

CETECOM ICT Services

consulting - testing - certification >>>

TEST REPORT

Test report no.: 1-0055/15-01-02

Testing laboratory

CETECOM ICT Services GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.cetecom.com
ict@cetecom.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-00

Applicant

RSI Video Technologies

Siège Social -Headquarters 25 rue Jacobi-Netter

67200 Strasbourg / FRANCE Phone: +33 3 90 20 66 96

Fax: -/-

Contact: Geoffroy Eude

e-mail: geoffroy.eude@rsivideotech.com

Phone: +33 3 90 20 66 39

Manufacturer

RSI Video Technologies

Siège Social -Headquarters 25 rue Jacobi-Netter

67200 Strasbourg / FRANCE

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices

RSS - 210 Issue 8 Spectrum Management and Telecommunications Radio Standards Specification - Licence-

exempt Radio Apparatus (All Frequency Bands): Category I Equipment

RSS - 210 Issue 8 RSS-210, Amendment 1 — Licence-Exempt, Low-Power Radio Apparatus Operating in the

Amendment 1 Television Bands (February 2015)

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Alarm system

Model name: OMV611

FCC ID: X46MV50

IC: 8816A-MV50

Frequency: ISM band 902 MHz to 928 MHz

(lowest channel 904.5 MHz, highest channel 926.1 MHz)

Technology tested: Proprietary FHSS system

Antenna: Integrated antenna

Power supply: 3.6 V DC by lithium battery

Temperature range: -20°C to +55°C

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorised:	Test performed:
	p.o.
Stofan Rös	Tobias Wittenmeier

Lab Manager
Radio Communications & EMC

Tobias Wittenmeier
Testing Manager
Radio Communications & EMC

Table of contents

1	Table	of contents	3
2	Gener	al information	
	2.1	Notes and disclaimer	
	2.2	Application details	
3	Tost s	tandard/s	
4		nvironment	
5	Test it	em	5
	5.1	Additional information	5
6	Test la	aboratories sub-contracted	
7	Descr	iption of the test setup	6
	7.1	Shielded semi anechoic chamber	
	7.2	Shielded fully anechoic chamber	8
	7.3	Conducted measurements	9
8	Measu	rement uncertainty	10
9		ence of testing	
9	•	•	
	9.1 9.2	Sequence of testing 9 kHz to 30 MHz	
	9.2	Sequence of testing 30 MHz to 1 GHz	
		•	
10	Sun	nmary of measurement results	
	10.1	Additional comments	15
11	Mea	surement results	16
	11.1	Antenna gain	
	11.2	Carrier Frequency Separation	
	11.3	Number of Hopping Channels	
	11.4	Average Time of Occupancy	
	11.5 11.6	20 dB Bandwidth	
	11.7	Maximum Output Power Radiated	
	11.8	Band-edge Compliance of conducted and radiated emissions	
	11.9	Spurious Emissions Conducted (Transmitter)	
	11.10	Spurious Emissions Radiated < 30 MHz	
	11.11	Spurious Emissions Radiated (Transmitter) > 30 MHz	
	11.12	RX spurious emissions radiated	
12	Obs	ervations	51
Anr	nex A	Document history	52
	nex B	Further information	
Δnr	DAY C	Accreditation Certificate	53

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2015-07-03
Date of receipt of test item: 2015-07-06
Start of test: 2015-07-08
End of test: 2015-07-08

Person(s) present during the test: -/-

3 Test standard/s

Test standard	Date	Test standard description
47 CFR Part 15	2013-10-01	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 210 Issue 8	December 2010	Spectrum Management and Telecommunications Radio Standards Specification - Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment
RSS - 210 Issue 8 Amendment 1	February 2015	RSS-210, Amendment 1 — Licence-Exempt, Low-Power Radio Apparatus Operating in the Television Bands (February 2015)

4 Test environment

Temperature:

T_{nom} +22 °C during room temperature tests T_{max} +55 °C during high temperature tests

T_{min} -20 °C during low temperature tests

Relative humidity content: 55 %

Barometric pressure: not relevant for this kind of testing

V_{nom} 3.6 V DC by lithium battery

Power supply: V_{max} -/- V

 V_{min} -/- V

5 Test item

Kind of test item	:	Alarm system
Type identification	:	OMV611
HMN	:	- <i>l</i> -
PMN	:	OMV611
HVIN	:	OMV611
FVIN	:	- <i>l</i> -
S/N serial number	:	No information available
HW hardware status	:	5CA1276A-0d
SW software status	:	V.07.01.98.09
Francisco de la constanta de l	:	ISM band 902 MHz to 928 MHz
Frequency band		(lowest channel 904.5 MHz, highest channel 926.1 MHz)
Type of radio transmission	:	FHSS
Use of frequency spectrum	:	rnss
Type of modulation	:	FSK
Number of channels	:	25
Antenna	:	Integrated antenna
Power supply	:	3.6 V DC by lithium battery
Temperature range	:	-20°C to +55°C

5.1 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-0055_15-01-01_AnnexA

1-0055_15-01-01_AnnexB 1-0055_15-01-01_AnnexD

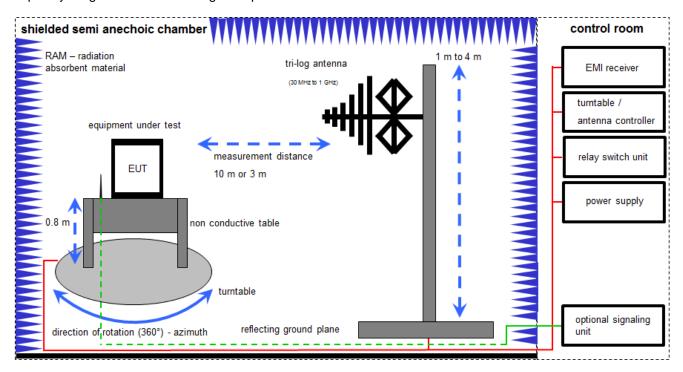
6 Test laboratories sub-contracted

None

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signalling equipment as well as measuring receivers and analysers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).


Agenda: Kind of Calibration

k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

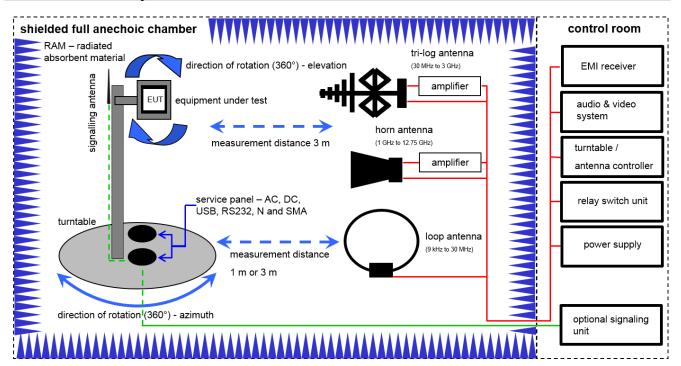
7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63.4. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. The wanted and unwanted emissions are received by spectrum analysers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.4 and ANSI C63.10.

 $SS = U_R + CL + AF$

(SS-signal strength; U_R-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:


 $SS[dB\mu V/m] = 12.35[dB\mu V/m] + 1.90[dB] + 16.80[dB\mu V/m] = 31.05[dB\mu V/m] (35.69 \mu V/m)$

Equipment table:

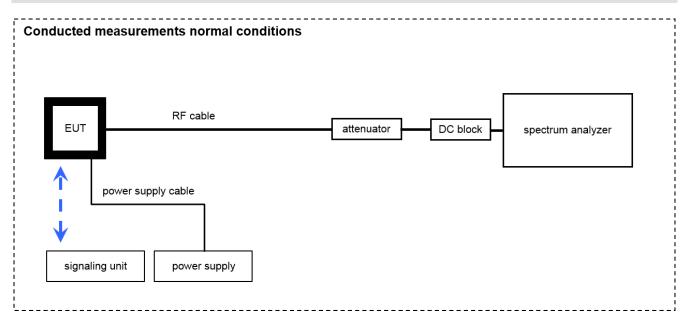
No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	45	Switch-Unit	3488A	HP	2719A14505	300000368	ev		
2	45	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	26.01.2015	26.01.2016
3	45	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	Ve	11.02.2014	11.02.2016
4	45	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw		
5	45	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw		
6	45	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw		
7	45	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	22.04.2014	22.04.2016
8	45	Spectrum-Analyzer	FSU26	R&S	200809	300003874	k	26.01.2015	26.01.2016
9	45	Breitband Doppelsteg- Hornantenne	BBHA9120 B	Schwarzbeck	188	300003896	k	20.05.2015	20.05.2017

7.2 Shielded fully anechoic chamber

 $SS = U_R + CA + AF$

(SS-signal strength; U_R-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:


 $SS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB\mu V/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	vIKI!	20.05.2015	20.05.2017
2	n. a.	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev		
3	n. a.	Switch / Control Unit	3488A	HP	*	300000199	ne		
4	90	Active Loop Antenna 10 kHz to 30 MHz	6502	Kontron Psychotech	8905-2342	300000256	k	24.06.2015	24.06.2017
5	90	Amplifier	js42-00502650-28- 5a	Parzich GMBH	928979	300003143	ne		
6	90	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne		
7	90	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	371	300003854	vIKI!	29.10.2014	29.10.2017
8	90	MXE EMI Receiver 20 Hz to 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405	k	06.03.2015	06.03.2016
9	90	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne		

7.3 Conducted measurements

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + (11.7) [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1		Spectrum Analyzer 9kHz to 30GHz - 140+30dBm	FSP30	R&S	100886	300003575	k	26.08.2014	26.08.2016

8 Measurement uncertainty

Measurement uncertainty							
Test case	Uncertainty						
Antenna gain	± 3 dB						
Carrier frequency separation	± 21.5 kHz						
Number of hopping channels	-/-						
Time of occupancy	-/-						
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative						
Maximum output power	± 1 dB						
Spurious emissions conducted	± 3 dB						
Spurious emissions radiated below 30 MHz	± 3 dB						
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB						
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB						

9 Sequence of testing

9.1 Sequence of testing 9 kHz to 30 MHz

Setup

- The equipment was setup to simulate a typical usage like descripted in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed on the ground.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 3 meter (see ANSI C 63.4) see each test details
- The EUT was set into operation.

Premeasurement

- The turntable rotates from 0° to 315° with 45° steps.
- The antenna height is 1.5 meter.
- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement

- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axces (0° to 360°).
- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK (QPK / see ANSI C 63.4) detector
- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit, and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

9.2 Sequence of testing 30 MHz to 1 GHz

Setup

- The equipment was setup to simulate a typical usage like descripted in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 10 or 3 meter (see ANSI C 63.4) see each test details
- The EUT was set into operation.

Premeasurement

- The turntable rotates from 0° to 315° with 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 to 3 meter.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions

Final measurement

- The final measurement will be performed with minimum the six highest peaks.
- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- The final measurement will be done with QP (Quasi-Peak / see ANSI C 63.4) detector with an EMI receiver
- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit, and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

9.3 Sequence of testing 1 GHz to 12.75 GHz

Setup

- The equipment was setup to simulate a typical usage like descripted in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed on the ground.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 3 meter (see ANSI C 63.4) see each test details
- The EUT was set into operation.

Premeasurement

- The turntable rotates from 0° to 315° with 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 meter.
- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement

- The final measurement will be performed with minimum the six highest peaks according the requirements of the ANSI C63.4.
- According to the maximum found antenna polarisation and turntable position of the premeasurement the software maximizes the peaks by rotating the turntable position (0° to 360°). This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps). This procedure is repeated for both antenna polarisations.
- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS (RMS / see ANSI C 63.4) detector
- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit, and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

10	Summary of measurement results								
	☑ No deviations from the technical specifications were ascertained								
		There were deviations from the to	There were deviations from the technical specifications ascertained						
		This test report is only a partial test report. The content and verdict of the performed test cases are listed below.							
TC	Identifier	Description	Verdict	Date	Remark				
RI	F-Testing	CFR Part 15 RSS 210, Issue 8	See tests	2015-07-28	-/-				

Test specification clause	Test case	Temperature conditions	Power source voltages	Mode	С	NC	NA	NP	Results (max.)
§15.247(b)(4)	Antenna Gain	Nominal	Nominal	TX	\boxtimes				complies
§15.247(a)(1) (i) RSS-210 A8.1 (b)	Carrier Frequency Separation	Nominal	Nominal	TX	\boxtimes				complies
§15.247(a)(1)(i) RSS-210 A8.1 (c)	Number of Hopping channels	Nominal	Nominal	TX					complies
§15.247(a)(1)(i) RSS-210 A8.1 (c)	Average Time of Occupancy (Dwell Time)	Nominal	Nominal	TX	\boxtimes				complies
§15.247(a)(1)(i) RSS-210 A8.1 (c)	20dB Bandwidth	Nominal	Nominal	TX	\boxtimes				complies
§15.247(b)(2) RSS-210 A8.4 (1)	Maximum Output Power Radiated	Nominal	Nominal	TX	\boxtimes				complies
§15.247(b)(4) RSS-210 A8.4 (1)	Maximum Output Power Conducted	Nominal	Nominal	TX					complies
§15.247(d) §15.205(a)	Band-edge Compliance	Nominal	Nominal	ТХ	\boxtimes				complies
§15.247(d)	TX Spurious Emission Conducted	Nominal	Nominal	TX	\boxtimes				complies
§15.209(a)	TX Spurious Emission Radiated < 30 MHz	Nominal	Nominal	TX	\boxtimes				complies
§15.247(d) §15.209 A8.5	TX Spurious Emission Radiated > 30 MHz	Nominal	Nominal	TX	\boxtimes				complies
§15.109 §15.207	RX Spurious Emissions Radiated	Nominal	Nominal	Idle	\boxtimes				complies

Note: C = Complies; NC = Not complies; NA = Not applicable; NP = Not performed

10.1 Additional comments

Reference documents: None

Special test descriptions: None

Configuration descriptions: None

Test mode: Special software is used.

EUT is transmitting pseudo random data by itself

11 Measurement results

11.1 Antenna gain

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.

	Low channel 904.5 MHz	Middle channel 915.3 MHz	High channel 926.1 MHz
Conducted power [dBm]	17.95	17.89	17.93
Radiated power [dBm]	16.13	15.61	15.72
Gain [dBi] Calculated	-1.82	-2.28	-2.21

Limits:

FCC	IC
Antenr	na gain

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Result: complies

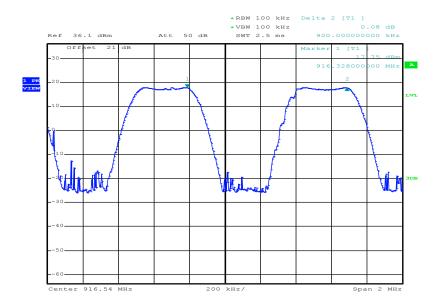
11.2 Carrier Frequency Separation

Description:

Measurement of the carrier frequency separation of a hopping system. The carrier frequency separation is constant for all modulation-modes. We use GFSK-modulation to show compliance. EUT in hopping mode.

Measurement:

Measurement parameter			
Detector:	Peak		
Sweep time:	Auto		
Resolution bandwidth:	100 kHz		
Video bandwidth:	100 kHz		
Span:	2 MHz		
Trace mode: Max Hold			
Test setup:	See sub clause 7.3		
Measurement uncertainty	See sub clause 8		


Limits:

FCC	IC		
Carrier Frequency Separation			
Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.			

Result: The channel separation is: 900 kHz

Plot 1:

Date: 8.JUL.2015 10:50:12

11.3 Number of Hopping Channels

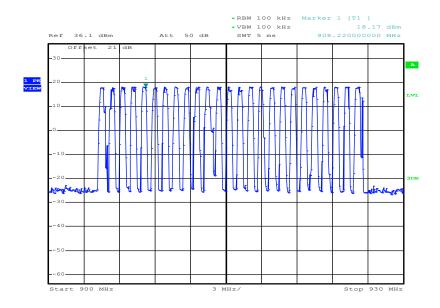
Description:

Measurement of the total number of used hopping channels. EUT in hopping mode.

Measurement:

Measurement parameter		
Detector:	Peak	
Sweep time:	Auto	
Resolution bandwidth:	100 kHz	
Video bandwidth:	100 kHz	
Span:	30 MHz	
Trace mode: Max Hold		
Test setup:	See sub clause 7.3	
Measurement uncertainty See sub clause 8		

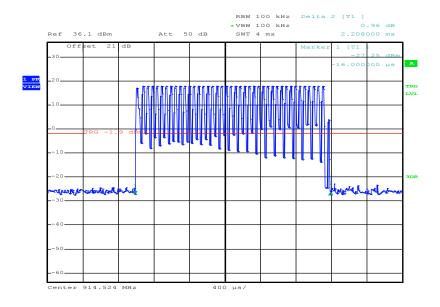
Limits:


FCC	IC		
Number of Hopping Channels			

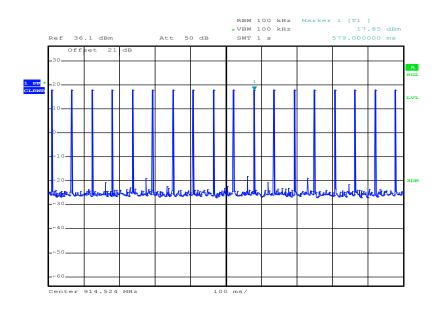
For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies.

Result: The number of hopping channels is: 25

Plot 1:


Date: 8.JUL.2015 10:52:41

11.4 Average Time of Occupancy


Plots:

Plot 1: Time slot length = 2.208 ms

Date: 8.JUL.2015 10:55:58

Plot 2: hops / channel @ 1s = 18

Date: 8.JUL.2015 10:57:07

Result: The time slot length is = 2.208 msNumber of hops / channel @ 1s = 18

Within 10 s period, the average time of occupancy = 10 s * 18 * 2.208 ms

→ The average time of occupancy = 397.4 ms

Limits:

FCC	IC			
Average time of occupancy				

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within 10 second period.

11.5 20 dB Bandwidth

Description:

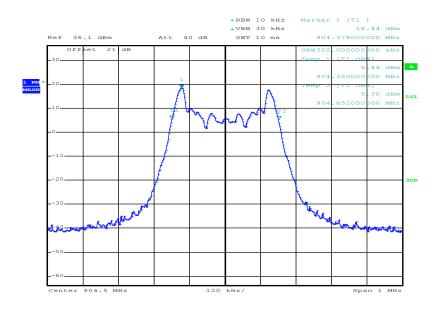
Measurement of the 20 dB bandwidth of the modulated signal.

Measurement:

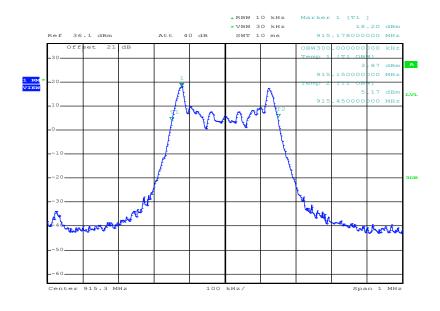
Measurement parameter		
Detector:	Peak	
Sweep time:	Auto	
Video bandwidth:	10 kHz	
Resolution bandwidth:	30 kHz	
Span:	See plots	
Trace-Mode:	Max Hold	
Test setup:	See sub clause 7.3	
easurement uncertainty See sub clause 8		

Limits:

FCC	IC		
20dB Bandwidth			
The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.			

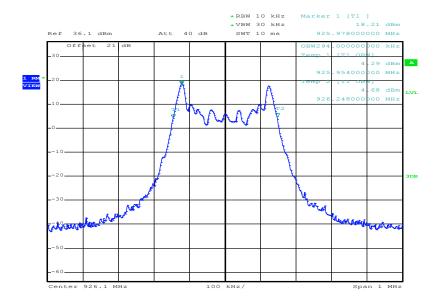

Result:

Test Conditions		20dB BANDWIDTH [kHz]		z]
		904.5 MHz 915.3 MHz 926.1 MHz		926.1 MHz
T _{nom}	V_{nom}	302.0	300.0	294.0
Measurement uncertainty		± 30 kHz		


Plots:

Plot 1: Low Channel

Date: 8.JUL.2015 11:03:19


Plot 2: Middle Channel

Date: 8.JUL.2015 11:09:16

Plot 3: High Channel

Date: 8.JUL.2015 11:10:41

11.6 Maximum Output Power Radiated

Description:

Measurement of the maximum output power conducted. EUT in single channel mode. The measurement is performed according to the ANSI C63.10.

Measurement:

Measurement parameter			
Detector: Peak			
Sweep time:	Auto		
Resolution bandwidth: 3 MHz			
Video bandwidth:	3 MHz		
Span:	5 MHz		
Trace-Mode: Max Hold			
Test setup:	See sub clause 7.2		
Measurement uncertainty See sub clause 8			

Limits:

FCC	IC
EI	RP

For frequency hopping systems operating in the 902–928 MHz band: 1 watt (30 dBm) for systems employing at least 50 hopping channels; and, 0.25 watts (24 dBm) for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Result:

Test Conditions		EIRP [dBm]		
		904.5 MHz 915.3 MHz 926.1 MHz		926.1 MHz
T _{nom}	V_{nom}	16.13	15.61	15.72
Measurement uncertainty		± 3dB		

11.7 Maximum Output Power Conducted

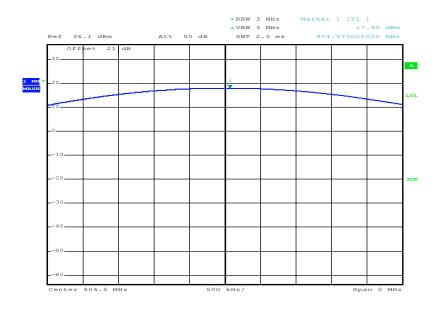
Measurement:

Measurement parameter		
Detector:	Peak	
Sweep time:	Auto	
Resolution bandwidth:	3 MHz	
Video bandwidth:	3 MHz	
Span:	5 MHz	
Trace-Mode:	Max Hold	
Test setup:	See sub clause 7.3	
Measurement uncertainty	See sub clause 8	

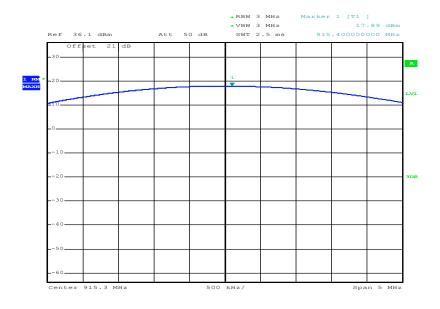
Limits:

	FCC	IC	
	Maximum Output Power Conducted		
Ī	For frequency hopping systems operating in the 902–928 MHz band: 1 watt (30 dBm) for systems employing		

For frequency hopping systems operating in the 902–928 MHz band: 1 watt (30 dBm) for systems employing at least 50 hopping channels; and, 0.25 watts (24 dBm) for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

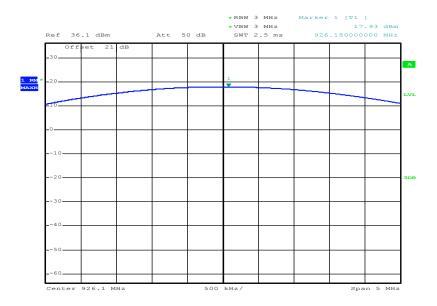

Result:

Test Conditions		Maximum Output Power Conducted [dBm]		
		904.5 MHz	915.3 MHz	926.1 MHz
T _{nom}	V_{nom}	17.95	17.89	17.93
Measurement uncertainty		± 3 dB		


Plots:

Plot 1: Low Channel

Date: 8.JUL.2015 11:32:25


Plot 2: Middle Channel

Date: 8.JUL.2015 11:31:43

Plot 3: High Channel

Date: 8.JUL.2015 11:30:54

11.8 Band-edge Compliance of conducted and radiated emissions

No restricted band in the range \pm 2 channel bandwidths of the Band-edges of the specified emission band! (608 MHz - 614 MHz and 960 MHz - 1240 MHz).

Section 15.205 Restricted bands of operation.

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

Limits:

FCC	IC

Band-edge Compliance of conducted and radiated emissions

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Result: See Results of spurious emissions conducted and radiated.

11.9 Spurious Emissions Conducted (Transmitter)

Description:

Measurement of the conducted spurious emissions in transmit mode.

Measurement:

Measurement parameter		
Detector:	Peak	
Sweep time:	Auto	
Video bandwidth:	1 MHz	
Resolution bandwidth:	100 kHz	
Span:	9 kHz to 12.75 GHz	
Trace-Mode:	Max Hold	
Test setup:	See sub clause 7.3	
Measurement uncertainty	See sub clause 8	

Limits:

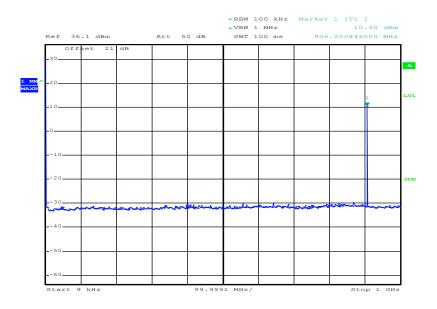
FCC	IC	
Spurious emissions conducted		

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

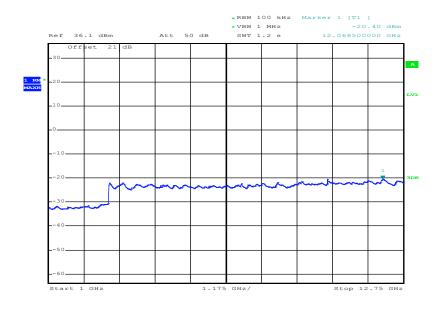
Result:

Emission Limitation					
Frequency [MHz]	Ampli emiss [dBm		Limit max. allowed emission power	actual attenuation below frequency of operation [dB]	Results
904.5	10.50)	24 dBm		Operating frequency
No emissions detected!			-20 dBc	-/-	
915.3	9.10		24 dBm		Operating frequency
No emissions detected!			-20 dBc	-/-	
926.1	9.80		24 dBm		Operating frequency
No emissions detected!			-20 dBc	-/-	
Measurement uncertainty				± 3dB	

Limits:

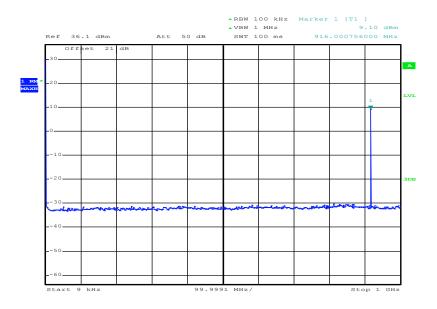

FCC	IC	
Spurious emissions conducted		

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

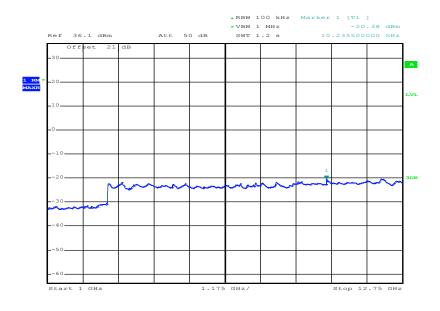

Plots:

Plot 1: Low channel

Date: 8.JUL.2015 11:34:16

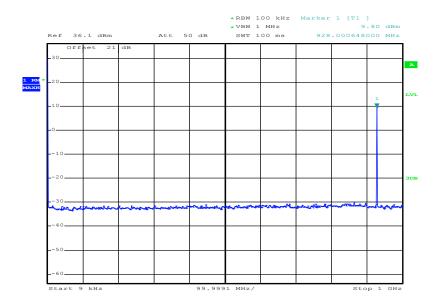

Plot 2: Low channel

Date: 8.JUL.2015 11:37:51

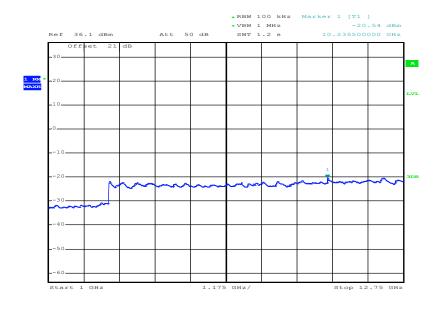


Plot 3: Middle channel

Date: 8.JUL.2015 11:34:51


Plot 4: Middle channel

Date: 8.JUL.2015 11:37:16



Plot 5: High channel

Date: 8.JUL.2015 11:35:23

Plot 6: High channel

Date: 8.JUL.2015 11:35:58

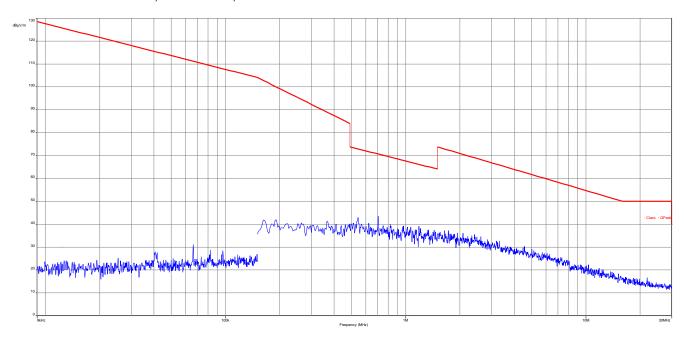
11.10 Spurious Emissions Radiated < 30 MHz

Description:

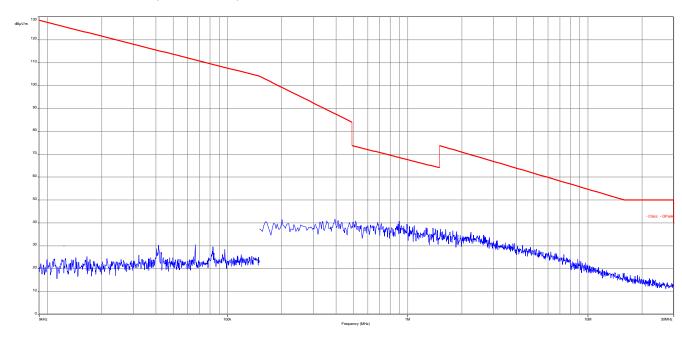
Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

Measurement:

Measurement parameter				
Detector:	Peak / Quasi Peak			
Sweep time:	Auto			
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz			
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz			
Span:	9 kHz to 30 MHz			
Trace-Mode:	Max Hold			
Test setup:	See sub clause 7.2			
Measurement uncertainty	See sub clause 8			

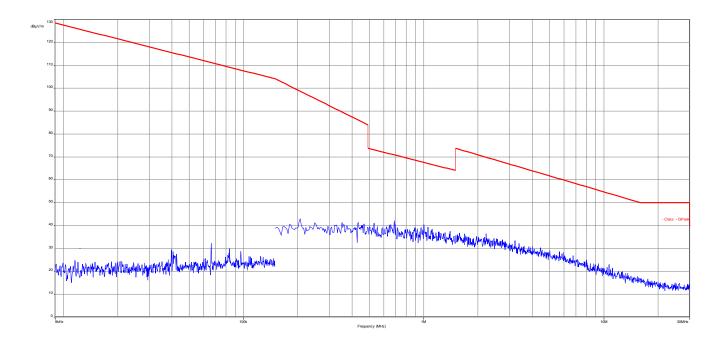

Limits:

FCC		IC		
TX spurious emissions radiated < 30 MHz				
Frequency (MHz)	Field strength (dBµV/m)		Measurement distance	
0.009 – 0.490	2400/F(kHz)		300	
0.490 – 1.705	24000/F(kHz)		30	
1.705 – 30.0	30		30	



Plots:

Plot 1: 9 kHz to 30 MHz, channel low, transmit mode



Plot 2: 9 kHz to 30 MHz, channel mid, transmit mode

Plot 3: 9 kHz to 30 MHz, channel high, transmit mode

11.11 Spurious Emissions Radiated (Transmitter) > 30 MHz

Description:

Measurement of the radiated spurious emissions in transmit mode.

Measurement:

Measurement parameter							
Detector:	Peak / Quasi Peak						
Sweep time:	Auto						
Video bandwidth:	3 x RBW Remeasurement:	10 Hz					
Resolution bandwidth:	F < 1 GHz: F > 1 GHz:	100 kHz 1 MHz					
Span:	30 MHz to 25 GHz						
Trace-Mode:	Max Hold						
Measured Modulation	FSK						
Test setup:	See sub clause 7.1 See sub clause 7.2						
Measurement uncertainty	See sub clause 8						

Limits:

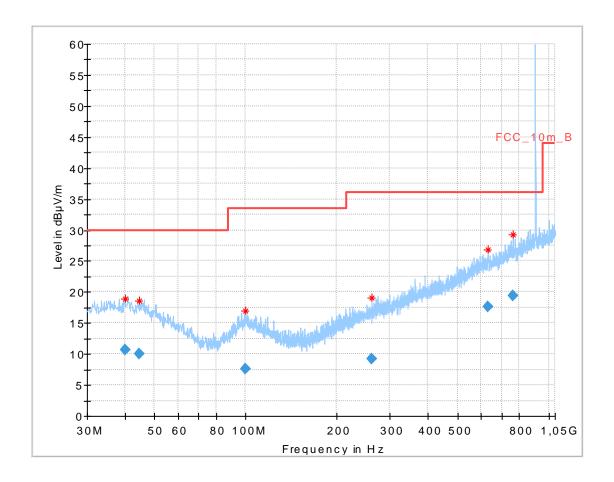
ANSI C63.10 - FCC Public Notice DA 00-705

The average emission shall be determined by using Video averaging (VBW = 10 Hz). If the dwell time of the hopping signal is less than 100 ms (per channel), the VBW=10 Hz reading may be adjusted by a factor: $F = 20\log (dwell time/100 ms)$

FCC	IC

Band-edge Compliance of conducted and radiated emissions

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).


Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance
30 - 88	30.0	10
88 – 216	33.5	10
216 – 960	36.0	10
Above 960	54.0	3

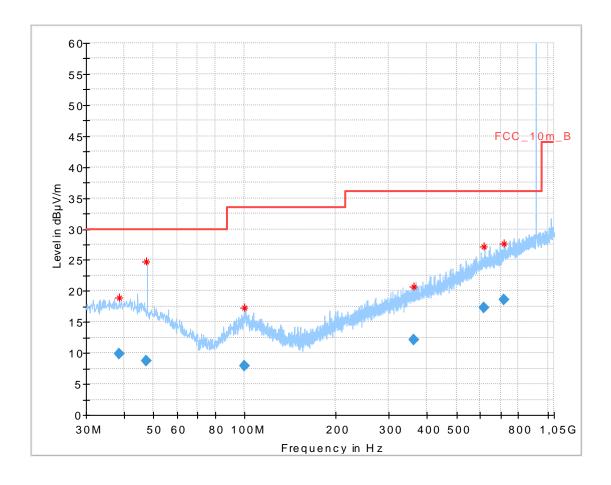
Note: The limit was recalculated with 20 dB / decade (Part 15.31) for all radiated spurious emissions 30 MHz to 1 GHz from 3 meter limit to a 10 meter distance. (40dB/decade for emissions < 30MHz)

Plots:

Plot 1: 30 MHz – 1 GHz, horizontal & vertical polarisation (lowest channel)

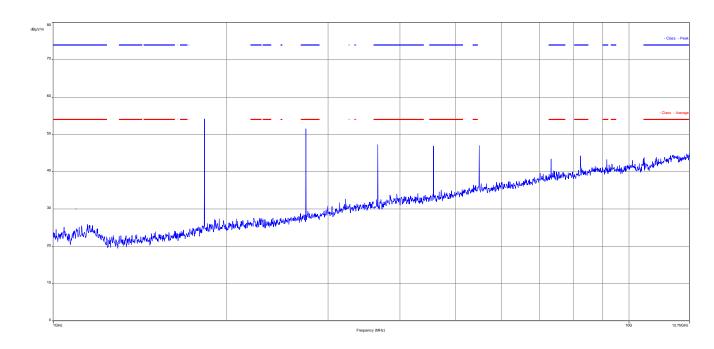
Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
40.058850	10.61	30.00	19.39	1000.0	120.000	172.0	Н	207	14.0
44.713350	10.00	30.00	20.00	1000.0	120.000	275.0	Н	140	13.9
99.873300	7.65	33.50	25.85	1000.0	120.000	349.0	٧	6	12.2
261.407850	9.21	36.00	26.79	1000.0	120.000	200.0	Н	256	13.6
629.511600	17.58	36.00	18.42	1000.0	120.000	400.0	Н	297	21.0
764.991600	19.40	36.00	16.60	1000.0	120.000	103.0	٧	297	22.7
904.632600	96.76	36.00	-60.76	1000.0	120.000	100.0	Н	175	24.1



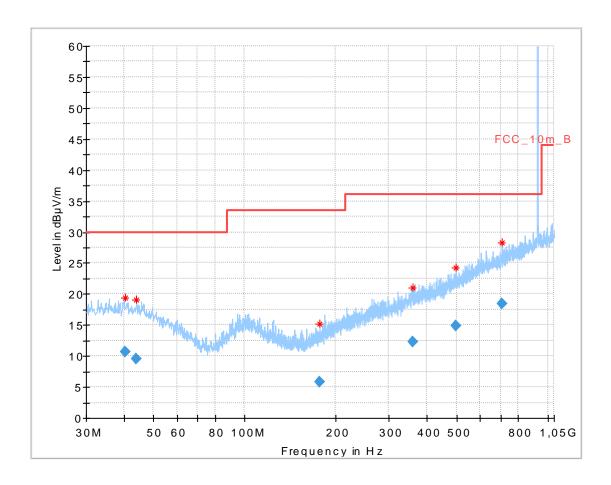
Plot 2: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (lowest channel)

Plot 3: 30 MHz – 1 GHz, horizontal & vertical polarisation (middle channel)



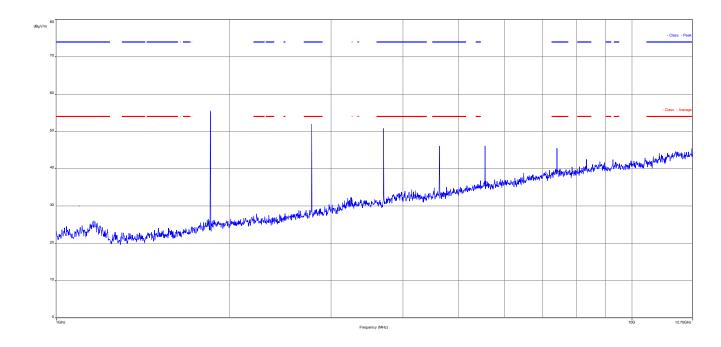
Final Result

•	uuu									
	Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
	38.470050	9.80	30.00	20.20	1000.0	120.000	174.0	Н	207	14.0
	47.412750	8.77	30.00	21.23	1000.0	120.000	273.0	Н	281	13.3
	99.946350	7.85	33.50	25.65	1000.0	120.000	400.0	Н	5	12.2
Ì	360.421350	12.20	36.00	23.80	1000.0	120.000	351.0	٧	73	16.2
Ì	618.226350	17.36	36.00	18.64	1000.0	120.000	400.0	Н	211	20.9
	716.836350	18.59	36.00	17.41	1000.0	120.000	349.0	٧	123	21.9
Ì	915.433200	97.78	36.00	-61.78	1000.0	120.000	100.0	Н	219	24.2



Plot 4: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (middle channel)

Plot 5: 30 MHz – 1 GHz, horizontal & vertical polarisation (highest channel)

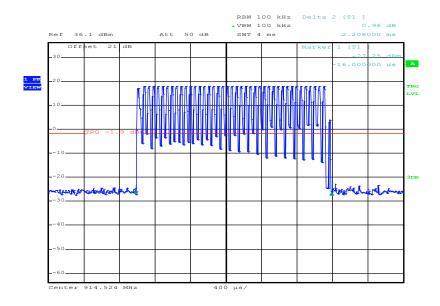


Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
40.343100	10.75	30.00	19.25	1000.0	120.000	102.0	٧	187	14.0
43.856550	9.60	30.00	20.40	1000.0	120.000	103.0	٧	76	13.9
176.832600	5.79	33.50	27.71	1000.0	120.000	177.0	٧	252	10.2
358.820550	12.23	36.00	23.77	1000.0	120.000	103.0	Н	281	16.2
499.574250	14.85	36.00	21.15	1000.0	120.000	400.0	٧	230	18.7
707.929050	18.38	36.00	17.62	1000.0	120.000	101.0	٧	185	21.7
925.962900	78.59	36.00	-42.59	1000.0	120.000	174.0	Н	85	24.2

Plot 6: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (highest channel)

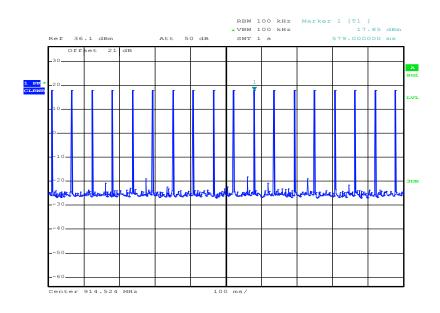
Result:


For radiated spurious emission the limits of 15.209 applies for all frequencies mentioned in 15.205. According to FCC Public Notice DA 00-705 (ANSI C63.10) the average emission shall be determined by using Video averaging (VBW = 10 Hz). If the dwell time of the hopping signal is less than 100 ms (per channel), the VBW=10 Hz reading may be adjusted by a factor:

F = 20*log (dwell time/100 ms)

In a period of 100 ms, we have a maximum of 2 transmissions and that gives the correction factor for spurious measurement.

F = 20*log (2*2.208/100) = -27.10 dB


Plot 7: Time slot length = 2.208 ms

Date: 8.JUL.2015 10:55:58

Plot 8: Number of hopping channels in 1s = 18

Date: 8.JUL.2015 10:57:07

		SP	URIOUS EMI	ISSIONS LE	VEL [dBµV/	m]				
	904.5 MHz	<u>z</u>		915.3 MHz			926.1 MHz			
Frequency [MHz]	Detector	Level [dBµV/m]	Frequency Detector Level Frequency Detector [dBµV/m] [MHz] Detector					Level [dBµV/m]		
1809	PK/AVG	59.2 / 32.1	1831	PK/AVG	57.1 / 30.0	1852	PK/AVG	58.3 / 31.2		
2713	PK/AVG	56.0 / 28.9	2746	PK/AVG	56.5 / 29.4	2778	PK/AVG	54.9 / 27.8		
3617	PK/AVG	54.0 / 26.9	3661	PK/AVG	53.3 / 26.2	3705	PK/AVG	53.8 / 26.7		
4523	PK/AVG	53.3 / 26.2	4576	PK/AVG	50.8 / 23.7	4631	PK/AVG	50.1 / 23.0		
5428	5428 PK/AVG 53.7 / 26.6 5492 PK/AVG 52.0 / 24.9 5557 PK/AVG 49.3 / 22.2									
Measu	urement und	Measurement uncertainty ±3 dB								

*AVG: Detector Average corrected with the correction factor F = -27.10 dB

For emissions between 30 MHz to 1 GHz see result table below the plots.

Verdict: complies

11.12 RX spurious emissions radiated

Description:

Measurement of the radiated spurious emissions in idle/receive mode.

Measurement:

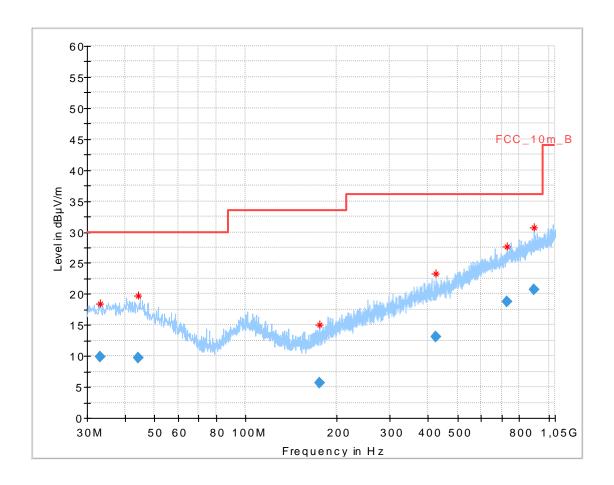
Measurement parameter								
Detector:	Peak / Quasi Peak							
Sweep time:	Auto							
Video bandwidth:	3 x RBW Remeasurement: 10 Hz							
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 1 MHz							
Span:	30 MHz to 26 GHz							
Trace-Mode:	Max Hold							
Test setup:	See sub clause 7.1 See sub clause 7.2							
Measurement uncertainty	See sub clause 8							

Limits:

FCC			IC		
Frequency (MHz)	Field Strength (dBµV/m)		Measurement distance		
30 - 88	4	0	3		
88 – 216	43	3.5	3		
216 – 960	46.0		46.0		3
Above 960	54	1.0	3		

Result:

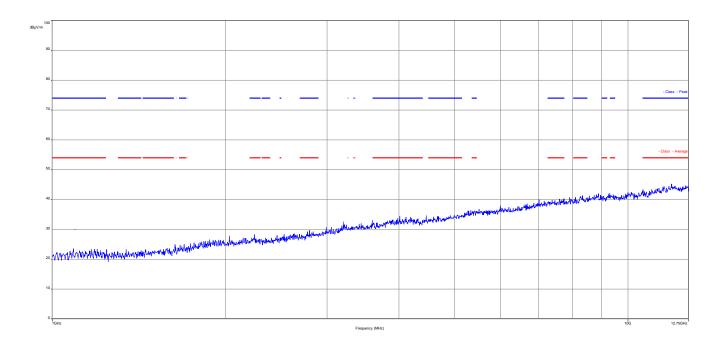
	SPURIOUS EMISSIONS LEVEL [dBμV/m]							
	RX			-/-			-/-	
Frequency Detector Level Frequency Detector [MHz] Detector [MHz] Detector [dBμV/m] Level [dBμV/m] Detector [dBμV/m]								
	ns were more below the limi							
Measu	rement unc	ertainty			±3	dB		


Verdict: complies

Note: The limit was recalculated with 20 dB / decade (Part 15.31) for all radiated spurious emissions 30 MHz to 1 GHz from 3 meter limit to a 10 meter distance. (40dB/decade for emissions < 30MHz)

Plots:

Plot 1: 30 MHz – 1 GHz, RX-Mode, horizontal & vertical polarisation



Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
32.996850	9.90	30.00	20.10	1000.0	120.000	274.0	Н	95	13.6
44.345700	9.76	30.00	20.24	1000.0	120.000	273.0	٧	85	13.9
175.436400	5.69	33.50	27.81	1000.0	120.000	400.0	Н	5	10.1
424.611600	13.10	36.00	22.90	1000.0	120.000	400.0	V	5	17.2
728.020800	18.74	36.00	17.26	1000.0	120.000	272.0	٧	302	22.2
893.510550	20.77	36.00	15.23	1000.0	120.000	400.0	Н	-50	24.0

Plot 2: 1GHz – 12.75 GHz, RX-Mode, horizontal & vertical polarisation

12 Observations

No observations except those reported with the single test cases have been made.

Annex A **Document history**

Version	Applied changes	Date of release
	Initial release	2015-07-28

Further information Annex B

Glossary

SW

AVG Average

DUT Device under test

EMC Electromagnetic Compatibility

European Standard ΕN EUT Equipment under test

European Telecommunications Standard Institute ETSI

Federal Communication Commission FCC

FCC ID -Company Identifier at FCC

Hardware HW IC **Industry Canada** Inv. No. -Inventory number N/A Not applicable PP Positive peak QΡ Quasi peak S/N Serial number

Software PMN Product marketing name Host marketing name HMN

Hardware version identification number HVIN **FVIN** Firmware version identification number

Accreditation Certificate Annex C

Front side of certificate

Back side of certificate

Deutsche Akkreditierungsstelle GmbH

(DAkkS

Deutsche Akkreditierungsstelle GmbH

Bellehene gemäß § 8 Absatz 1 AkkStelleG i.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multiläteralen Abkommen von EA, II.AC und IAF zur gegenseitigen Anerkennung

Akkreditierung

Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaboratorium

CETECOM ICT Services GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken

die Kompetenz nach DIN EN ISO/IEC 1702S:2005 besitzt, Prüfungen in folgenden Bereichen durchzuführen:

durchzuführen:

Drahtgebundene Kommunikation einschileßlich xDSL
volP und DECT
Akustik
Funk einschileßlich WLAN
Short Range Devices (SRD)
RFID
WilMax und Richtfunk
Mobilfunk (GSM / DCS, Over the Air (OTA) Performance)
Elektromagnetische Verträglichkeit (EMV) einschileßlich Automotive
Produktsichen alt Gompatibility (HAC)
Umweltsimulation
Smart Card Terminals
Bluetooth
Wi-Fi- Services

Die Aldzreditierungsurkunde gilt nur in Verbindung nit dem Bescheld vom 07.03.2014 mit der Abkreditierungsmannen D-PI-12076-01 und ist giltig 17.01.2018. Sie besteht aus diesem Deckblart, der Rückseite des Deckblar, is und der fülgenden Anlage mit Insgesamt 77 Seiten.

Registrierungsnummer der Urkunde: D-PL-12076-01-00

Frankfurt am Main, 07.03.2014

Standort Frankfurt am Main Gartenstra 3e 6 60594 Frankfurt am Main

Standort Braunschweig Bundesallee 100 38116 Braunschweig

Die auszugsweise Veröffentlichung der Akkreditierungsurlaunde becanf der verherigen schriftlichen Zuszimmung der Deutsche Akkreditierungsstelle Gribb (DalkS). Ausgenammen davon ist die separate Weberverendung des Deckhaftes durch die umseitig generate Kunformittlichewertungsstelle in ungeländerer Folgen.

Die Akkreditierung erfolgte gemöß des Geschres über din Akkreditierungsstells (AkkstelleC) vom 31 Juli 2009 (BoB). 1.5.2655) sowie der Verordrung (Fo) Nr. 7655/2008 des Europäischen Parlament von des Brits vom 9. Juli 2008 (Both der Verschriffen für die Abkoud Heren und Mahritüberwachung im Zusammenhang mit der Vermanktung von Produkten (Abl. L. 218 vom 9. Juli 2008, S. 30). Die DAkk Sist Unterrechtsenis der Verläufstensten Aktoummen uns gegenste legen Areste enung der European ers operation für Autreditätien (EA), des Hebenstlenst Acceptation form (AN) and der International Laberature Acceptation on Coopmation (EAC). Die Unterzeichner eieser Abkommen orkennen ihre Akkreditierungen gegenstellig an.

Der aktue in Stund der Wilgliedschaft kann folgenden Webseiten eithnommen werden: FA: www.coropoun-accred fation.org IAAC www.idn.org IAAC www.idn.org

Note:

The current certificate including annex is published on our website (see link below) or may be received from CETECOM ICT Services on request.

http://www.cetecom.com/eu/de/cetecom-group/europa/deutschland-saarbruecken/akkreditierungen.html