

CETECOM ICT Services is now

TEST REPORT

Test report no.: 1-3637/17-01-02-C

Testing laboratory

CTC advanced GmbH

e-mail:

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: http://www.ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-01

mail@ctcadvanced.com

Applicant

RSI Video Technologies SA

Siège Social -Headquarters 25 rue Jacobi-Netter 67200 Strasbourg / FRANCE

Phone: +33 3 90 20 66 96

Fax: -/-

Contact: Geoffroy Eude

e-mail: geoffroy.eude@rsivideotech.com

Phone: +33 3 90 20 66 39

Manufacturer

RSI Video Technologies SA

Siège Social -Headquarters 25 rue Jacobi-Netter 67200 Strasbourg / FRANCE

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices

RSS - 247 Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence -

Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Transceiver Module

Model name: RVI600
FCC ID: X46RV00
IC: 8816A-RV00

ISM band 902 MHz - 928 MHz

Frequency: (lowest channel 904.5 MHz;mid channel 915.3 MHZ;

highest channel 926.1 MHz)

Technology tested: Proprietary FHSS
Antenna: Integrated antenna

Power supply: 3.3 V DC by external power supply

Temperature range: 22 °C

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Christoph Schneider Lab Manager

Radio Communications & EMC

т	est	no	rfa	rm	2	۱٠
	E3L	ne	:110		чu	١.

Tobias Wittenmeier Testing Manager Radio Communications & EMC

Table of contents

1	Table of contents					
2	Genera	l information				
	2.1 N	lotes and disclaimer				
		application details				
		est laboratories sub-contracted				
3	Test sta	andard/s and references	4			
4		vironment				
5		m				
		General description				
6	Descrip	etion of the test setup				
	6.1 S	Shielded semi anechoic chamber				
		Shielded fully anechoic chamber				
	6.3 C	Conducted measurements	10			
7	Sequen	ce of testing	1′			
	7.1 S	Sequence of testing radiated spurious 9 kHz to 30 MHz	1′			
	7.2 S	Sequence of testing radiated spurious 30 MHz to 1 GHz	12			
	7.3 S	Sequence of testing radiated spurious 1 GHz to 12.75 GHz	13			
8	Measur	ement uncertainty	14			
9	Summa	ry of measurement results	1			
10	RF m	easurements	16			
	10.1	Additional comments	10			
11	Meas	urement results	17			
	11.1	Antenna gain	17			
	11.2	Carrier Frequency Separation	18			
	11.3	Number of Hopping Channels				
	11.4	Average Time of Occupancy (dwell time)				
	11.5	Spectrum bandwidth of a FHSS system				
	11.6	Maximum Output Power				
	11.7	Detailed spurious emissions @ the band edge – conducted and radiated				
	11.8	Spurious Emissions Conducted				
	11.9	Spurious Emissions Radiated < 30 MHz				
	11.10	Spurious Emissions Radiated > 30 MHz				
	11.10.1 11.10.2	Spurious emissions radiated 30 MHz to 1 GHz				
	11.10.2 11.11	Conducted spurious emissions < 30 MHz				
12		rvations				
	ex A	Document history				
Anr	ex B	Further information				
Anr	nex C	Accreditation Certificate	5			

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-3637/17-01-02-B and dated 2017-03-30

2.2 Application details

Date of receipt of order: 2017-02-14
Date of receipt of test item: 2017-02-15
Start of test: 2017-02-16
End of test: 2017-02-17

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15		Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 2	February 2015	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices
RSS - Gen Issue 4	November 2014	Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements and Information for the Certification of Radio Apparatus
Cuidonos	Version	Description

Guidance	Version	Description
DTS: KDB 558074 D01	v03r05	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

4 Test environment

Temperature :		T _{nom} T _{max} T _{min}	+22 °C during room temperature tests No tests under extreme conditions required No tests under extreme conditions required
Relative humidity content	:		55 %
Barometric pressure :			996 hpa
		V _{nom}	3.3 V DC by external power supply
Power supply	:	V_{max}	No tests under extreme conditions required
		V_{min}	No tests under extreme conditions required

5 Test item

5.1 General description

Kind of test item :	Transceiver Module
Type identification :	RVI600
HMN :	-/-
PMN :	RVI600
HVIN :	RVI600
FVIN :	-/-
S/N serial number :	Rad. 600006172F40004A Cond. 600006172F400053
HW hardware status :	5CA1287B-0A
SW software status :	V.01.01.13.C38001
Frequency band :	ISM band 902 MHz – 928 MHz (lowest channel 904.5 MHz;mid channel 915.3 MHZ; highest channel 926.1 MHz)
Type of radio transmission: Use of frequency spectrum:	FHSS
Type of modulation :	GFSK
Number of channels :	25
Antenna :	Integrated antenna
Power supply :	3.3 V DC by external power supply
Temperature range :	22 °C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

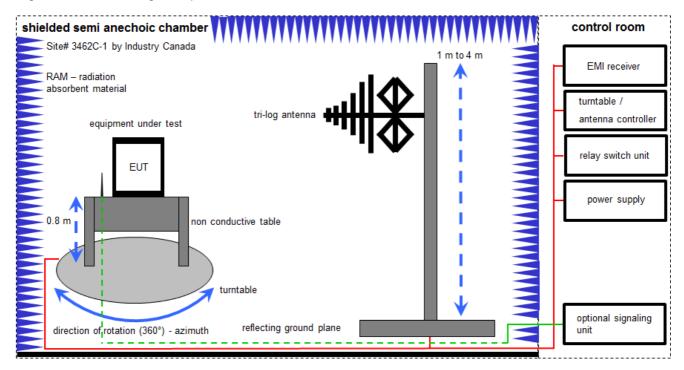
Test setup- and EUT-photos are included in test report: 1-3637/17-02-01_AnnexA

1-3637/17-02-01_AnnexB 1-3637/17-02-01_AnnexD

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).


Agenda: Kind of Calibration

k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

6.1 Shielded semi anechoic chamber

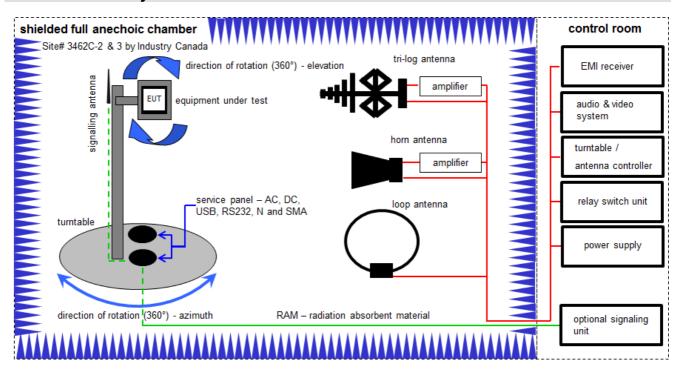
The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:


FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \(\mu V/m \))$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	0
2	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	0
3	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	08.03.2016	08.03.2017
4	Α	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	Ve	02.02.2016	02.02.2018
5	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	0
6	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	0
7	Α	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	0
8	Α	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	25.04.2016	25.04.2018

6.2 Shielded fully anechoic chamber

Measurement distance: tri-log antenna and horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

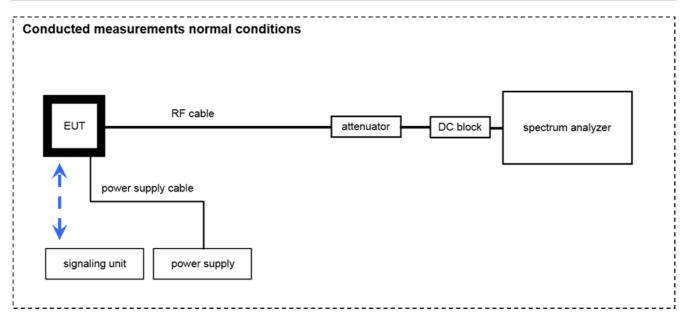
 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

Example calculation:

OP [dBm] = -65.0 [dBm] + 50 [dB] - 20 [dBi] + 5 [dB] = -30 [dBm] (1 μ W)



Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Active Loop Antenna 10 kHz to 30 MHz	6502	EMCO	2210	300001015	k	20.05.2015	20.05.2017
2	С	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9709-5290	300000212	k	13.08.2015	13.08.2017
3	С	Highpass Filter	WHK1.1/15G-10SS	Wainwright	37	400000148	ne	-/-	0
4	C.	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne	-/-	0
5	В	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	318	300003696	k	22.04.2014	22.04.2017
6	С	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22051	300004483	ev	-/-	0
7	A,B,C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000032	300004510	ne	-/-	0
8	A,B,C	Messrechner und Monitor	Intel Core i3 3220/3,3 GHz, Prozessor		2V2403033A54 21	300004591	ne	-/-	0
9	A,B,C	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO		300004682	ne	-/-	0
10	A,B,C	Anechoic chamber		TDK		300003726	ne	-/-	0
11	A,B,C	EMI Test Receiver 9kHz-26,5GHz	ESR26	R&S	101376	300005063	vIKI!	13.09.2016	13.03.2018

Conducted measurements

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	HF-Cable 1 m	BPS-1551-394-BPS	Insulated Wire	080492	300001713	g	-/-	0
2	Α	EMI Test Receiver 9 kHz - 3 GHz incl. Preselector	ESPI3	R&S	101713	300004059	k	27.01.2017	26.01.2018
3	Α	Coaxial Attenuator	WA23-20-34	Weinschel Ass	B4661	400001130	ev	-/-	0
4	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	27.01.2017	26.01.2018
5	А	DC-Blocker 0.1-40 GHz	8141A	Inmet		400001185	ev	-/-	0

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.3 Sequence of testing radiated spurious 1 GHz to 12.75 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes
 the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table
 positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8 Measurement uncertainty

Measurement uncertainty						
Test case	Uncertainty					
Antenna gain	± 3 dB					
Carrier frequency separation	± 21.5 kHz					
Number of hopping channels	-/-					
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative					
Maximum output power	± 1 dB					
Detailed conducted spurious emissions @ the band edge	± 1 dB					
Band edge compliance radiated	± 3 dB					
Spurious emissions conducted	± 3 dB					
Spurious emissions radiated below 30 MHz	± 3 dB					
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB					
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB					
Spurious emissions radiated above 12.75 GHz	± 4.5 dB					

9 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS - 247, Issue 2	Passed	2017-04-06	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	Mode	С	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (2)	Antenna gain	Nominal	Nominal	CW modulated	\boxtimes				-/-
§15.247(a)(1) RSS - 247 / 5.1 (2)	Carrier frequency separation	Nominal	Nominal	TX hopping	\boxtimes				-/-
§15.247(a)(1) RSS - 247 / 5.1 (4)	Number of hopping channels	Nominal	Nominal	TX hopping	\boxtimes				-/-
§15.247(a)(1) (iii) RSS - 247 / 5.1 (4)	Time of occupancy (dwell time)	Nominal	Nominal	TX hopping	\boxtimes				-/-
§15.247(a)(1) RSS - 247 / 5.1 (1)	Spectrum bandwidth of a FHSS system bandwidth	Nominal	Nominal	CW modulated	\boxtimes				-/-
§15.247(b)(1) RSS - 247 / 5.4 (2)	Maximum output power	Nominal	Nominal	CW modulated	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	Nominal	Nominal	TX hopping	\boxtimes				-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	Nominal	Nominal	-/-					No restricted band nearby
§15.247(d) RSS - 247 / 5.5	Spurious emissions conducted	Nominal	Nominal	CW modulated	\boxtimes				-/-
§15.209(a) RSS - Gen	Spurious emissions radiated below 30 MHz	Nominal	Nominal	CW modulated	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated 30 MHz to 1 GHz	Nominal	Nominal	CW modulated / RX mode	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated above 1 GHz	Nominal	Nominal	CW modulated / RX mode	\boxtimes				-/-
§15.107(a) §15.207	Conducted emissions below 30 MHz (AC conducted)	Nominal	Nominal	-/-					-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

10 RF measurements

10.1 Additional comments

Reference documents: None

Special test descriptions: None

Configuration descriptions: None

Test mode: Special software is used.

EUT is transmitting pseudo random data by itself

11 Measurement results

11.1 Antenna gain

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	1 MHz		
Video bandwidth	3 MHz		
Span	5 MHz		
Trace mode	Max hold		
Test setup	See sub clause 6.2 B (radiated) See sub clause 6.3 A (conducted)		
Measurement uncertainty	See sub clause 8		

Limits:

FCC	IC	
Antenna gain		

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Results:

	Low channel	Middle channel	High channel
Conducted power [dBm]	18.2	18.3	18.3
Radiated power [dBm]	16.5	16.4	15.0
Gain [dBi] Calculated	-1.7	-1.9	-3.3

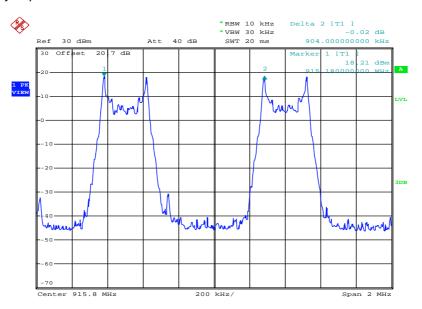
11.2 Carrier Frequency Separation

Description:

Measurement of the carrier frequency separation of a hopping system. The carrier frequency separation is constant for all modulation-modes. We use GFSK-modulation to show compliance. EUT in hopping mode.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	10 kHz		
Video bandwidth	30 kHz		
Span	See plots		
Trace mode	Max hold		
Test setup	See sub clause 6.3 A		
Measurement uncertainty	See sub clause 8		

Limits:


FCC	IC		
Carrier frequency separation			
Minimum 25 kHz or two-thirds of the 20 dB bandwidth of the hopping system whichever is greater. The two-thirds of the 20 dB bandwidth for IC is only valid for the ISM band 2400 MHz – 2483.5 MHz.			

Result: The channel separation is 904 kHz.

Plots:

Plot 1: Frequency separation

Date: 16.FEB.2017 11:02:59

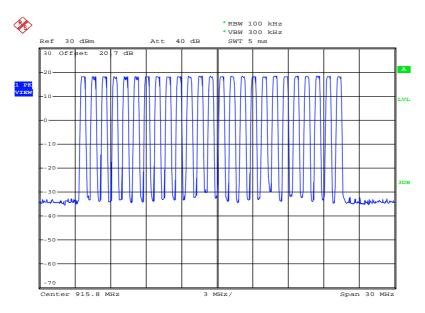
11.3 Number of Hopping Channels

Description:

Measurement of the total number of used hopping channels.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	See plots		
Video bandwidth	See plots		
Span	See plots		
Trace mode	Max hold		
Test setup	See sub clause 6.3 A		
Measurement uncertainty	See sub clause 8		

Limits:


FCC	IC	
Number of hopping channels		
At least 15 non overlapping hopping channels. If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping channels.		

Result: The EUT uses 25 channels.

Plots:

Plot 1: Number channels

Date: 16.FEB.2017 11:04:25

11.4 Average Time of Occupancy (dwell time)

Measurement:

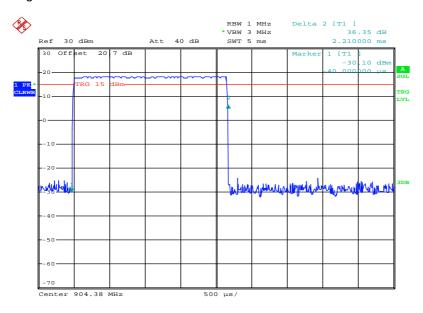
The measurement is performed in zero span mode to show that none of the 25 used channels is allocated more than 0.4 seconds within a 10 seconds interval.

Limits:

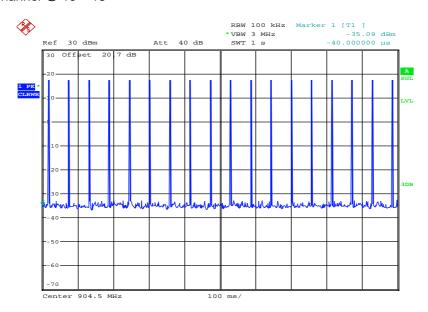
FCC	IC	
Average time of occupancy		

For frequency hopping systems operating in the 902-928 MHz band: If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within 10 second period.

Result: The time slot length is = 2.21 ms
Number of hops / channel @ 1s = 18


Within 10 s period, the average time of occupancy = 10 s * 18 * 2.21 ms

→ The average time of occupancy = 397.8 ms


Plots:

Plot 1: Time slot length = 2.21 ms

Date: 16.FEB.2017 11:07:25

Plot 2: hops / channel @ 1s = 18

Date: 16.FEB.2017 11:10:18

11.5 Spectrum bandwidth of a FHSS system

Description:

Measurement of the 20dB bandwidth and 99% bandwidth of the modulated signal. The measurement is performed according to the "Measurement Guidelines" (DA 00-705, March 30, 2000). EUT in single channel mode.

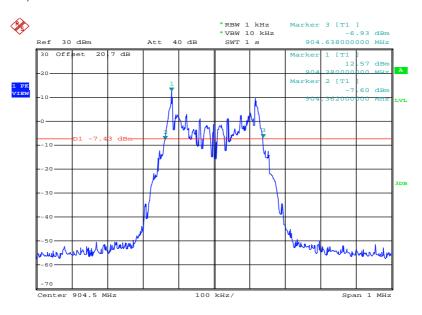
Measurement:

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	1 kHz		
Video bandwidth	10 kHz		
Span	See plots		
Trace mode	Max hold		
Test setup	See sub clause 6.3 A		
Measurement uncertainty	See sub clause 8		

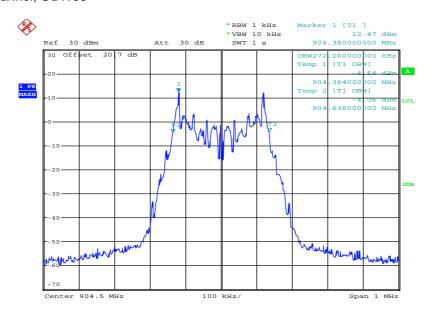
Limits:

FCC	IC	
Spectrum bandwidth of a FHSS system		
GFSK < 1500 kHz		

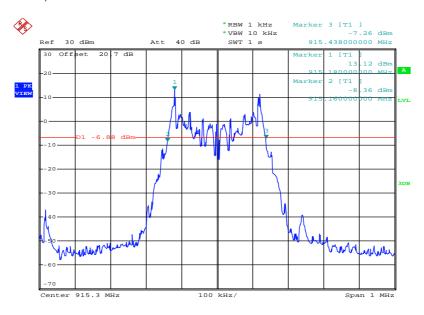
Result:


Test Conditions		20dB BANDWIDTH [kHz]		
Test Co	manuons	Low channel	Middle channel	High channel
T _{nom}	V _{nom}	276	278	280

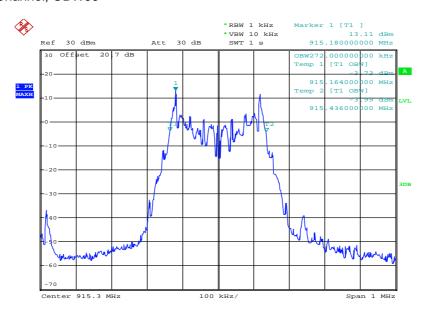
Test Conditions		9	9% BANDWIDTH [kHz	z]
100100	riditions	Low channel	Middle channel	High channel
T _{nom}	V_{nom}	272	272	272


Plots:

Plot 1: Low Channel; 20 dB-bandwidth

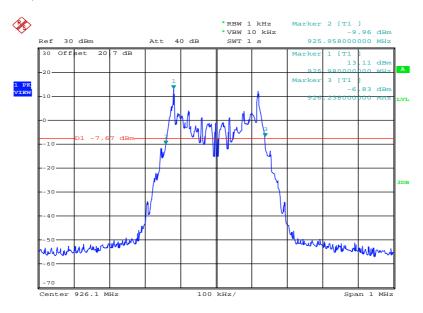

Date: 16.FEB.2017 10:57:34

Plot 2: Low Channel; OBW99

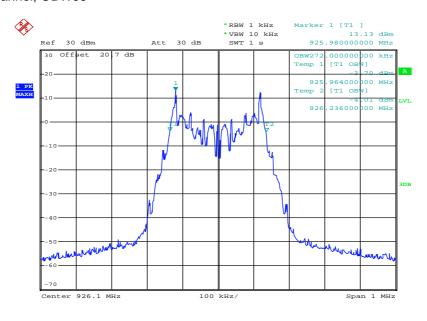

Date: 16.FEB.2017 10:55:59

Plot 3: Middle Channel; 20 dB-bandwidth

Date: 16.FEB.2017 10:54:02


Plot 4: Middle Channel; OBW99

Date: 16.FEB.2017 10:54:54



Plot 5: High Channel; 20 dB-bandwidth

Date: 16.FEB.2017 10:52:14

Plot 6: High Channel; OBW99

Date: 16.FEB.2017 10:49:55

11.6 Maximum Output Power

Measurement:

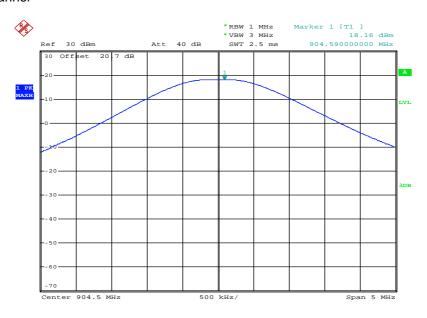
Measurement parameter		
Detector:	Peak	
Sweep time:	Auto	
Resolution bandwidth:	1 MHz	
Video bandwidth:	3 MHz	
Span:	5 MHz	
Trace-Mode:	Max Hold	
Used equipment:	See chapter 6.3 A	
Measurement uncertainty:	See chapter 8	

Limits:

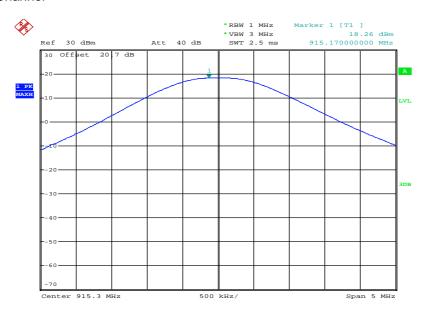
FCC	IC	
Maximum Output Power Conducted		

For frequency hopping systems operating in the 902–928 MHz band: 1 watt (30 dBm) for systems employing at least 50 hopping channels; and, 0.25 watts (24 dBm) for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Result:

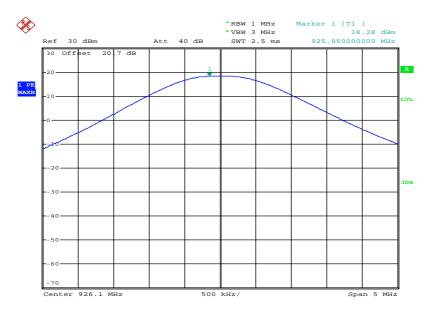

Test Conditions		Maximum Output Power Conducted [dBm]		
		Low channel	Middle channel	High channel
T _{nom}	V_{nom}	18.2	18.3	18.3

Test Conditions		ERP [dBm]		
		Low channel	Middle channel	High channel
T _{nom}	V_{nom}	16.5	16.4	15.0


Plots:

Plot 1: Low Channel

Date: 16.FEB.2017 10:12:36


Plot 2: Middle Channel

Date: 16.FEB.2017 10:42:48

Plot 3: High Channel

Date: 16.FEB.2017 10:43:30

11.7 Detailed spurious emissions @ the band edge - conducted and radiated

Description:

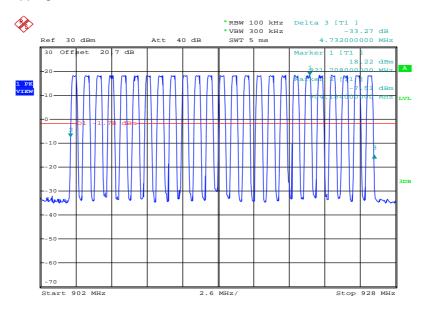
Measurement of the conducted band edge compliance. EUT is measured at the lower and upper band edge in single channel and hopping mode. The measurement is repeated for all modulations.

Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	100 kHz	
Video bandwidth	300 kHz	
Span	Lower Band Edge: 902 MHz Upper Band Edge: 928 MHz	
Trace mode	Max hold	
Test setup	See sub clause 6.3 A	
Measurement uncertainty	See sub clause 8	

Limits:

FCC	IC

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.


Results conducted:

Scenario	Spurious band edge conducted [dB]		ted [dB]
Modulation	lowest channel	middle channel	highest channel
Lower band edge – hopping on	> 20 dB	> 20 dB	> 20 dB
Upper band edge – hopping on	> 20 dB	> 20 dB	> 20 dB

Plots:

Plot 1: 20 dB – hopping on

Date: 16.FEB.2017 11:12:58

Results radiated:

No restricted band in the range \pm 2 channel bandwidths of the Band-edges of the specified emission band! (608 MHz - 614 MHz and 960 MHz - 1240 MHz).

Section 15.205 Restricted bands of operation.

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
10.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			.,,

11.8 Spurious Emissions Conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode. The measurement is repeated for low, mid and high channel.

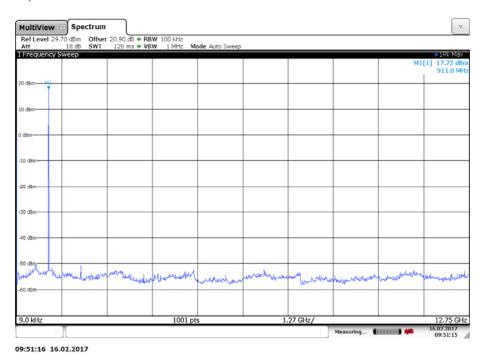
Measurement:

Measurement parameter			
Detector:	Peak		
Sweep time:	Auto		
Video bandwidth:	F < 1 GHz: 1 MHz F > 1 GHz: 1 MHz		
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 100 kHz		
Span:	9 kHz to 12.75 GHz		
Trace-Mode:	Max Hold		
Used equipment:	See chapter 6.3A		
Measurement uncertainty:	See chapter 8		

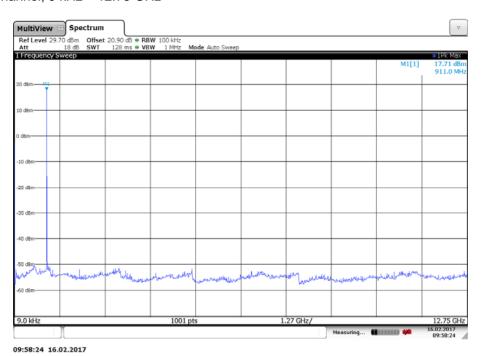
Limits:

FCC	IC			
TX spurious emissions conducted				

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required

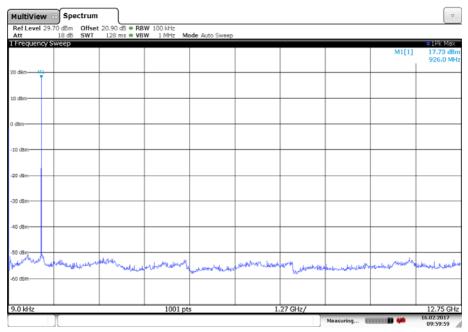

Result:

Emission Limitation					
Channel		Amplitude of emission [dBm]	Limit max. allowed emission power	actual attenuation below frequency of operation [dB]	Results
Lowest		17.72	24 dBm		Operating frequency
No emissions detected		-20 dBc			
Middle		17.71	24 dBm		Operating frequency
No emissions detected		-20 dBc			
Highest		17.73	24 dBm		Operating frequency
No emissions detected		-20 dBc			



Plots:

Plot 1: Low channel, 9 kHz - 12.75 GHz



Plot 2: Middle channel, 9 kHz - 12.75 GHz

Plot 3: High channel, 9 kHz - 12.75 GHz

10:00:00 16.02.2017

11.9 Spurious Emissions Radiated < 30 MHz

Description:

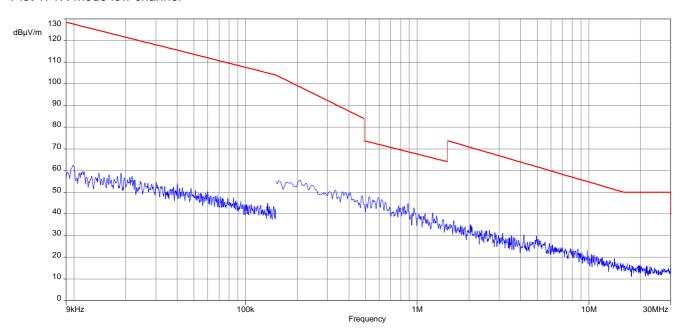
Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channels are 00; 39 and 78. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

Measurement:

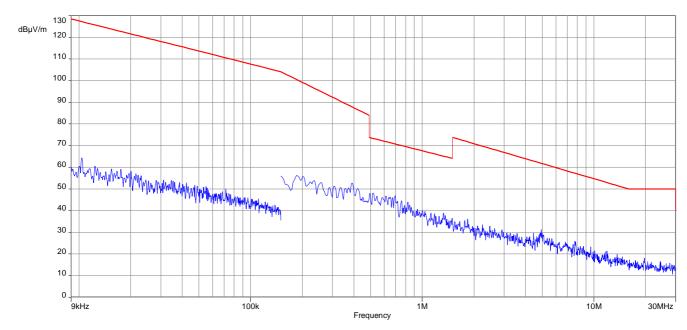
Measurement parameter									
Detector:	Peak / Quasi Peak								
Sweep time:	Auto								
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz								
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz								
Span:	9 kHz to 30 MHz								
Trace-Mode:	Max Hold								
Used equipment:	See chapter 6.2 A								
Measurement uncertainty:	See chapter 8								

Limits:

FCC			IC				
TX spurious emissions radiated < 30 MHz							
Frequency (MHz)	Field strength (dBµV/m)		Measurement distance				
0.009 – 0.490	2400/F(kHz)		300				
0.490 – 1.705	24000/F(kHz)		24000/F(kHz)		30		
1.705 – 30.0	3	0	30				

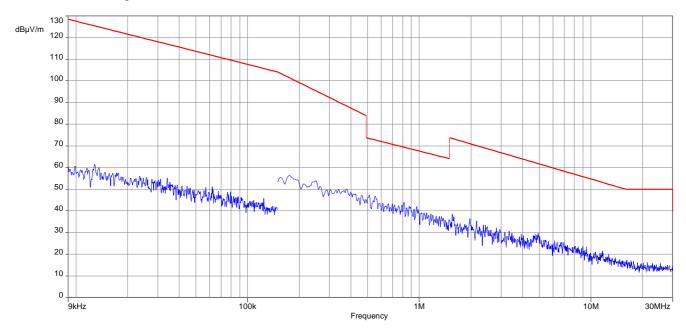

Result:

SPURIOUS EMISSIONS LEVEL [dBμV/m]									
Lowest channel Middle channel					el	Highest channel			
Frequency [MHz]	Detector	Level [dBµV/m]	Frequency [MHz]	Detector	Level [dBµV/m]	Frequency [MHz]	Detector	Level [dBµV/m]	
	All emissions were more than 10 dB below the limit.								



Plots:

Plot 1: TX-Mode low channel



Plot 2: TX-Mode mid channel

Plot 3: TX-Mode high channel

11.10 Spurious Emissions Radiated > 30 MHz

11.10.1 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed at channel low, mid and high.

Measurement:

Measurement parameters						
Detector	Peak / Quasi Peak					
Sweep time	Auto					
Resolution bandwidth	3 x VBW					
Video bandwidth	120 kHz					
Span	30 MHz to 1 GHz					
Trace mode	Max hold					
Measured modulation	GFSK					
Test setup	See sub clause 6.1 A					
Measurement uncertainty	See sub clause 8					

Limits:

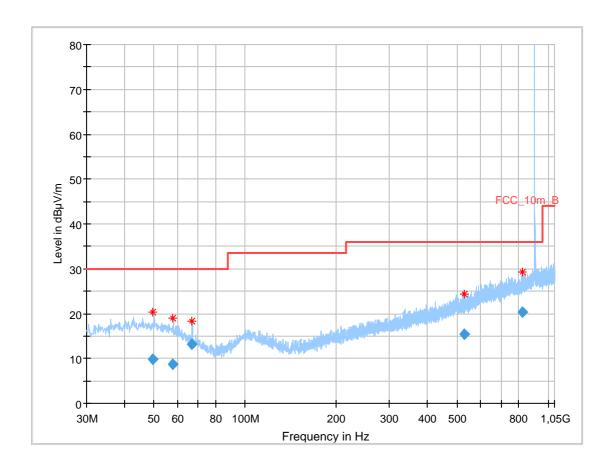
FCC	IC			

Band-edge Compliance of conducted and radiated emissions

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

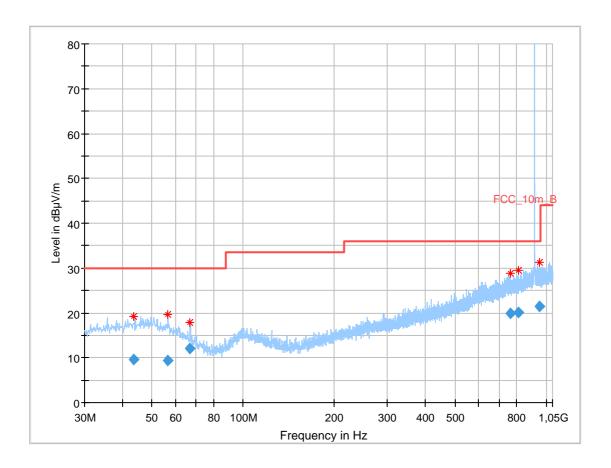
Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance
30 - 88	30.0	10
88 – 216	33.5	10
216 – 960	36.0	10
Above 960	54.0	3

Note: The limit was recalculated with 20 dB / decade (Part 15.31) for all radiated spurious emissions 30 MHz to 1 GHz from 3 meter limit to a 10 meter distance. (40dB/decade for emissions < 30MHz)

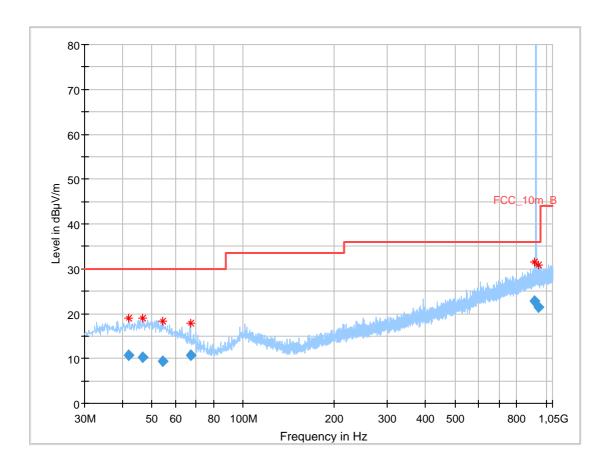

Result:

See result table below the plots.

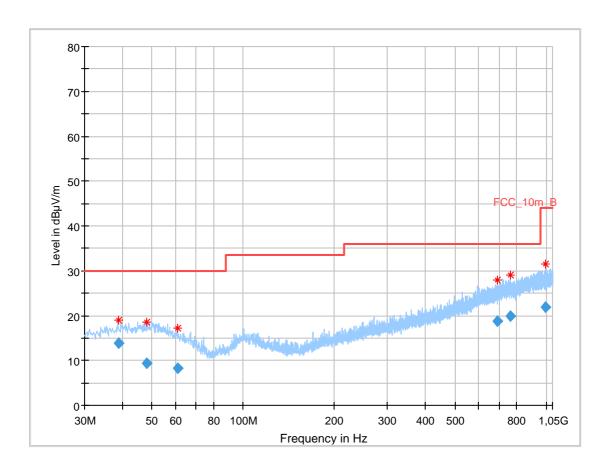
Plots:


Plot 1: 30 MHz – 1 GHz, horizontal & vertical polarisation (lowest channel)

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
49.656750	9.88	30.00	20.12	1000.0	120.000	98.0	٧	281.0	13.7
57.697350	8.70	30.00	21.30	1000.0	120.000	101.0	٧	168.0	12.4
66.937350	13.17	30.00	16.83	1000.0	120.000	98.0	Н	137.0	10.3
529.555350	15.44	36.00	20.56	1000.0	120.000	98.0	Н	181.0	19.1
823.824750	20.41	36.00	15.59	1000.0	120.000	98.0	V	59.0	23.1


Plot 2: 30 MHz – 1 GHz, horizontal & vertical polarisation (middle channel)

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
43.557300	9.60	30.00	20.40	1000.0	120.000	98.0	Н	74.0	13.5
56.293500	9.29	30.00	20.71	1000.0	120.000	98.0	Н	312.0	12.8
66.871200	11.99	30.00	18.01	1000.0	120.000	185.0	Н	154.0	10.4
763.447800	19.93	36.00	16.07	1000.0	120.000	98.0	Н	172.0	22.7
808.657800	20.06	36.00	15.94	1000.0	120.000	179.0	Н	345.0	22.9
951.038550	21.41	36.00	14.59	1000.0	120.000	181.0	V	252.0	24.4


Plot 3: 30 MHz – 1 GHz, horizontal & vertical polarisation (highest channel)

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
41.967450	10.73	30.00	19.27	1000.0	120.000	101.0	٧	99.0	13.4
46.666800	10.19	30.00	19.81	1000.0	120.000	179.0	٧	46.0	13.7
54.305400	9.36	30.00	20.64	1000.0	120.000	101.0	٧	135.0	13.2
67.090800	10.74	30.00	19.26	1000.0	120.000	185.0	Н	122.0	10.3
913.390200	22.86	36.00	13.14	1000.0	120.000	98.0	Н	147.0	24.2
947.192250	21.41	36.00	14.59	1000.0	120.000	185.0	٧	18.0	24.3

Plot 4: 30 MHz – 1 GHz, horizontal & vertical polarisation (RX-Mode)

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
38.725500	13.94	30.00	16.06	1000.0	120.000	98.0	V	289.0	13.1
47.945250	9.42	30.00	20.58	1000.0	120.000	101.0	Н	243.0	13.7
60.704850	8.29	30.00	21.71	1000.0	120.000	100.0	V	289.0	11.7
690.967650	18.70	36.00	17.30	1000.0	120.000	98.0	V	124.0	21.5
764.781300	19.85	36.00	16.15	1000.0	120.000	98.0	Н	319.0	22.7
995.889000	21.91	44.00	22.09	1000.0	120.000	179.0	٧	20.0	24.8

11.10.2 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed in the mode with the highest output power.

Measurement parameters							
Detector	Peak / RMS						
Sweep time	Auto						
Resolution bandwidth	1 MHz						
Video bandwidth	3 x RBW						
Span	1 GHz to 26 GHz						
Trace mode	Max hold						
Measured modulation	GFSK						
Test setup	See sub clause 6.2 C (1 GHz – 12.75 GHz)						
Measurement uncertainty	See sub clause 8						

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

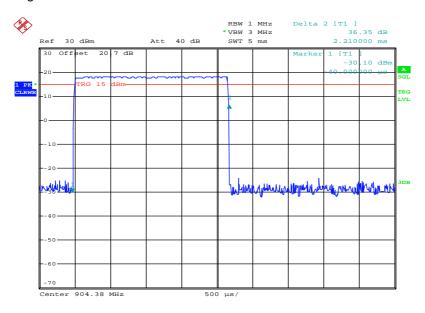
Limits:

ANSI C63.10 - FCC Public Notice DA 00-705

The average emission shall be determined by using RMS detector. If the dwell time of the hopping signal is less than 100 ms (per channel), the RMS reading may be adjusted by a factor: $F = 20\log (dwell time/100 ms)$

FCC			IC						
	TX spurious emissions radiated								
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).									
	§15.209								
Frequency (MHz) Field strength (dBµV/m) Measurement distance									
Above 960	54.0 3								

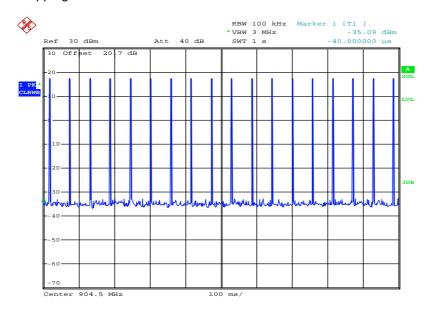
Result:


For radiated spurious emission the limits of 15.209 applies for all frequencies mentioned in 15.205. According to FCC Public Notice DA 00-705 (ANSI C63.10) the average emission shall be determined by using RMS detector. If the dwell time of the hopping signal is less than 100 ms (per channel), the RMS reading may be adjusted by a factor:

F = 20*log (dwell time/100 ms)

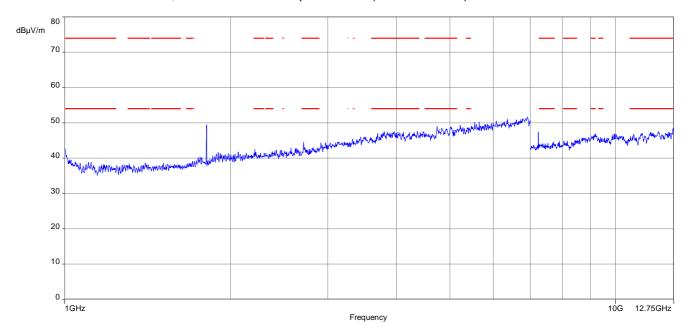
In a period of 100 ms, we have a maximum of 2 transmissions and that gives the correction factor for spurious measurement.

$$F = 20*log(2*2.21/100) = -27.09 dB$$

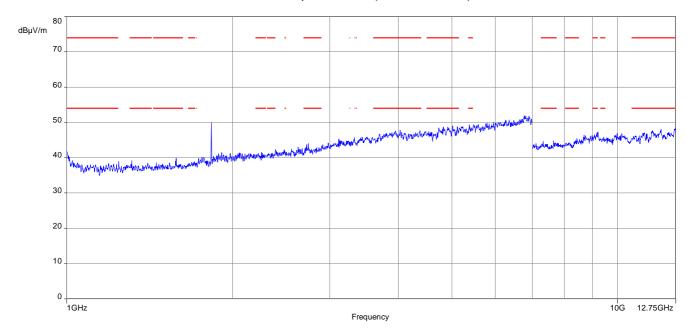

Plot 1: Time slot length = 2.21 ms

Date: 16.FEB.2017 11:07:25

Plot 2: Number of hopping channels in 1s = 18

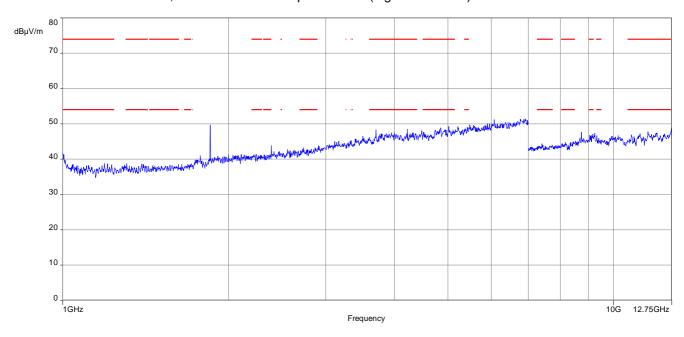

Date: 16.FEB.2017 11:10:18

TX spurious emissions radiated [dBµV/m]									
Lowest channel			Middle channel			Highest channel			
F [MHz] Detector Level [dBµV/m]		F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]		
	All emissions were more than 5 dB below the limit.								
	Peak			Peak			Peak		
	AVG			AVG			AVG		
	Peak			Peak			Peak		
	AVG			AVG			AVG		
	Peak			Peak			Peak		
	AVG			AVG			AVG		

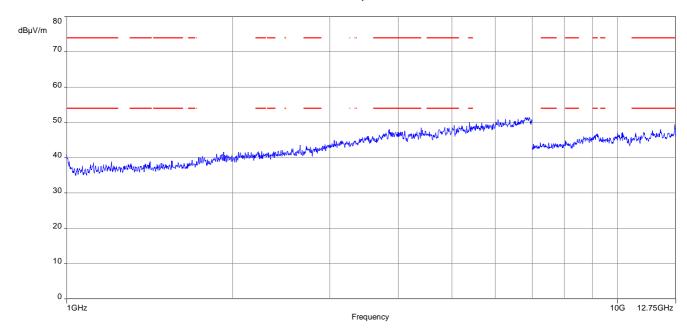


Plots:

Plot 1: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (lowest channel)



Plot 2: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (middle channel)



Plot 3: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (highest channel)

Plot 4: 1GHz - 12.75 GHz, RX-Mode, horizontal & vertical polarisation

11.11 Conducted spurious emissions < 30 MHz

Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

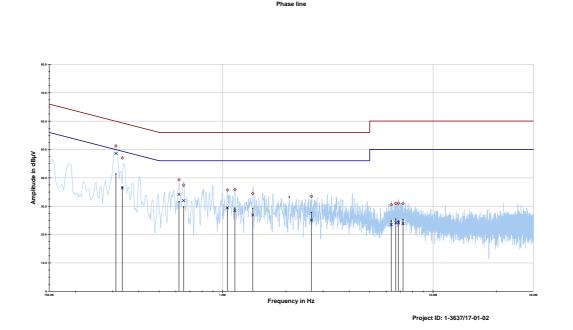
Measurement:

Measurement parameter					
Detector:	Peak - Quasi Peak / Average				
Sweep time:	Auto				
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz				
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz				
Span:	9 kHz to 30 MHz				
Trace-Mode:	Max Hold				

Limits:

FCC							
Conducted Spurious Emissions < 30 MHz							
Frequency (MHz)	Frequency (MHz) Quasi-Peak (dBµV/m) Average (dBµV/m)						
0.15 - 0.5	66 to 56*	56 to 46*					
0.5 – 5	56	46					
5 – 30.0	60	50					

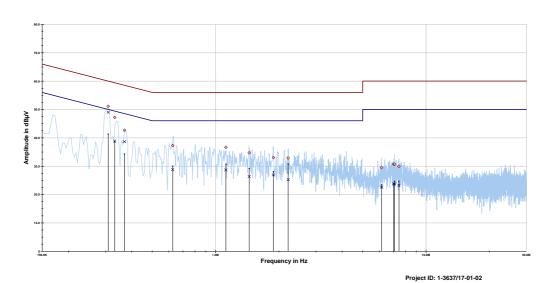
^{*}Decreases with the logarithm of the frequency


Results:

Conducted Spurious Emissions < 30 MHz [dBμV/m]						
F [MHz] Detector Level [dBµV/m]						
See result table below the plots.						

Plots:

Plot 1: Phase line



Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.311445	51.24	8.69	59.932	48.59	2.80	51.387
0.333805	47.04	12.32	59.356	36.38	14.37	50.748
0.620866	39.28	16.72	56.000	34.19	11.81	46.000
0.653088	37.41	18.59	56.000	31.99	14.01	46.000
1.054652	35.71	20.29	56.000	29.40	16.60	46.000
1.143657	35.92	20.08	56.000	28.43	17.57	46.000
1.390576	34.46	21.54	56.000	26.89	19.11	46.000
2.643495	33.50	22.50	56.000	25.08	20.92	46.000
6.335833	30.50	29.50	60.000	23.52	26.48	50.000
6.653232	30.96	29.04	60.000	24.12	25.88	50.000
6.850937	31.06	28.94	60.000	24.17	25.83	50.000
7.201200	30.94	29.06	60.000	23.82	26.18	50.000

Plot 2: Neutral line

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.308947	51.13	8.87	59.999	49.01	2.45	51.459
0.331699	47.20	12.21	59.409	38.82	11.99	50.809
0.368990	42.71	15.82	58.524	38.66	11.08	49.743
0.625664	37.24	18.76	56.000	28.77	17.23	46.000
1.119710	36.66	19.34	56.000	28.67	17.33	46.000
1.446069	34.71	21.29	56.000	26.37	19.63	46.000
1.883599	33.03	22.97	56.000	26.92	19.08	46.000
2.214006	32.89	23.11	56.000	25.26	20.74	46.000
6.150711	29.48	30.52	60.000	22.61	27.39	50.000
7.015361	30.73	29.27	60.000	23.75	26.25	50.000
7.090579	30.69	29.31	60.000	23.74	26.26	50.000
7.439302	29.95	30.05	60.000	23.23	26.77	50.000

12 Observations

No observations except those reported with the single test cases have been made.

Annex A Document history

Version	Applied changes	Date of release
	Initial release	2017-03-03
-A	Correction of modulation kind	2017-03-07
-B	Addition of AC conducted measurement	2017-03-30
-C	Editorial corrections	2017-04-06

Annex B Further information

Glossary

AVG - Average

DUT - Device under test

EMC - Electromagnetic Compatibility

EN - European Standard EUT - Equipment under test

ETSI - European Telecommunications Standard Institute

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware
IC - Industry Canada
Inv. No. - Inventory number
N/A - Not applicable
PP - Positive peak
QP - Quasi peak
S/N - Serial number

SW - Software PMN - Product marketing name

HMN - Host marketing nameHVIN - Hardware version identification

HVIN - Hardware version identification number FVIN - Firmware version identification number

OBW Occupied Bandwidth OC Operating Channel

OCW Operating Channel Bandwidth

OOB Out Of Band

Annex C Accreditation Certificate

first page

last page

Deutsche Akkreditierungsstelle GmbH

Standort Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main

Die Akkreditierung erfolgte gemäß des Gesetzes über die Akkreditierungsstelle (AktöselleG) vom 31. Juli 2009 (BGBI. 1.5. 2625) sowie der Verordnung (EG) Nr. 765/2008 des Europälschen Parlamen und des Rates vom 9. Juli 2008 (Bert die Verschriften Grüe die Akkrediterung und Marküberwin 1m. Zusammenhang mit der Vermarktung von Produkten (Abl. 1.218 vom 9. Juli 2008, 5. 30). Die Dakksi Stu Uterzeichherni der Muhillateralen Abkommen zur gegenseitigen Anerkennung der European co-operation for Aczreditation (EA), des International Aczreditation Forum (IAF) und der International Laboratory Aczerdatiano (Copperation (ILAC). Die Unterzeichner dieser Abkommu erkennen ihre Akkreditierungen gegenseitig an.

Der aktuelle Stand der Mitgliedschaft kann folgenden Webseiten entno EA: www.curropean-accreditation.org ILAC: www.llac.org ILAC: www.llac.org

Note:

The current certificate including annex can be received on request.