

TEST REPORT

Test report no.: 1-6411/18-02-02-A

DAKKS
Deutsche
Akreditierungsstelle
DP-12076-01-03

BNetzA-CAB-02/21-102

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-04 and

D-PL-12076-01-05.

Applicant

RSI Video Technologies SA

25 rue Jacobi-Netter 67200 Strasbourg / FRANCE

Phone: +33 3 90 20 66 96 Contact: Geoffroy Eude

e-mail: <u>geoffroy.eude@rsivideotech.com</u>

Phone: +33 3 90 20 66 39

Manufacturer

RSI Video Technologies SA

25 rue Jacobi-Netter

67200 Strasbourg / FRANCE

Test standard/s

FCC - Title 47 CFR FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio

Part 15 frequency devices

RSS - 247 Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence - Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Alarm panel
Model name: XT640
FCC ID: X46XT08
IC: 8816A-XT08

Frequency: ISM band 902 MHz to 928 MHz

Technology tested: Proprietary

Antenna: Integrated wire antenna

Power supply: 4.2 V to 14.4 V DC by battery

Temperature range: -10°C to +55°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:	
Christoph Schneider	Sumit Kumar	

Lab Manager Radio Communications & EMC Testing Manager
Radio Communications & EMC

Table of contents

1	Table	of contents	
2		al information	
_		Notes and disclaimer	
		Application details	
	2.3	Test laboratories sub-contracted	3
3	Test s	tandard/s and references	
4		nvironment	
5		em	
5			
		General descriptionAdditional information	
6	_	ption of the test setup	
•		Shielded semi anechoic chamber	
	6.2	Shielded fully anechoic chamber	
	6.3	Conducted measurements	
7	Seque	nce of testing	10
	7.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	10
	7.2	Sequence of testing radiated spurious 30 MHz to 1 GHz	
	7.3	Sequence of testing radiated spurious 1 GHz to 18 GHz	
8	Measu	rement uncertainty	13
9	Summ	ary of measurement results	14
10	RFı	neasurements	15
	10.1	Additional comments	15
11	Mea	surement results	16
	11.1	Average Time of Occupancy (dwell time)	16
	11.2	Maximum Output Power	
	11.3	Spurious Emissions Radiated < 30 MHz	
	11.4	Spurious Emissions Radiated > 30 MHz	
	11.4.1	Spurious emissions radiated 30 MHz to 1 GHz	
	11.4.2	Spurious emissions radiated above 1 GHz	
12		ervations	
Anr	ex A	Glossary	
Anr	ex B	Document history	
Anr	nex C	Accreditation Certificate - D-PL-12076-01-05	35

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-6411/18-02-02 and dated 2019-07-05.

2.2 Application details

Date of receipt of order: 2018-05-28
Date of receipt of test item: 2019-04-04
Start of test: 2019-04-05
End of test: 2019-06-19

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 35

3 Test standard/s and references

Test standard	Date	Description
FCC - Title 47 CFR Part 15	-/-	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices
RSS – Gen Issue 5	April 2018	Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements for Compliance of Radio Apparatus

Guidance	Version	Description
DTS: KDB 558074 D01	v05	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

© CTC advanced GmbH Page 4 of 35

4 Test environment

Temperature	:	T _{nom} T _{max} T _{min}	+23 °C during room temperature tests +55 °C during high temperature tests -10 °C during low temperature tests		
Relative humidity content	:		55 %		
Barometric pressure	:		1021 hpa		
Power supply	:	V _{nom} V _{max} V _{min}	12.0 V DC by battery 14.4 V 4.2 V		

5 Test item

5.1 General description

Kind of test item :	Alarm panel
Type identification :	XT640
HMN :	-/-
PMN :	XT640
HVIN :	XT640
FVIN :	-/-
S/N serial number :	F5C01219EF0A0006
Hardware status :	5CA1299D-0A2 (Motherboard) 5CA0775A-0b (Input/Output board)
Software status :	V.04.04.8T.028D
Firmware status :	-/-
Frequency band :	ISM band 902 MHz to 928 MHz
Type of radio transmission: Use of frequency spectrum:	FHSS
Type of modulation :	GFSK
Number of channels :	25
Antenna :	Integrated wire antenna
Power supply :	4.2 V to 14.4 V DC by battery
Temperature range :	-10°C to +55°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-6411/18-02-01_AnnexA

1-6411/18-02-01_AnnexB

1-6411/18-02-01_AnnexD

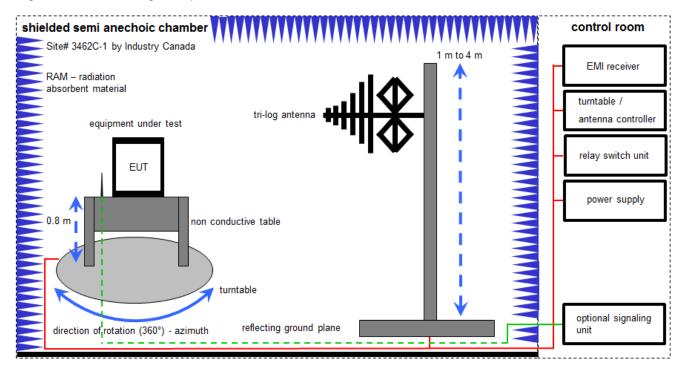
© CTC advanced GmbH Page 5 of 35

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


k ne	calibration / calibrated not required (k, ev, izw, zw not required)	EK zw	limited calibration cyclical maintenance (external cyclical maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 6 of 35

6.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

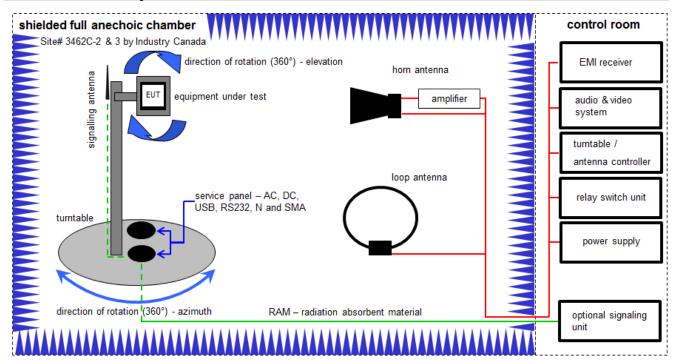
EMC32 software version: 10.30.0

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \(\mu V/m \))$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	-/-
3	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	12.12.2018	11.12.2019
4	А	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	vIKI!	15.01.2018	14.01.2020
5	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
6	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
7	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	371	300003854	vIKI!	24.11.2017	23.11.2020

© CTC advanced GmbH Page 7 of 35

6.2 Shielded fully anechoic chamber

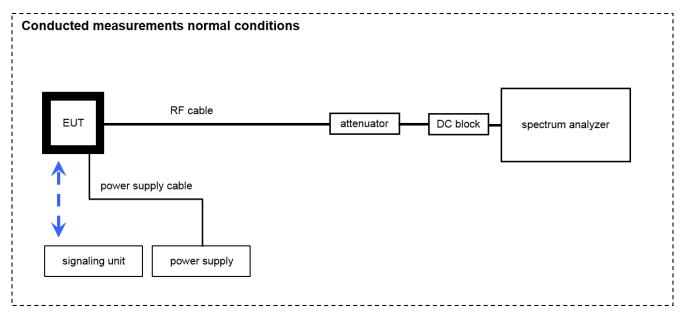
Measurement distance: tri-log antenna and horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \(\mu V/m \))$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A,B	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
2	A,B	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
3	В	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3089	300000307	vIKI!	07.07.2017	06.07.2019
4	A,B	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	14.09.2018	13.12.2019
5	A,B	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
6	A,B	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO		300004682	ne	-/-	-/-
7	A, B	PC	ExOne	F+W		300004703	ne	-/-	-/-
9	А	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vIKI!	07.07.2017	06.07.2019

© CTC advanced GmbH Page 8 of 35

6.3 **Conducted measurements**

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

 $\frac{\textit{Example calculation:}}{\textit{OP [dBm]} = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)}$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Signal- and Spectrum Analyzer	FSW26	R&S	101455	300004528	k	19.12.2018	18.12.2019
2	А	RF-Cable SRD021 No. 8	Enviroflex 316 D	Huber & Suhner	-/-	400001318	ev	-/-	-/-
3	A.	Climatic Box	VT 4011	Voetsch Industrietechnik	5856623060001 0	300005363	ev	07.05.2018	06.05.2020

© CTC advanced GmbH Page 9 of 35

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 10 of 35

^{*)}Note: The sequence will be repeated three times with different EUT orientations.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 11 of 35

7.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 12 of 35

8 Measurement uncertainty

Measurement uncertai	nty
Test case	Uncertainty
Antenna gain	± 3 dB
Carrier frequency separation	± 21.5 kHz
Number of hopping channels	-/-
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative
Maximum output power	± 1 dB
Detailed conducted spurious emissions @ the band edge	± 1 dB
Band edge compliance radiated	± 3 dB
Spurious emissions conducted	± 3 dB
Spurious emissions radiated below 30 MHz	± 3 dB
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB
Spurious emissions radiated above 12.75 GHz	± 4.5 dB

© CTC advanced GmbH Page 13 of 35

9 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS - 247, Issue 2	Passed	2019-09-11	-/-

Test specification clause	Test case	Temperature conditions	Power source	Mode	С	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (b)	Antenna gain	Nominal	voltages Nominal	CW modulated				\boxtimes	-/-
§15.247(a)(1) RSS - 247 / 5.1 (b)	Carrier frequency separation	Nominal	Nominal	TX hopping				\boxtimes	-/-
§15.247(a)(1) RSS - 247 / 5.1 (d)	Number of hopping channels	Nominal	Nominal	TX hopping				\boxtimes	-/-
§15.247(a)(1) (iii) RSS - 247 / 5.1 (d)	Time of occupancy (dwell time)	Nominal	Nominal	TX hopping	\boxtimes				-/-
§15.247(a)(1) RSS - 247 / 5.1 (a)	Spectrum bandwidth of a FHSS system bandwidth	Nominal	Nominal	CW modulated				\boxtimes	-/-
§15.247(b)(1) RSS - 247 / 5.4 (b)	Maximum output power	Nominal	Nominal	CW modulated	×				-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	Nominal	Nominal	TX hopping			×		-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	Nominal	Nominal	-/-			\boxtimes		No restricted band nearby
§15.247(d) RSS - 247 / 5.5	Spurious emissions conducted	Nominal	Nominal	CW modulated				\boxtimes	-/-
§15.209(a) RSS - Gen	Spurious emissions radiated below 30 MHz	Nominal	Nominal	CW modulated	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated 30 MHz to 1 GHz	Nominal	Nominal	CW modulated / RX mode	×				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated above 1 GHz	Nominal	Nominal	CW modulated / RX mode	\boxtimes				-/-
§15.107(a) §15.207	Conducted emissions below 30 MHz (AC conducted)	Nominal	Nominal	-/-			\boxtimes		Battery powered only

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

© CTC advanced GmbH Page 14 of 35

10 RF measurements

10.1 Additional comments

Reference documents: None

Special test descriptions: None

Configuration descriptions: None

Test mode: Special software is used.

EUT is transmitting pseudo random data by itself

© CTC advanced GmbH Page 15 of 35

11 Measurement results

11.1 Average Time of Occupancy (dwell time)

Measurement:

The measurement is performed in zero span mode to show that none of the 25 used channels is allocated more than 0.4 seconds within a 10 seconds interval.

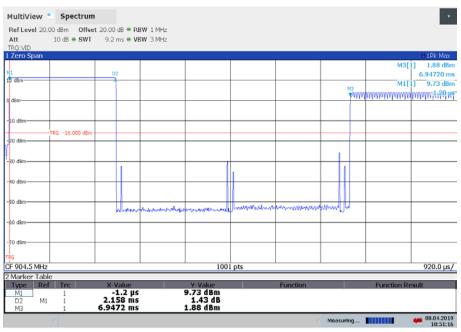
Limits:

FCC	IC
Average time	of occupancy

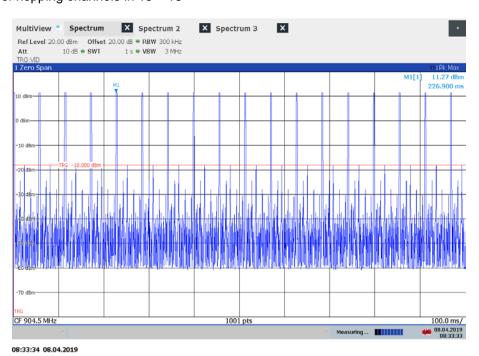
For frequency hopping systems operating in the 902-928 MHz band: If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within 10 second period.

Result: The time slot length is = 2.158 ms Number of hops / channel @ 1s = 18

Within 10 s period, the average time of occupancy = 10s* 18*2.158 ms


→ The average time of occupancy = 388.44 ms

© CTC advanced GmbH Page 16 of 35


Plots:

Plot 1: Time slot length = 2.158 ms

10:51:16 08.04.2019

Plot 2: Number of hopping channels in 1s = 18

© CTC advanced GmbH Page 17 of 35

11.2 Maximum Output Power

Measurement:

Measurement parameter				
Detector:	Peak			
Sweep time:	Auto			
Resolution bandwidth:	1 MHz			
Video bandwidth:	3 MHz			
Span:	5 MHz			
Trace-Mode:	Max Hold			
Used equipment:	See chapter 6.2 A			
Measurement uncertainty:	See chapter 8			

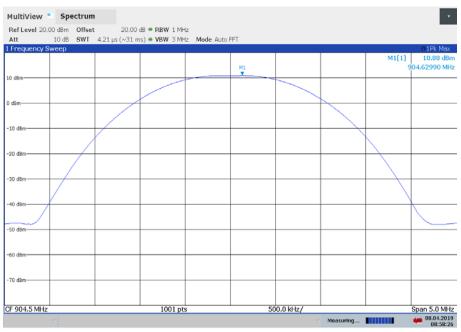
Limits:

FCC	IC
Maximum Output	Power Conducted

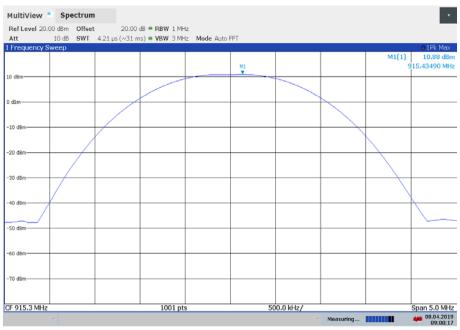
For frequency hopping systems operating in the 902–928 MHz band: 1 watt (30 dBm) for systems employing at least 50 hopping channels; and, 0.25 watts (24 dBm) for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Result:

Test Conditions		Maximum Output Power Conducted			
		Low channel	Middle channel	High channel	
T_{nom}	V_{nom}	10.88 dBm	10.88 dBm	11.02 dBm	


Test Conditions		ERP				
100100	Tiditiono	Low channel	Middle channel	High channel		
T _{nom}	V_{nom}	21.09 dBm	20.50 dBm	20.33 dBm		

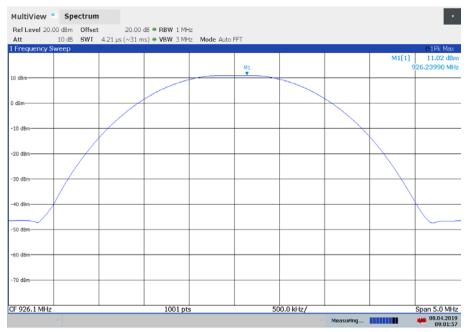
© CTC advanced GmbH Page 18 of 35


Plots:

Plot 1: Low Channel BSP!

08:58:26 08.04.2019

Plot 2: Middle Channel



09:00:17 08.04.2019

© CTC advanced GmbH Page 19 of 35

Plot 3: Highest Channel

09:01:58 08.04.2019

© CTC advanced GmbH Page 20 of 35

11.3 Spurious Emissions Radiated < 30 MHz

Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channels are 00; 39 and 78. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

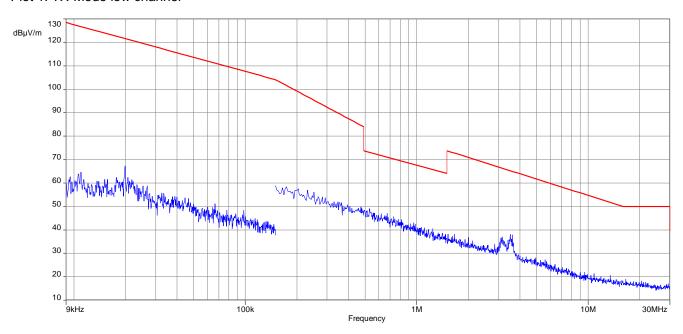
Measurement:

Measurement parameter					
Detector:	Peak / Quasi Peak				
Sweep time:	Auto				
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz				
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz				
Span:	9 kHz to 30 MHz				
Trace-Mode:	Max Hold				
Used equipment:	See chapter 6.2 B				
Measurement uncertainty:	See chapter 8				

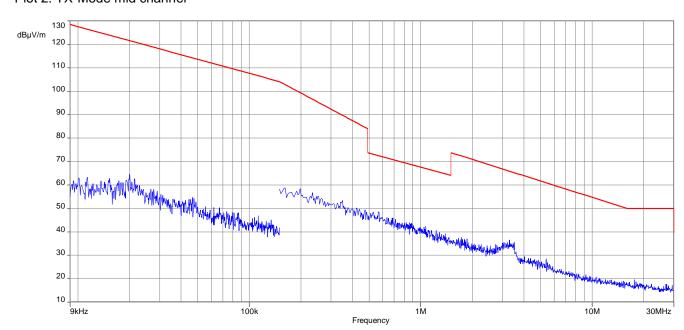
Limits:

FCC			IC		
TX spurious emissions radiated < 30 MHz					
Frequency (MHz)	Field strength (dBµV/m)		Field strength (dBµV/m) Measurement di		Measurement distance
0.009 – 0.490	2400/F(kHz)		300		
0.490 – 1.705	24000/F(kHz)		30		
1.705 – 30.0	3	0	30		

Result:

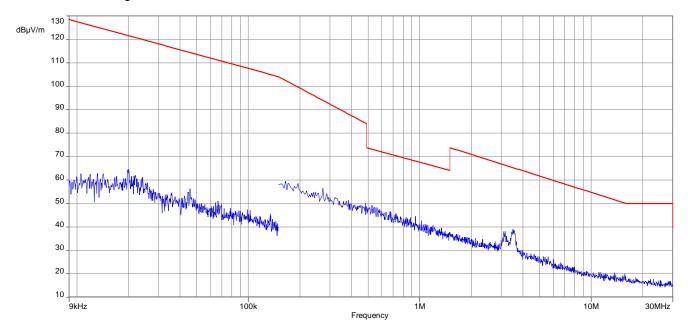

SPURIOUS EMISSIONS LEVEL								
L	owest chann	nel	M	liddle channe	el	Hi	ghest chann	el
Frequency [MHz]	Detector	Level [dBµV/m]	Frequency [MHz]	Detector	Level [dBµV/m]	Frequency [MHz]	Detector	Level [dBµV/m]
	All emissions were more than 10 dB below the limit.							

© CTC advanced GmbH Page 21 of 35



Plots:

Plot 1: TX-Mode low channel


Plot 2: TX-Mode mid channel

© CTC advanced GmbH Page 22 of 35

Plot 3: TX-Mode high channel

© CTC advanced GmbH Page 23 of 35

11.4 Spurious Emissions Radiated > 30 MHz

11.4.1 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed at channel low, mid and high.

Measurement:

Measurement parameters				
Detector	Peak / Quasi Peak			
Sweep time	Auto			
Resolution bandwidth	3 x VBW			
Video bandwidth	120 kHz			
Span	30 MHz to 1 GHz			
Trace mode	Max hold			
Measured modulation	DBPSK			
Test setup	See sub clause 6.1 A			
Measurement uncertainty	See sub clause 8			

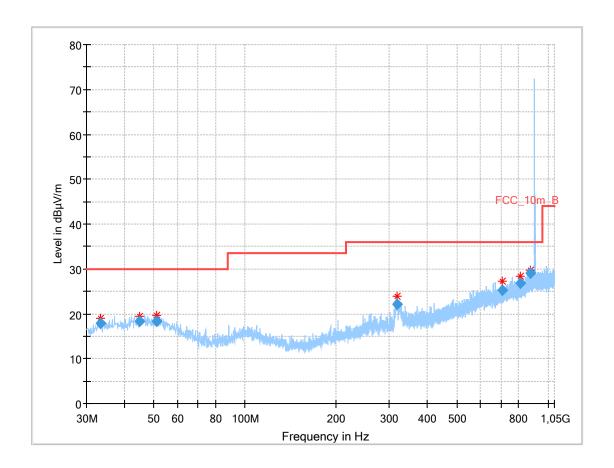
Limits:

FCC	IC			
Band-edge Compliance of conducted and radiated emissions				

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance
30 - 88	30.0	10
88 – 216	33.5	10
216 – 960	36.0	10
Above 960	54.0	3

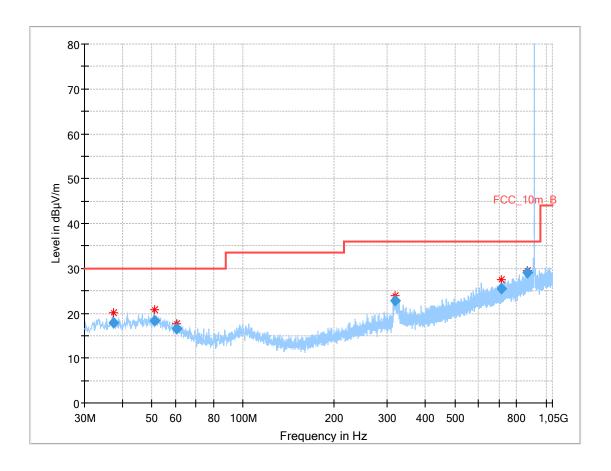
Result:


See result table below the plots.

© CTC advanced GmbH Page 24 of 35

Plots:

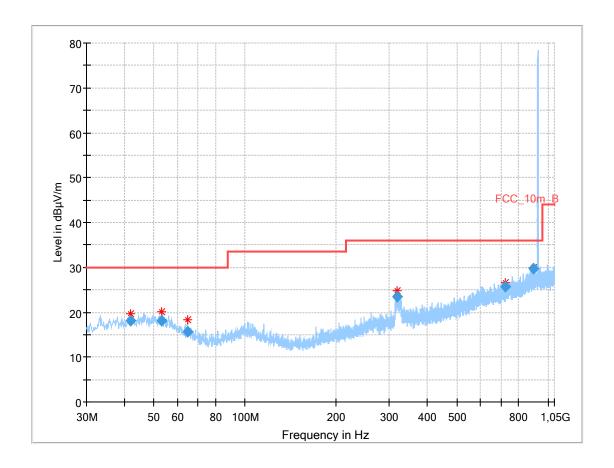
Plot 1: 30 MHz – 1 GHz, horizontal & vertical polarisation (lowest channel)


Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
33.276	17.78	30.0	12.22	1000	120	170.0	٧	292.0	14
44.895	18.31	30.0	11.69	1000	120	101.0	٧	279.0	15
51.272	18.43	30.0	11.57	1000	120	145.0	٧	161.0	15
317.253	22.18	36.0	13.82	1000	120	98.0	٧	100.0	15
706.856	25.25	36.0	10.75	1000	120	170.0	Н	157.0	21
809.860	26.92	36.0	9.08	1000	120	170.0	Н	112.0	23
874.068	29.10	36.0	6.90	1000	120	101.0	Н	22.0	24

© CTC advanced GmbH Page 25 of 35

Plot 2: 30 MHz – 1 GHz, horizontal & vertical polarisation (middle channel)


Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
37.361	17.85	30.0	12.15	1000	120	170.0	Н	-10.0	14
50.924	18.42	30.0	11.58	1000	120	144.0	٧	169.0	15
60.638	16.64	30.0	13.36	1000	120	143.0	Н	248.0	13
316.852	22.70	36.0	13.30	1000	120	98.0	٧	248.0	15
711.057	25.40	36.0	10.60	1000	120	170.0	٧	71.0	21
869.233	28.98	36.0	7.02	1000	120	98.0	Н	22.0	23

© CTC advanced GmbH Page 26 of 35

Plot 3: 30 MHz – 1 GHz, horizontal & vertical polarisation (highest channel)

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
41.906	18.21	30.0	11.79	1000	120	100.0	٧	10.0	15
53.230	18.12	30.0	11.88	1000	120	170.0	Н	268.0	14
64.539	15.74	30.0	14.26	1000	120	101.0	Н	202.0	12
317.173	23.38	36.0	12.62	1000	120	170.0	Н	-10.0	15
725.420	25.70	36.0	10.30	1000	120	170.0	٧	-22.0	22
895.148	29.63	36.0	6.37	1000	120	101.0	Н	202.0	24

© CTC advanced GmbH Page 27 of 35

11.4.2 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed in the mode with the highest output power.

Measurement parameters						
Detector	Peak / RMS					
Sweep time	Auto					
Resolution bandwidth	1 MHz					
Video bandwidth	3 x RBW					
Span	1 GHz to 26 GHz					
Trace mode	Max hold					
Measured modulation	DBPSK					
Test setup	See sub clause 6.2 C (1 GHz – 12.75 GHz)					
Measurement uncertainty	See sub clause 8					

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

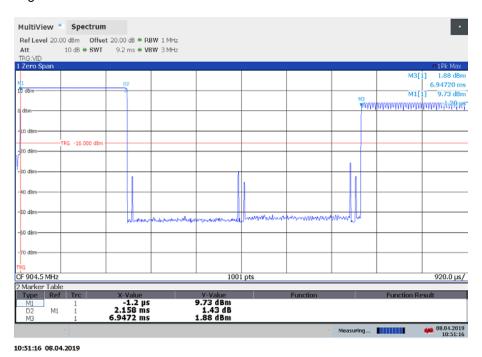
ANSI C63.10

The average emission shall be determined by using RMS detector. If the dwell time of the hopping signal is less than 100 ms (per channel), the RMS reading may be adjusted by a factor: $F = 20\log$ (dwell time/100 ms)

FCC			IC			
	TX spurious em	issions radiated				
radiator is operating, the radio frequence that in the 100 kHz bandwidth within the conducted or a radiated measurement.	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emissions which fall in \$15.200(a) (see \$15.205(a)).					
	§15	.209				
Frequency (MHz) Field streng		th (dBµV/m)	Measurement distance			
Above 960	54.0 (a 74.0 (verage) peak)	3			

© CTC advanced GmbH Page 28 of 35

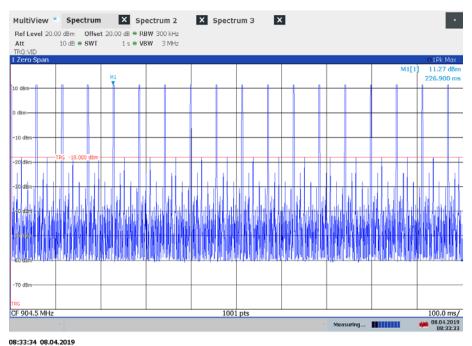
Result:


For radiated spurious emission the limits of 15.209 applies for all frequencies mentioned in 15.205. According to FCC Public Notice DA 00-705 (ANSI C63.10) the average emission shall be determined by using Video averaging (VBW = 10 Hz). If the dwell time of the hopping signal is less than 100 ms (per channel), the VBW=10 Hz reading may be adjusted by a factor:

F = 20*log (dwell time/100 ms)

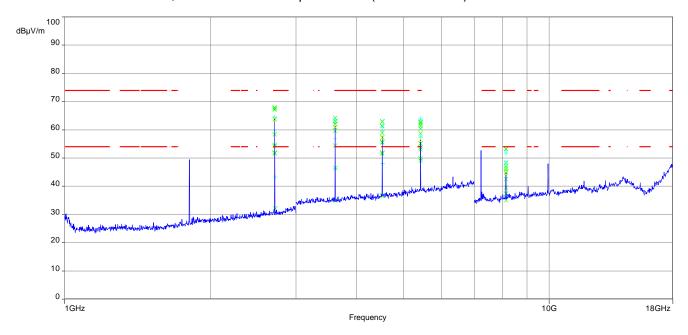
In a period of 100 ms, we have a maximum of 2 transmissions and that gives the correction factor for spurious measurement.

$$F = 20*log (2*2.158/100 ms) = -27.29 dB$$

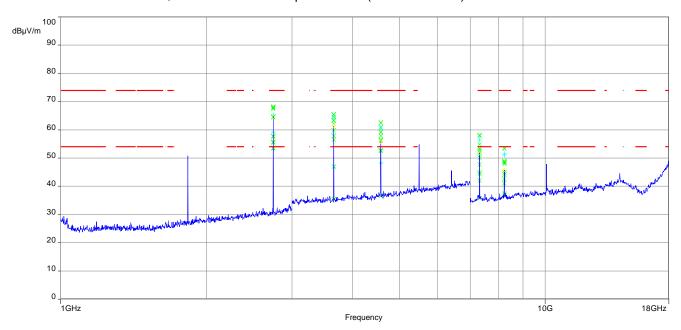

Plot 1: Time slot length = 2.158 ms

© CTC advanced GmbH Page 29 of 35

Plot 2: Number of hopping channels in 1s = 18

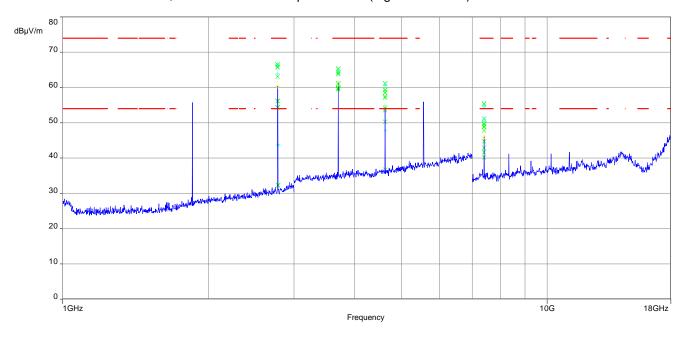

TX spurious emissions radiated								
L	owest chanr	nel	Middle channel			Highest channel		
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]
2714	Peak	67.93	2746.4	Peak	68.26	2778	Peak	66.53
2/14	AVG	40.64	2740.4	AVG	40.97	2110	AVG	39.24
3618.4	Peak	64.26	3661.6	Peak	65.54	3704.8	Peak	65.32
3010.4	AVG	36.97	3001.0	AVG	38.25		AVG	38.03
4522	Peak	63.03	4576	Peak	62.63	4630	Peak	61.21
4322	AVG	35.74	4376	AVG	35.34	4030	AVG	33.92
E 400	Peak	64.06	7224.2	Peak	58.16	7400.2	Peak	55.48
5428	AVG	36.77	.77 7321.2 AVG 30.	30.87	7409.2	AVG	28.19	
9140.7	Peak	53.33	9229 6	Peak	53.49	/	Peak	-/-
8140.7	AVG	26.04	8238.6	AVG	26.20	-/-	AVG	-/-

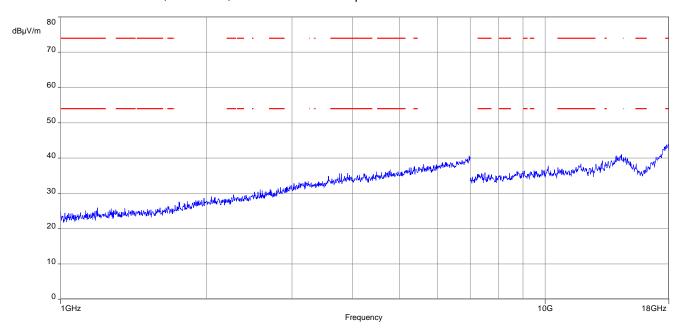
© CTC advanced GmbH Page 30 of 35



Plots:

Plot 1: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (lowest channel)


Plot 2: 1 GHz - 12.75 GHz, horizontal & vertical polarisation (middle channel)


© CTC advanced GmbH Page 31 of 35

Plot 3: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (highest channel)

Plot 4: 1GHz - 12.75 GHz, RX-Mode, horizontal & vertical polarisation

© CTC advanced GmbH Page 32 of 35

12 Observations

No observations except those reported with the single test cases have been made.

© CTC advanced GmbH Page 33 of 35

Annex A Glossary

EUT	Equipment under test						
DUT	Device under test						
UUT	Unit under test						
GUE	NSS User Equipment						
ETSI	European Telecommunications Standards Institute						
EN	European Standard						
FCC	Federal Communications Commission						
FCC ID	Company Identifier at FCC						
IC	Industry Canada						
PMN	Product marketing name						
HMN	Host marketing name						
HVIN	Hardware version identification number						
FVIN	Firmware version identification number						
EMC	Electromagnetic Compatibility						
HW	Hardware						
SW	Software						
Inv. No.	Inventory number						
S/N or SN	Serial number						
С	Compliant						
NC	Not compliant						
NA	Not applicable						
NP	Not performed						
PP	Positive peak						
QP	Quasi peak						
AVG	Average						
ОС	Operating channel						
OCW	Operating channel bandwidth						
OBW	Occupied bandwidth						
ООВ	Out of band						
DFS	Dynamic frequency selection						
CAC	Channel availability check						
OP	Occupancy period						
NOP	Non occupancy period						
DC	Duty cycle						
PER	Packet error rate						
CW	Clean wave						
MC	Modulated carrier						
WLAN	Wireless local area network						
RLAN	Radio local area network						
DSSS	Dynamic sequence spread spectrum						
OFDM	Orthogonal frequency division multiplexing						
FHSS	Frequency hopping spread spectrum						
GNSS	Global Navigation Satellite System						
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz						

© CTC advanced GmbH Page 34 of 35

Annex B Document history

Version	Applied changes	Date of release
-/-	Initial release	2019-07-05
А	Editorial changes (FCC-ID and IC number was mixed up)	2019-09-11

Annex C Accreditation Certificate - D-PL-12076-01-05

first page	last page
DAKKS Deutsche Akkrediterungsstelle Deutsche Akkreditierungsstelle GmbH	Deutsche Akkreditierungsstelle GmbH
Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation	Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig
The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields: Telecommunication (FCC Requirements)	
	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Alksrediterungsstelle GmbH (DAKS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAKS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkStelleG) of 31 July 2009 (Federal Law Gazette Ja. 2623) and the Regulation (EC) No 765/2008 of the furopean Parliament and of
The accreditation certificate shall only apply in connection with the notice of accreditation of 11.01.2019 with the accreditation number D-PL-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 5 pages.	the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European House) no. 123 of 9 July 2008, p. 30). DAKS is a signation to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (CA), International Accreditation Forum (IAF) and International Laboratory Accreditation Cooperation (IAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org IIAC: www.iuCocng IIAF: www.iaCocng IAF: www.iaCocng
Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 11.01.2019 Frankfurt am Main, 11.01.2019 Frankfurt am Main, 11.01.2019 Frankfurt am Main, 11.01.2019	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05.pdf

© CTC advanced GmbH Page 35 of 35