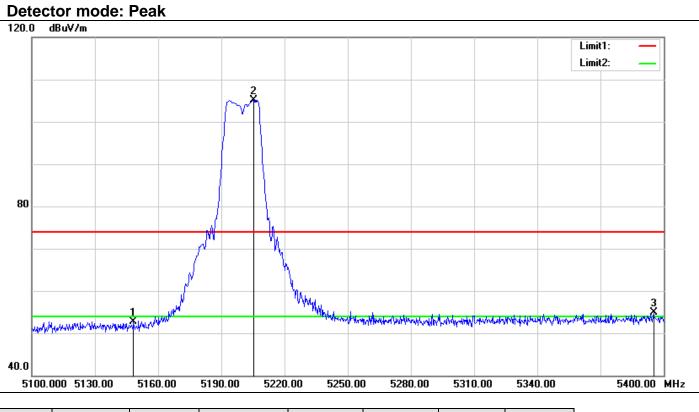

TEST RESULTS

Refer to attach spectrum analyzer data chart.

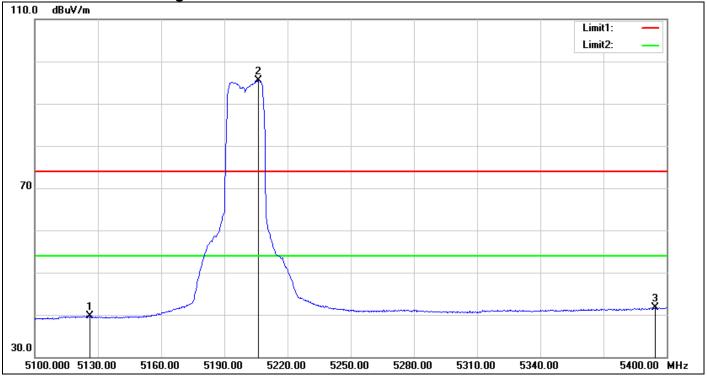
U-NII-1


IEEE 802.11a Mode / CH Low

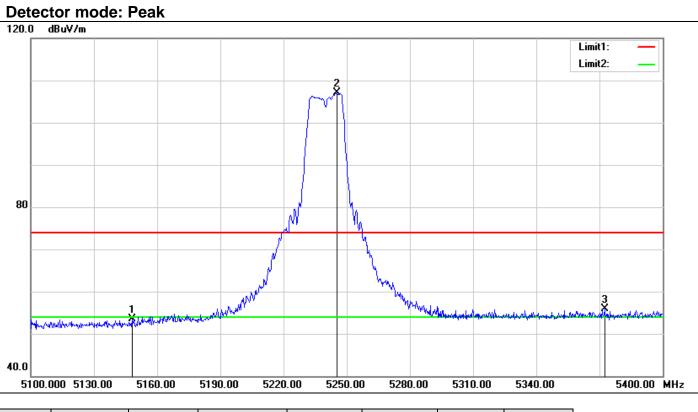
Detector mode: Peak


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5148.600	53.57	3.03	56.60	74.00	-17.40	peak
2	5185.300	100.69	4.06	104.75			peak

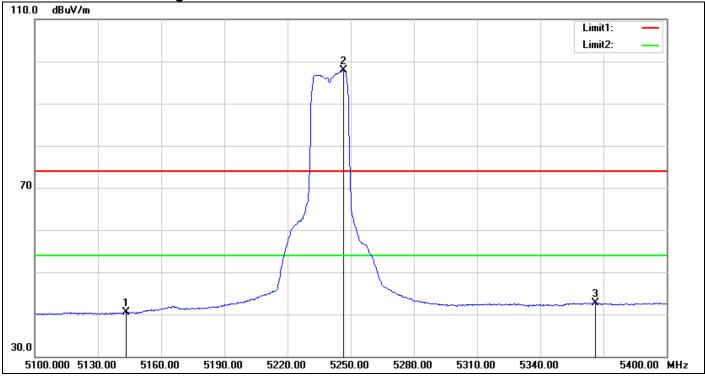
Detector mode: Average


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5149.900	38.71	3.04	41.75	54.00	-12.25	AVG
2	5186.300	92.24	4.09	96.33			AVG

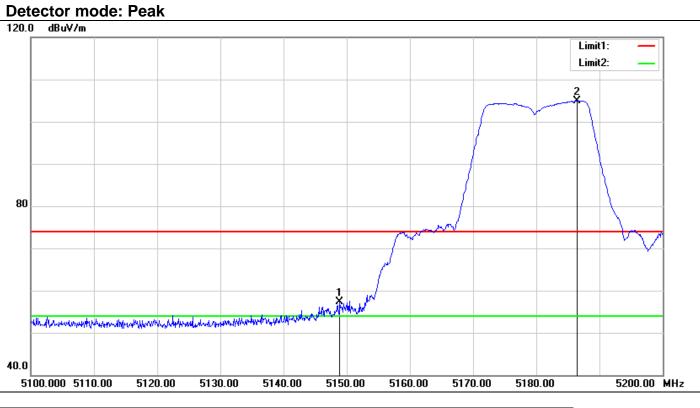
IEEE 802.11a Mode / CH Mid


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5148.300	49.73	3.03	52.76	74.00	-21.24	peak
2	5205.300	100.64	4.51	105.15			peak
3	5395.200	49.14	5.68	54.82	74.00	-19.18	peak

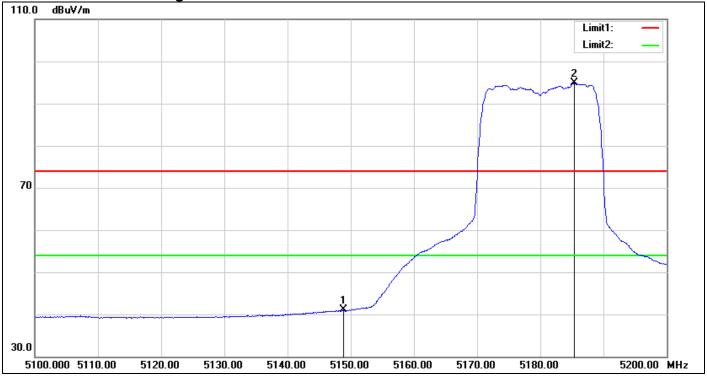
Detector mode: Average


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5126.100	36.81	2.88	39.69	54.00	-14.31	AVG
2	5206.200	91.00	4.51	95.51			AVG
3	5394.600	35.99	5.68	41.67	54.00	-12.33	AVG

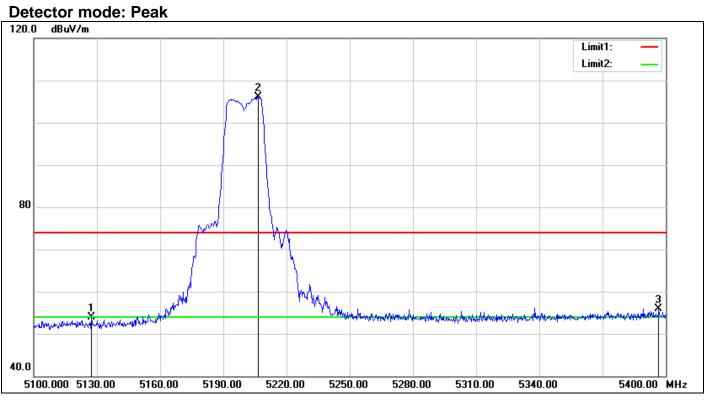
IEEE 802.11a Mode / CH High


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5148.000	50.44	3.03	53.47	74.00	-20.53	peak
2	5245.500	102.47	4.64	107.11			peak
3	5372.400	50.34	5.49	55.83	74.00	-18.17	peak

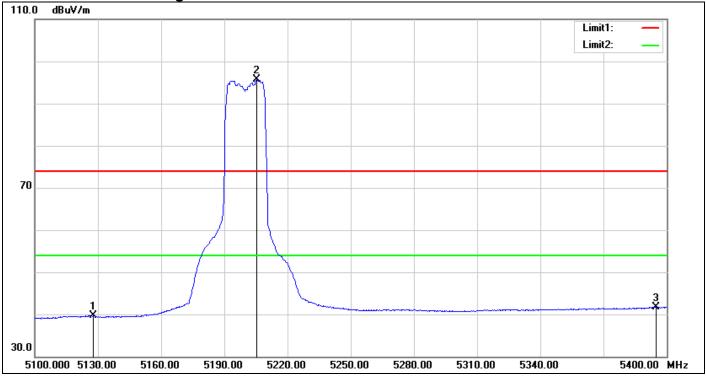
Detector mode: Average


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5143.500	37.48	3.00	40.48	54.00	-13.52	AVG
2	5246.400	93.17	4.65	97.82			AVG
3	5366.100	37.35	5.44	42.79	54.00	-11.21	AVG

IEEE 802.11n HT 20 MHz Mode / CH Low

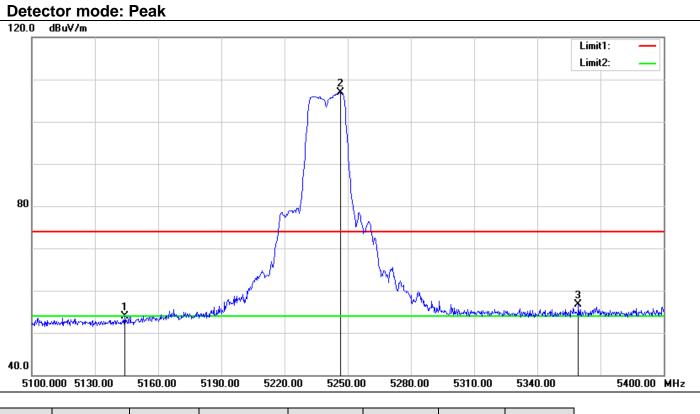

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5148.900	54.31	3.03	57.34	74.00	-16.66	peak
2	5186.400	100.85	4.10	104.95			peak

Page 72 / 227

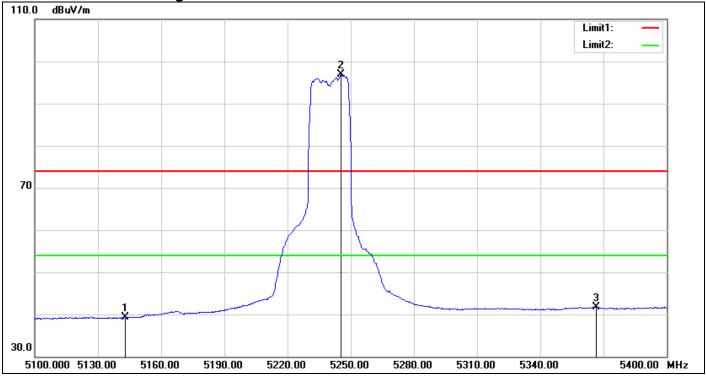


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5148.900	38.02	3.03	41.05	54.00	-12.95	AVG
2	5185.400	90.75	4.07	94.82			AVG

IEEE 802.11n HT 20 MHz Mode / CH Mid

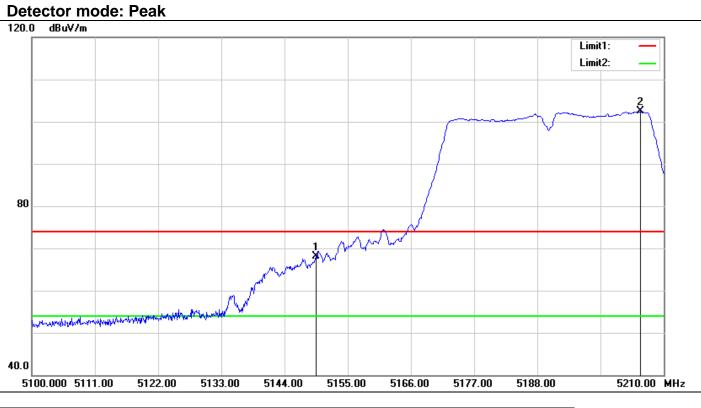


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5127.300	51.09	2.89	53.98	74.00	-20.02	peak
2	5206.500	101.64	4.51	106.15			peak
3	5396.700	50.26	5.69	55.95	74.00	-18.05	peak

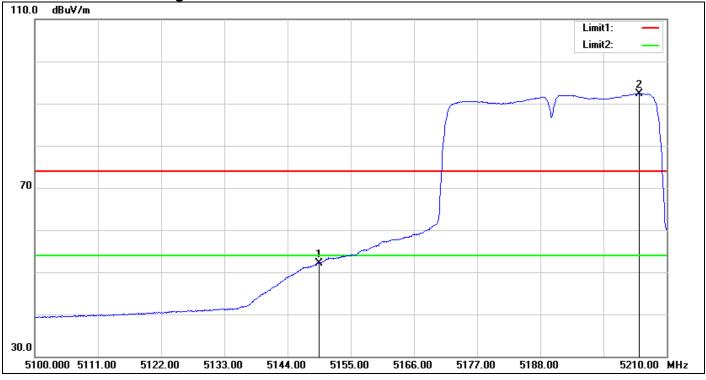


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5127.600	36.81	2.89	39.70	54.00	-14.30	AVG
2	5205.300	91.12	4.51	95.63			AVG
3	5394.900	36.07	5.68	41.75	54.00	-12.25	AVG

IEEE 802.11n HT 20 MHz Mode / CH High



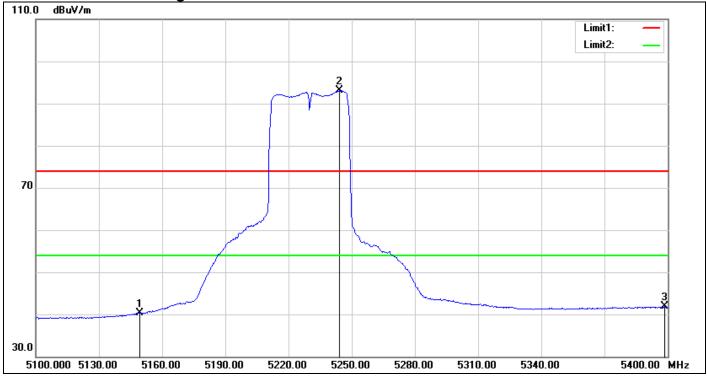
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5144.100	50.88	3.00	53.88	74.00	-20.12	peak
2	5246.400	102.26	4.65	106.91			peak
3	5359.500	51.39	5.39	56.78	74.00	-17.22	peak


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5142.900	36.41	2.99	39.40	54.00	-14.60	AVG
2	5245.200	92.25	4.64	96.89			AVG
3	5366.700	36.32	5.45	41.77	54.00	-12.23	AVG

IEEE 802.11n HT 40 MHz Mode / CH Low

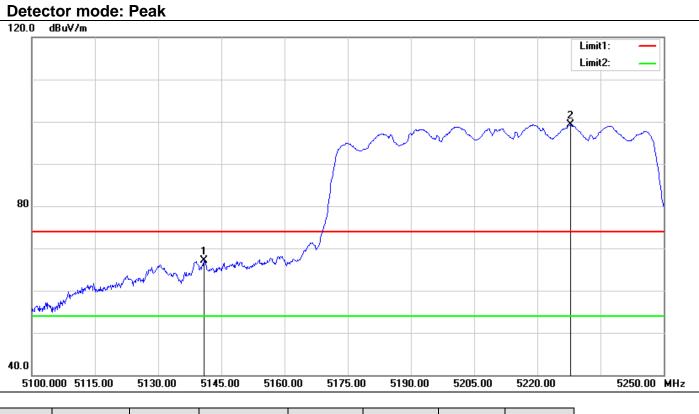
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5149.500	65.04	3.04	68.08	74.00	-5.92	peak
2	5205.930	97.93	4.51	102.44			peak

Page 78 / 227

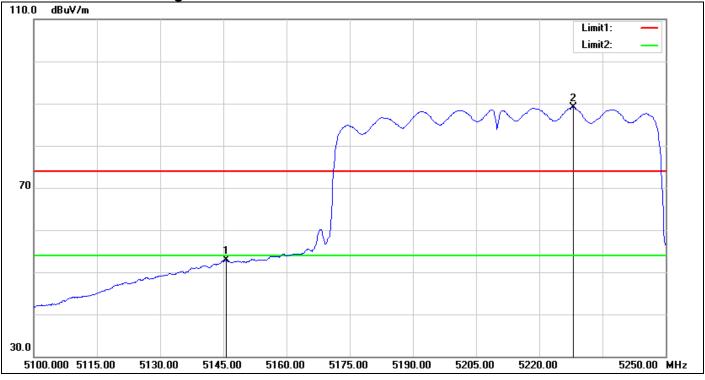


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5149.500	49.08	3.04	52.12	54.00	-1.88	AVG
2	5205.160	87.84	4.51	92.35			AVG

IEEE 802.11n HT 40 MHz Mode / CH High

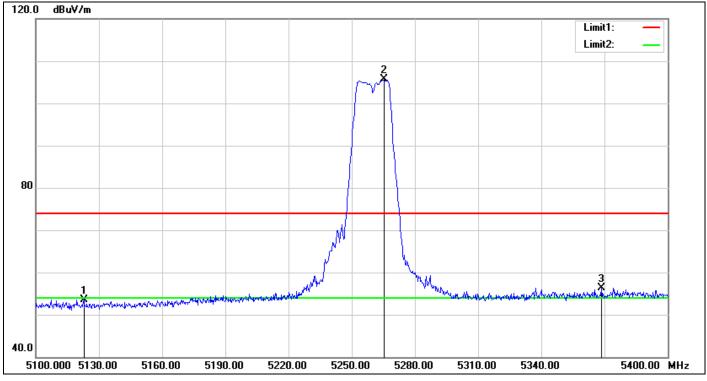


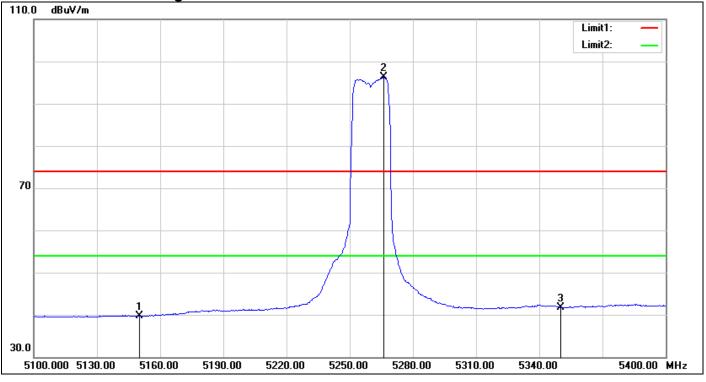
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5149.500	52.14	3.04	55.18	74.00	-18.82	peak
2	5243.400	98.46	4.64	103.10			peak
3	5393.400	50.00	5.67	55.67	74.00	-18.33	peak


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5149.200	37.24	3.03	40.27	54.00	-13.73	AVG
2	5244.300	88.38	4.64	93.02			AVG
3	5398.500	36.12	5.71	41.83	54.00	-12.17	AVG

IEEE 802.11 ac VHT 80 MHz Mode / CH Mid

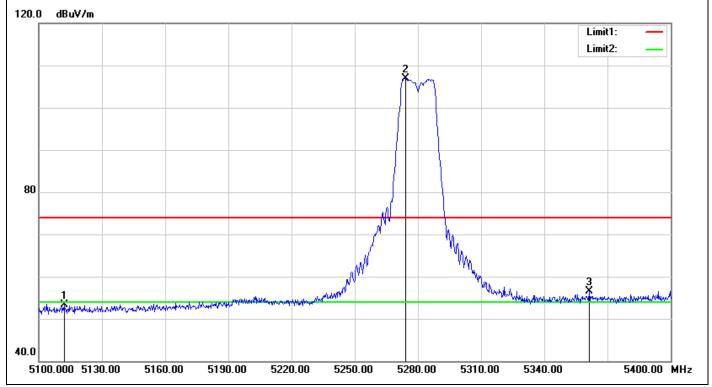
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5140.950	64.08	2.98	67.06	74.00	-6.94	peak
2	5227.800	94.72	4.58	99.30			peak


Page 82 / 227

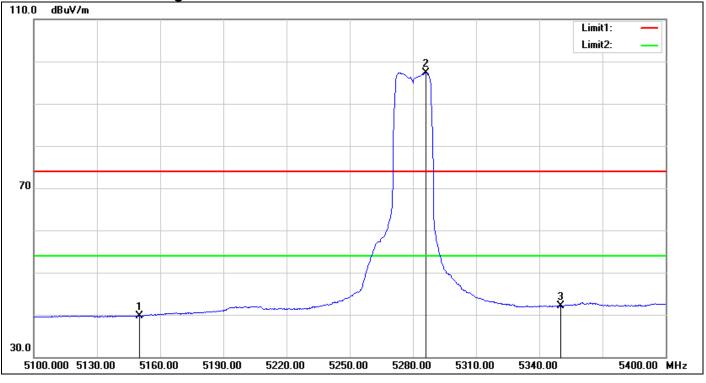

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5145.750	49.84	3.01	52.85	54.00	-1.15	AVG
2	5228.100	84.50	4.59	89.09			AVG

U-NII-2A

IEEE 802.11a Mode / CH Low

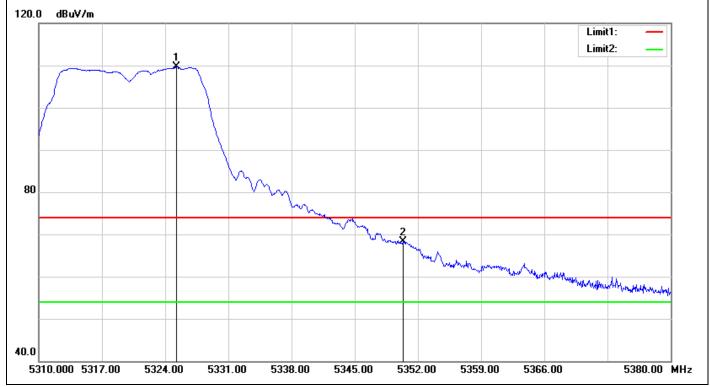


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5122.800	50.73	2.86	53.59	74.00	-20.41	peak
2	5265.300	101.02	4.71	105.73			peak
3	5368.500	50.94	5.46	56.40	74.00	-17.60	peak

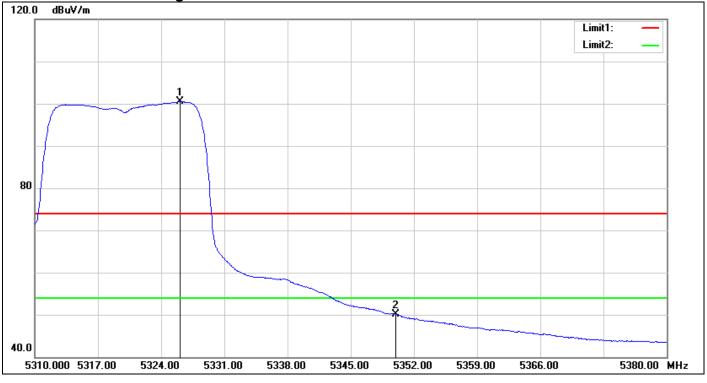


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	36.62	3.04	39.66	54.00	-14.34	AVG
2	5266.200	91.49	4.72	96.21			AVG
3	5350.000	36.43	5.31	41.74	54.00	-12.26	AVG

IEEE 802.11a Mode / CH Mid

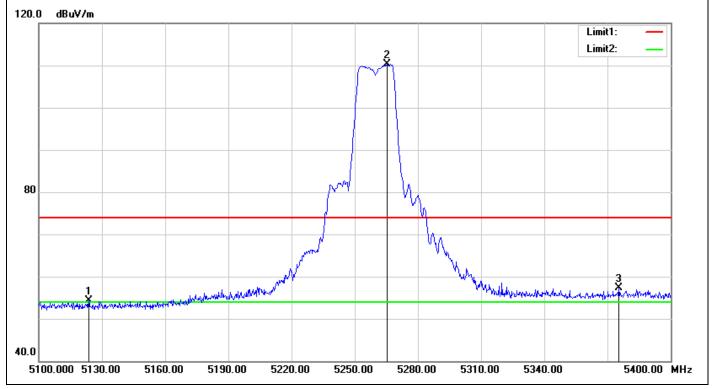


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5112.000	50.60	2.78	53.38	74.00	-20.62	peak
2	5274.000	102.24	4.74	106.98			peak
3	5361.300	51.17	5.40	56.57	74.00	-17.43	peak

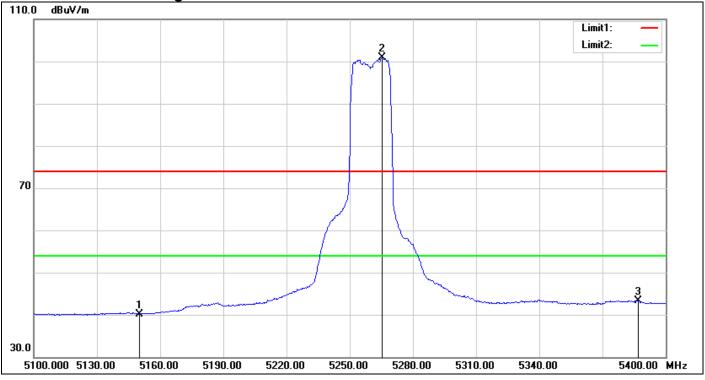


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	36.68	3.04	39.72	54.00	-14.28	AVG
2	5286.300	92.62	4.78	97.40			AVG
3	5350.000	36.74	5.31	42.05	54.00	-11.95	AVG

IEEE 802.11a Mode / CH High

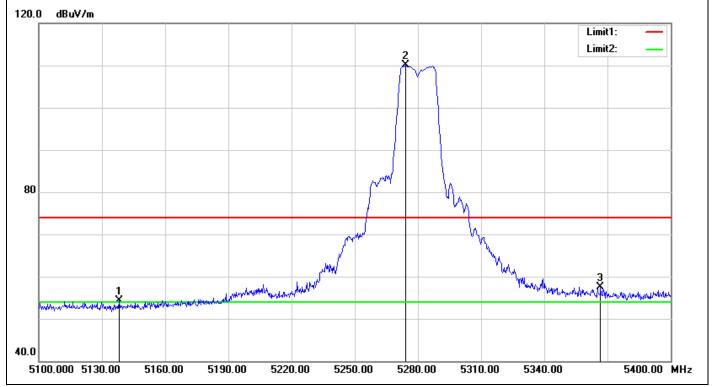


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5325.260	104.59	5.07	109.66			peak
2	5350.320	62.90	5.31	68.21	74.00	-5.79	peak

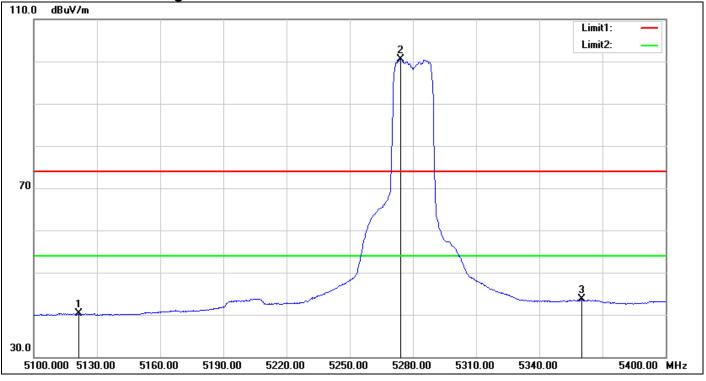


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5326.100	95.43	5.08	100.51			AVG
2	5350.000	44.86	5.31	50.17	54.00	-3.83	AVG

IEEE 802.11n HT 20 MHz Mode / CH Low

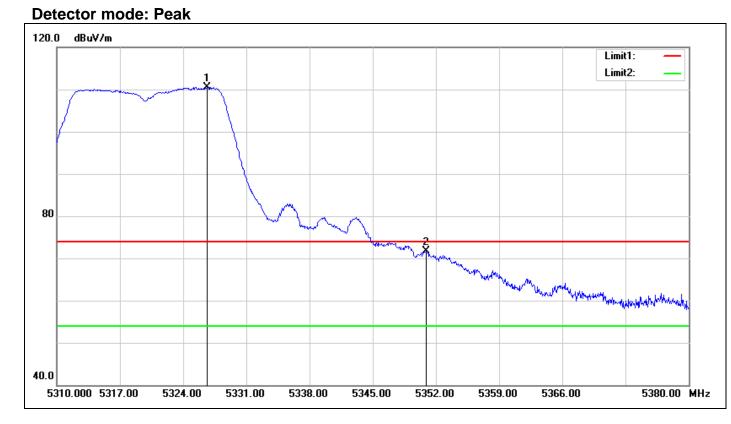


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5123.700	51.41	2.86	54.27	74.00	-19.73	peak
2	5265.300	105.60	4.71	110.31			peak
3	5375.400	51.79	5.52	57.31	74.00	-16.69	peak

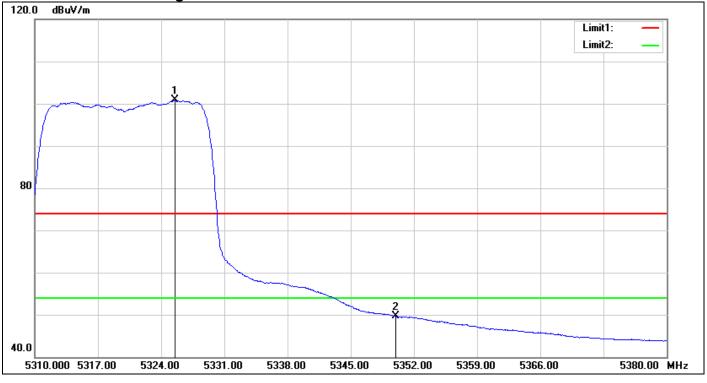


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	37.13	3.04	40.17	54.00	-13.83	AVG
2	5265.300	96.24	4.71	100.95			AVG
3	5387.100	37.72	5.61	43.33	54.00	-10.67	AVG

IEEE 802.11n HT 20 MHz Mode / CH Mid

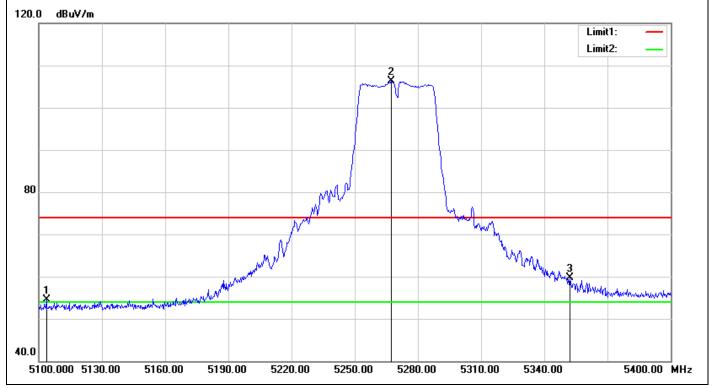


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5138.100	51.37	2.96	54.33	74.00	-19.67	peak
2	5274.300	105.38	4.74	110.12			peak
3	5366.700	52.07	5.45	57.52	74.00	-16.48	peak

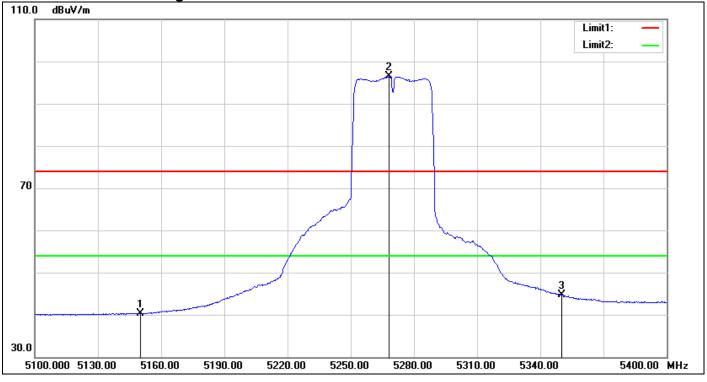


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5121.300	37.51	2.84	40.35	54.00	-13.65	AVG
2	5274.300	95.80	4.74	100.54			AVG
3	5360.100	38.39	5.39	43.78	54.00	-10.22	AVG

IEEE 802.11n HT 20 MHz Mode / CH High

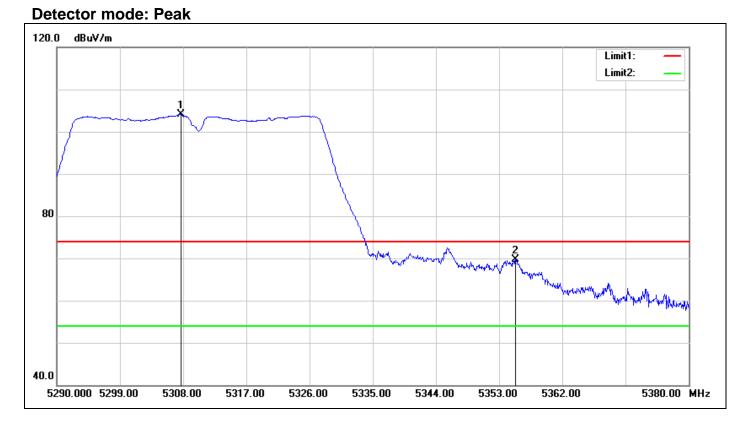


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5326.660	105.41	5.09	110.50			peak
2	5350.880	66.30	5.32	71.62	74.00	-2.38	peak

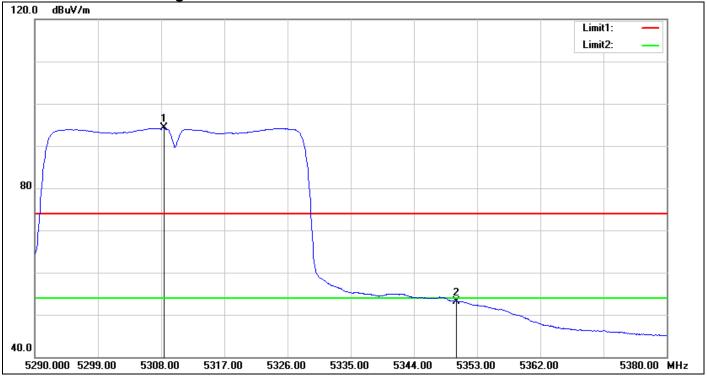


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5325.540	95.73	5.08	100.81			AVG
2	5350.000	44.36	5.31	49.67	54.00	-4.33	AVG

IEEE 802.11n HT 40 MHz Mode / CH Low

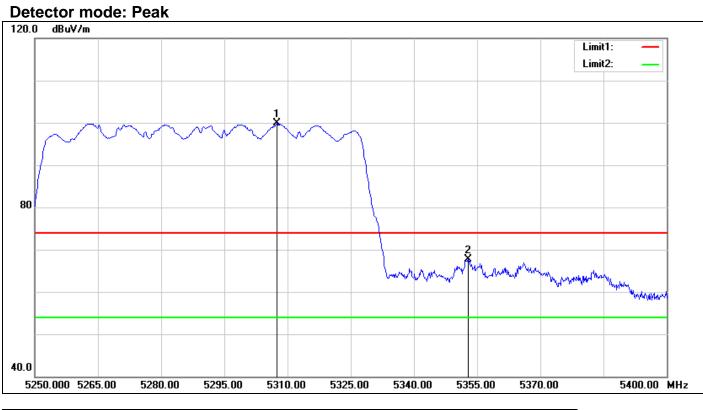


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5103.600	51.69	2.72	54.41	74.00	-19.59	peak
2	5267.400	101.65	4.72	106.37			peak
3	5352.000	54.31	5.33	59.64	74.00	-14.36	peak

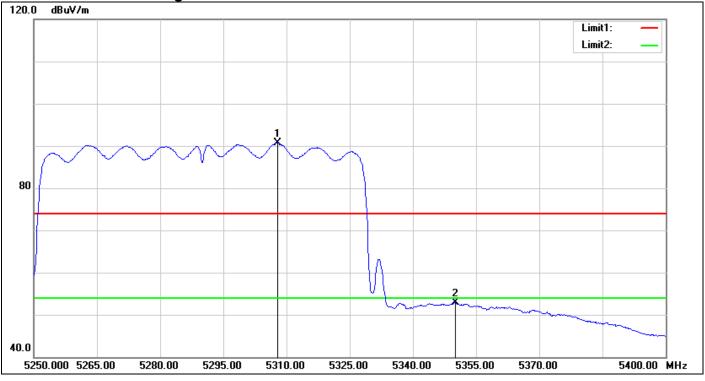


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	37.25	3.04	40.29	54.00	-13.71	AVG
2	5268.300	91.72	4.72	96.44			AVG
3	5350.000	39.35	5.31	44.66	54.00	-9.34	AVG

IEEE 802.11n HT 40 MHz Mode / CH High

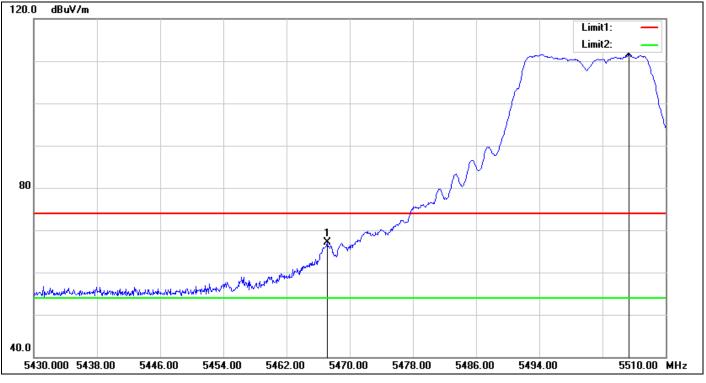


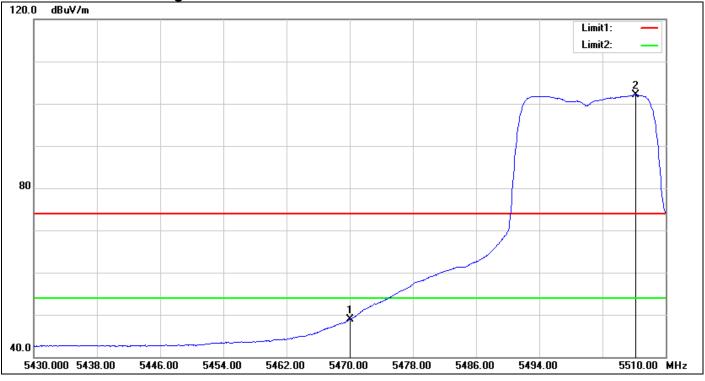
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5307.640	99.27	4.90	104.17			peak
2	5355.340	64.29	5.35	69.64	74.00	-4.36	peak



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5308.360	89.32	4.91	94.23			AVG
2	5350.000	47.86	5.31	53.17	54.00	-0.83	AVG

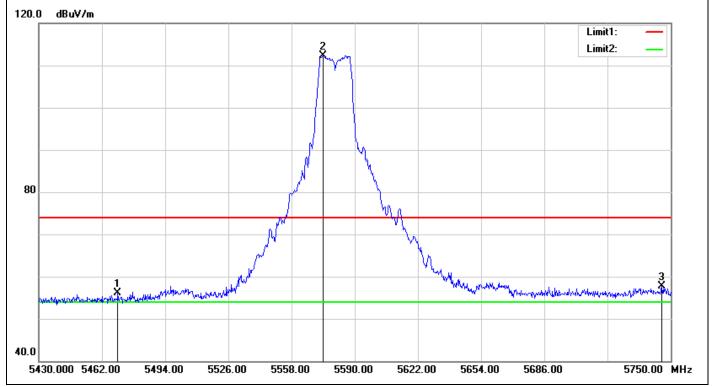
IEEE 802.11ac VHT 80 MHz Mode / CH Mid


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5307.450	94.94	4.90	99.84			peak
2	5352.900	62.35	5.33	67.68	74.00	-6.32	peak

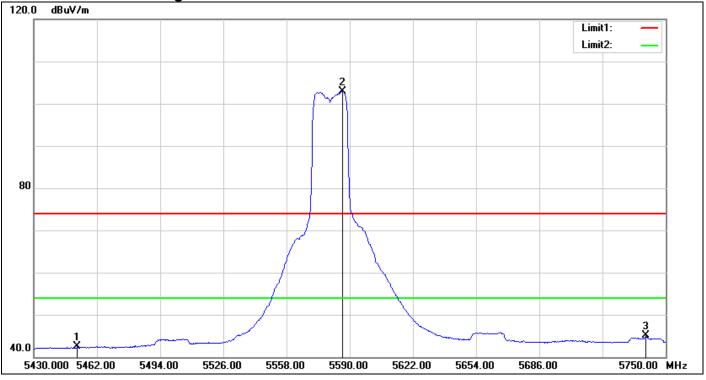

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5307.900	85.85	4.91	90.76			AVG
2	5350.000	47.51	5.31	52.82	54.00	-1.18	AVG

U-NII-2C

IEEE 802.11a Mode / CH Low

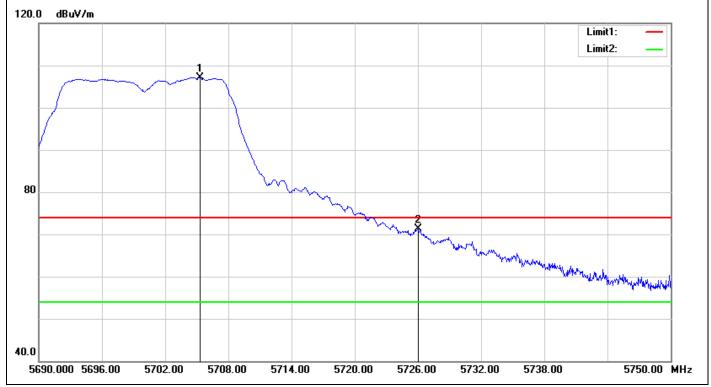


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5467.120	61.61	5.40	67.01	74.00	-6.99	peak
2	5505.360	106.30	5.27	111.57			peak

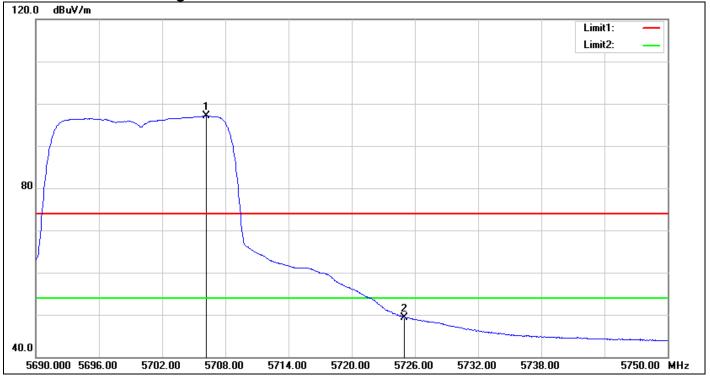


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5470.000	43.50	5.39	48.89	54.00	-5.11	AVG
2	5506.160	96.75	5.28	102.03			AVG

IEEE 802.11a Mode / CH Mid

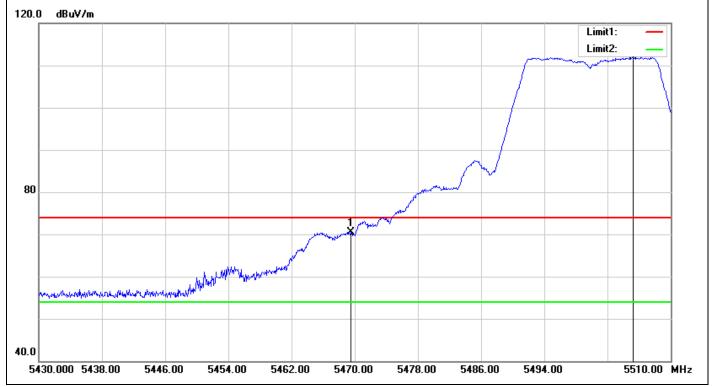


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5470.000	50.62	5.39	56.01	74.00	-17.99	peak
2	5574.000	106.74	5.57	112.31			peak
3	5745.520	51.32	6.30	57.62	74.00	-16.38	peak

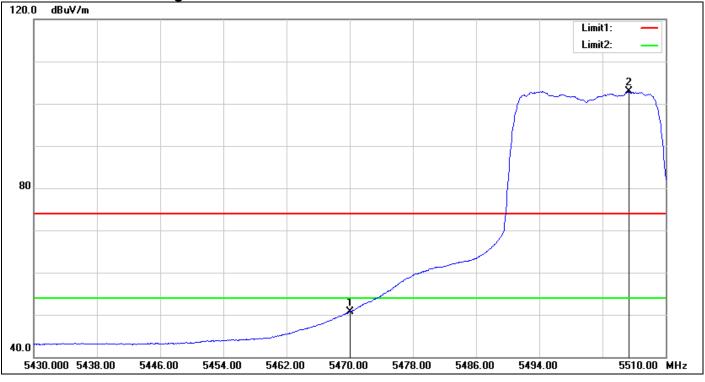


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5452.080	36.99	5.48	42.47	54.00	-11.53	AVG
2	5586.160	97.33	5.62	102.95			AVG
3	5740.080	38.80	6.27	45.07	54.00	-8.93	AVG

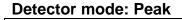
IEEE 802.11a Mode / CH High

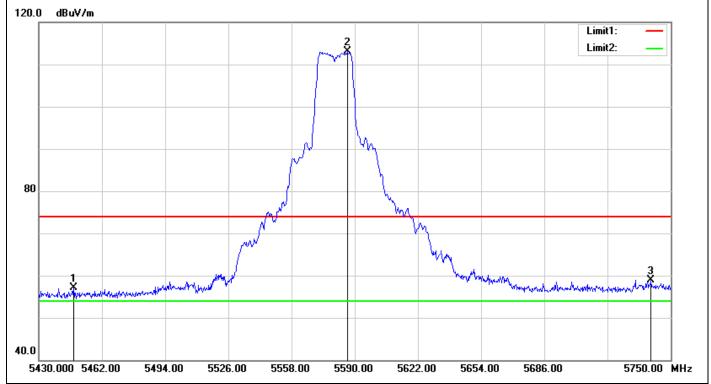


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5705.300	100.98	6.12	107.10			peak
2	5726.000	65.02	6.21	71.23	74.00	-2.77	peak

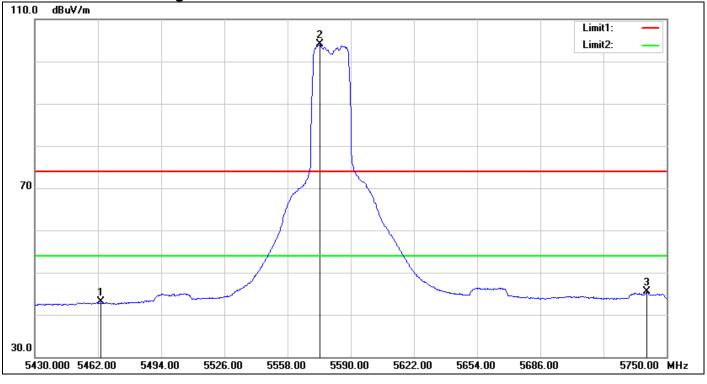

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5706.200	91.04	6.13	97.17			AVG
2	5725.000	43.18	6.21	49.39	54.00	-4.61	AVG

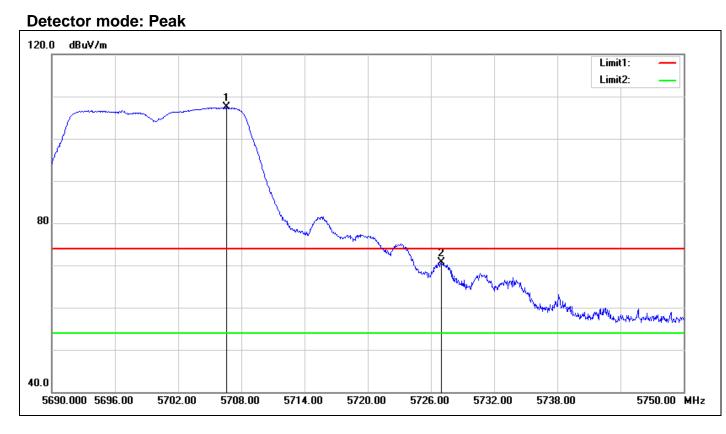
IEEE 802.11n HT 20 MHz Mode / CH Low


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5469.520	65.11	5.39	70.50	74.00	-3.50	peak
2	5505.280	106.79	5.27	112.06			peak

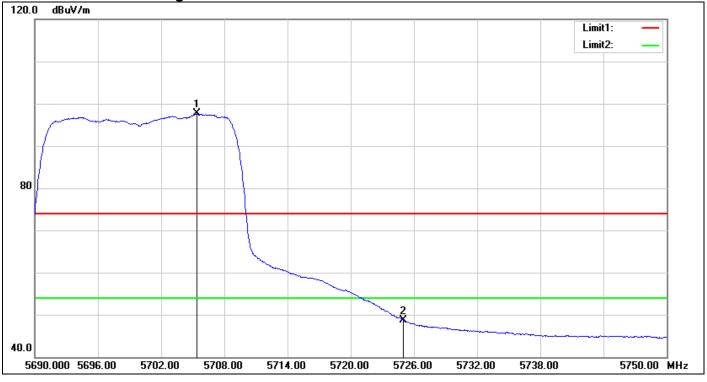

Detector mode: Average

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5470.000	45.35	5.39	50.74	54.00	-3.26	AVG
2	5505.360	97.60	5.27	102.87			AVG


IEEE 802.11n HT 20 MHz Mode / CH Mid

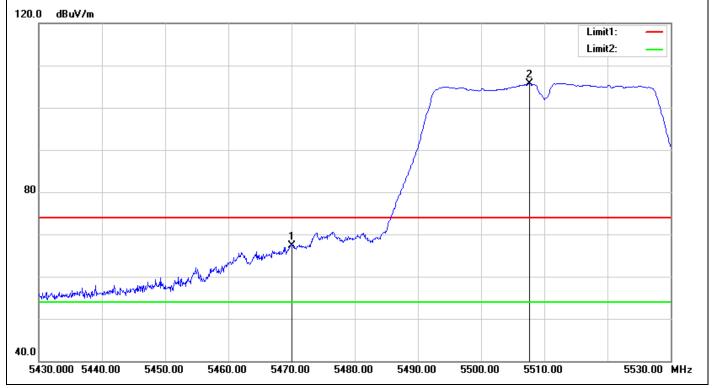

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5447.600	51.55	5.50	57.05	74.00	-16.95	peak
2	5586.160	107.40	5.62	113.02			peak
3	5740.080	52.64	6.27	58.91	74.00	-15.09	peak

Detector mode: Average

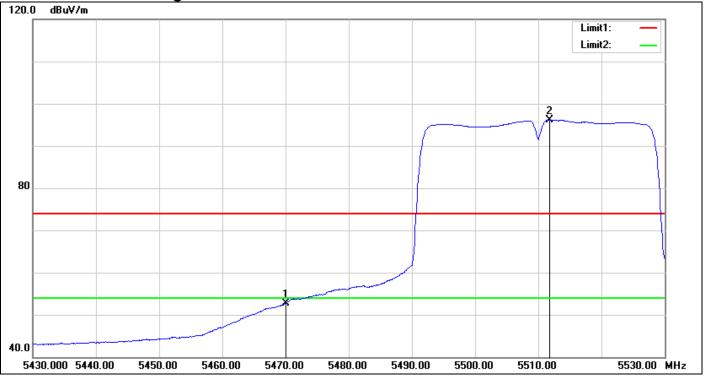

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5463.600	37.59	5.42	43.01	54.00	-10.99	AVG
2	5574.320	98.49	5.57	104.06			AVG
3	5739.760	39.31	6.27	45.58	54.00	-8.42	AVG

IEEE 802.11n HT 20 MHz Mode / CH High

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5706.560	101.28	6.13	107.41			peak
2	5727.020	64.55	6.22	70.77	74.00	-3.23	peak

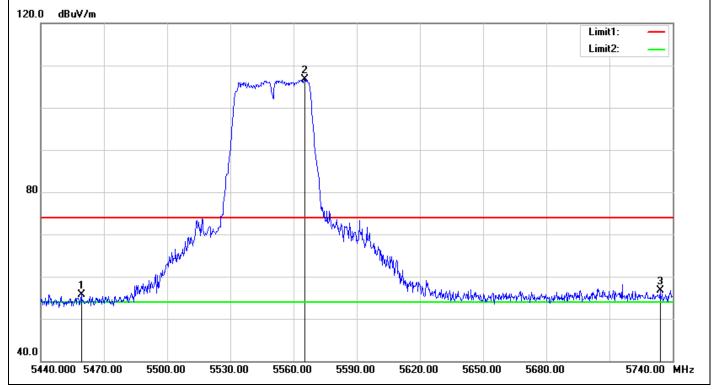

Detector mode: Average

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5705.360	91.51	6.12	97.63			AVG
2	5725.000	42.48	6.21	48.69	54.00	-5.31	AVG

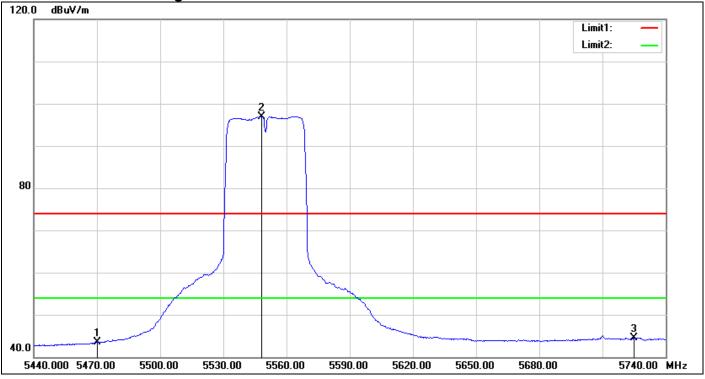

IEEE 802.11n HT 40 MHz Mode / CH Low

Detector mode: Peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5470.000	61.97	5.39	67.36	74.00	-6.64	peak
2	5507.700	100.52	5.28	105.80			peak

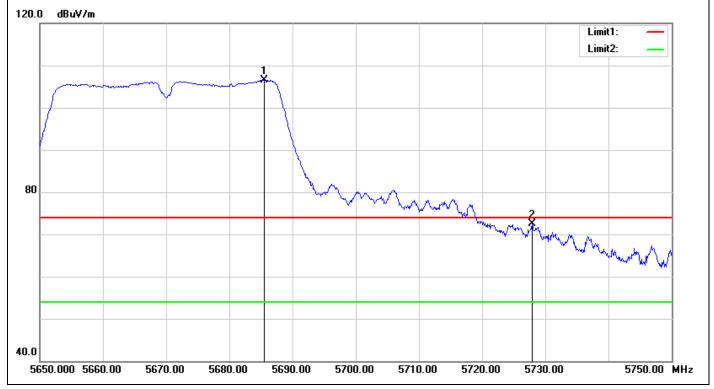

Detector mode: Average

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5470.000	47.31	5.39	52.70	54.00	-1.30	AVG
2	5511.800	90.81	5.30	96.11			AVG

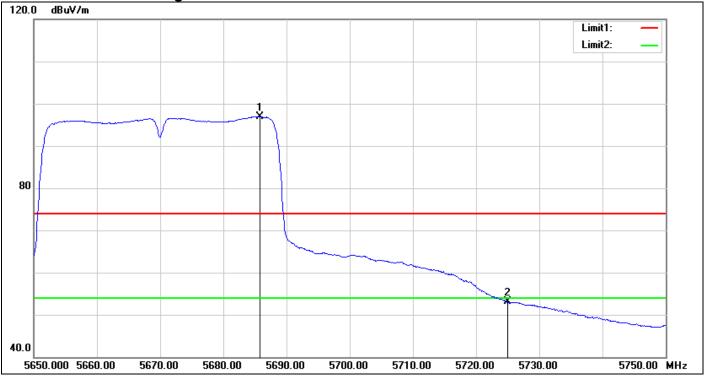

IEEE 802.11n HT 40 MHz Mode / CH Mid

Detector mode: Peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5459.200	50.29	5.44	55.73	74.00	-18.27	peak
2	5565.400	101.24	5.53	106.77			peak
3	5734.000	50.52	6.25	56.77	74.00	-17.23	peak


Detector mode: Average

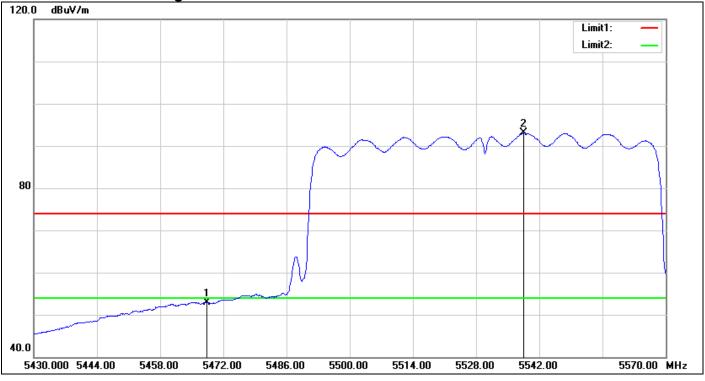
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5470.000	38.16	5.39	43.55	54.00	-10.45	AVG
2	5548.300	91.52	5.46	96.98			AVG
3	5725.000	38.20	6.21	44.41	54.00	-9.59	AVG


IEEE 802.11n HT 40 MHz Mode / CH High

Detector mode: Peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5685.500	100.54	6.04	106.58			peak
2	5727.900	66.22	6.22	72.44	74.00	-1.56	peak

Detector mode: Average


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5685.800	90.91	6.04	96.95			AVG
2	5725.000	46.83	6.21	53.04	54.00	-0.96	AVG

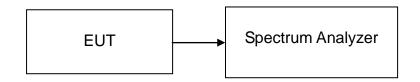
IEEE 802.11ac VHT 80 MHz Mode / CH Low

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5459.120	61.89	5.44	67.33	74.00	-6.67	peak
2	5539.060	97.36	5.42	102.78			peak

Detector mode: Average

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5468.360	47.55	5.40	52.95	54.00	-1.05	AVG
2	5538.500	87.63	5.41	93.04			AVG

8.4 PEAK POWER SPECTRAL DENSITY


<u>LIMIT</u>

According to §15.407(a)

- (1) For the band 5.15-5.25 GHz, the peak power spectral density shall not exceed 11dBm in any 1MHz band.
- (2) For the band 5.25-5.35 GHz, the peak power spectral density shall not exceed 11dBm in any 1MHz band.

If transmitting antennas of directional gain greater than 6dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW = 1MHz, VBW = 3MHz, Span = Sweep= AUTO
- 3. Record the max. reading.
- 4. Repeat the above procedure until the measurements for all frequencies are completed

TEST RESULTS

No non-compliance noted

Test Data

Channel	Frequency	PPSD	Limit	Desult
Channel	(MHz)	(dBm/1MHz)	(dBm/1MHz)	Result
Low	5180	9.10	11.00	PASS
Mid	5220	8.39	11.00	PASS
High	5240	10.41	11.00	PASS

Test mode: IEEE 802.11a mode/ 5180 ~ 5240MHz

Test mode: IEEE 802.11n HT 20 MHz mode / 5180 ~ 5240MHz

Channel	Frequency	PPSD	Limit	Result
Channel	(MHz)	(dBm/1MHz)	(dBm/1MHz)	Result
Low	5180	9.24	11.00	PASS
Mid	5220	9.58	11.00	PASS
High	5240	9.99	11.00	PASS

Test mode: IEEE 802.11n HT 40 MHz mode / 5190 ~ 5230MHz

Channel	Frequency	PPSD	Limit	Result
	(MHz)	(dBm/1MHz)	(dBm/1MHz)	Result
Low	5190	5.79	11.00	PASS
High	5230	6.31	11.00	PASS

Test mode: IEEE 802.11ac VHT 80 MHz mode / 5210MHz

Channel	Frequency	PPSD	Limit	Result
	(MHz)	(dBm/1MHz)	(dBm/1MHz)	Result
Mid	5210	2.63	11.00	PASS

Channal	Frequency	PPSD	Limit	Decult
Channel	(MHz)	(dBm/1MHz)	(dBm/1MHz)	Result
Low	5260	10.86	11.00	PASS
Mid	5280	10.50	11.00	PASS
High	5320	10.84	11.00	PASS

Test mode: IEEE 802.11a mode/ 5260 ~ 5320MHz

Test mode: IEEE 802.11n HT 20 MHz mode / 5260 ~ 5320MHz

Channel	Frequency	PPSD	Limit	Decult
Channel	(MHz)	(dBm/1MHz)	(dBm/1MHz)	Result
Low	5260	10.44	11.00	PASS
Mid	5280	10.37	11.00	PASS
High	5320	10.83	11.00	PASS

Test mode: IEEE 802.11n HT 40 MHz mode / 5270 ~ 5310MHz

Channel	Frequency	PPSD	Limit	Result
	(MHz)	(dBm/1MHz)	(dBm/1MHz)	Result
Low	5270	7.67	11.00	PASS
High	5310	6.59	11.00	PASS

Test mode: IEEE 802.11ac VHT 80 MHz mode / 5290MHz

Channel	Frequency	PPSD	Limit	Decult
	(MHz)	(dBm/1MHz)	(dBm/1MHz)	Result
Mid	5290	0.77	11.00	PASS

Channel	Frequency	PPSD	Limit	Decult		
Channel	(MHz)	(dBm/1MHz)	(dBm/1MHz)	Result		
Low	5500	10.56	11.00	PASS		
Mid	5580	10.64	11.00	PASS		
High	5700	10.74	11.00	PASS		

Test mode: IEEE 802.11a mode / 5500 ~ 5700MHz

Test mode: IEEE 802.11n HT 20 MHz mode / 5500 ~ 5700MHz

Channal	Frequency	PPSD	Limit	Beault
Channel	(MHz)	(dBm/1MHz)	(dBm/1MHz)	Result
Low	5500	10.69	11.00	PASS
Mid	5580	10.75	11.00	PASS
High	5700	9.78	11.00	PASS

Test mode: IEEE 802.11n HT 40 MHz mode / 5510 ~ 5670MHz

Channel	Frequency	PPSD	Limit	Result
Channel	(MHz)	(dBm/1MHz)	(dBm/1MHz)	Result
Low	5510	6.45	11.00	PASS
Mid	5550	7.21	11.00	PASS
High	5670	8.83	11.00	PASS

Test mode: IEEE 802.11ac VHT 80 MHz mode / 5530MHz

Channel	Frequency	PPSD	Limit	Result
Channel	(MHz)	(dBm/1MHz)	(dBm/1MHz)	Result
Low	5530	2.80	11.00	PASS

Test Plot

IEEE 802.11a mode/ 5180 ~ 5240MHz

CH Low

CH Mid

Date: 12.AUG.2016 15:35:04

CH High

Ref Level 2			0.95 dB 👄 I					
Att 1Rm View	30 dB	SWT	5.7 µs 👄 🕻	BW 3 MHz	Mode Au	ito FFT		
			M1		м	1[1]	5.23	10.41 dBr 343130 GH
10 dBm					~~~			
0 dBm								
-10 dBm								
-20 dBm								
-30 dBm								
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm								
CF 5.24 GHz				691	ots		Spar	30.0 MHz

Date: 12.AUG.2016 14:32:52

IEEE 802.11n HT 20 MHz mode / 5180 ~ 5240MHz

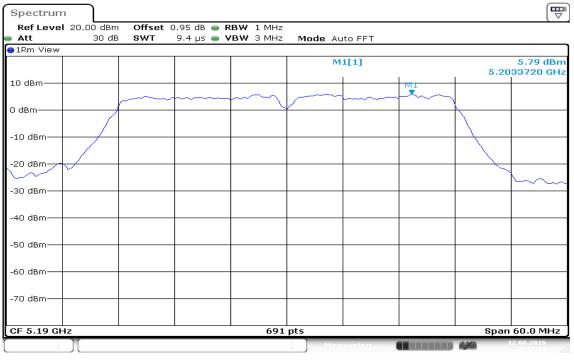
CH Low

Date: 12.AUG.2016 14:45:26

CH Mid

Ref Level 20.0 Att	30 dB SWT	t 0.95 dB 👄 RBW 5.7 µs 👄 VBW		Auto FFT		
●1Rm View	1		I			
				M1[1]	5.20	9.58 dBi 150360 GH
10 dBm					<u> </u>	
			1		N N	
0 dBm						
-10 dBm						
-20 dBm						
						\sim
-30 dBm						Ť
-40 dBm						
-50 dBm						
-60 dBm						
-70 dBm						
-, 0 4511						
CF 5.2 GHz			691 pts			 30.0 MHz

Date: 12.AUG.2016 14:44:19


CH High

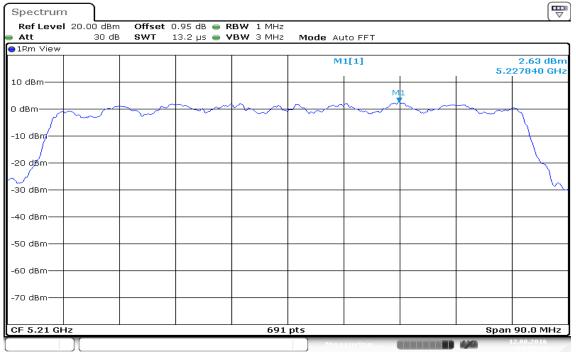
Spectrum Ref Level 20.00	dBm Offset	0.95 dB 👄 RB	W 1 MHz				[₩
Att 3	odb SWT	5.7 µs 👄 VB		Mode Auto	FFT		
∋1Rm View							
		M1		M1[1]	5.23	9.99 dBr 46600 GH
10 dBm		+*					
0 dBm	<u> </u>					 $\overline{}$	
-10 dBm						 <u> </u>	
-20 dBm						 	
-30 dBm							
-40 dBm							
-50 dBm							
-60 dBm						 	
-70 dBm							
CF 5.24 GHz			691 pt	is		Span	30.0 MHz
				Measu	uring	1/0	2.08.2016

Date: 12.AUG.2016 14:46:11

IEEE 802.11n HT 40 MHz mode / 5190 ~ 5230MHz

CH Low

Date: 12.AUG.2016 14:47:14


CH High

	M1	[1]	5.22	6.31 dBr 67870 GH
M1	~~~~		 	
			 <u> </u>	
			\mathbf{n}	
			\sim	
			 	\sim
				60.0 MHz
-			M1	

Date: 12.AUG.2016 14:47:59

IEEE 802.11ac VHT 80 MHz mode / 5210MHz


CH Mid

Date: 12.AUG.2016 14:49:12


IEEE 802.11a mode / 5260 ~ 5320MHz

CH Low

Date: 20.MAY.2016 11:32:08

CH Mid

Date: 20.MAY.2016 11:33:35


CH High

1Rm View M1[1] 10.84 dBi 10 dBm M1 5.3245730 GH 0 dBm V V -10 dBm V V -20 dBm V V -40 dBm V V	Ref Level 20.00 dBm Att 30 dB	Offset 1.50 dB	RBW 1 MHz VBW 3 MHz Mode Au	ITO FET	`
10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm			ibit o mile mode Ad		
-10 dBm -10 dBm -20 dBm -30 dBm -40 dBm				M1	10.84 dBr 5.3245730 GH
-10 dBm -20 dBm -30 dBm -40 dBm	10 dBm				
-20 dBm -30 dBm -40 dBm	0 dBm				
-30 dBm -40 dBm	-10 dBm				
-40 dBm	-20 dBm				$\sim \sim$
	-30 dBm				
-50 dBm	-40 dBm				
	-50 dBm				
-60 dBm	-60 dBm				
-70 dBm	-70 dBm				
CF 5.32 GHz 691 pts Span 40.0 MHz	CF 5.32 GHz		691 pts		Span 40.0 MHz

Date: 20.MAY.2016 11:35:07

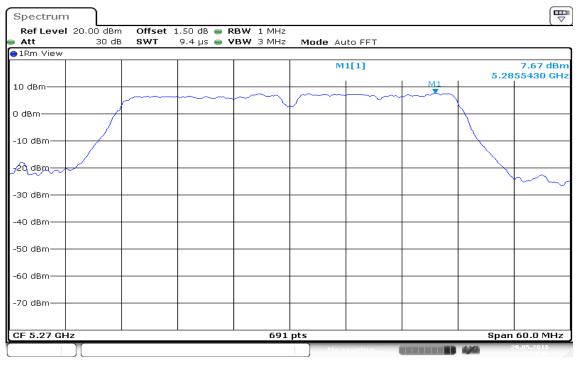

IEEE 802.11n HT 20 MHz mode / 5260 ~ 5320MHz

CH Low

Date: 20.MAY.2016 11:45:07

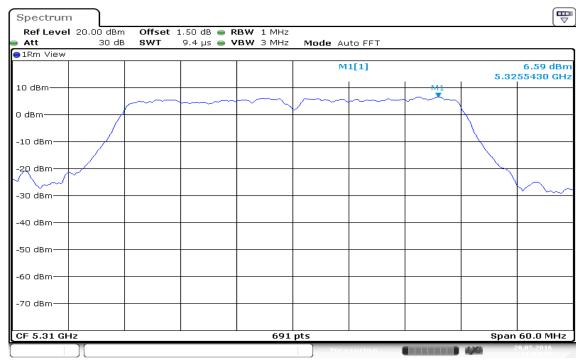
CH Mid

Date: 20.MAY.2016 11:47:10


CH High

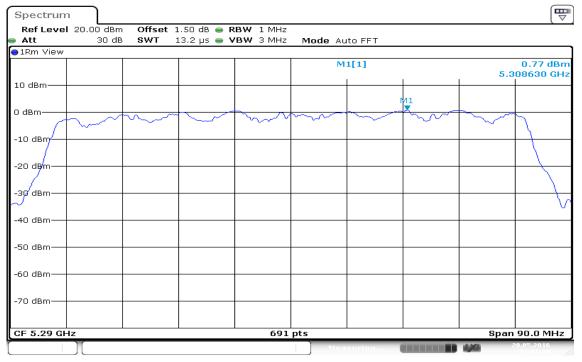
Ref Level			L.50 dB 👄							
Att 1Rm View	30 dB	SWT	5.7 µs 👄	VBW 3	3 MHZ	Mode A	uto FFT			
						N		11	5.32	10.83 dBr 272360 GH
10 dBm				1	\sim	\sim				
0 dBm				-						
-10 dBm				_				+		
-20 dBm -	~			_						
-30 dBm										
-40 dBm										
-50 dBm										
-60 dBm										
-70 dBm										
CF 5.32 GHz					691	pts			 Span	40.0 MHz
						Me	asuring		446	20.05.2016

Date: 20.MAY.2016 11:48:44


IEEE 802.11n HT 40 MHz mode / 5270 ~ 5310MHz

CH Low

Date: 20.MAY.2016 11:54:06

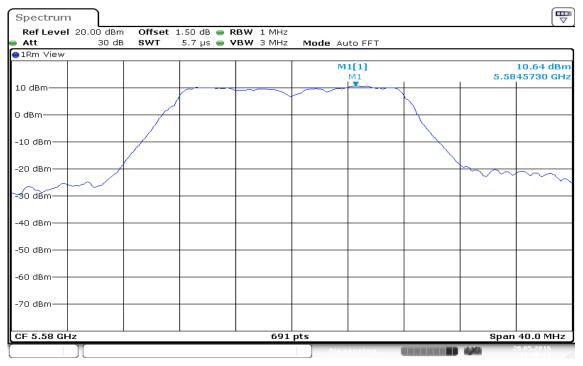

CH High

Date: 20.MAY.2016 11:54:59

IEEE 802.11ac VHT 80 MHz mode / 5290MHz


CH Mid

Date: 20.MAY.2016 12:01:08

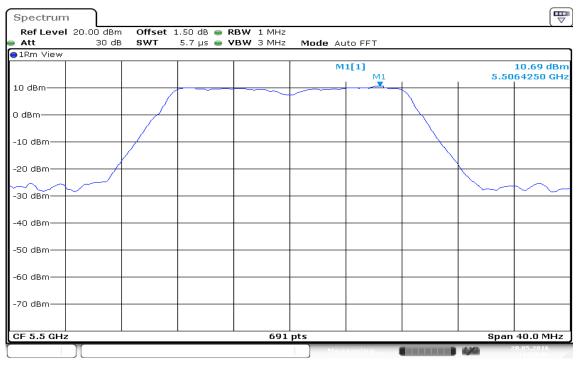

Test mode: IEEE 802.11a mode / 5500 ~ 5700MHz

CH Low

Date: 20.MAY.2016 11:36:32

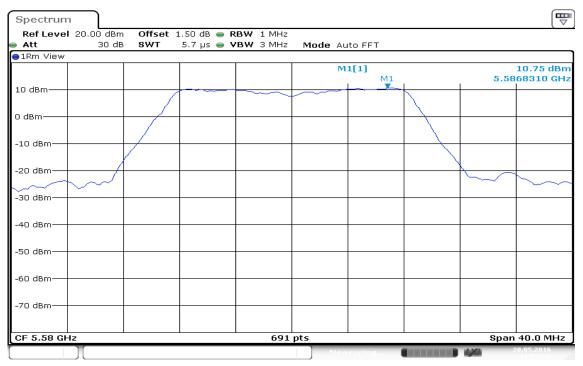
CH Mid

Date: 20.MAY.2016 11:40:25


CH High

1Rm View	Ref Level Att	20.00 dBm 30 dB			RBW 1 MHz VBW 3 MHz	Mode Au				
10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm			oni	эл рэ 🕳	TEN STATE	Mode Ad				
10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm						M	M1			10.74 dBr 61940 GH
-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	10 dBm									
-20 dBm -30 dBm -40 dBm -50 dBm	0 dBm									
-30 dBm -40 dBm -50 dBm	-10 dBm							<u> </u>	~ .	
-40 dBm	-20 dBm									<u> </u>
-50 dBm	-30 dBm									
	-40 dBm									
-60 dBm	-50 dBm									
	-60 dBm									
-70 dBm	-70 dBm									
CF 5.7 GHz 691 pts Span 40.0 MHz	CF 5.7 GHz				691	pts			 Span	40.0 MHz

Date: 20.MAY.2016 11:41:13

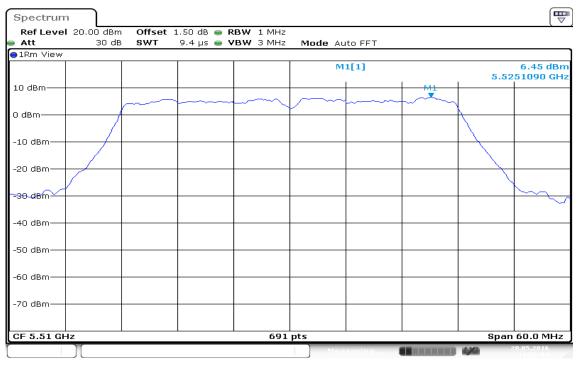

IEEE 802.11n HT 20 MHz mode / 5500 ~ 5700MHz

CH Low

Date: 20.MAY.2016 11:50:05

CH Mid

Date: 20.MAY.2016 11:51:26


CH High

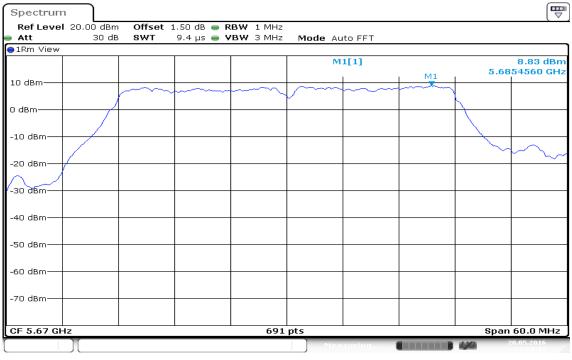
Ref Level 20.00 dBr Att 30 d		1.50 dB 👄 F 5.7 μs 👄 V		Mode Au	Ito FFT			
1Rm View								
				м	1[1] M1	I	5.70	9.78 dBr 67150 GH
10 dBm								
0 dBm								
-10 dBm								
-20 dBm	<u> </u>						<u> </u>	
-30 dBm								
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm								
CF 5.7 GHz			691	nts			Snan	40.0 MHz
			0,1	pts	surina			20.05.2016

Date: 20.MAY.2016 11:52:30

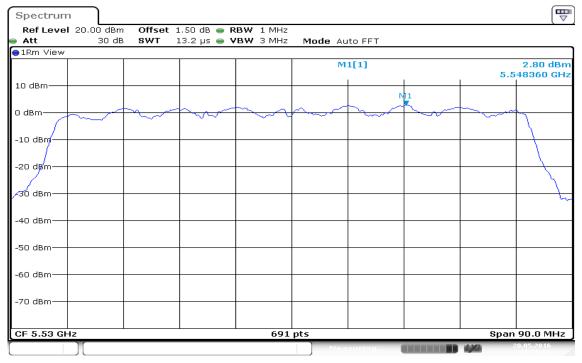
IEEE 802.11n HT 40 MHz mode / 5510 ~ 5670MHz

CH Low

Date: 20.MAY.2016 11:56:04


CH Mid

Date: 20.MAY.2016 11:57:06


CH High

Date: 20.MAY.2016 11:58:12

IEEE 802.11ac VHT 80 MHz mode / 5530MHz

CH Low

Date: 20.MAY.2016 11:59:55

8.5 RADIATED UNDESIRABLE EMISSION

<u>Limit</u>

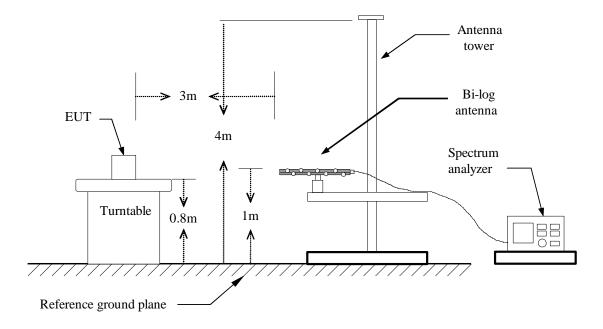
All spurious emissions shall comply with the limits of §15.209(a) and RSS-Gen Table 2 & Table 5.

<u>RSS-Gen Table 2 & Table 5: General Field Strength Limits for Transmitters and</u> <u>Receivers at Frequencies Above 30 MHz</u> ^(Note)

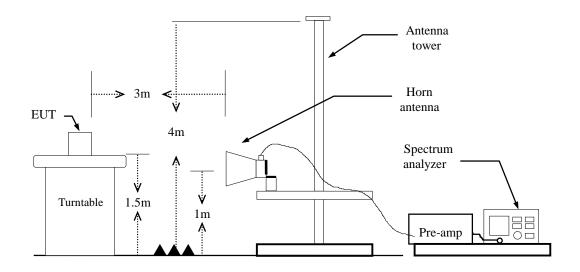
Frequency	Field Stre microvolts/m at 3 metr	
(MHz)	Transmitters	Receivers
30-88	100 (3 nW)	100 (3 nW)
88-216	150 (6.8 nW)	150 (6.8 nW)
216-960	200 (12 nW)	200 (12 nW)
Above 960	500 (75 nW)	500 (75 nW)

Note: *Measurements for compliance with limits in the above table may be performed at distances other than 3 metres, in accordance with Section 7.2.7.

Transmitting devices are not permitted in Table 1 bands or, unless stated otherwise, in TV bands (54-72 MHz, 76-88 MHz, 174-216 MHz, 470-608 MHz and 614-806 MHz).


RSS-Gen Table 6: General Field Strength Limits for Transmitters at Frequencies Below 30 MHz (Transmit)

Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/377F (F in kHz)	3000
490-1,705 kHz	24,000/F (F in kHz)	24,000/377F (F in kHz)	30
1.705-30 MHz	30	N/A	30


Note: The emission limits for the bands 9-90 kHz and 110-490 kHz are based on measurements employing an average detector.

Test Configuration

30MHz ~ 1GHz

Above 1 GHz

TEST PROCEDURE

- 1. The EUT is placed on a turntable, Above 1 GHz is 1.5m high and below 1 GHz is 0.8m high above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

Below 1GHz:

```
RBW=100kHz / VBW=300kHz / Sweep=AUTO
```

Above 1GHz:

(a) PEAK: RBW=VBW=1MHz / Sweep=AUTO

(b)AVERAGE: RBW=1MHz, if duty cycle \geq 98%, VBW=10Hz.

if duty cycle \leq 30%, VBW=1/T.

IEEE 802.11a mode: ≥98%, VBW=10Hz

IEEE 802.11n HT 20 MHz mode: \geq 98%, VBW=10Hz

IEEE 802.11n HT 40 MHz mode: \geq 98%, VBW=10Hz

IEEE 802.11ac VHT 80 MHz mode: ≥98%, VBW=10Hz

- 7. Repeat above procedures until the measurements for all frequencies are complete.
- 8. Result = Spectrum Reading + cable loss(spectrum to Amp) Amp Gain + Cable loss(Amp to receive Ant)+ Receive Ant

Note: We checked every harmonics frequencies from Fundamental frequencies with reduced VBW, and we mark a point to prove pass or not if we find any emission. For this case, there are no emissions hidden in the noise floor.

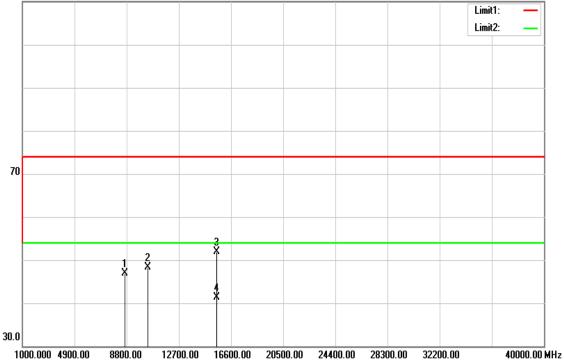
Below 1 GHz

Operation I	Node:	Normal Link			Test Date:	August 11	, 2016
Temperatu	re:	27°C			Tested by: Dennis Li		
Humidity:		53% RH			Polarity:	Ver. / Hor.	
80.0 dBu	W/m					Limit1: Margin:	_
40	2	4 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1	6x				
0.0	127.00 224.	00 321.00	418.00 515.	00 612.00	709.00 806.	00 100	0.00 MHz
Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
39.7000	49.78	-15.12	34.66	40.00	-5.34	peak	V
112.4500	59.16	-16.83	42.33	43.50	-1.17	peak	V
141.5500	47.30	-15.82	31.48	43.50	-12.02	peak	V
242.4300	45.94	-16.45	29.49	46.00	-16.51	peak	V
342.3400	40.07	-13.10	26.97	46.00	-19.03	peak	V
417.0300	35.73	-11.19	24.54	46.00	-21.46	peak	V

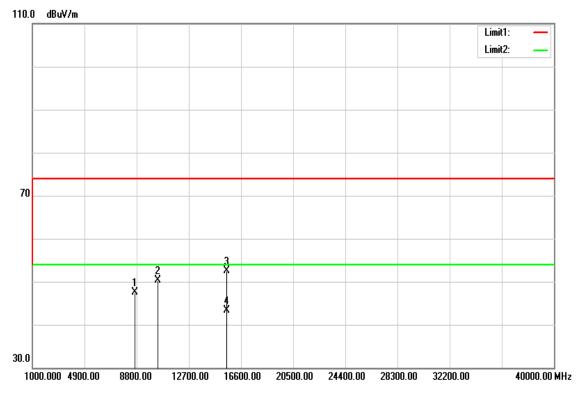
- 1 Measuring frequencies from 30 MHz to the 1GHz.
- 2 Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using peak/quasi-peak detector mode.
- 3 Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit or as required by the applicant.
- 4 Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5 Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).

Operation I	Mode:	Normal Link			Test Date:	August 11	, 2016
Temperatu	re: 2	27°C			Tested by:	Dennis Li	
Humidity:	Ę	53% RH			Polarity:	Hor.	
80.0 dBu	₩/m						
						Limit1: Margin:	_
40	z	<u>4</u> ↑					
-	J 3	5 X	6 X				
0.0							
30.000	127.00 224.		418.00 515.	00 612.00	709.00 806.0	UO 100	0.00 MHz
Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
71.7100	52.56	-20.81	31.75	40.00	-8.25	peak	Н
104.6600	55.43	-18.21	37.22	43.50	-6.28	peak	Н
157.0700	50.05	-16.28	33.77	43.50	-9.73	peak	Н
243.4000	55.73	-16.43	39.30	46.00	-6.70	peak	Н
353.9800	45.06	-12.80	32.26	46.00	-13.74	peak	Н
417.0300	45.69	-11.19	34.50	46.00	-11.50	peak	Н

- 1. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using peak/quasi-peak detector mode.
- 3. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit or as required by the applicant.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).


Above 1 GHz

U-NII-1

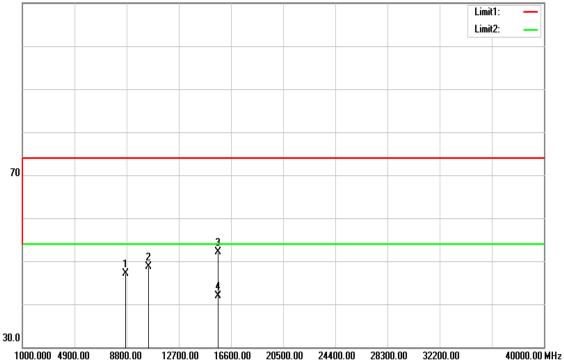

Tx / IEEE 802.11a mode / CH Low

Polarity: Vertical

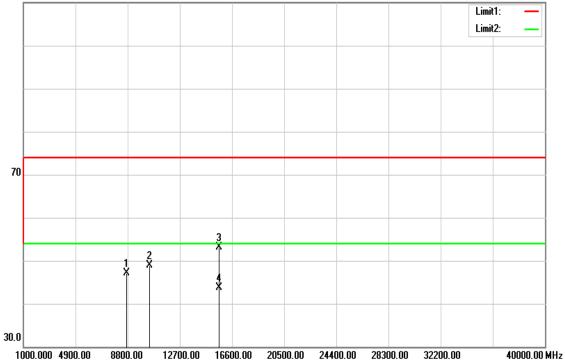
110.0 dBu¥/m

Polarity: Horizontal

Operation Mode:	Tx / IEEE 802.11a mode / CH Low	Test Date:	August 25, 2016
Temperature:	27°C	Tested by:	Dennis Li
Humidity:	53% RH	Polarity:	Ver. / Hor.


Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
8690.000	33.13	13.73	46.86	74.00	-27.14	peak	V
10360.000	31.82	16.52	48.34	74.00	-25.66	peak	V
15540.000	32.82	19.04	51.86	74.00	-22.14	peak	V
15540.000	22.28	19.04	41.32	54.00	-12.68	AVG	V
N/A							
8690.000	33.80	13.73	47.53	74.00	-26.47	peak	Н
10360.000	33.69	16.52	50.21	74.00	-23.79	peak	Н
15540.000	33.40	19.04	52.44	74.00	-21.56	peak	Н
15540.000	24.21	19.04	43.25	54.00	-10.75	AVG	Н
N/A							

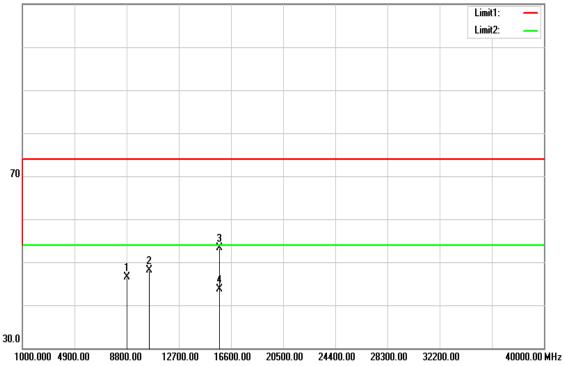
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).


Tx / IEEE 802.11a mode / CH Mid

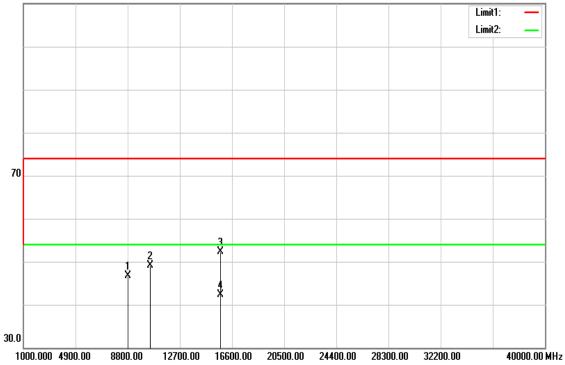
Polarity: Vertical

Polarity: Horizontal

Operation Mode:	Tx / IEEE 802.11a mode / CH Mid	Test Date:	August 25, 2016
Temperature:	27°C	Tested by:	Dennis Li
Humidity:	53% RH	Polarity:	Ver. / Hor.

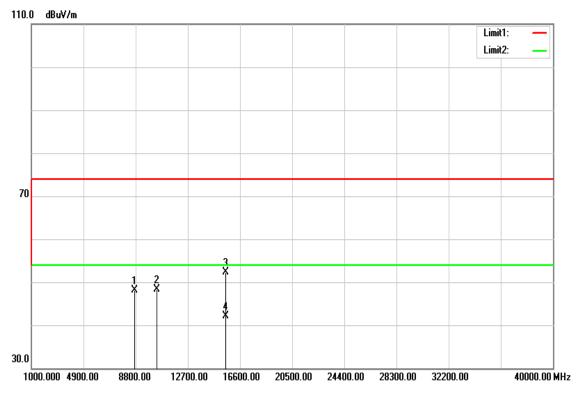

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
8700.000	33.40	13.73	47.13	74.00	-26.87	peak	V
10440.000	31.76	16.89	48.65	74.00	-25.35	peak	V
15660.000	32.96	19.14	52.10	74.00	-21.90	peak	V
15660.000	22.74	19.14	41.88	54.00	-12.12	AVG	V
N/A							
8700.000	33.28	13.73	47.01	74.00	-26.99	peak	Н
10440.000	31.93	16.89	48.82	74.00	-25.18	peak	Н
15660.000	34.00	19.14	53.14	74.00	-20.86	peak	Н
15660.000	24.54	19.14	43.68	54.00	-10.32	AVG	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

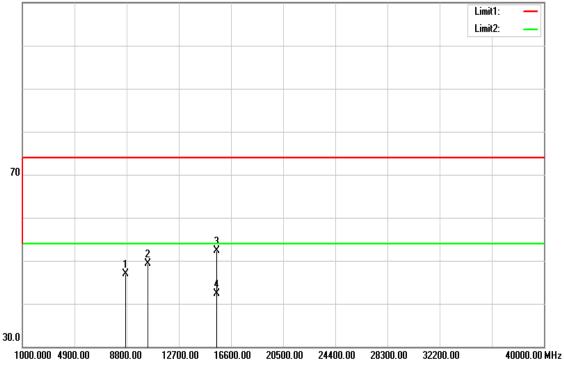

Tx / IEEE 802.11a mode / CH High

Polarity: Vertical

Polarity: Horizontal


Operation Mode:	Tx / IEEE 802.11a mode / CH High	Test Date:	August 25, 2016
Temperature:	27°C	Tested by:	Dennis Li
Humidity:	53% RH	Polarity:	Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
8850.000	32.74	13.80	46.54	74.00	-27.46	peak	V
10480.000	31.07	17.07	48.14	74.00	-25.86	peak	V
15720.000	34.11	19.19	53.30	74.00	-20.70	peak	V
15720.000	24.49	19.19	43.68	54.00	-10.32	AVG	V
N/A							
8850.000	32.85	13.80	46.65	74.00	-27.35	peak	Н
10480.000	32.07	17.07	49.14	74.00	-24.86	peak	Н
15720.000	33.19	19.19	52.38	74.00	-21.62	peak	Н
15720.000	23.17	19.19	42.36	54.00	-11.64	AVG	Н
N/A							


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Tx / IEEE 802.11n HT 20 MHz mode / CH Low

Polarity: Vertical

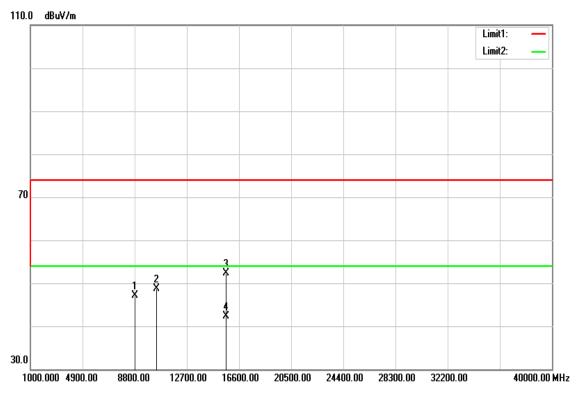
Polarity: Horizontal

Operation Mode: Tx / IEEE 802.11n HT 20 MHz mode / CH Low **Test Date:** August 25, 2016

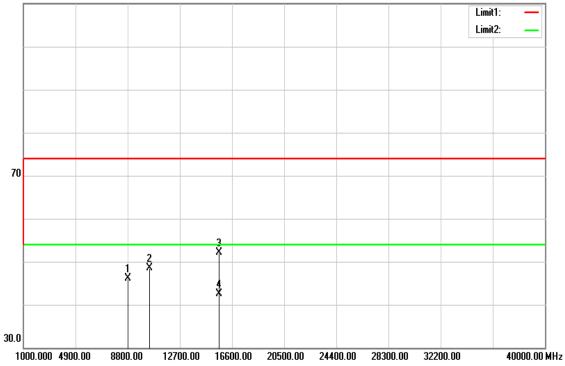
Temperature: 27°C

Tested by: Dennis Li

Humidity: 53% RH


Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
8700.000	34.46	13.73	48.19	74.00	-25.81	peak	V
10360.000	31.85	16.52	48.37	74.00	-25.63	peak	V
15540.000	33.18	19.04	52.22	74.00	-21.78	peak	V
15540.000	23.09	19.04	42.13	54.00	-11.87	AVG	V
N/A							
8700.000	33.17	13.73	46.90	74.00	-27.10	peak	Н
10360.000	32.68	16.52	49.20	74.00	-24.80	peak	Н
15540.000	33.20	19.04	52.24	74.00	-21.76	peak	Н
15540.000	23.25	19.04	42.29	54.00	-11.71	AVG	Н
N/A							


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Tx / IEEE 802.11n HT 20 MHz mode / CH Mid

Polarity: Vertical

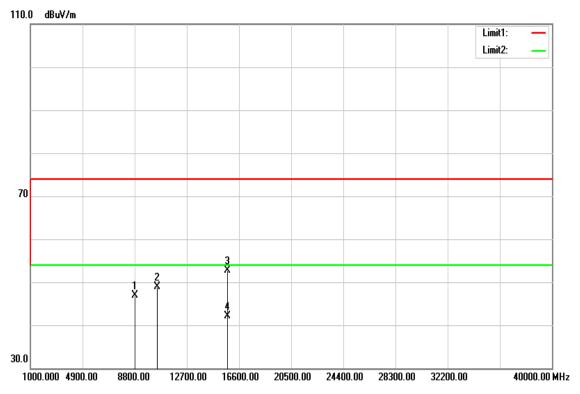
Polarity: Horizontal

Operation Mode: Tx / IEEE 802.11n HT 20 MHz mode / CH Mid Test Date: August 25, 2016

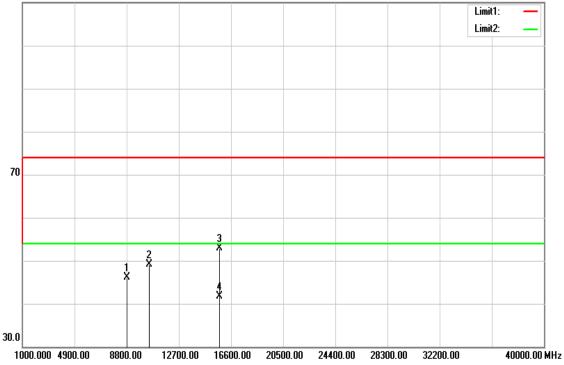
Temperature: 27°C

Tested by: Dennis Li

Humidity: 53% RH


Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
8850.000	33.32	13.80	47.12	74.00	-26.88	peak	V
10440.000	31.83	16.89	48.72	74.00	-25.28	peak	V
15660.000	33.13	19.14	52.27	74.00	-21.73	peak	V
15660.000	23.07	19.14	42.21	54.00	-11.79	AVG	V
N/A							
8850.000	32.38	13.80	46.18	74.00	-27.82	peak	Н
10440.000	31.59	16.89	48.48	74.00	-25.52	peak	Н
15660.000	32.93	19.14	52.07	74.00	-21.93	peak	Н
15660.000	23.43	19.14	42.57	54.00	-11.43	AVG	Н
N/A							


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Tx / IEEE 802.11n HT 20 MHz mode / CH High

Polarity: Vertical

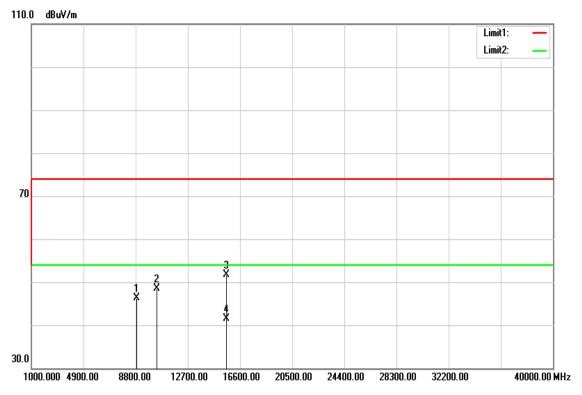
Polarity: Horizontal

Operation Mode: Tx / IEEE 802.11n HT 20 MHz mode / CH High **Test Date:** August 25, 2016

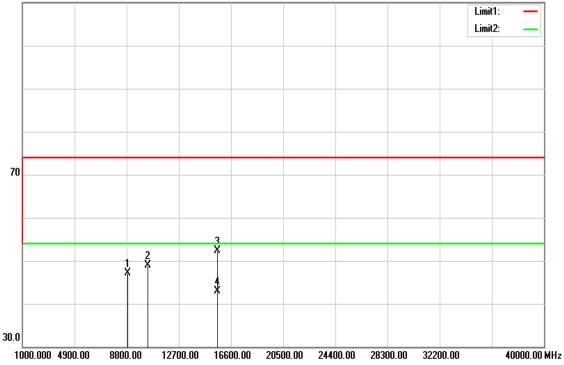
Temperature: 27°C

Tested by: Dennis Li

Humidity: 53% RH


Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
8850.000	33.08	13.80	46.88	74.00	-27.12	peak	V
10480.000	31.76	17.07	48.83	74.00	-25.17	peak	V
15720.000	33.56	19.19	52.75	74.00	-21.25	peak	V
15720.000	22.92	19.19	42.11	54.00	-11.89	AVG	V
N/A							
8850.000	32.27	13.80	46.07	74.00	-27.93	peak	Н
10480.000	32.05	17.07	49.12	74.00	-24.88	peak	Н
15720.000	33.68	19.19	52.87	74.00	-21.13	peak	Н
15720.000	22.61	19.19	41.80	54.00	-12.20	AVG	Н
N/A							


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Tx / IEEE 802.11n HT 40 MHz mode / CH Low

Polarity: Vertical

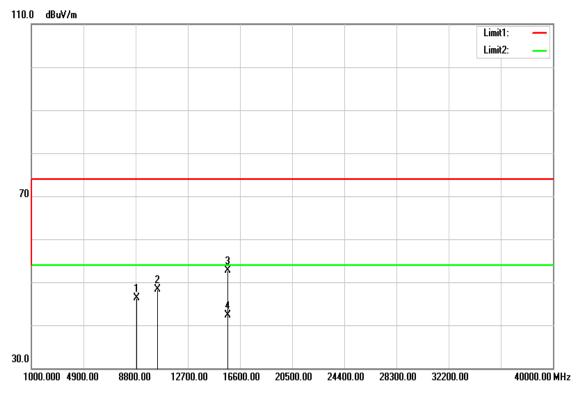
Polarity: Horizontal

Operation Mode: Tx / IEEE 802.11n HT 40 MHz mode / CH Low **Test Date:** August 25, 2016

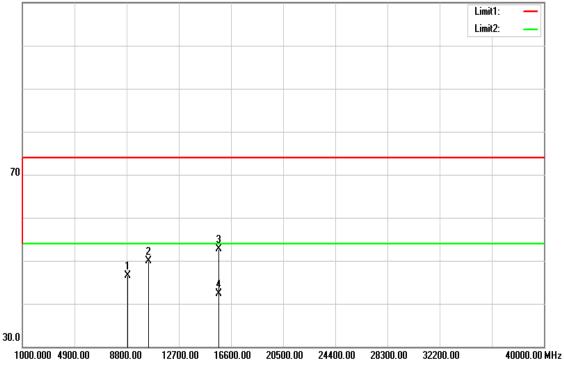
Temperature: 27°C

Tested by: Dennis Li

Humidity: 53% RH


Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
8870.000	32.47	13.81	46.28	74.00	-27.72	peak	V
10380.000	31.82	16.62	48.44	74.00	-25.56	peak	V
15570.000	32.73	19.07	51.80	74.00	-22.20	peak	V
15570.000	22.49	19.07	41.56	54.00	-12.44	AVG	V
N/A							
8870.000	33.35	13.81	47.16	74.00	-26.84	peak	Н
10380.000	32.25	16.62	48.87	74.00	-25.13	peak	Н
15570.000	33.30	19.07	52.37	74.00	-21.63	peak	Н
15570.000	23.81	19.07	42.88	54.00	-11.12	AVG	Н
N/A							


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Tx / IEEE 802.11n HT 40 MHz mode / CH High

Polarity: Vertical

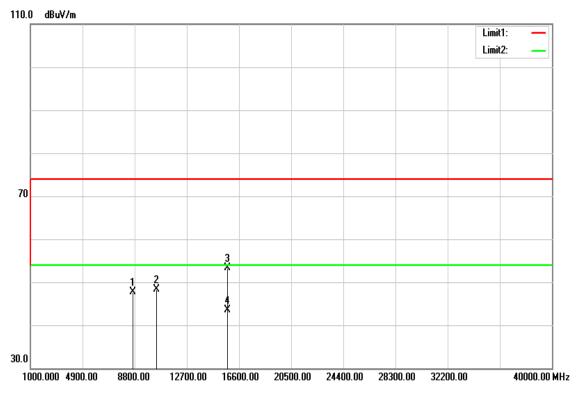
Polarity: Horizontal

Operation Mode: Tx / IEEE 802.11n HT 40 MHz mode / CH High Test Date: August 25, 2016

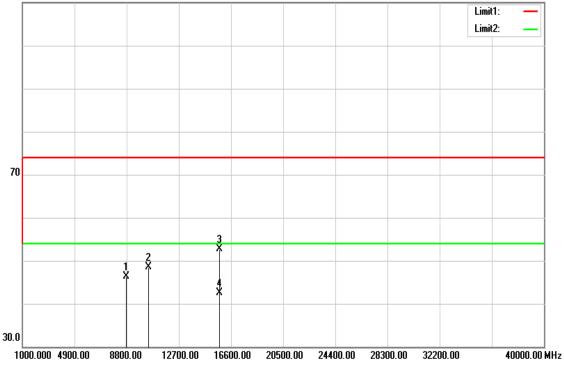
Temperature: 27°C

Tested by: Dennis Li

Humidity: 53% RH


Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
8900.000	32.50	13.82	46.32	74.00	-27.68	peak	V
10460.000	31.34	16.98	48.32	74.00	-25.68	peak	V
15690.000	33.55	19.17	52.72	74.00	-21.28	peak	V
15690.000	23.21	19.17	42.38	54.00	-11.62	AVG	V
N/A							
8890.000	32.73	13.82	46.55	74.00	-27.45	peak	Н
10460.000	33.02	16.98	50.00	74.00	-24.00	peak	Н
15690.000	33.63	19.17	52.80	74.00	-21.20	peak	Н
15690.000	23.06	19.17	42.23	54.00	-11.77	AVG	Н
N/A							


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Tx / IEEE 802.11ac VHT 80 MHz mode / CH Mid

Polarity: Vertical

Polarity: Horizontal

Operation Mode: Tx / IEEE 802.11ac VHT 80 MHz mode / CH Mid Test Date: August 25, 2016

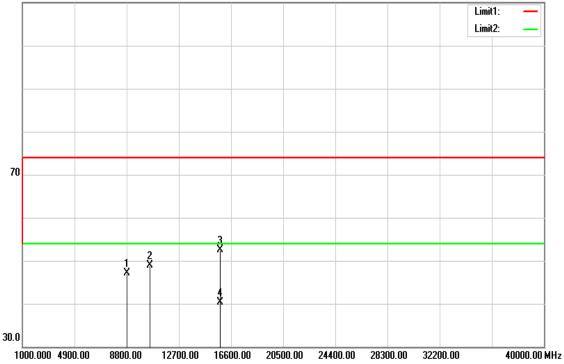
Temperature: 27°C

Tested by: Dennis Li

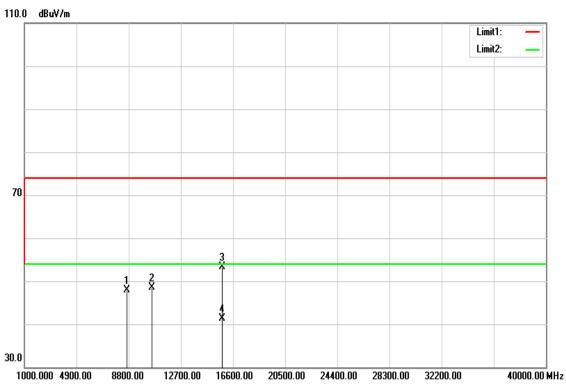
Humidity: 53% RH

Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
8650.000	33.91	13.71	47.62	74.00	-26.38	peak	V
10420.000	31.48	16.80	48.28	74.00	-25.72	peak	V
15720.000	34.01	19.19	53.20	74.00	-20.80	peak	V
15720.000	24.36	19.19	43.55	54.00	-10.45	AVG	V
N/A							
8750.000	32.51	13.75	46.26	74.00	-27.74	peak	Н
10420.000	31.75	16.80	48.55	74.00	-25.45	peak	Н
15720.000	33.49	19.19	52.68	74.00	-21.32	peak	Н
15720.000	23.31	19.19	42.50	54.00	-11.50	AVG	Н
N/A							

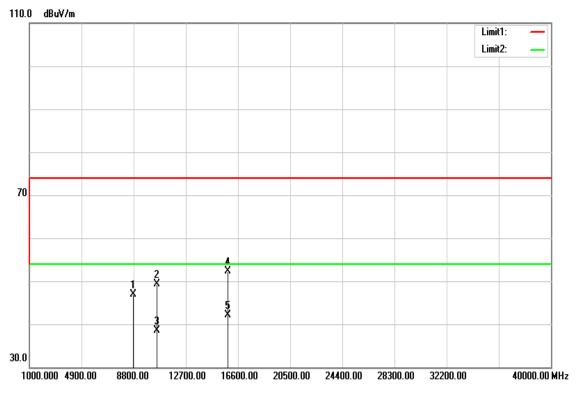

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

U-NII-2A

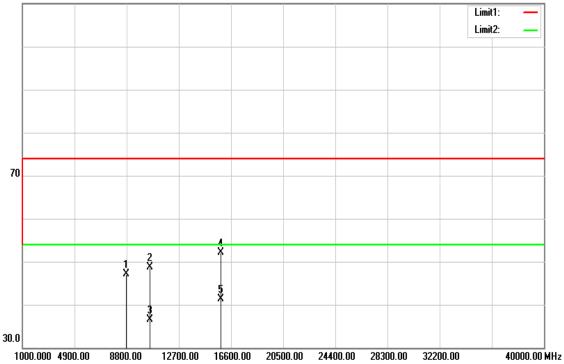

Tx / IEEE 802.11a mode / CH Low

Polarity: Vertical

Polarity: Horizontal


Operation Mode:	Tx / IEEE 802.11a mode / CH Low	Test Date:	May 18, 2016
Temperature:	27°C	Tested by:	Dennis Li
Humidity:	53% RH	Polarity:	Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
8846.000	33.22	13.80	47.02	74.00	-26.98	peak	V
10520.000	31.71	17.14	48.85	74.00	-25.15	peak	V
15780.000	33.19	19.25	52.44	74.00	-21.56	peak	V
15780.000	21.03	19.25	40.28	54.00	-13.72	AVG	V
N/A							
8692.000	34.11	13.73	47.84	74.00	-26.16	peak	Н
10520.000	31.29	17.14	48.43	74.00	-25.57	peak	Н
15780.000	34.13	19.25	53.38	74.00	-20.62	peak	Н
15780.000	21.97	19.25	41.22	54.00	-12.78	AVG	Н
N/A							

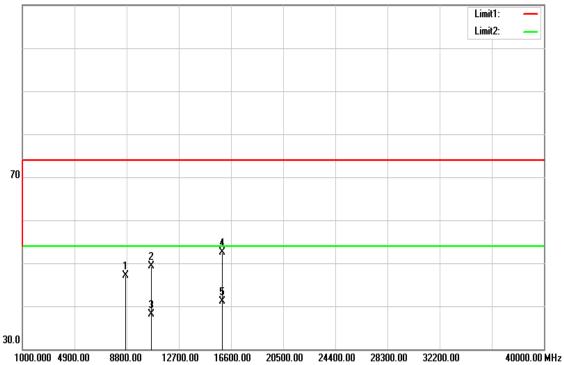

- 7. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 8. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 9. Average test would be performed if the peak result were greater than the average limit.
- 10. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 11. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 12. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Tx / IEEE 802.11a mode / CH Mid

Polarity: Vertical

Polarity: Horizontal

Operation Mode:	Tx / IEEE 802.11a mode / CH Mid	Test Date:	May 18, 2016
Temperature:	27°C	Tested by:	Dennis Li
Humidity:	53% RH	Polarity:	Ver. / Hor.


Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
8749.000	33.13	13.75	46.88	74.00	-27.12	peak	V
10560.000	32.16	17.11	49.27	74.00	-24.73	peak	V
10560.000	21.43	17.11	38.54	54.00	-15.46	AVG	V
15840.000	32.96	19.30	52.26	74.00	-21.74	peak	V
15840.000	22.71	19.30	42.01	54.00	-11.99	AVG	V
N/A							
8759.000	33.36	13.76	47.12	74.00	-26.88	peak	Н
10560.000	31.59	17.11	48.70	74.00	-25.30	peak	Н
10560.000	19.44	17.11	36.55	54.00	-17.45	AVG	Н
15840.000	32.80	19.30	52.10	74.00	-21.90	peak	Н
15840.000	21.93	19.30	41.23	54.00	-12.77	AVG	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

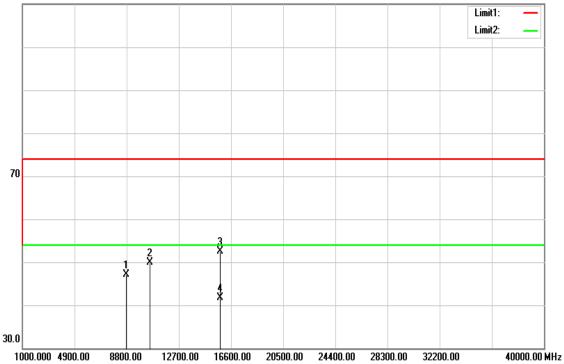
Tx / IEEE 802.11a mode / CH High

Polarity: Vertical

Polarity: Horizontal

110.0 dBwV/m

Operation Mode:	Tx / IEEE 802.11a mode / CH High	Test Date:	May 18, 2016
Temperature:	27°C	Tested by:	Dennis Li
Humidity:	53% RH	Polarity:	Ver. / Hor.


Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
8744.000	33.36	13.75	47.11	74.00	-26.89	peak	V
10640.000	32.19	17.04	49.23	74.00	-24.77	peak	V
10640.000	21.01	17.04	38.05	54.00	-15.95	AVG	V
15960.000	33.02	19.40	52.42	74.00	-21.58	peak	V
15960.000	21.71	19.40	41.11	54.00	-12.89	AVG	V
N/A							
8759.000	33.12	13.76	46.88	74.00	-27.12	peak	Н
10640.000	32.23	17.04	49.27	74.00	-24.73	peak	Н
10640.000	21.50	17.04	38.54	54.00	-15.46	AVG	Н
15960.000	32.86	19.40	52.26	74.00	-21.74	peak	Н
15960.000	22.61	19.40	42.01	54.00	-11.99	AVG	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Tx / IEEE 802.11n HT 20 MHz mode / CH Low

Polarity: Vertical

110.0 dBu¥/m

Polarity: Horizontal

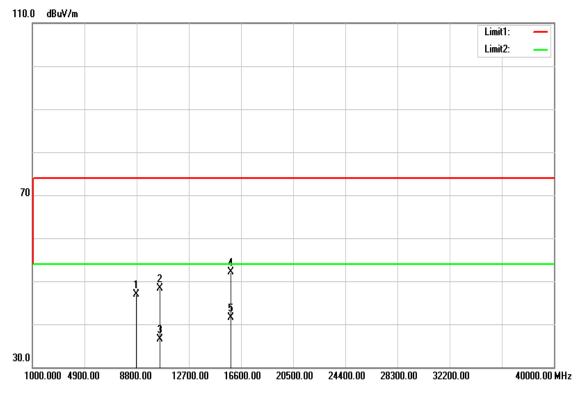
110.0 dBwVm

Operation Mode: Tx / IEEE 802.11n HT 20 MHz mode / CH Low Test Date: May 18, 2016

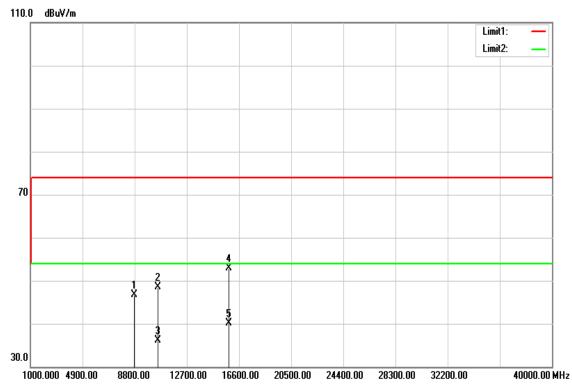
Temperature: 27°C

Tested by: Dennis Li

Humidity: 53% RH


Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
8759.000	33.36	13.76	47.12	74.00	-26.88	peak	V
10520.000	32.74	17.14	49.88	74.00	-24.12	peak	V
15780.000	33.30	19.25	52.55	74.00	-21.45	peak	V
15780.000	22.37	19.25	41.62	54.00	-12.38	AVG	V
N/A							
8699.000	34.37	13.73	48.10	74.00	-25.90	peak	Н
10520.000	31.39	17.14	48.53	74.00	-25.47	peak	Н
15780.000	21.30	19.25	40.55	74.00	-33.45	peak	Н
15780.000	33.61	19.25	52.86	54.00	-1.14	AVG	Н
N/A							


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Tx / IEEE 802.11n HT 20 MHz mode / CH Mid

Polarity: Vertical

Polarity: Horizontal

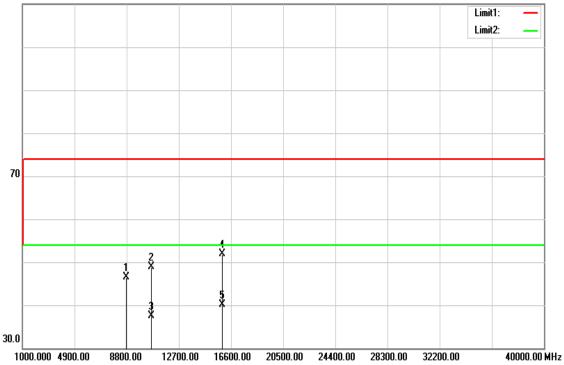
Operation Mode: Tx / IEEE 802.11n HT 20 MHz mode / CH Mid Test Date: May 18, 2016

Temperature: 27°C

Tested by: Dennis Li

Humidity: 53% RH

Polarity: Ver. / Hor.


Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
8755.000	33.10	13.76	46.86	74.00	-27.14	peak	V
10560.000	31.12	17.11	48.23	74.00	-25.77	peak	V
10560.000	19.48	17.11	36.59	54.00	-17.41	AVG	V
15840.000	32.87	19.30	52.17	74.00	-21.83	peak	V
15840.000	22.17	19.30	41.47	54.00	-12.53	AVG	V
N/A							
8749.000	32.94	13.75	46.69	74.00	-27.31	peak	Н
10560.000	31.32	17.11	48.43	74.00	-25.57	peak	Н
10560.000	19.02	17.11	36.13	54.00	-17.87	AVG	Н
15840.000	33.61	19.30	52.91	74.00	-21.09	peak	Н
15840.000	20.81	19.30	40.11	54.00	-13.89	AVG	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Tx / IEEE 802.11n HT 20 MHz mode / CH High

Polarity: Vertical

110.0 dBu¥/m

Polarity: Horizontal

110.0 dBwVm

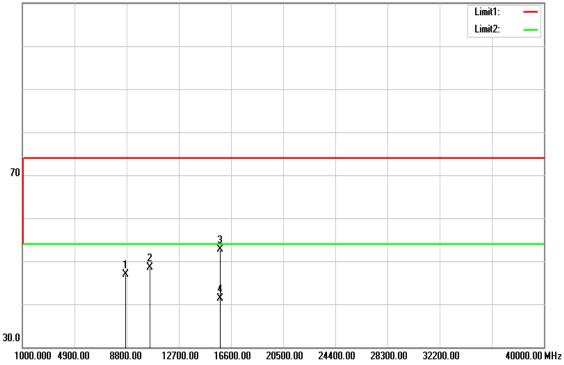
Operation Mode: Tx / IEEE 802.11n HT 20 MHz mode / CH High **Test Date:** May 18, 2016

Temperature: 27°C

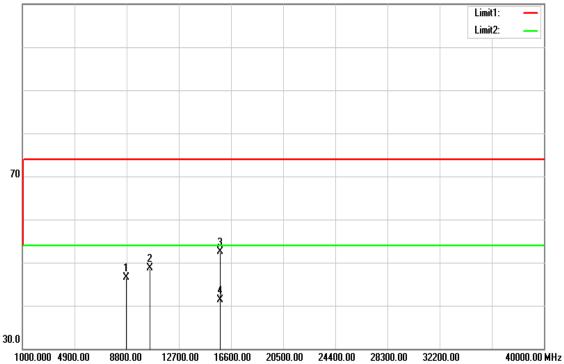
Tested by: Dennis Li

Humidity: 53% RH

Polarity: Ver. / Hor.


Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
8765.000	32.71	13.76	46.47	74.00	-27.53	peak	V
10640.000	31.90	17.04	48.94	74.00	-25.06	peak	V
10640.000	20.54	17.04	37.58	54.00	-16.42	AVG	V
15960.000	32.48	19.40	51.88	74.00	-22.12	peak	V
15960.000	20.76	19.40	40.16	54.00	-13.84	AVG	V
N/A							
8799.000	33.69	13.78	47.47	74.00	-26.53	peak	Н
10640.000	32.25	17.04	49.29	74.00	-24.71	peak	Н
10640.000	21.11	17.04	38.15	54.00	-15.85	AVG	Н
15960.000	33.07	19.40	52.47	74.00	-21.53	peak	Н
15960.000	20.96	19.40	40.36	54.00	-13.64	AVG	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).


Tx / IEEE 802.11n HT 40 MHz mode / CH Low

Polarity: Vertical

110.0 dBu¥/m

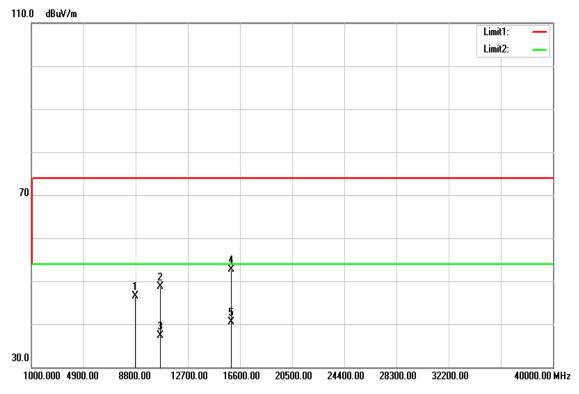
Polarity: Horizontal

Operation Mode: Tx / IEEE 802.11n HT 40 MHz mode / CH Low **Test Date:** May 18, 2016

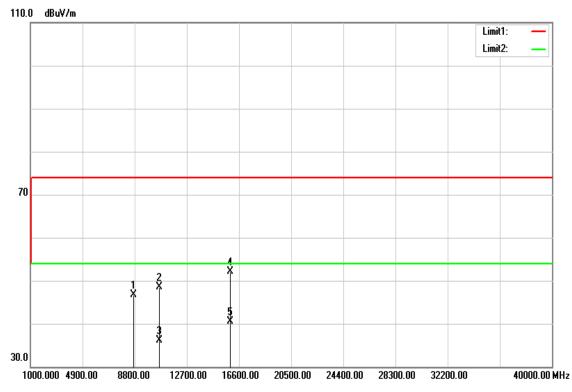
Temperature: 27°C

Tested by: Dennis Li

Humidity: 53% RH


Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
8744.000	33.16	13.75	46.91	74.00	-27.09	peak	V
10540.000	31.40	17.13	48.53	74.00	-25.47	peak	V
15810.000	33.39	19.27	52.66	74.00	-21.34	peak	V
15810.000	22.06	19.27	41.33	54.00	-12.67	AVG	V
N/A							
8766.000	32.84	13.76	46.60	74.00	-27.40	peak	н
10540.000	31.64	17.13	48.77	74.00	-25.23	peak	Н
15810.000	33.27	19.27	52.54	74.00	-21.46	peak	Н
15810.000	22.06	19.27	41.33	54.00	-12.67	AVG	Н
N/A							


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Tx / IEEE 802.11n HT 40 MHz mode / CH High

Polarity: Vertical

Polarity: Horizontal

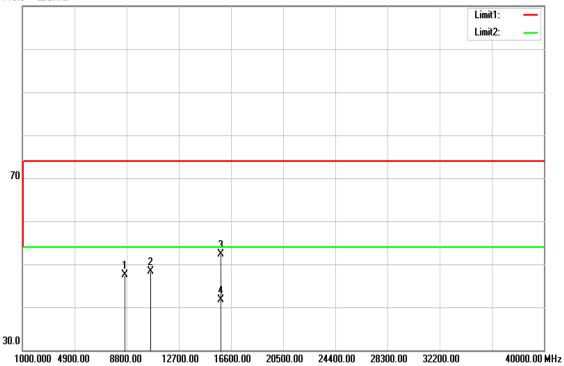
Operation Mode: Tx / IEEE 802.11n HT 40 MHz mode / CH High Test Date: May 18, 2016

Temperature: 27°C

Tested by: Dennis Li

Humidity: 53% RH

Polarity: Ver. / Hor.


Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
8749.000	32.76	13.75	46.51	74.00	-27.49	peak	V
10620.000	31.58	17.06	48.64	74.00	-25.36	peak	V
10620.000	20.19	17.06	37.25	54.00	-16.75	AVG	V
15930.000	33.28	19.37	52.65	74.00	-21.35	peak	V
15930.000	21.14	19.37	40.51	54.00	-13.49	AVG	V
N/A							
8746.000	33.03	13.75	46.78	74.00	-27.22	peak	Н
10620.000	31.53	17.06	48.59	74.00	-25.41	peak	Н
10620.000	19.09	17.06	36.15	54.00	-17.85	AVG	Н
15930.000	32.82	19.37	52.19	74.00	-21.81	peak	Н
15930.000	21.18	19.37	40.55	54.00	-13.45	AVG	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Tx / IEEE 802.11ac VHT 80 MHz mode / CH Mid

Polarity: Vertical

Polarity: Horizontal

110.0 dBwV/m

Operation Mode: Tx / IEEE 802.11ac VHT 80 MHz mode / CH Mid **Test Date:** May 18, 2016

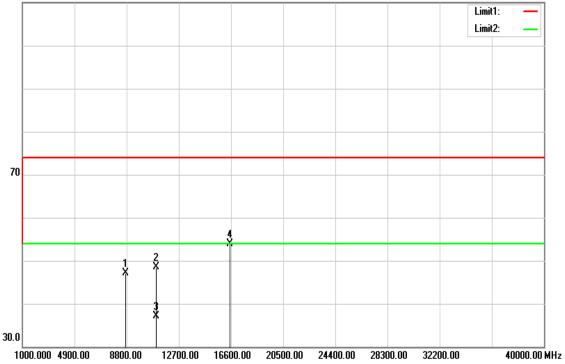
Temperature: 27°C

Tested by: Dennis Li

Humidity: 53% RH

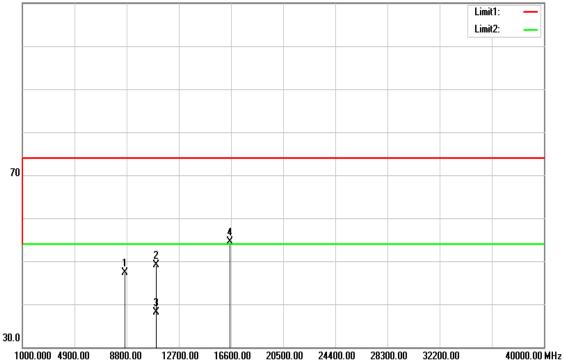
Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
8649.000	33.84	13.71	47.55	74.00	-26.45	peak	V
10580.000	31.31	17.09	48.40	74.00	-25.60	peak	V
15870.000	32.96	19.32	52.28	74.00	-21.72	peak	V
15870.000	22.34	19.32	41.66	54.00	-12.34	AVG	V
N/A							
8776.000	33.43	13.77	47.20	74.00	-26.80	peak	Н
10580.000	32.40	17.09	49.49	74.00	-24.51	peak	Н
15870.000	33.00	19.32	52.32	74.00	-21.68	peak	Н
15870.000	21.23	19.32	40.55	54.00	-13.45	AVG	Н
N/A							


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

U-NII-2C

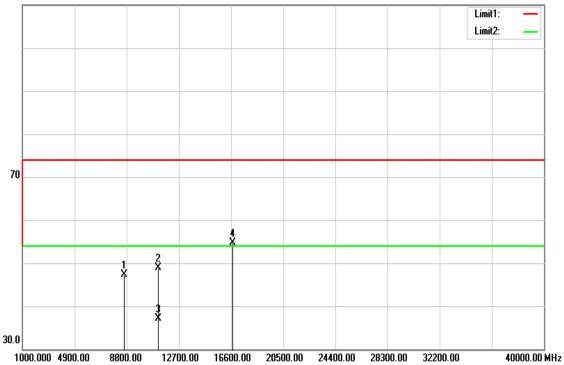
Tx / IEEE 802.11a mode / CH Low


Polarity: Vertical

Polarity: Horizontal

110.0 dBuV/m

Operation Mode:	Tx / IEEE 802.11a mode / CH Low	Test Date:	May 18, 2016
Temperature:	27°C	Tested by:	Dennis Li
Humidity:	53% RH	Polarity:	Ver. / Hor.


Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
8722.000	33.44	13.74	47.18	74.00	-26.82	peak	V
11000.000	31.86	16.73	48.59	74.00	-25.41	peak	V
11000.000	20.28	16.73	37.01	54.00	-16.99	AVG	V
16500.000	32.60	21.39	53.99	74.00	-20.01	peak	V
N/A							
8694.000	33.67	13.73	47.40	74.00	-26.60	peak	Н
11000.000	32.29	16.73	49.02	74.00	-24.98	peak	Н
11000.000	21.31	16.73	38.04	54.00	-15.96	AVG	Н
16500.000	33.03	21.39	54.42	74.00	-19.58	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

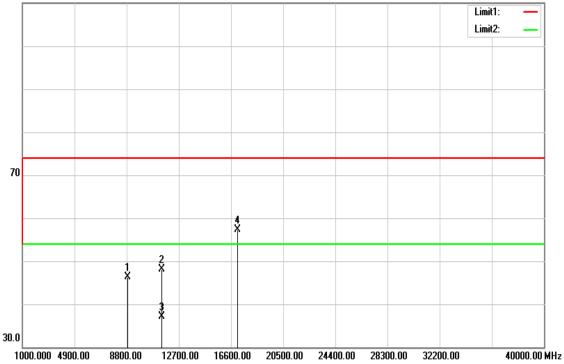
Tx / IEEE 802.11a mode / CH Mid

Polarity: Vertical

Polarity: Horizontal

110.0 dBwVm

Operation Mode:	Tx / IEEE 802.11a mode / CH Mid	Test Date:	May 18, 2016
Temperature:	27°C	Tested by:	Dennis Li
Humidity:	53% RH	Polarity:	Ver. / Hor.


Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
8643.000	33.53	13.71	47.24	74.00	-26.76	peak	V
11160.000	32.20	16.75	48.95	74.00	-25.05	peak	V
11160.000	20.30	16.75	37.05	54.00	-16.95	AVG	V
16740.000	31.90	22.82	54.72	74.00	-19.28	peak	V
N/A							
8756.000	33.01	13.76	46.77	74.00	-27.23	peak	Н
11160.000	32.01	16.75	48.76	74.00	-25.24	peak	Н
11160.000	19.83	16.75	36.58	54.00	-17.42	AVG	Н
16740.000	31.79	22.82	54.61	74.00	-19.39	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Tx / IEEE 802.11a mode / CH High

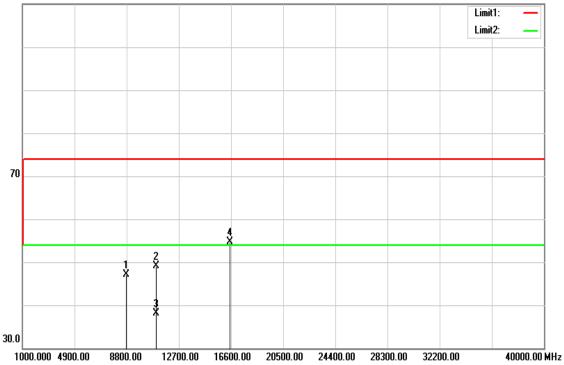
Polarity: Vertical

110.0 dBu¥/m

Polarity: Horizontal

110.0 dBwVm

Operation Mode:	Tx / IEEE 802.11a mode / CH High	Test Date:	May 18, 2016
Temperature:	27°C	Tested by:	Dennis Li
Humidity:	53% RH	Polarity:	Ver. / Hor.


Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
8864.000	32.42	13.81	46.23	74.00	-27.77	peak	V
11400.000	31.28	16.77	48.05	74.00	-25.95	peak	V
11400.000	20.25	16.77	37.02	54.00	-16.98	AVG	V
17100.000	32.59	24.75	57.34	74.00	-16.66	peak	V
N/A							
8722.000	33.63	13.74	47.37	74.00	-26.63	peak	Н
11400.000	31.76	16.77	48.53	74.00	-25.47	peak	Н
11400.000	20.79	16.77	37.56	54.00	-16.44	AVG	Н
17100.000	33.77	24.75	58.52	74.00	-15.48	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Tx / IEEE 802.11n HT 20 MHz mode / CH Low

Polarity: Vertical

110.0 dBu¥/m

Polarity: Horizontal

110.0 dBwVm

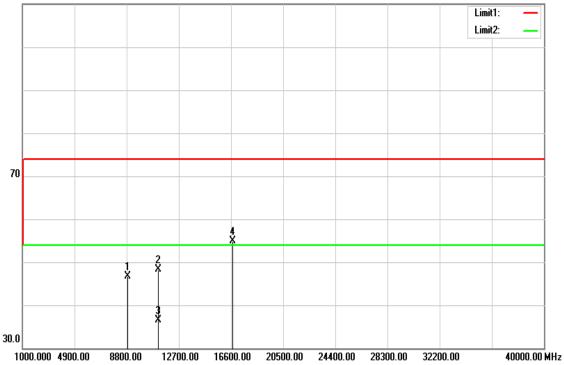
Operation Mode: Tx / IEEE 802.11n HT 20 MHz mode / CH Low Test Date: May 18, 2016

Temperature: 27°C

Tested by: Dennis Li

Humidity: 53% RH

Polarity: Ver. / Hor.


Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
8791.000	33.32	13.77	47.09	74.00	-26.91	peak	V
11000.000	32.29	16.73	49.02	74.00	-24.98	peak	V
11000.000	21.28	16.73	38.01	54.00	-15.99	AVG	V
16500.000	33.39	21.39	54.78	74.00	-19.22	peak	V
N/A							
8796.000	32.69	13.78	46.47	74.00	-27.53	peak	Н
11000.000	32.21	16.73	48.94	74.00	-25.06	peak	Н
11000.000	20.85	16.73	37.58	54.00	-16.42	AVG	Н
16500.000	30.49	21.39	51.88	74.00	-22.12	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Tx / IEEE 802.11n HT 20 MHz mode / CH Mid

Polarity: Vertical

110.0 dBu¥/m

Polarity: Horizontal

110.0 dBuV/m

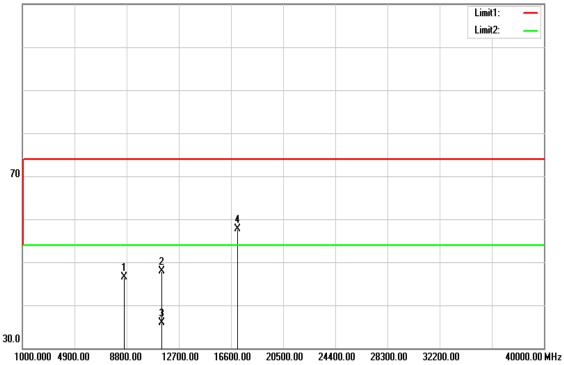
Operation Mode: Tx / IEEE 802.11n HT 20 MHz mode / CH Mid Test Date: May 18, 2016

Temperature: 27°C

Tested by: Dennis Li

Humidity: 53% RH

Polarity: Ver. / Hor.


Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
8859.000	32.90	13.81	46.71	74.00	-27.29	peak	V
11160.000	31.65	16.75	48.40	74.00	-25.60	peak	V
11160.000	19.75	16.75	36.50	54.00	-17.50	AVG	V
16740.000	32.07	22.82	54.89	74.00	-19.11	peak	V
N/A							
8816.000	32.50	13.79	46.29	74.00	-27.71	peak	Н
11160.000	32.52	16.75	49.27	74.00	-24.73	peak	Н
11160.000	21.31	16.75	38.06	54.00	-15.94	AVG	Н
16740.000	31.72	22.82	54.54	74.00	-19.46	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Tx / IEEE 802.11n HT 20 MHz mode / CH High

Polarity: Vertical

110.0 dBu¥/m

Polarity: Horizontal

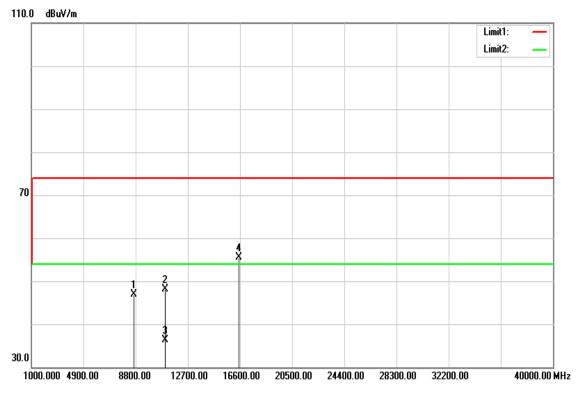
110.0 dBwVm

Operation Mode: Tx / IEEE 802.11n HT 20 MHz mode / CH High **Test Date:** May 18, 2016

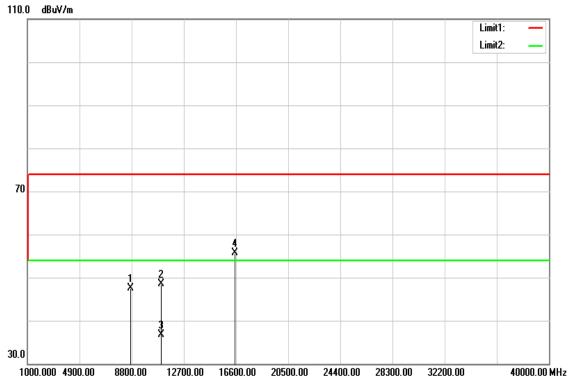
Temperature: 27°C

Tested by: Dennis Li

Humidity: 53% RH


Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
8643.000	32.85	13.71	46.56	74.00	-27.44	peak	V
11400.000	31.19	16.77	47.96	74.00	-26.04	peak	V
11400.000	19.05	16.77	35.82	54.00	-18.18	AVG	V
17100.000	32.89	24.75	57.64	74.00	-16.36	peak	V
N/A							
8745.000	34.37	13.75	48.12	74.00	-25.88	peak	Н
11400.000	32.41	16.77	49.18	74.00	-24.82	peak	Н
11400.000	21.26	16.77	38.03	54.00	-15.97	AVG	Н
17100.000	32.24	24.75	56.99	74.00	-17.01	peak	Н
N/A							


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Tx / IEEE 802.11n HT 40 MHz mode / CH Low

Polarity: Vertical

Polarity: Horizontal

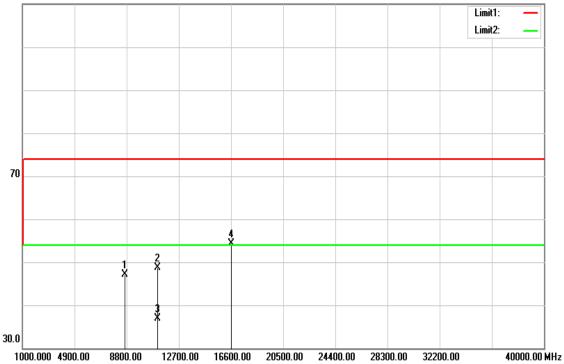
Operation Mode: Tx / IEEE 802.11n HT 40 MHz mode / CH Low **Test Date:** May 18, 2016

Temperature: 27°C

Tested by: Dennis Li

Humidity: 53% RH

Polarity: Ver. / Hor.


Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
8674.000	33.24	13.72	46.96	74.00	-27.04	peak	V
11020.000	31.46	16.73	48.19	74.00	-25.81	peak	V
11020.000	19.56	16.73	36.29	54.00	-17.71	AVG	V
16530.000	33.93	21.57	55.50	74.00	-18.50	peak	V
N/A							
8722.000	33.81	13.74	47.55	74.00	-26.45	peak	Н
11020.000	31.82	16.73	48.55	74.00	-25.45	peak	Н
11020.000	20.05	16.73	36.78	54.00	-17.22	AVG	Н
16530.000	34.12	21.57	55.69	74.00	-18.31	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Tx / IEEE 802.11n HT 40 MHz mode / CH Mid

Polarity: Vertical

110.0 dBu¥/m

Polarity: Horizontal

110.0 dBuV/m

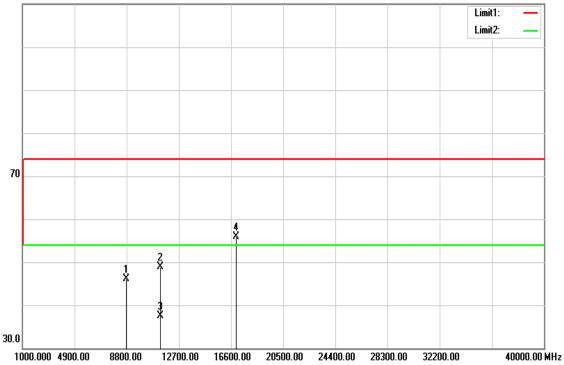
Operation Mode: Tx / IEEE 802.11n HT 40 MHz mode / CH Mid Test Date: May 18, 2016

Temperature: 27°C

Tested by: Dennis Li

Humidity: 53% RH

Polarity: Ver. / Hor.


Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
8692.000	33.41	13.73	47.14	74.00	-26.86	peak	V
11100.000	31.88	16.74	48.62	74.00	-25.38	peak	V
11100.000	20.18	16.74	36.92	54.00	-17.08	AVG	V
16650.000	31.99	22.28	54.27	74.00	-19.73	peak	V
N/A							
8723.000	33.09	13.74	46.83	74.00	-27.17	peak	Н
11100.000	31.18	16.74	47.92	74.00	-26.08	peak	Н
11100.000	19.41	16.74	36.15	54.00	-17.85	AVG	Н
16650.000	33.11	22.28	55.39	74.00	-18.61	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Tx / IEEE 802.11n HT 40 MHz mode / CH High

Polarity: Vertical

110.0 dBu¥/m

Polarity: Horizontal

110.0 dBwVm

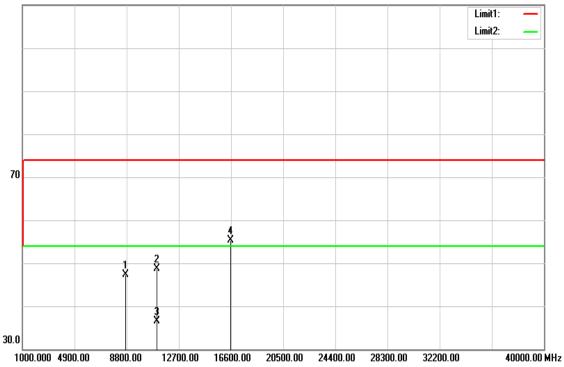
Operation Mode: Tx / IEEE 802.11n HT 40 MHz mode / CH High **Test Date:** May 18, 2016

Temperature: 27°C

Tested by: Dennis Li

Humidity: 53% RH

Polarity: Ver. / Hor.


Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
8798.000	32.35	13.78	46.13	74.00	-27.87	peak	V
11340.000	32.19	16.76	48.95	74.00	-25.05	peak	V
11340.000	20.82	16.76	37.58	54.00	-16.42	AVG	V
17010.000	31.58	24.40	55.98	74.00	-18.02	peak	V
N/A							
8756.000	32.86	13.76	46.62	74.00	-27.38	peak	Н
11340.000	31.90	16.76	48.66	74.00	-25.34	peak	Н
11340.000	20.20	16.76	36.96	54.00	-17.04	AVG	Н
17010.000	30.55	24.40	54.95	74.00	-19.05	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Tx / IEEE 802.11ac VHT 80 MHz mode / CH Low

Polarity: Vertical

110.0 dBu¥/m

Polarity: Horizontal

110.0 dBwVm

Operation Mode: Tx / IEEE 802.11ac VHT 80 MHz mode / CH Low **Test Date:** May 18, 2016

Temperature: 27°C

Tested by: Dennis Li

Humidity: 53% RH

Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
8724.000	33.56	13.74	47.30	74.00	-26.70	peak	V
11060.000	31.96	16.74	48.70	74.00	-25.30	peak	V
11060.000	19.78	16.74	36.52	54.00	-17.48	AVG	V
16590.000	33.35	21.92	55.27	74.00	-18.73	peak	V
N/A							
8874.000	34.02	13.81	47.83	74.00	-26.17	peak	Н
11060.000	32.67	16.74	49.41	74.00	-24.59	peak	Н
11060.000	21.41	16.74	38.15	54.00	-15.85	AVG	Н
16590.000	32.91	21.92	54.83	74.00	-19.17	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

8.6 POWERLINE CONDUCTED EMISSIONS

<u>LIMIT</u>

According to §15.207(a) & RSS-Gen §7.2.4, except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency Range	Limits (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56*	56 to 46*	
0.50 to 5	56	46	
5 to 30	60	50	

* Decreases with the logarithm of the frequency.

Test Configuration

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

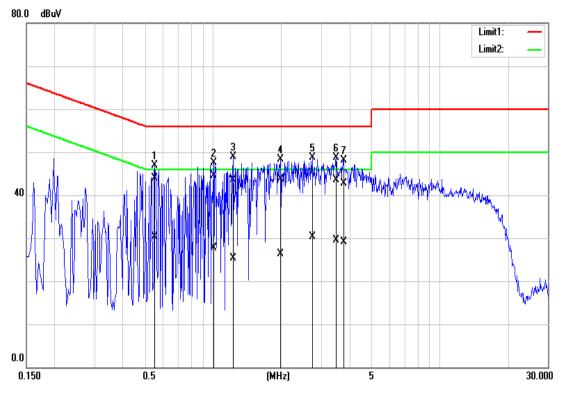
TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

TEST RESULTS

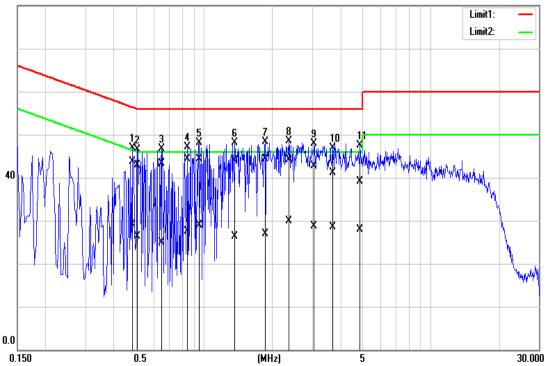
The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Test Data


Operation Mode:	Normal Link	Test Date:	August 10, 2016
Temperature:	24°C	Tested by:	Dennis Li
Humidity:	50% RH		

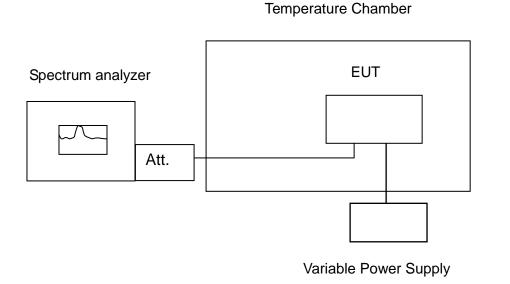
Freq. (MHz)	QP Reading (dBuV)	AV Reading (dBuV)	Corr. factor (dB/m)	QP Result (dBuV/m)	AV Result (dBuV/m)	QP Limit (dBuV)	AV Limit (dBuV)	QP Margin (dB)	AV Margin (dB)	Note
0.5540	34.12	20.43	9.83	43.95	30.26	56.00	46.00	-12.05	-15.74	L1
1.0060	34.56	17.89	9.85	44.41	27.74	56.00	46.00	-11.59	-18.26	L1
1.2340	33.65	15.41	9.85	43.50	25.26	56.00	46.00	-12.50	-20.74	L1
1.9900	33.85	16.48	9.88	43.73	26.36	56.00	46.00	-12.27	-19.64	L1
2.7420	35.23	20.31	9.90	45.13	30.21	56.00	46.00	-10.87	-15.79	L1
3.4980	33.67	19.61	9.93	43.60	29.54	56.00	46.00	-12.40	-16.46	L1
3.7700	32.70	19.19	9.93	42.63	29.12	56.00	46.00	-13.37	-16.88	L1
0.4820	33.83	19.18	9.89	43.72	29.07	56.30	46.30	-12.58	-17.23	L2
0.5100	32.94	16.44	9.89	42.83	26.33	56.00	46.00	-13.17	-19.67	L2
0.6540	33.35	14.95	9.89	43.24	24.84	56.00	46.00	-12.76	-21.16	L2
0.8460	34.36	17.65	9.90	44.26	27.55	56.00	46.00	-11.74	-18.45	L2
0.9500	34.50	19.04	9.90	44.40	28.94	56.00	46.00	-11.60	-17.06	L2
1.3700	34.03	16.34	9.91	43.94	26.25	56.00	46.00	-12.06	-19.75	L2
1.8620	34.46	16.99	9.93	44.39	26.92	56.00	46.00	-11.61	-19.08	L2
2.3820	34.25	19.90	9.95	44.20	29.85	56.00	46.00	-11.80	-16.15	L2
3.0620	32.75	18.70	9.99	42.74	28.69	56.00	46.00	-13.26	-17.31	L2
3.7020	31.09	18.52	10.01	41.10	28.53	56.00	46.00	-14.90	-17.47	L2
4.8980	29.10	17.92	10.08	39.18	28.00	56.00	46.00	-16.82	-18.00	L2

- 1. Measuring frequencies from 0.15 MHz to 30MHz.
- 2. The emissions measured in frequency range from 0.15 MHz to 30MHz were made with an instrument using Quasi-peak detector and average detector.
- 3. The IF bandwidth of SPA between 0.15MHz to 30MHz was 10kHz; the IF bandwidth of Test Receiver between 0.15MHz to 30MHz was 9kHz;
- 4. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line)


Test Plots

Conducted emissions (Line 1)

Conducted emissions (Line 2)



8.7 FREQUENCY STABILITY

<u>LIMIT</u>

According to §15.407(g), manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the operational description.

Test Configuration

Remark: Measurement setup for testing on Antenna connector

TEST PROCEDURE

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -20° C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10° C increased per stage until the highest temperature of $+50^{\circ}$ C reached.

TEST RESULTS

Operating Frequency: 5280 MHz						
Environment Temperature (°C)	Voltage (V)	Measured Frequency (MHz)	Limit (20ppm)	Test Result		
50	120	5299.96831	-5.9792	Pass		
40	120	5299.96353	-6.8811	Pass		
30	120	5299.96527	-6.5528	Pass		
20	120	5299.97221	-5.2434	Pass		
10	120	5299.98567	-2.7038	Pass		
0	120	5299.99696	-0.5736	Pass		
-10	120	5300.00910	1.7170	Pass		
-20	120	5299.99870	-0.2453	Pass		

No non-compliance noted.

Operating Frequency: 5280 MHz						
Environment Temperature (°C)	Voltage Measured Frequency (V) (MHz)		Limit (20ppm)	Test Result		
	102	5299.966947	-6.2364	Pass		
20	120	5299.965270	-6.5528	Pass		
	138	5299.963114	-6.9596	Pass		

8.8 DYNAMIC FREQUENCY SELECTION

TEST PROCEDURE

According to "KDB 905462 D02 v02" and "KDB 905462 D03 v01r02"

LIMIT

According to §15.407 (h) and FCC 06-96 appendix "compliance measurement procedures for unlicensed-national information infrastructure devices operating in the 5250-5350 MHz and 5470-5725 MHz bands incorporating dynamic frequency selection".

Table 1: Applicability of DFS requirements prior to use of a channel

	Operational Mode				
Requirement	Master	Client (without radar detection)	Client(with radar detection)		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
U-NII Detection Bandwidth	Yes	Not required	Yes		

Table 2: Applicability of DFS requirements during normal operation

	Operational Mode			
Requirement	Master Device or Client with Radar Detection	Client Without Radar Detection		
DFS Detection Threshold	Yes	Not required		
Channel Closing Transmission Time	Yes	Yes		
Channel Move Time	Yes	Yes		
U-NII Detection Bandwidth	Yes	Not required		

Table 3: Interference Threshold values, Master or Client incorporating In-Service

Maximum Transmit Power	Value (See Notes 1, 2, and 3)
EIRP ≥ 200 milliwatt	-64 dBm
EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm
EIRP < 200 milliwatt that do not meet the power spectral density requirement	-64 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power bandwidth. See Note 3.

Table 4: DFS Response requirement values

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	See Note	e 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	$\operatorname{Roundup} \begin{cases} \left(\frac{1}{360}\right) \\ \left(\frac{19 \cdot 10^{6}}{\operatorname{PRI}_{\mu \operatorname{sec}}}\right) \end{cases}$	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate	e (Radar Types	s 1- 4)		80%	120
Note 1: S	hort Pulse Rad	dar Type 0 sho	ould be used for the detection	bandwidth test, chann	el move time,

Table 5 – Short Pulse Radar Test Waveforms

and channel closing time tests.

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

Table 6 – Long Pulse Radar Test Signal

Table 7 – Frequency Hopping Radar Test Signal												
	Pulse			Hopping	Hopping	Minimum Percentage	м					

Radar Type	Pulse Width (µsec)	PRI Pulses per (µsec) Hop		Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

DESCRIPTION OF EUT

Overview Of EUT With Respect To §15.407 (H) Requirements

The firmware installed in the EUT during testing was:

Firmware Rev: 3.18.22

The EUT operates over the 5250-5350 MHz range as a Client Device that does not have radar detection capability.

The EUT uses one transmitter connected to two 50-ohm coaxial antenna ports via a diversity switch. Only one antenna port is connected to the test system since the EUT has one antenna only.

The Slave device associated with the EUT during these tests does not have radar detection capability.

WLAN traffic is generated by streaming the video file TestFile.mp2 "6 ½ Magic Hours" from the Master to the Slave in full motion video mode using the media player with the V2.61 Codec package.

The EUT utilizes the 802.11a architecture, with a nominal channel bandwidth of 20 MHz.

The rated output power of the Master unit is < 23dBm (EIRP). Therefore the required interference threshold level is -62 dBm. After correction for antenna gain and procedural adjustments, the required conducted threshold at the antenna port is -62 + 5 = -57dBm.

The calibrated conducted DFS Detection Threshold level is set to -57 dBm. The tested level is lower than the required level hence it provides margin to the limit.

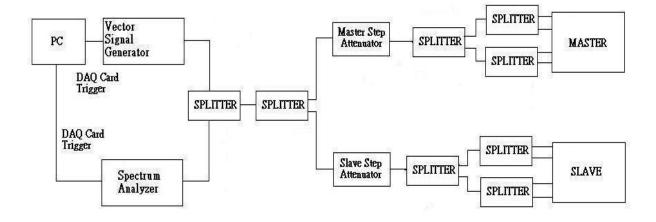
Manufacturer's Statement Regarding Uniform Channel Spreading

The end product implements an automatic channel selection feature at startup such that operation commences on channels distributed across the entire set of allowed 5GHz channels. This feature will ensure uniform spreading is achieved while avoiding non-allowed channels due to prior radar events.

TEST AND MEASUREMENT SYSTEM

System Overview

The measurement system is based on a conducted test method.


The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

The short pulse types 2, 3 and 4, and the long pulse type 5 parameters are randomized at run-time.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of FCC 06-96 APPENDIX. The frequency of the signal generator is incremented in 1 MHz steps from FL to FH for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer set to display 8001 bins on the horizontal axis. The time-domain resolution is 2 msec / bin with a 16 second sweep time, meeting the 10 second short pulse reporting criteria. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold. The time-domain resolution is 3 msec / bin with a 24 second sweep time, meeting the 22 second long pulse reporting criteria and allowing a minimum of 10 seconds after the end of the long pulse waveform.

Should multiple RF ports be utilized for the Master and/or Slave devices (for example, for diversity or MIMO implementations), 50 ohm termination would be removed from the splitter so that connection can be established between splitter and the Master and/or Slave devices.

Conducted Method System Block Diagram

System Calibration

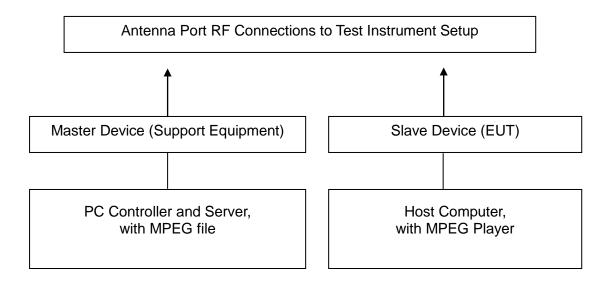
Connect the spectrum analyzer to the test system in place of the master device. Set the signal generator to CW mode. Adjust the amplitude of the signal generator to yield a measured level of –62 dBm on the spectrum analyzer.

Without changing any of the instrument settings, reconnect the spectrum analyzer to the Common port of the Spectrum Analyzer Combiner/Divider and connect a 50 ohm load to the Master Device port of the test system.

Measure the amplitude and calculate the difference from –62 dBm. Adjust the Reference Level Offset of the spectrum analyzer to this difference. Confirm that the signal is displayed at –62 dBm. Readjust the RBW and VBW to 3 MHz, set the span to 10 MHz, and confirm that the signal is still displayed at –62 dBm.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –62 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

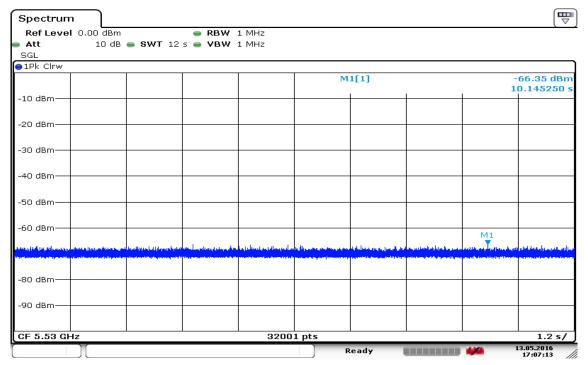
Set the signal generator to produce a radar waveform, trigger a burst manually and measure the level on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak level of the waveform is at a displayed level equal to the required or desired interference detection threshold. Separate signal generator amplitude settings are determined as required for each radar type.


Adjustment Of Displayed Traffic Level

Establish a link between the Master and Slave, adjusting the Link Step Attenuator as needed to provide a suitable received level at the Master and Slave devices. Stream the video test file to generate WLAN traffic. Confirm that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold. Confirm that the displayed traffic is from the Master Device. For Master Device testing confirm that the displayed traffic does not include Slave Device traffic. For Slave Device testing confirm that the displayed traffic does not include Master Device traffic.

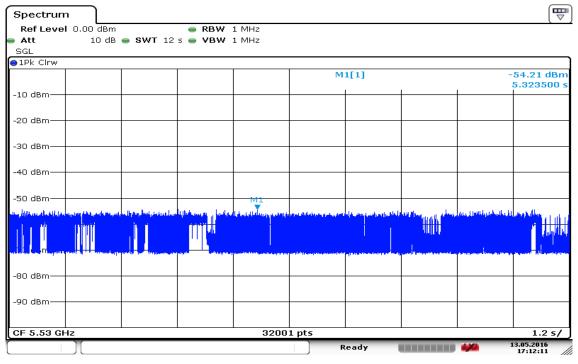
If a different setting of the Master Step Attenuator is required to meet the above conditions, perform a new System Calibration for the new Master Step Attenuator setting.

Test Setup


TEST RESULTS

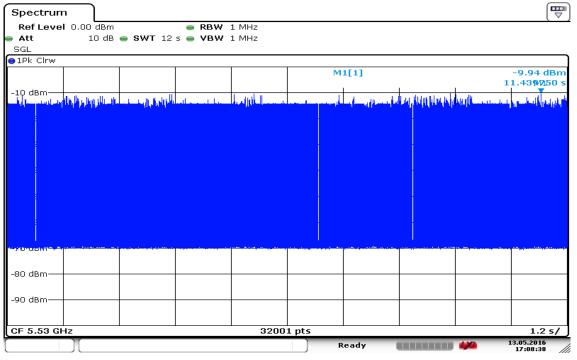
No non-compliance noted

PLOT OF WLAN TRAFFIC FROM SLAVE


IEEE 802.11ac VHT 80 MHz mode / 5530MHz

Noise Floor

Date:13MAY.2016 17:07:14


Master Level

Date:13 MAY .2016 17:12:11

Slave Level

Date:13MAY 2016 17:08:39

TEST CHANNEL AND METHOD

All tests were performed at a channel center frequency of 5530 MHz utilizing a conducted test method.

CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME

GENERAL REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time =

(Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the aggregate time is calculated

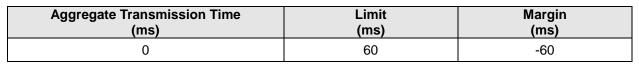
Begins at (Reference Marker + 200 msec) and

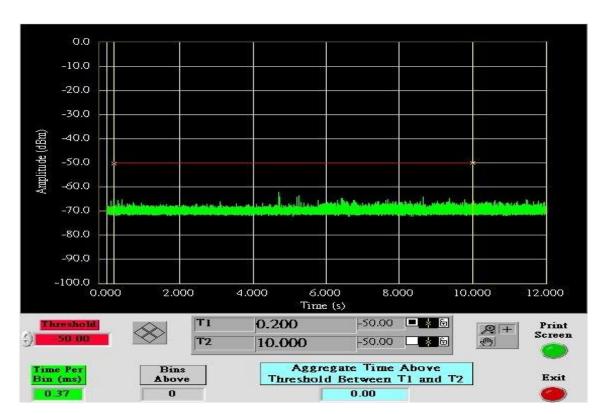
Ends no earlier than (Reference Marker + 10 sec).

IEEE 802.11ac VHT 80 MHz mode / 5530MHz

Type 1 Channel Move Time Results

No non-compliance noted.


Channel Move Time	Limit
(s)	(s)
0	10


Spect	rum													
Ref L	evel	0.00 d	Bm	😑 RE	SW 1	MHz								
🗕 Att		10	dB 👄 SWT 12	s 👄 VE	3W 1	MHz								
SGL TF	RG:EXT	Г												
😑 1Pk Cl	lrw													
								M	2[1]					-71.13 dBm
-10 dBn	n												1	.0.000000 s
	.							M	1[1]					-67.51 dBm
-20 dBn	n													0.000000 s
- <mark>3</mark> 0 dBn	n													
-40 dBn	n – –													
-50 dBn														
-50 051	"													
-60 dBn	n — —													
1 I lildende					- hl	dia an		الم الم			ي بي ان	يعادر أرداد	10	العرابيل والمعالية في المعالية
Arr and arrest			nt de las de la la contra de la telle sur del présenten de Angeletien en présente présente de la contra de la contra de	a de la contra de l Na contra de la contr					and a state of the state	- Construction of the cons	A REAL PROPERTY.		A state of the sta	
- <mark>8</mark> 0 dBn	n													
	_													
-\$0 dBn	n											Т	2	
Ϊ														
CF 5.5	3 GHz					3200	1 pt:	s						1.2 s/
Marker]
Туре	Ref		X-value			Y-value		Func	tion		F	unctio	n Resul	t l
M1		1		0.0 s		-67.51 dB								
D1 M2	M1	1		0.0 s 10.0 s		0.00 (-71.13 de								
M2				10.0 S		-71.13 dB	111							
[R	eady				4	13.05.2016 17:49:24

Date:13MAY.2016 17:49:24

Type 1 Channel Closing Transmission Time Results

No non-compliance noted.

NON-OCCUPANCY PERIOD

IEEE 802.11ac VHT 80 MHz mode / 5530MHz

Type 1 Non-Occupancy Period Test Results

No non-compliance noted.

No EUT transmissions were observed on the test channel during the 30 minute observation time.

Spect	rum											
	evel I				V 1 MHz							
🗕 Att		10	dB 👄 SWT 2000 s	e vbv	V 1 MHz							
SGL												
⊖1Pk C	Irw											
							M	2[1]				-65.51 dBm
📊 0 dBn	n							1[1]				1817.5854 s -11.07 dBm
^							IVI	1[1]				17.5854 s
-20 dBn	n											17.00013
-B0 dBn	n											
-40 dBn	n											
-50 dBn	n											
50 dBn	n t	en transfera	A kine of south the second states of the second sta									1/12
				filelyl - Holler				alua datas	and detailed a feature of the		الغناء مدرية ماية فاعتراقه الم	
-70 dBn	n — —											
-B0 dBn												
-50 051	"											
-90 dBn	n——											-11 -T2
ті												ΪÎ
CF 5.5	3 GHz				3200	1 nts						200.0 s/
Marker					0200	- 71-	-					0
Type	Ref	Trc	X-value	1	Y-value	1	Func	tion		Fund	tion Resu	lt l
M1		1	17.585	4 s	-11.07 dB	m						
D1	M1	1	10.		-55.16 c							
M2		1	1.8175854	· ks	-65.51 dB	m						
[)[P	teady			444	13.05.2016 18:37:20

Date:13MAY 2016 18:37:20