

FCC PART 15.247

IC RSS-210, ISSUE 7, JUNE 2007 TEST AND MEASUREMENT REPORT

For

Amp'ed RF Technology, Inc

1722 Ringwood Ave, Suite 250, San Jose, CA 95131, USA

FCC ID: X3ZBTMOD2 IC: 8828A-MOD2

Report Type: Original Report		Product Type: Bluetooth Intercom Module
	T 1 T	Inter
Test Engineer: Report Number:		47
Report Date:	2010-02-05	
Reviewed Ry.	Boni Banique	
Prepared By: (84)	EMC/RF Supervisor Bay Area Compliance Laboratories Corp. 1274 Anvilwood Avenue, Sunnyvale, CA 94089, USA Tel: (408) 732-9162 Fax: (408) 732 9164	

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP*, NIST, or any agency of the Federal Government.

* This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "*" 🐭

Amp'ed RF Technology, Inc

FCC ID: X3ZBTMOD2, IC: 8828A-MOD2

TABLE OF CONTENTS

1	GEN	ERAL INFORMATION	
	1.1	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	6
	1.2	MECHANICAL DESCRIPTION OF EUT	
	1.3	EUT PHOTOGRAPH	
	1.4	Objective	6
	1.5	RELATED SUBMITTAL(S)/GRANT(S)	7
	1.6	TEST METHODOLOGY.	
	1.7	MEASUREMENT UNCERTAINTY	7
	1.8	TEST FACILITY	
2	SYS	TEM TEST CONFIGURATION	8
	2.1	JUSTIFICATION	
	2.1	EUT Exercise Software	
	2.3	SPECIAL ACCESSORIES	
	2.4	EQUIPMENT MODIFICATIONS	
	2.5	POWER SUPPLY INFORMATION	
	2.6	LOCAL SUPPORT EQUIPMENT	
	2.7	EUT INTERNAL CONFIGURATION	
	2.8	INTERFACE PORTS AND CABLING	
3	SUN	IMARY OF TEST RESULTS	
		\$ \$15.203 & IC RSS-GEN \$7.1.4 - ANTENNA REQUIREMENT	
4		APPLICABLE STANDARD	
	4.1 4.2	APPLICABLE STANDARD	
5	FCC	\$15.207 & IC RSS-GEN \$7.2.2 – CONDUCTED EMISSIONS	
	5.1	APPLICABLE STANDARD	
	5.2	EUT SETUP	
	5.3	TEST PROCEDURE	
	5.4	TEST EQUIPMENT LIST AND DETAILS	
	5.5	TEST SETUP BLOCK DIAGRAMS	12
	5.6	TEST ENVIRONMENTAL CONDITIONS.	
	5.7	Test Result:	
	5.8	CONDUCTED EMISSIONS TEST DATA	
6 E		\$ \$15.205, \$15.209 & \$15.247(D) & IC RSS-210 \$2.2, \$8.5 – RESTRICT BAND AND UNWANTED NS	
12	6.1	APPLICABLE STANDARD:	
	6.2	TEST SETUP	
	6.3	TEST SETUP DIAGRAM	
	6.4	Test Procedure	
	6.5	CORRECTED AMPLITUDE & MARGIN CALCULATION	
	6.6	TEST EQUIPMENT LIST AND DETAILS	
	6.7	TEST ENVIRONMENTAL CONDITIONS	
	6.8	SUMMARY OF TEST RESULTS	18
	6.9	RADIATED EMISSIONS TEST RESULT DATA:	19
7	FCC	\$ \$15.247(A)(1) & IC RSS-210 \$A8.1(D) - 20 DB CHANNEL BANDWIDTH	23
	7.1	APPLICABLE STANDARD	23
	7.2	MEASUREMENT PROCEDURE	23
	7.3	TEST EQUIPMENT LIST AND DETAILS	23
	7.4	TEST ENVIRONMENTAL CONDITIONS	

Report Number: R1001251-247

Page 2 of 55FCC Part15.247 & IC RSS-210 Test Report

Amp'ed RF Technology, Inc

7.5	Measurement Results	24
8 F	CC §15.247(A)(1) & IC RSS-210 §A8.1(B) - HOPPING CHANNEL SEPARATION	26
8.1 8.2 8.3 8.4 8.5	Applicable Standard Measurement Procedure Test Equipment List and Details Test Environmental Conditions Measurement Results	26 26 27
9 F	CC §15.247(A)(1)(III) & IC RSS-210 §A8.1(D) - NUMBER OF HOPPING FREQUENCIES USED	29
9.1 9.2 9.3 9.4 9.5	Applicable Standard Measurement Procedure Test Equipment List and Details Test Environmental Conditions Measurement Result	29 29 29 30
10	FCC §15.247(A)(1)(III) & IC RSS-210 §A8.1(D) - DWELL TIME	
10.1 10.2 10.3 10.4 10.5	Measurement Procedure Test Equipment List and Details Test Environmental Conditions	31 31 31
11	FCC §15.247(B)(1) & IC RSS-210 §A8.1(B) - MAXIMUM PEAK OUTPUT POWER	
11.1 11.2 11.3 11.4 11.5	MEASUREMENT PROCEDURE Test Equipment List and Details Test Environmental Conditions	34 34 34
12	FCC §15.247(D) & IC RSS-210 §A8.5 - BAND EDGES	36
12.1 12.2 12.3 12.4 12.5	Applicable Standard Measurement Procedure Test Equipment List and Details Test Environmental Conditions	36 36 36 36
13	FCC §15.247(D) & IC RSS-210 §A8.5 - SPURIOUS EMISSIONS AT ANTENNA PORT	38
13.1 13.2 13.3 13.4 13.5	Measurement Procedure Test Equipment List and Details Test Environmental Conditions	38 38 38
14	IC RSS-GEN §4.10 & RSS-210 - §2.6 RECEIVER SPURIOUS EMISSIONS	
14.1 14.2 14.3 14.4 14.5 14.6 14.7	TEST SETUP Equipment Lists and Details Test Environmental Conditions Test Procedure Corrected Amplitude & Margin Calculation	42 42 42 43 43
15	§FCC 15.247(I) & IC RSS-102 - RF EXPOSURE	45
15.1 15.2 15.3		46
16 16.1	EXHIBIT A – FCC & IC LABELING REQUIREMENT FCC ID LABEL REQUIREMENTS	

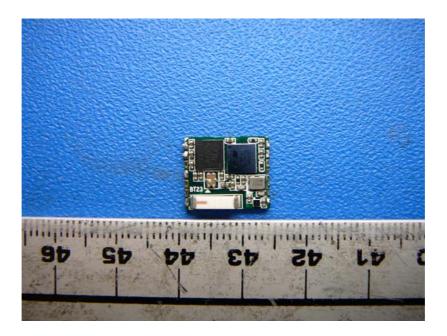
16.2 16.3 16.4 16.5	IC LABEL REQUIREMENTS FCC ID & IC LABEL CONTENT FCC ID & IC LABEL ON THE SYSTEM FCC ID & IC LABEL LOCATION ON EUT	
17	EXHIBIT B - TEST SETUP PHOTOGRAPHS	50
17.1	Conducted Emissions – Front View	50
17.2	Conducted Emissions – Side View	
17.3	RADIATED EMISSIONS – FRONT VIEW (BELOW 1 GHz)	
17.4	RADIATED EMISSIONS – REAR VIEW (BELOW 1 GHz)	
17.5	RADIATED EMISSIONS – FRONT VIEW (ABOVE 1 GHz)	
17.6	RADIATED EMISSIONS – REAR VIEW (ABOVE 1 GHZ)	52
18	EXHIBIT C - EUT PHOTOGRAPHS	53
18.1	EUT – TOP VIEW	53
18.2	EUT – BOTTOM VIEW	
18.3	SUPPORTED BOARD TOP VIEW	54
18.4	SUPPORTED BOARD BACK VIEW	
18.5	EUT ON THE SUPPORTED BOARD VIEW	
18.6	AC/DC POWER ADAPTER	

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	R1001251-247	Original Report	2010-02-05

1 GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)


This test report was prepared on behalf of *Amp'ed RF Technology, Inc* and their product model: BT23, FCC ID: X3ZBTMOD2, IC: 8828A-MOD2 or the "EUT" as referred to in this report. The EUT is a surface mount Bluetooth module supplied on a 24 pin, 6-layer PCB.

1.2 Mechanical Description of EUT

The EUT measures approximately 14 mm (L) x 11 mm (W) x 2mm (H) and weighs approximately 0.5g.

* The test data gathered are from typical production sample, serial number: R1001251-1, assigned by BACL.

1.3 EUT Photograph

Please refer to Exhibit C for more EUT photographs.

1.4 Objective

This type approval report is prepared on behalf of *Amp'ed RF Technology, Inc* in accordance with Part 2, Subpart J, Part 15, Subparts A, B, and C and IC RSS-210.

1.5 Related Submittal(s)/Grant(s)

N/A

1.6 Test Methodology

All measurements contained in this report were conducted in accordance with ANSI C63.4-2003.

1.7 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the values range from ± 2.0 for Conducted Emissions tests and ± 4.0 dB for Radiated Emissions tests are the most accurate estimates pertaining to uncertainty of EMC measurements at BACL.

Detailed instrumentation measurement uncertainties can be found in BACL report QAP-018.

1.8 Test Facility

The semi-anechoic chambers used by BACL to collect radiated and conducted emissions measurement data is located in the building at it's facility in Sunnyvale, California, USA.

BACL's test sites have been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission and Voluntary Control Council for Interference has the reports on file and is listed under FCC registration number: 90464 and VCCI Registration No.: C-2698 and R-2463. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200167-0). The current scope of accreditations can be found at <u>http://ts.nist.gov/ts/htdocs/210/214/scopes/2001670.htm</u>

2 SYSTEM TEST CONFIGURATION

2.1 Justification

The system was configured for testing in accordance with ANSI C63.4-2003. The EUT was tested in the testing mode to represent *worst*-case results during the final qualification test.

2.2 EUT Exercise Software

The software is provided by customer. The EUT exercise program used during radiated testing was designed to exercise the system components.

Radio Mode	Low Channel	Middle Channel	High Channel
	(MHz)	(MHz)	(MHz)
Bluetooth	2402	2441	2480

2.3 Special Accessories

N/A.

2.4 Equipment Modifications

No modifications were made to the EUT.

2.5 Power Supply Information

Manufacturers	Descriptions	Models	Serial Numbers
GlobTek Inc	AC/DC adapter	GT-A81051-0505UW2	-

2.6 Local Support Equipment

Manufacturers	Descriptions	Models	Serial Numbers
Amp'ed	Control Board	BT-121	_

2.7 EUT Internal Configuration

Manufacturers	Descriptions	Models	Serial Numbers
Amp'ed	Wireless Module	BT23	-

2.8 Interface Ports and Cabling

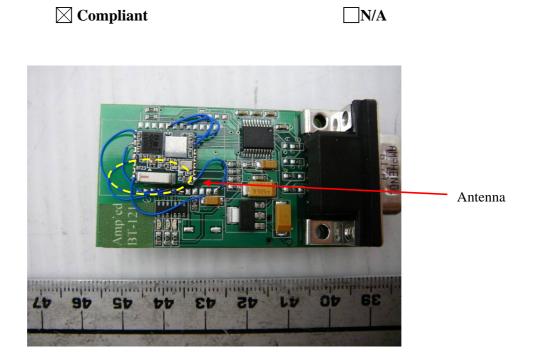
Cable Description	Length (m)	From	То
RF Cable	< 3 m	EUT	PSA

3 SUMMARY OF TEST RESULTS

FCC 15C & IC RSS-210 Rules	Description of Test	Results
FCC §15.203 IC RSS-Gen §7.1.4	Antenna Requirements	Compliant
FCC §15.207 (a) IC RSS-Gen §7.2.2	Conducted Emissions	Compliant
FCC §15.205, §15.209 & §15.247(d) IC RSS-210 §2.2, §A8.5	Restricted Band and Unwanted Emissions	Compliant
FCC §2.1051 & 15.247(d) IC RSS-210 §A8.5 & RSS-Gen §7.2	Spurious Emissions at Antenna Port	Compliant
FCC§15.247 (a)(1) IC RSS-210 §A8.1 (a)	20 dB Bandwidth & 99% Bandwidth	Compliant
FCC§15.247 (a)(1) IC RSS-210 §A8.1(d)	Hopping Channel Separation	Compliant
FCC§15.247 (a)(1)(iii) IC RSS-210 §A8.1(d)	Number of Hopping Frequencies Used	Compliant
FCC§15.247 (a)(1)(iii) IC RSS-210 §A8.1(d)	Dwell Time	Compliant
FCC§15.247 (b)(3) IC RSS-210 §A8.4(b)	Maximum Peak Output Power	Compliant
FCC§ 15.247 (d) IC RSS-210 §A8.5	100 kHz Bandwidth of Frequency Band Edge	Compliant
IC RSS-Gen §4.10	Receiver Spurious Emissions	Compliant
FCC §15.247(i) & §2.1091 IC RSS-Gen §5.5 & RSS-102	RF Exposure	Compliant

4 FCC §15.203 & IC RSS-Gen §7.1.4 - Antenna Requirement

4.1 Applicable Standard


For intentional device, according to FCC Part §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used.

Per IC RSS-Gen §7.1.4, A transmitter can only be sold or operated with antennas with which it was certified. A transmitter maybe certified with multiple antenna types. An antenna type comprises antennas having similar inband and out-of-band radiation patterns. Testing shall be performed using the highest-gain antenna of each combination of transmitter and antenna type for which certification is being sought, with the transmitter output power set at the maximum level. Any antenna of the same type and having equal or lesser gain as an antenna that had been successfully tested for certification with the transmitter, will also be considered certified with the transmitter, and may be used and marketed with the transmitter. The manufacturer shall include with the application for certification a list of acceptable antenna types to be used with the transmitter.

When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on measurement or on data from the antenna manufacturer. Any antenna gain in excess of 6 dBi (6 dB above isotropic gain) shall be added to the measured RF output power before using the power limits specified in IC RSS-210 or RSS-310 for devices of RF output powers of 10 milliwatts or less. For devices of output powers greater than 10 milliwatts, except devices subject to IC RSS-210 Annex 8 or RSS-210 Annex 9, the total antenna gain shall be added to the measured RF output power before using the specified power limits. For devices subject to IC RSS-210 Annex 8 or Annex 9, the antenna gain shall not be added.

4.2 Antenna Connected Construction

The antenna for this device is an integral antenna that the end user cannot access. It is fully enclosed by the EUT chassis and removal/modification would result in irreparable damage to the device. Maximum gain is 2dBi

Amp'ed RF Technology, Inc

5 FCC §15.207 & IC RSS-Gen §7.2.2 – Conducted Emissions

5.1 Applicable Standard

According to FCC §15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Frequency of emission	Conducted limit (dBuV)		
(MHz)	Quasi-Peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

*Decreases with the logarithm of the frequency

5.2 EUT Setup

The conducted emissions tests were performed in the 5-meter test chamber, using the setup in accordance with ANSI C63.4-2003 measurement procedures. The specifications used were in accordance with FCC Part 15.207 limits.

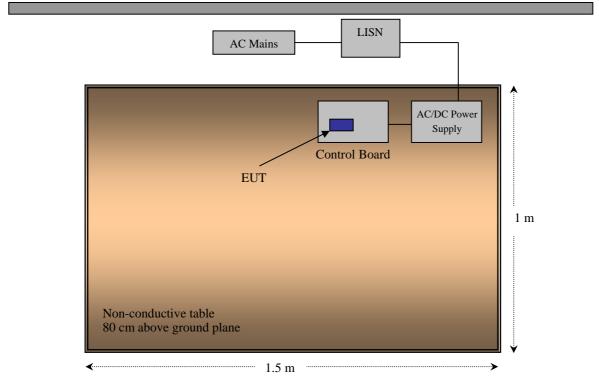
The adapter of control board was connected to a 120 V, 60 Hz AC mains power source.

5.3 Test Procedure

During the conducted emissions test, the power cord of the EUT was connected to the mains outlet of the LISN.

Maximizing procedure was performed on the six (6) highest provided emissions of the EUT.

All data was recorded in the quasi-peak and average detection mode. Quasi-Peak readings are distinguished with a "QP". Average readings are distinguished with an "Ave".


5.4 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial Number	Calibration Date
Solar Electronics	LISN	9252-R-24-BNC	511205	2009-03-11
Rohde & Schwarz	EMI Test Receiver	ESCI 1166.5950K03	100337	2009-04-21

* Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

5.5 Test Setup Block Diagrams

Vertical Ground Plane

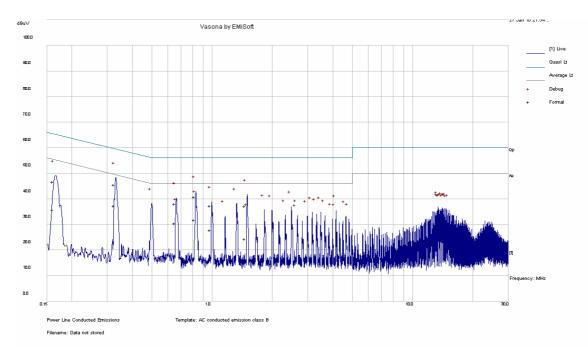
5.6 Test Environmental Conditions

Temperature:	15~18 ℃
Relative Humidity:	44~50 %
ATM Pressure:	101.2~102.3kPa

*Testing was performed by Jack Liu on 2010-01-26~2010-01-27.

5.7 Test Result:

According to the data hereinafter, the EUT <u>complied with the FCC Part 15.207</u> & IC RSS-Gen Conducted emissions limits and had the worst margin of:

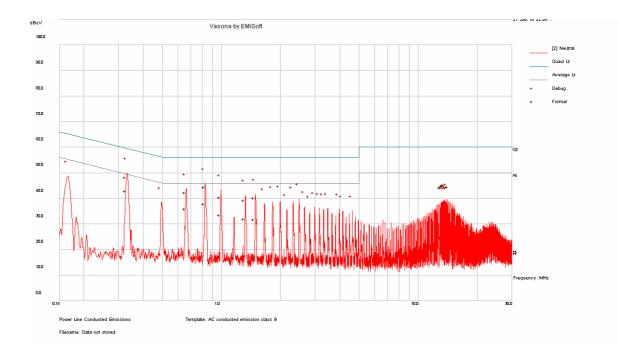

-6.54 dB at 0.331269 MHz in the Neutral conductor, 120V/60Hz

5.8 Conducted Emissions Test Data

Amp'ed RF Technology, Inc

(Worst Channel: Low Channel 2402 MHz)

120 V/60 Hz, Line:


QP Measurement Results

Frequency (MHz)	Corrected Amplitude (dBµV)	Conductor (L/N)	Limit (dBµV)	Margin (dB)
0.331239	45.63	L	59.42	-13.79
0.829530	40.86	L	56.00	-15.14
0.663711	38.10	L	56.00	-17.90
0.163488	46.76	L	65.28	-18.52
0.995496	37.37	L	56.00	-18.63
1.490106	37.09	L	56.00	-18.91

Average Measurement Results

Frequency (MHz)	Corrected Amplitude (dBµV)	Conductor (L/N)	Limit (dBµV)	Margin (dB)
0.331239	37.35	L	49.42	-12.07
0.829530	31.78	L	46.00	-14.22
0.663711	30.50	L	46.00	-15.50
0.995496	27.86	L	46.00	-18.14
0.163488	35.85	L	55.28	-19.43
1.490106	24.30	L	46.00	-21.70

120 V/60 Hz, Neutral:

QP Measurement Results

Frequency (MHz)	Corrected Amplitude (dBµV)	Conductor (L/N)	Limit (dBµV)	Margin (dB)
0.331269	48.24	Ν	59.42	-11.18
0.828204	44.55	Ν	56.00	-11.45
0.662829	42.30	Ν	56.00	-13.70
0.995067	40.40	Ν	56.00	-15.60
1.488198	40.29	Ν	56.00	-15.71
1.324011	39.38	Ν	56.00	-16.62

Average Measurement Results

Frequency (MHz)	Corrected Amplitude (dBµV)	Conductor (L/N)	Limit (dBµV)	Margin (dB)
0.331269	42.88	Ν	49.42	-6.54
0.828204	37.95	Ν	46.00	-8.05
0.662829	36.11	Ν	46.00	-9.89
0.995067	33.64	Ν	46.00	-12.36
1.324011	32.04	Ν	46.00	-13.96
1.488198	31.77	N	46.00	-14.23

6 FCC §15.205, §15.209 & §15.247(D) & IC RSS-210 §2.2, §8.5 – Restrict Band and Unwanted Emissions

6.1 Applicable Standard:

As per FCC §15.205 and IC RSS-210 §2.2, Restricted bands of operation

(a) Except as shown in §15.205 paragraphs (d), only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	MHz	MHz	GHz	GHz
0.090 - 0.110	8.291 - 8.294	16.69475 - 16.69525	156.7 – 156.9	1435 - 1626.5	3.332 - 3.339	10.6 - 12.7
0.495 - 0.505	8.362 - 8.366	25.5 - 25.67	162.0125 -167.17	1645.5 - 1646.5	3.3458 - 3.358	13.25 – 13.4
2.1735 - 2.1905	8.37625 - 8.38675	37.5 - 38.25	167.72 – 173.2	1660 – 1710	3.600 - 4.400	14.47 – 14.5
4.125 - 4.128	8.41425 - 8.41475	73 - 74.6	240 - 285	1718.8 – 1722.2	4.5 - 5.15	15.35 - 16.2
4.17725 - 4.17775	12.29 - 12.293	74.8 - 75.2	322 - 335.4	2200 - 2300	5.35 - 5.46	17.7 – 21.4
4.20725 - 4.20775	12.51975 - 12.52025	108 - 121.94	399.9 - 410	2310 - 2390	7.25 - 7.75	22.01 - 23.12
6.215 - 6.218	12.57675 - 12.57725	123 – 138	608 - 614	2483.5 - 2500	8.025 - 8.5	23.6 - 24.0
6.26775 - 6.26825	13.36 - 13.41	149.9 - 150.05	960 - 1240	2690 - 2900	9.0 - 9.2	31.2 - 31.8
6.31175 - 6.31225	16.42 - 16.423	156.52475 - 156.52525	1300 - 1427	3260 - 3267	9.3 - 9.5	36.43 - 36.5
						Above 38.6

(b) Except as provided in 15.205 paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated using measurement instrumentation 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

(c) Except as provided in paragraphs (d) and (e), regardless of the field strength limits specified elsewhere in this Subpart, the provisions of this Section apply to emissions from any intentional radiator.

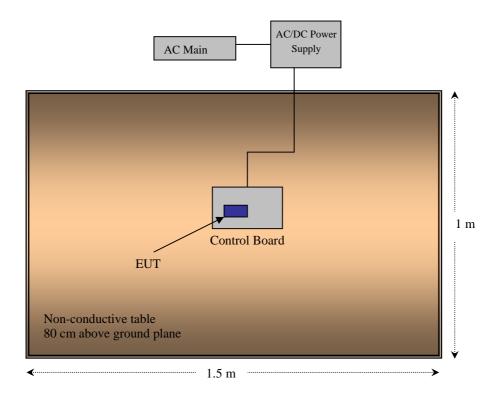
As per FCC §15.209 Radiated emission limits, general requirements.

(a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

Amp'ed RF Technology, Inc

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.


According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emissions limits specified in §15.209(a) see §15.205(c)).

IC RSS-Gen §4.9 the measurement method shall be described in the test report. The same parameter, peak power or average power, used for the transmitter output power measurement shall be used for unwanted emission measurements. The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate or carrier frequency), or from 30 MHz, whichever is the lower, to the 5th harmonic of the highest frequency generated without exceeding 40 GHz.

6.2 Test Setup

The radiated emissions tests were performed in the 3-meter semi-anechoic chamber test site, using the setup in accordance with ANSI C63.4-2003. The specification used was the FCC 15C & IC RSS-210 limits.

6.3 Test Setup Diagram

Amp'ed RF Technology, Inc

6.4 Test Procedure

For the radiated emissions test, the EUT, and all support equipment power cords was connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

The EUT is set 3 meter away from the testing antenna, which is varied from 1-4 mete, and the EUT is placed on a turntable, which is 0.8 meter above ground plane, the table shall be rotated for 360 degrees to find out the highest emission. The receiving antenna should be changed the polarization both of horizontal and vertical.

The spectrum analyzer or receiver is set as:

Below 1000 MHz:

RBW = 100 kHz/VBW = 300 kHz/Sweep = Auto

Above 1000 MHz:

Peak: RBW = 1MHz/VBW = 1MHz/Sweep = Auto Average: RBW = 1MHz/VBW = 10Hz/Sweep = Auto

6.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Cable Loss, and Attenuator Factor adding to the Indicated Reading. The basic equation is as follows:

Corrected Amplitude = Indicated Reading + Cable Loss + Attenuator Factor

For example, a Corrected Amplitude of 34.08 dBuV/m = Indicated Reading (23.85 dBuV) + Cable Factor (0.22 dB) + Attenuator Factor (10dB)

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit.

6.6 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial Number	Calibration Date
Mini-Circuits	Pre amplifier	ZKL-2	7786100643	2009-03-03
HP	Pre amplifier	8449B	3147A00400	2008-10-20
Sunol Science Corp	Combination Antenna	JB1 Antenna	A103105-3	2009-03-25
A. H. Systems	Antenna, Horn, DRG	SAS-200/571	261	2009-09-23
Agilent	Spectrum Analyzer	E4440A	MY44303352	2009-04-27
A.R.A.	Antenna, Horn	DRG-118/A	1132	2009-10-27

* **Statement of Traceability:** BACL attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

6.7 Test Environmental Conditions

Temperature:	15~18 °C
Relative Humidity:	44~50 %
ATM Pressure:	101.2~102.3kPa

*Testing was performed by Jack Liu on 2010-01-26~2010-01-27.

6.8 Summary of Test Results

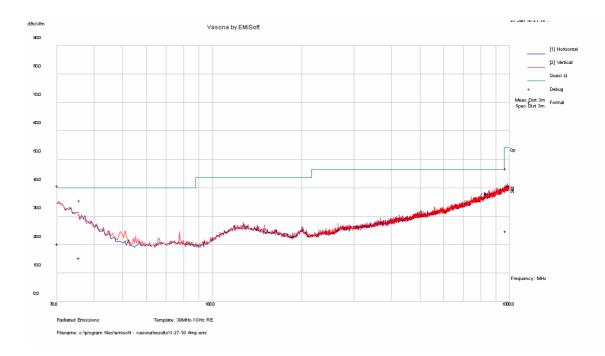
According to the data hereinafter, the EUT complied with the FCC Part 15C & IC RSS-210 emissions limits, and had the worst margin of:

30-1000 MHz:

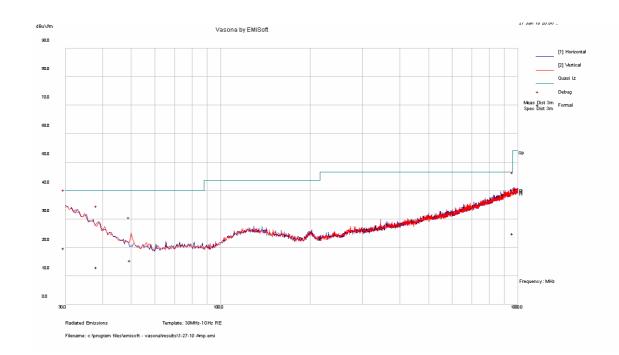
Mode: Transmitting						
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Channel, Range			
-19.71	30.53276	Vertical	Low, 30-1000 MHz			
-20.24	30	Horizontal	Middle, 30-1000 MHz			
-20.72	30.28388	Horizontal	High, 30-1000 MHz			

Above 1 GHz:

Mode: Transmitting			
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Channel, Range
-	-	-	Low, 1-25 GHz
-	-	-	Mid, 1-25 GHz
-	-	-	High, 1-25 GHz

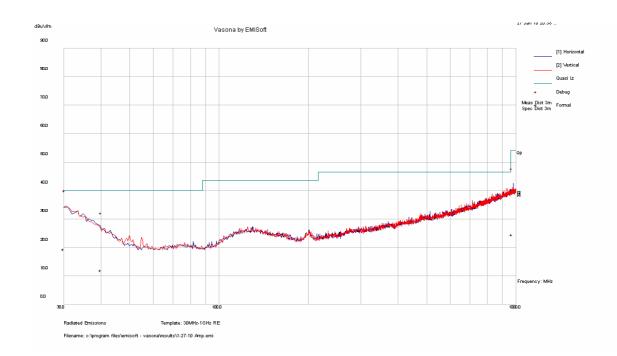

*Note: All emission levels are at the noise floor and/or more then 20 dB below the limit.

Please refer to the following table and plots for specific test result details


6.9 Radiated Emissions Test Result Data:

30 MHz – 1 GHz:

Low Channel (2402 MHz) @ Measured at 3 meter



Frequency (MHz)	Corrected Amplitude (dB)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)
30.53276	20.29	213	V	262	40	-19.71
36.11252	15.13	351	Н	42	40	-24.87
982.70180	24.75	146	Н	264	54	-29.25

Middle Channel (2441 MHz) @ Measured at 3 meter

Frequency (MHz)	Corrected Amplitude (dB)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)
30.00000	19.76	97	Н	258	40	-20.24
50.11324	15.31	116	V	70	40	-24.69
38.69112	13.05	321	Н	0	40	-26.95
970.86090	24.87	276	Н	200	54	-29.13

High Channel (2480 MHz) @ Measured at 3 meter

Frequency (MHz)	Corrected Amplitude (dB)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)
30.28388	19.28	312	Н	110	40	-20.72
40.49264	12.01	231	V	274	40	-27.99
980.2864	24.55	383	Н	128	54	-29.45

1 – 25 GHz:

Low Channel 2402 MHz, measured at 3 meters

Frequency	S.A.	Azimuth	Т	est Anten	na	Cable	Pre-	Cord.	FCC	& IC	
(MHz)	- · · · Reading	ding (degrees)	Height (m)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	IVIAI 2III	Comments
-	-	-	-	-	-	-	-	-	-	-	-

Middle channel 2441 MHz measured at 3 meters

Frequer	cv S.A.	Azimuth	Т	est Anteni	na	Cable	Pre-	Cord.	FCC	& IC	
(MHz	(dBµV)	Reading (dogroos)	Height (m)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)		Comments
-	-	-	-	-	-	-	-	-	-	-	-

High channel 2480 MHz measured at 3 meters

Frequency	S.A.	Azimuth		est Anten		Cable	Pre-	Cord.	FCC		
(MHz)	Reading (dBµV)	(dogroog)	Height (m)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)		Comments
-	-	-	-	-	-	-	-	-	-	-	-

*Note: All emission levels are at the noise floor and/or more then 20 dB below the limit.

Restricted Band:

Lowest Channel

Frequency	S.A.	Azimuth	Т	est Anten	na	Cable	Pre-	Cord.	FCC	& IC	
(MHz)	Reading (dBµV)	(degrees)	Height (m)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	111ai 2iii	Comments
2390	32.98	35	100	V	28.2	-8.3	36.75	16.13	54	-37.87	Ave
2390	31.55	267	100	Н	28.2	-8.3	36.75	14.7	54	-39.3	Ave
2390	45.28	35	100	V	28.2	-8.3	36.75	28.43	74	-45.57	Peak
2390	44.31	267	100	Н	28.2	-8.3	36.75	27.46	74	-46.54	Peak

Highest Channel

Frequency	S.A.	Azimuth	Т	est Anteni	na	Cable	Pre-	Cord.	FCC	& IC	
(MHz)	Reading	(degrees)	Height (m)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	11141 2111	Comments
2483.5	32.56	35	100	V	28.6	-7.49	36.84	16.83	54	-37.17	Ave
2483.5	31.66	267	100	Н	28.6	-7.49	36.84	15.93	54	-38.07	Ave
2483.5	44.75	35	100	V	28.6	-7.49	36.84	29.02	74	-44.98	Peak
2483.5	43.21	267	100	Н	28.6	-7.49	36.84	27.48	74	-46.52	Peak

7 FCC §15.247(a)(1) & IC RSS-210 §A8.1(d) – 20 dB Channel Bandwidth

7.1 Applicable Standard

According to FCC§15.247(a)(l), the maximum 20 dB bandwidth of the hopping channel shall be presented.

According to IC RSS-210 §A8.1 (d), the frequency hopping systems operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that a minimum of 15 hopping channels are used.

7.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emissions bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

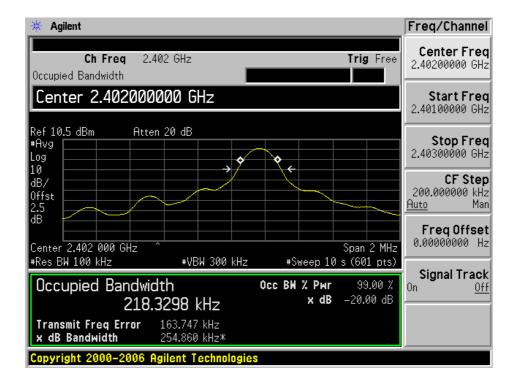
7.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial Number	Calibration Date	
Agilent	Spectrum Analyzer	E4440A	MY44303352	2009-04-27	

* **Statement of Traceability: BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

7.4 Test Environmental Conditions

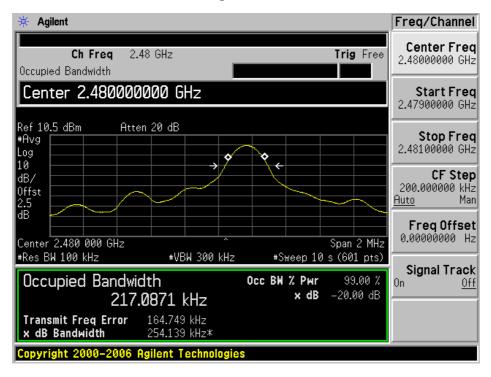
Temperature:	15~18 °C
Relative Humidity:	44~50 %
ATM Pressure:	101.2~102.3kPa


*Testing was performed by Jack Liu on 2010-01-26~2010-01-27.

7.5 Measurement Results

Channel	Frequency (MHz)	20 dB Channel Bandwidth (kHz)
Low	2402	254.860
Mid	2441	253.014
High	2480	254.139

Please refer to the following plots.


Low Channel

🔆 Agilent Freq/Channel Center Freq 2.441 GHz Ch Freq Trig Free 2.44100000 GHz Occupied Bandwidth Center 2.441000000 GHz Start Freq 2.44000000 GHz Ref 10.5 dBm Atten 20 dB Stop Freq #Avg 2.44200000 GHz Log 10 **CF** Step dB/ 200.000000 kHz Offst Man Auto 2.5 dB FreqOffset 0.00000000 Hz Center 2.441 000 GHz Span 2 MHz #Res BW 100 kHz #VBW 300 kHz #Sweep 10 s (601 pts) Signal Track Occupied Bandwidth Occ BW % Pwr 99.00 % Ûn <u> 0ff</u> -20.00 dB x dB 216.0765 kHz **Transmit Freq Error** 163.818 kHz x dB Bandwidth 253.014 kHz* opyright 2000-200 Agilent Technologie

Middle Channel

High Channel

8 FCC §15.247(a)(1) & IC RSS-210 §A8.1(b) - Hopping Channel Separation

8.1 Applicable Standard

According to §15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

According to IC RSS-210 §A8.1 (b), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 0.125 W. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

8.2 Measurement Procedure

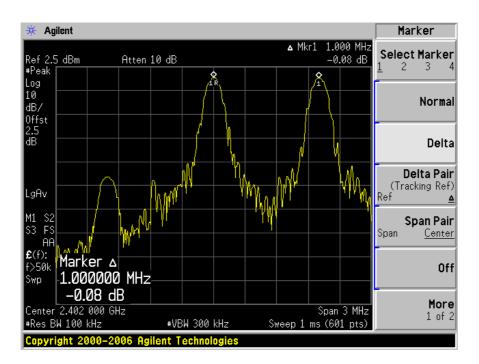
- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on a bench without connection to measurement instrument Turn on the EUT and set it to any one convenient frequency within its operating range.
- 3. By using the Max-Hold function record the separation of two adjacent channels.
- 4. Measure the frequency difference of these two adjacent channels by SA MARK function, and then plot the result on SA screen.
- 5. Repeat above procedures until all frequencies measured were complete.

8.3 Test Equipment List and Details

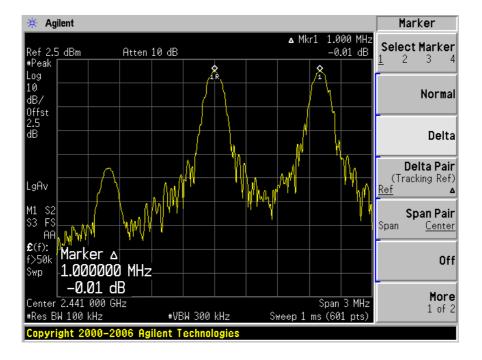
Manu	facturer	Description	Model No.	Serial Number	Calibration Date
Ag	gilent	Spectrum Analyzer	E4440A	MY44303352	2009-04-27

* **Statement of Traceability: BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

8.4 Test Environmental Conditions


Temperature:	15~18 ℃
Relative Humidity:	44~50 %
ATM Pressure:	101.2~102.3kPa

*Testing was performed by Jack Liu on 2010-01-26~2010-01-27.


8.5 Measurement Results

Channel	Frequency (MHz)	Measured Channel Separation (kHz)	Limit > 2/3 20 dB BW (kHz)
Low	2402	1000	169.9067
Mid	2441	1000	168.676
High	2480	1000	169.426

Please refer to the following plots.

Low Channel

Middle Channel

High Channel

9 FCC §15.247(a)(1)(iii) & IC RSS-210 §A8.1(d) - Number Of Hopping Frequencies Used

9.1 Applicable Standard

According to FCC §15.247(a)(1)(iii), frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

According to IC RSS-210 §A8.1(d), the frequency hopping systems operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that a minimum of 15 hopping channels are used.

9.2 Measurement Procedure

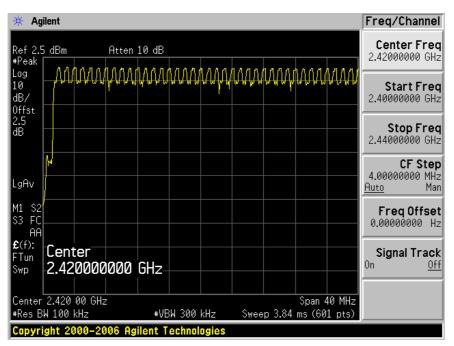
- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on the bench without connection to measurement instrument. Turn on the EUT and set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set the SA on Max-Hold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- 4. Set the SA on View mode and then plot the result on SA screen.
- 5. Repeat above procedures until all frequencies measured were complete.

9.3 Test Equipment List and Details

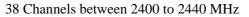
Manufacturer	Description	Model No.	Serial Number	Calibration Date
Agilent	Spectrum Analyzer	E4440A	MY44303352	2009-04-27

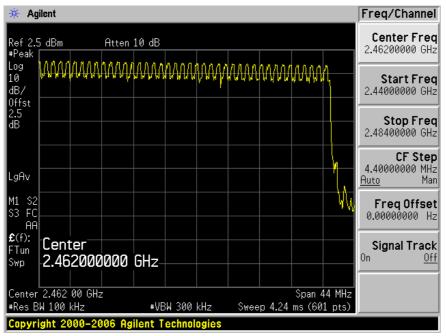
* **Statement of Traceability: BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

9.4 Test Environmental Conditions


Temperature:	15~18 °C
Relative Humidity:	44~50 %
ATM Pressure:	101.2~102.3kPa

*Testing was performed by Jack Liu on 2010-01-26~2010-01-27.


9.5 Measurement Result


Result: 79 channels.

Please refer to the following plots.

Hopping Channel Number

10 FCC §15.247(a)(1)(iii) & IC RSS-210 §A8.1(d) - Dwell Time

10.1 Applicable Standard

According to FCC §15.247 (a)(1)(iii), the average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

According to IC RSS-210 §A8.1 (d), the frequency hopping systems operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that a minimum of 15 hopping channels are used.

10.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- 4. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- 5. Repeat above procedures until all frequencies measured were complete.

10.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial Number	Calibration Date
Agilent	Spectrum Analyzer	E4440A	MY44303352	2009-04-27

* **Statement of Traceability: BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

10.4 Test Environmental Conditions

Temperature:	15~18 °C
Relative Humidity:	44~50 %
ATM Pressure:	101.2~102.3kPa

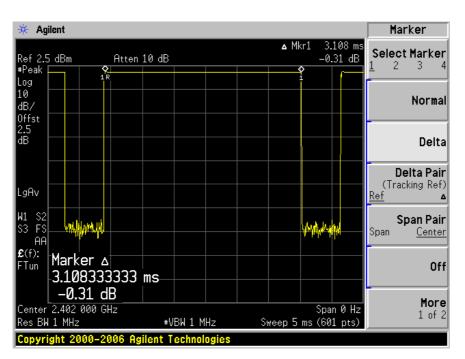
*Testing was performed by Jack Liu on 2010-01-26~2010-01-27.

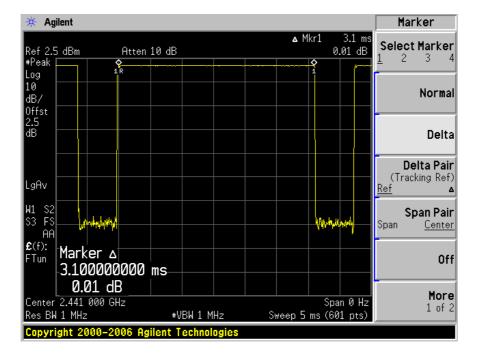
10.5 Measurement Results:

Channel	Frequency (MHz)	Pulse Width (ms)	Dwell Time (Sec.)	Limit (Sec.)	Results
Low	2402	3.11	0.166	0.4	Compliant
Mid	2441	3.10	0.165	0.4	Compliant
High	2480	2.90	0.154	0.4	Compliant

Note:

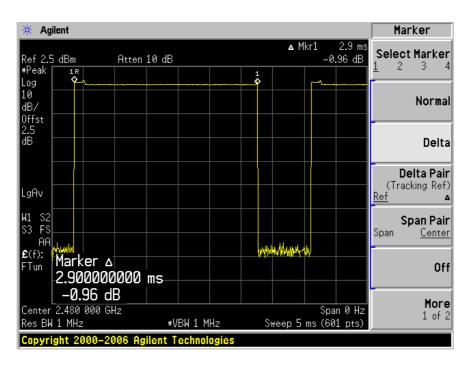
Dwell time = Pulse time*(hop rate/6/number of channels)*6.4 sec


• Hop Rate = 800


- Number of Channels = 79
- Modulation type: DH5 package size 1021 bytes

Dwell time = Pulse time*(800/6/79)*31.6 sec

Please refer the following plots.


Low Channel

Middle Channel

High Channel

Report Number: R1001251-247

Page 33 of 55

11 FCC §15.247(b)(1) & IC RSS-210 §A8.1(b) - Maximum Peak Output Power

11.1 Applicable Standard

According to FCC \$15.247(b)(1), for frequency hopping systems in the 2400-2483.5MHz band employing at least 75 hopping channels, and all direct sequence systems, the maximum peak output power of the transmitter shall not exceed 1 Watt. For all other frequency hopping system in the 2400 – 2483.5 MHz band, the maximum peak output power of the transmitter shall not exceed 0.125 Watt.

According to IC RSS-210 §A8.1(b), the frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 0.125 W. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

11.2 Measurement Procedure

- 1. Place the EUT on the turntable and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.

11.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial Number	Calibration Date
Agilent	Spectrum Analyzer	E4440A	MY44303352	2009-04-27

* **Statement of Traceability: BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

11.4 Test Environmental Conditions

Temperature:	15~18 °C
Relative Humidity:	44~50 %
ATM Pressure:	101.2~102.3kPa

*Testing was performed by Jack Liu on 2010-01-26~2010-01-27.

11.5 Measurement Result

Channel	Frequency	Trequency Max Peak Output Power		Limit	Result
Channel	(MHz)	(dBm)	(mw)	(mw)	Kesuit
Low	2402	1.57	1.435	125	Pass
Mid	2441	1.47	1.403	125	Pass
High	2480	-0.02	0.995	125	Pass

12 FCC §15.247(d) & IC RSS-210 §A8.5 - Band Edges

12.1 Applicable Standard

According to FCC §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required.

According to IC RSS-210 §A8.5 In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the radio frequency power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under Section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required.

12.2 Measurement Procedure

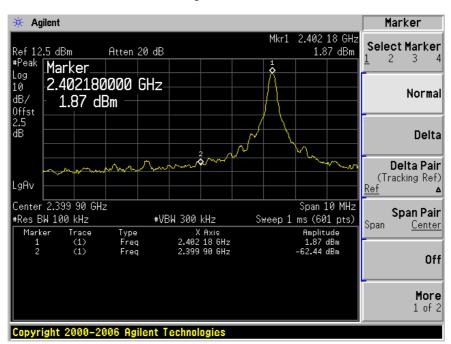
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- Position the EUT without connection to measurement instrument. Turn on the EUT set it to any one 2 measured frequency within its operating range, and make sure the instrument is operated in its linear range. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including
- 3. 100kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Manufacturer	Description	Model No.	Serial Number	Calibration Date
Agilent	Spectrum Analyzer	E4440A	MY44303352	2009-04-27

12.3 Test Equipment List and Details

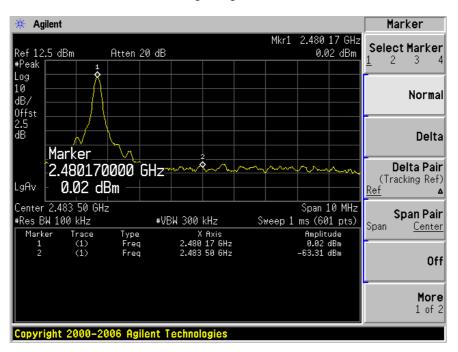
* Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

12.4 Test Environmental Conditions


Temperature:	15~18 °C
Relative Humidity:	44~50 %
ATM Pressure:	101.2~102.3kPa

*Testing was performed by Jack Liu on 2010-01-26~2010-01-27.

Amp'ed RF Technology, Inc


12.5 Measurement Results

Please refer to the following plots.

Band Edge: Lowest Channel

Band Edge: Highest Channel

FCC Part15.247 & IC RSS-210 Test Report

13 FCC §15.247(d) & IC RSS-210 §A8.5 - Spurious Emissions At Antenna Port

13.1 Applicable Standard

According to FCC §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required.

According to IC RSS-210 §A8.5 In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the radio frequency power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under Section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required.

13.2 Measurement Procedure

1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.

2. Position the EUT on a bench without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.

3. Set the SA on Max-Hold Mode, and then keep the EUT in transmitting mode. Record all the signals from each channel until each one has been recorded.

4. Set the SA on View mode and then plot the result on SA screen.

5. Repeat above procedures until all frequencies measured were complete.

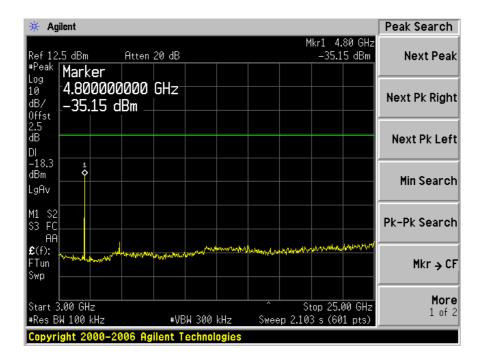
13.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial Number	Calibration Date
Agilent	Spectrum Analyzer	E4440A	MY44303352	2009-04-27

* **Statement of Traceability: BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.


13.4 Test Environmental Conditions

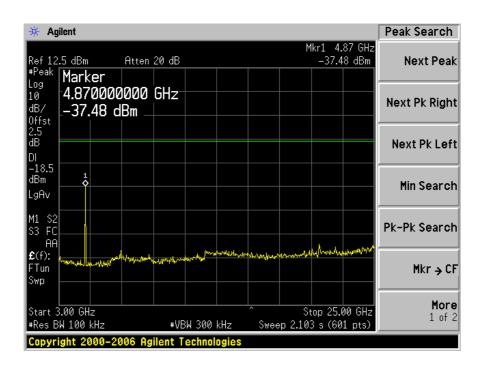
Temperature:	15~18 °C
Relative Humidity:	44~50 %
ATM Pressure:	101.2~102.3kPa

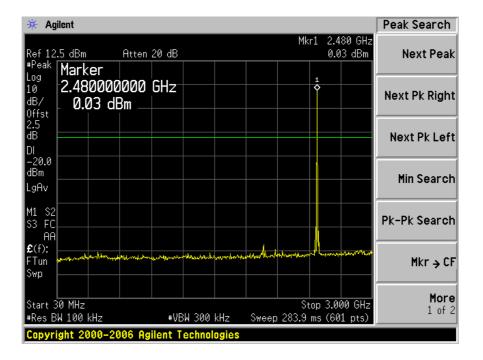

*Testing was performed by Jack Liu on 2010-01-26~2010-01-27.

13.5 Measurement Result

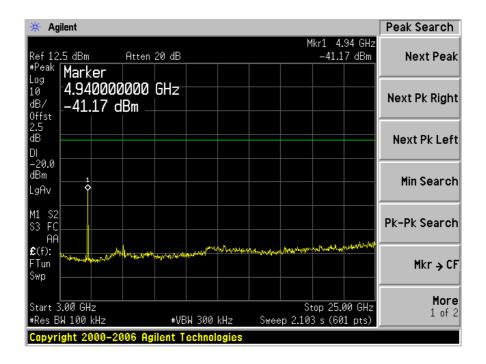
Please refer to the following plots.

Low Channel




Report Number: R1001251-247

Page 39 of 55


* Agilent	Peak Search
Mkr1 2.441 GHz Ref 12.5 dBm Atten 20 dB 1.58 dBm	Next Peak
*Peak Marker 1 10 2.441000000 GHz 1 dB/ 1.58 dBm 1.58 dBm	Next Pk Right
Offst 2.5 dB DI 10 F	Next Pk Left
-18.5 dBm LgAv	Min Search
M1 S2 S3 FC AA	Pk-Pk Search
E(f): FTun Swp	Mkr → CF
Start 30 MHz Stop 3.000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 283.9 ms (601 pts)	More 1 of 2
Copyright 2000-2006 Agilent Technologies	

Middle Channel

High Channel

Report Number: R1001251-247

Page 41 of 55

14 IC RSS-Gen §4.10 & RSS-210 - §2.6 Receiver Spurious Emissions

14.1 Applicable Standard

IC RSS-Gen §4.10 & RSS-210 §2.6.

General Field Strength Limits for Transmitters and Receivers at Frequencies above 30 MHz

Frequency	Field Strength microvolts/m at 3 meters (watts, e.i.r.p.)				
(MHz)	Transmitters	Receivers			
30 - 88	100 (3 nW)	100 (3 nW)			
88 - 216	150 (6.8 nW)	150 (6.8 nW)			
216 - 960	200 (12 nW)	200 (12 nW)			
Above 960	500 (75 nW)	500 (75 nW)			

14.2 Test Setup

The radiated emissions tests were performed in the 3 meter chamber, using the setup in accordance with ANSI C63.4-2003.

14.3 Equipment Lists and Details

Manufacturer	Description	Model No.	Serial Number	Calibration Date
Mini-Circuits	Pre amplifier	ZKL-2	7786100643	2009-03-03
HP	Pre amplifier	8449B	3147A00400	2008-10-20
Sunol Science Corp	Combination Antenna	JB1 Antenna	A103105-3	2009-03-25
A. H. Systems	Antenna, Horn, DRG	SAS-200/571	261	2009-09-23
Agilent	Spectrum Analyzer	E4440A	MY44303352	2009-04-27
A.R.A.	Antenna, Horn	DRG-118/A	1132	2009-10-27

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

14.4 Test Environmental Conditions

Temperature:	15~18 °C
Relative Humidity:	44~50 %
ATM Pressure:	101.2~102.3kPa

*Testing was performed by Jack Liu on 2010-01-26~2010-01-27.

14.5 Test Procedure

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations.

All data were recorded in the peak detection mode. Quasi-peak readings was performed only when an emissions was found to be marginal (within -4 dB of specification limits), and are distinguished with a " \mathbf{QP} " in the data table.

14.6 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corrected Amplitude = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

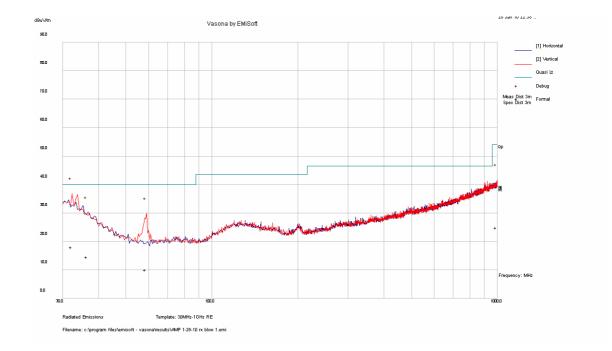
The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emissions are 7dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude - Limit

14.7 Summary of Test Results

According to the test data,, the EUT <u>complied with the with the applicable IC Standards</u>, with the closest margins from the limit listed below:

30 MHz - 1 GHz


-21.95 dB at 32.58676 MHz in the Vertical polarization

Above 1 GHz

*Note: All emission levels are at the noise floor and/or more then 20 dB below the limit.

Amp'ed RF Technology, Inc

FCC ID: X3ZBTMOD2, IC: 8828A-MOD2

30-1000 MHz @ Measured at 3 meters

Quasi-Peak Measurements

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)
32.58676	18.05	261	V	277	40	-21.95
36.90184	14.46	179	Н	174	40	-25.54
998.595	24.85	305	V	348	54	-29.15
59.14992	9.99	130	V	286	40	-30.01

Above 1 GHz:

Frequency	S.A.	Azimuth	Т	est Anten	na	Cable	Pre-	Cord.	IC	C	
(MHz)	Reading	(degrees)	Height (m)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	1V1a1 2111	Comments
-	-	-	-	-	-	-	-	-	-	-	-

*Note: All emission levels are at the noise floor and/or more then 20 dB below the limit.

15 §FCC 15.247(i) & IC RSS-102 - RF Exposure

15.1 Applicable Standard

According to FCC §15.247(i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

According to §1.1310 and §2.1091 RF exposure is calculated.

Limits for General Population/Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)
	Limits for Ger	neral Population/Un	controlled Exposure	
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f ²)	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	f/1500	30
1500-100,000	/	/	1.0	30

f = frequency in MHz

* = Plane-wave equivalent power density

Before equipment certification is granted, the procedure of RSS-102 must be followed concerning the exposure of humans to RF fields.

According to IC RSS-102 Issue 2 section 4.1, RF limits used for general public will be applied to the EUT.

Frequency Range (MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Density (W/m ²)	Averaging Time (Minutes)
0.003 - 1	280	2.19	-	6
1 - 10	280 / f	2.19 / f	-	6
10 - 30	28	2.19 / f	-	6
30 - 300	28	0.073	2*	6
300 - 1 500	$1.585 f^{0.5}$	$0.0042 f^{0.5}$	f / 150	6
1 500 - 15 000	61.4	0.163	10	6
15 000 - 150 000	61.4	0.163	10	616000 / f ^{1.2}
150 000- 300 000	$0.158 f^{0.5}$	4.21 x 10 -4 f ^{0.5}	6.67 x 10 ⁻⁵ f	616000 / f ^{1.2}

Note: *f* is frequency in MHz

* Power density limit is applicable at frequencies greater than 100 MHz

15.2 MPE Prediction

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

 $S = PG/4\pi R^2$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator R = distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal (dBm):	<u>1.57</u>
Maximum peak output power at antenna input terminal (mW):	1.435
Prediction distance (cm):	<u>20</u>
Prediction frequency (MHz):	<u>2441</u>
Maximum Antenna Gain, typical (dBi):	<u>2</u>
Maximum Antenna Gain (numeric):	1.585
Power density of prediction frequency at 20.0 cm (mW/cm ²):	0.000452
Power density of prediction frequency at 20.0 cm (W/m ²):	0.00452
MPE limit for uncontrolled exposure at prediction frequency (mW/cm ²):	1.0
MPE limit for uncontrolled exposure at prediction frequency (W/m ²):	<u>10</u>

15.3 **Test Result**

The device is compliant with the requirement MPE limit for uncontrolled exposure. The maximum power density at the distance of 20 cm is 0.000452 mW/cm^2 (0.00452 W/m^2).Limit is 1 mW/cm^2 (10 W/m^2).