Amber Helm Development L.C.

92723 Michigan Hwy-152 Sister Lakes, MI 49047

EMC Test Report

#0901299FX Issued 02/12/2010

Regarding the FCC 15.247 testing of

End Unit

Model Number: 31570001 Grantee FCC Registration Number: 0018833475 Grantee Code: X3R Equipment Product Code: AMPT-X Equipment Class: K1D

2.4 GHz Intentional Radiating Transceiver Device **Category:**

FCC Article 15.247, FCC Part 15 Class B - Compliant Judgments:

NVLAP LAB CODE 20012940 **Bob** Porter AMPT LLC 4850 Innovation Dr. Ft. Collins, Co. 80525

Test Date(s):

11/12/09-2/11/2010

Report prepared by:

David J. Miller, NCE

Data recorded by:

Dordon L. Helm

Gordon Helm, NCE Test Engineer, AHD Report reviewed by

Dordon L. Helm

Gordon Helm, NCE

Prepared for:

Table of Contents

Statements concerning this report	3
FCC Required user statements:	4
Summary of Results	5
Changes Made to Achieve Compliance:	7
EUT Descriptions.	8
Specifications:	9
EUT Block Diagram:	
EUT Pictures	
Equipment Test Setup:	
Support Equipment & Cabling	
Setup Pictures	
Measurement Report	22
Standards Applied to Test	
Equipment Configuration	
Test Methodology	
Line Conducted:	
Radiated	
Variance from Test Procedure:	
Test Data	
Line Conducted:	
Radiated Spurious Emissions	
Radiated Receive Local Oscillator Emissions	
Radiated Transmit Emissions	
15.247 Specific Transmit Emissions, Hopping Frequency Mode	
15.247 Specific Transmit Emissions, Digital Modulation Mode	
RF Exposure Calculation:	
Measurement Facilities & Equipment	
Test Site 2	
Environment	
APPENDIX A	43
Measurement Procedures	
Line Conducted	
Radiated	
Cable Loss	
Antenna Factors	
AHD Accreditation	
NARIE Seal	49

Statements concerning this report

NVLAP Accreditation: NVLAP Lab Code 200129-0

The scope of AHD accreditation are the test methods of:

IEC/CISPR 22:	Limits	and	methods	measureme	nt of	radio	disturba	nce
	characte	ristics	s of inform	ation technol	logy equ	uipmer	nt.	
FCC Method – 47 C	FT Part 15	5:	Digital D	evices.				
AS/NZS 3548:	Electron	nagne	tic Interf	erence – 1	Limits	and	Methods	of
	Measure	ement	of Informa	ation Techno	logy Eq	luipme	ent.	
IEC61000-4-2 and A	mend.1:		Electrosta	atic Discharg	e Immu	inity		
IEC61000-4-5:			Surge Im	munity		-		

Test Data:

This test report contains data included in the scope of NVLAP accreditation.

Subcontracted Testing:

This report contains data recorded at the University of Michigan Radiation Laboratory. The University of Michigan test facility is located at 8501 Beck Road, Belleville, Michigan 48111. This test facility has been fully described and accepted by the FCC and Industry Canada. This facility was utilized to measure emissions occurring at frequencies greater than 6GHz.

Test Traceability:

The calibration of all measuring and test equipment and the measured data using this equipment are traceable to the National Institute for Standards and Technology (NIST).

Limitations on results:

The test results contained in this report relate only to the Item(s) tested. Any electrical or mechanical modification made to the test item subsequent to the test date shall invalidate the data presented in this report. Any electrical or mechanical modification made to the test item subsequent to this test date shall require an evaluation to verify continued compliance.

Limitations on copying:

This report shall not be reproduced, except in full, without the written approval of AHD.

Limitations of the report:

This report shall not be used to claim product endorsement by NVLAP, FCC, or any agency of the US Government.

Statement of Test Results Uncertainty:

Following the guidelines of NAMAS publication NIS81 and NIST Technical Note 1297, the Measurement Uncertainty at a 95% confidence level is determined to be: +/-1.4 dB

Retention of Records:

For equipment verified to comply with FCC regulations, the manufacturer is obliged to retain this report with the product records for ten years following the manufacture of the equipment that was tested.

For equipment verified to comply with RSS-210, the manufacturer is obliged to retain this report with the product records for as long as the model is being marketed in Canada.

FCC Required user statements:

Applies to: [Class B Digital Device or Peripheral].

For products satisfying the FCC Part 15 Class B requirements the following are to be satisfied:

1. The following statement is required to be labeled on the product or, if the device is too small, in the user's manual:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

- 2. A statement is required to be placed in the User's Manual shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
- 3. The User's Manual shall include this or similar statement:

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- *Reorient or relocate the receiving antenna.*
- *Increase the separation between the equipment and receiver.*
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.
- 4. For products certified using the Declaration of Conformity approach,
 - a. The FCC conformity LOGO is to be placed on the Class B Digital Device.

b. The FCC requires a Compliance Information statement (Declaration of Conformity) to accompany each product to the end user.

Summary of Results

- 1. The device model number 31570001 was tested for compliance with FCC Regulations, Part 15, SubPart C.
- 2. The system tested is compliant to the requirement of CFR 47, FCC Part 15, SubPart C for operation in the 2400-2483.5 MHz frequency band, article 15.247, as a hybrid system with both frequency hopping and digital modulation modes of operation.
- 3. These tests were performed at AHD EMC Laboratory following the procedures outlined in ANSI C63.4.
- 4. The test results apply to model 31570001
- 5. The equipment under test was received on 11/12/09 and this test series commenced on 11/12/09.
- 6. In 120VAC 60Hz operation, the conducted emission level nearest the limit during normal tx / rx operation occurred at 170 kHz. The signal was measured to be 8.92dB below the Class B Quasi-Peak limit and 41.37 dB below the Class B Average limit when measuring phase to ground.
- The spurious radiated emission level nearest the limit during normal tx / rx operation occurred at 76.9 MHz horizontally polarized. This signal was measured to be 1.1 dB below the Class B Quasi-peak limit. This is within the FCC limits, but outside the AHD 1.4dB 95% confidence margin.
- 8. The radiated fundamental Local Oscillator emission level nearest the limit occurred at 2474.24 MHz. The signal was measured to be 44.1 dB below the FCC class B average limit.
- 9. The radiated harmonic Local Oscillator emission level nearest the limit occurred 4949.05 MHz. This signal was measured to be 13 dB below the FCC class B average limit.
- 10. All radiated fundamental signals were measured within the FCC 15.247 band limits of 2400 MHz and 2483 MHz.
- 11. A maximized data rate mode was used to measure transmit power in peak detector mode, therefore a correction factor corresponding to the normal operational duty cycle is required to correlate peak measurements to the limits expressed in terms of average detection. The width of a transmitted packet was measured to be 31.18 mSec. The time period from one packet to the next was measured to be 276.48 mSec. Over the FCC 15.35c specified 100 mSec period, the packet width represents a 31.18% duty cycle, or -10.12 dB correction factor.
- 12. The fundamental transmission level was measured using radiated emissions measurements. The formula used to convert measured electrical field strength to conducted power was $EIRP = ((D^2*E^2)/30G)$. The distance used in the measurement was 3 Meters (D=3) and the antenna gain factor used in calculations was one (G=1). While the manufacturer specified antenna gain is specified at 2.15dB, a gain factor of one is used in the calculations to ensure worst case calculations.
- 13. The radiated fundamental transmit emission level nearest the limit occurred at 2442.04 MHz. The field strength level of the fundamental was observed to be 123.98 mW below the average limit of 125mW The EUT was positioned on the FLAT orientation and the receive antenna oriented in the Horizontal polarization.

FCC Article 15.247, FCC Part 15 Class B for AMPT End Unit

- 14. The radiated second harmonic transmit emission level nearest the limit occurred at 4884.20 MHz. The field strength level was observed to be 2.68 dB below the average limit of 54dBuV/m (500uV/m). The EUT was positioned on the SIDE orientation and the receive antenna oriented in the Horizontal polarization.
- 15. The radiated upper level harmonic transmit emission level nearest the limit occurred at 7230 MHz. The field strength level was observed to be 13.92 dB below the average limit of 54 dBuV/m (500uV/m).
- 16. Radiated band edge measurements were performed in both frequency hopping and digital modulation modes. In digital modulation mode, the radiated band edge transmission level nearest the limit occurred at 2400.06 MHz. The field strength level was observed to be 15.89 dB below the average limit of 54 dBuV/m. In frequency hopping mode, the radiated band edge transmission level nearest the limit occurred at 2400.21 MHz. The field strength level was observed to be 16.29 dB below the average limit of 54 dBuV/m. The measurements were taken in the worst case side orientation and horizontal polarization.
- 17. As a frequency hopping device, the system operates on 26 channels, with one channel left blank. This meets the minimum 15 channel requirement of 15.247.a.1
- 18. As a frequency hopping device, the system operates with each channel occupying a 705 KHz 20 dB bandwidth, and each channel separated by 2.52 MHz. The carrier separation is 1.82 MHz wider than the 20dB bandwidth, satisfying the 15.247.a.1 requirement for channel separation.
- 19. The algorithm used for selecting hopping frequencies is pseudo random in nature, using the base channel as an algorithmic "seed" frequency. The algorithm ensures equal distribution among available channels during operation.
- 20. The time occupied per any channel in any 10.4 second cycle (0.4 seconds*26 channels) is by design at most 374.16 mS, satisfying the maximum 15.247.a.iii limit of 400 mSec on any channel per cycle.
- 21. The antenna used in the system is integrated on the system PCB, and has a specified maximum gain of 2.15dB.
- 22. In frequency hopping mode, the peak in band 100KHz BW signal strength is 99.32 dBuV or 4.09 dBm EIRP. The strongest 100 KHz in band signal strengths adjacent to the in band peak signals are more than 20dB below the peak, satisfying the 15.247.d requirements.
- 23. As a digitally modulated device, the system operates on 10 channels, with each channel occupying a 1.455 MHz 20 dB bandwidth, and each channel separated by 6.55 MHz.
- 24. As a digitally modulated device, the minimum 6 dB bandwidth of any channel is 520 KHz, which satisfies the minimum bandwidth requirements 500 KHz in 15.247.a.2.
- 25. As a digitally modulated device, the maximum power of the device is 1.08 mW. This satisfies the 1000 mW maximum signal requirements of 15.247.d
- 26. As a digitally modulated device, the maximum 3KHz power density of the device is 87.3 dBuV, or -7.93dBm. This is 15.93 dB below the 15.247.e limit of 8 dBm.
- 27. Under normal operating conditions, the general public is not exposed to this device. However, even under conditions of exposure to this device at a distance of 2.5 cm, the expected exposure is .013 mw/cm^2, or 0.987mw/cm^2 under the FCC 1.1310 general population limit of 1 mw/cm^2.

FCC Article 15.247, FCC Part 15 Class B for AMPT End Unit

28. With regard to SAR evaluation, the worst case EIRP of 1.02 mW is 23.47 mW below the FCC KDB 447948 recommended SAR evaluation limit of 24.5 mW at 2.45 GHz.

Changes Made to Achieve Compliance:

- 1. 3 Ohm Resistor in Series with Power Supply
- 2. Test performed with 8 Ohm load configuration
- 3. Control software adjusted to support 230.5 Watt Max load dissipation
- 4. Short internal wiring, as illustrated in "Internal PCB Top View" Illustration

EUT Descriptions

Model: End Unit

Model number: 31570001

Serial/ID No: 1309K000567/ AHD56

Antenna: 2.15 dB gain, Integrated on PCB

PCB: AMPT 33070003 Rev C

Description:

This device is a Hybrid – mode (Frequency hopping and / or digital modulation) radio controlled Solar Array Management System End Unit. The device can be configured in one of three modes: End Unit mode utilizes 25 frequency hopping channels, with each channel seperated by 10 of the possible 256 channels. The exact subset of 25 hopping channels utilized depends on the initial channel selected during initialization. When operating in Digital Modulation mode, the device uses up to 10 fixed channels, each channel seperated by 25 of the possible channels. The frequency usage, channel selection, and hopping algorithms are described in a separate proprietary Exhibit B document.

ED Modes.

Any given ED may be in 3 distinctively different modes. ED may be commanded to switch between those 3 modes. ED on some circumstances ("search algorithm" enabled) may switch himself between those modes while searching for connection to Gateway. Those modes are as follows:

1. "<u>FREE RUNNING ED</u>" - transmits on the same speed as gateway (12 kbod) and hops by the same frequency sequence as gateway. It is guaranteed that its transmission is no longer then 31.18 ms in any given cycle. IN THIS MODE ED HOPS WHEN CONFIGURED, AS GATEWAY DOES. SO, IN THIS MODE ED IS A 15.247 DEVICE according to paragraph (1) of page 818 of 47CFR15.247 2008 revision.

2. <u>SLAVE</u>. It does not hop. It stays on single frequency with digital modulation turned on. It may be guaranteed that it does not transmit longer then 5 ms in any given cycle. In this mode ED behaves as 15.247 device as described in paragraph (2) on page 819 of 47CFR15.247 2008 revision.

3. <u>REPEATER</u>. Behaves mostly the same way as (1), but it also retransmits GW packages on 500 kbod to slaves, no longer then 5 ms in any cycle. Then it listens on 500 kbod, receives packets from slaves and retransmits slaves packets on 12 kbod to gateway on hopping frequency. In worst case scenario it transmits no more then 78 ms in any sliding 100 ms window. IN THIS MODE ED IS A 15.247 HYBDRID DEVICE according to paragraph (f) of page 821 of 47CFR15.247 2008 revision.

Digital Modulation Power Density requirements are satisfied by the fact that 500 kbod transmission utilizes 5 ms per cycle with the same power level as Slave ED.

In our system devices hops on 25 frequencies, so the period between one given frequency is 25 * cycle_size. The first limitation may be translated to following:

ED on any given hopping frequency cannot transmit longer then 400 ms if cycle is longer then 0.4 seconds.

Each transmission on the hopping frequency is 31.18 ms long, so, repeater is allowed for 400 / 31.18 = 12 transmissions per cycle. The exact production algorithm describing how we guarantee that each Repeater uses no more then 12 timeslots is attached.

Specifications:

Input Power: Nominal 48 VDC. Power input is regulated over a range from 12VDC to 120VDC

Outputs Signals: DC power to external load, 2.4 GHZ Transmit

Input Signals: 2.4 GHz Receive

Channel Frequencies:

Ch	Freq, MHz	Example: Ch 0 Hopping freq:	Repeater – Slave communication:
0) 2410.000	0 2410.000	0 2410.000
1	2410.253	10 2412.527	25 2416.317
2	2 2410.505	20 2415.054	50 2422.634
3	3 2410.758	30 2417.581	75 2428.951
4	4 2411.011	40 2420.107	100 2435.269
5	5 2411.263	50 2422.634	125 2441.586
6	5 2411.516	60 2425.161	150 2447.903
7	2411.769	70 2427.688	175 2427.688
8	3 2412.021	80 2430.215	200 2430.215
9	9 2412.274	90 2432.742	225 2432.742
1	0 2412.527	100 2435.269	
1	1 2412.780	110 2437.795	
1	2 2413.032	120 2440.322	
1	3 2413.285	130 2442.849	
1-	4 2413.538	140 2445.376	
1	5 2413.790	150 2447.903	
1	6 2414.043	160 2450.430	
1	7 2414.296	170 2452.957	
1	8 2414.548	180 2455.483	
1	9 2414.801	190 2458.010	
2	0 2415.054	200 2460.537	
2	1 2415.306	210 2463.064	
2	2 2415.559	220 2465.591	

PCC Article 15.247, PCC Part 15 Class B for AMP1 End Unit 23 2415 812 230 2468 118 24 2416 064 240 2470.645 25 2416.317 2 246.818 26 2416.570 2 2416.823 28 2417.075 2 2417.831 30 2417.831 2 2418.844 36 2418.949 3 348.839 33 2418.844 3 3 34 2419.859 3 3448.844 36 2419.907 37 2419.949 38 2419.602 39 2419.855 40 2420.107 44 2421.624 47 2421.624 47 2421.624 44 2421.624 92 92.6459.526 245.2471.655 22.242.0413 32.2435.016 146.2446.892 195.2459.5779 246.2472.161 51.2422.382 98.2437.63 147.2447.145 156.2459.526 245.2472.166 52.2423.140	Test repo	ort #0901299	9FX		Teste	d 11/12/09-1/28/10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			FCC Article 1:	5.247, FCC Part 15 Cla	ss B for AMPT End U	Jnit
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23	2415.812	230 2	468.118		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	2416.064	240 2	470.645		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	2416.317				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	2416.570				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	2416.823				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	28	2417.075				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	29	2417.328				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	30	2417.581				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	2417.833				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	2418.086				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33	2418.339				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	2418.591				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	2418.844				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36	2419.097				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37	2419.349				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38	2419.602				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	39	2419.855				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	2420.107				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41	2420.360				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42	2420.613				
44 2421.118 45 2421.371 46 2421.624 47 2421.876 Ch Freq Ch Freq Ch Freq Ch Freq Ch Freq 244 2471.655 48 2422.129 97 2434.510 146 2446.892 195 2459.274 244 2471.655 49 2422.882 98 2434.763 147 2447.145 196 2459.526 245 2471.908 50 2422.634 99 2435.016 148 2447.397 197 2459.779 246 2472.161 51 2422.887 100 2435.269 149 2447.650 198 2460.032 247 2472.413 52 2423.140 101 2435.521 150 2447.903 199 2460.284 248 2472.666 53 2423.392 102 2436.027 152 2448.408 201 2460.790 250 2473.171 55 2423.898 104 2436.279 153 2448.661 202 2461.042 251 2473.424 56 2424.150 105 2436.785 155 2449.166 204 2461.295 252 2473.677 57 2424.403 106 2436.785 155 2449.166 204 2461.295 252 2473.677 57 2424.403 106 2436.785 155 2449.149 203 2461.295 252 2473.677 57 2424.403 106 2436.785 155 2449.149 203 2461.295	43	2420.865				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	44	2421.118				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	45	2421.371				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	46	2421.624				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	47	2421.876				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Ch Fre	eq	Ch Freq	Ch Freq	Ch Freq	Ch Freq
492422.382982434.63 $147/244.145$ 196 2459.526 $245/247.1908$ 502422.634992435.016 $148/2447.397$ 197 2459.779 $246/2472.161$ 512422.887100/2435.269 $149/2447.650$ 198 2460.032 $247/2472.413$ 522423.140101/2435.521150/2447.903199/2460.284 $248/2472.666$ 532423.392102/2435.774151/2448.156200/2460.537 $249/2472.919$ 54/2423.645103/2436.027152/2448.408201/2460.790250/2473.17155/2423.898104/2436.279153/2448.661202/2461.042251/2473.42456/2424.150105/2436.532154/2448.914203/2461.295252/2473.67757/2424.403106/2436.785155/2449.166204/2461.548253/2473.92958/2424.656107/2437.037156/2449.419205/2461.801254/2474.18259/2424.908108/2437.290157/2449.672206/2462.053255/2474.43560/2425.161109/2437.543158/2449.924207/2462.3061161/2425.414110/2437.795159/2450.177208/2462.559262/2425.66761/2425.667111/2438.048160/2450.430209/2462.81163/2425.919112/2438.301161/2450.682210/2463.06464/2426.172113/2438.553162/2450.935211/2463.31766/2426.677115/2439.059164/2451.440213/2463.82267/2426.930116/2439.312165/2451.693214/2464.07568/2427.183<	48 2422	.129	9/2434.510	140 2440.892	195 2459.274	244 24/1.655
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49 2422	.382	98 2434.763	14/244/.145	196 2459.526	245 24/1.908
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50 2422	.634	99 2435.016	148 2447.397	19/2459.//9	246 24 / 2.161
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51 2422	.88/	100 2435.209	149 2447.030	198 2400.032	24/24/2.415
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52 2425	.140	101 2435.521	150 2447.905	199 2400.284	248 24/2.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53 2425	.392	102 2435.774	151 2448.150	200 2400.537	249 2472.919
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54 2425	.043	103 2430.027	152 2448.408	201 2400.790	250 2475.171
$36\ 2424,130$ $103\ 2436,332$ $134\ 2448,914$ $203\ 2461,293$ $232\ 247,3677$ $57\ 2424,403$ $106\ 2436,785$ $155\ 2449,166$ $204\ 2461,548$ $253\ 2473,929$ $58\ 2424,656$ $107\ 2437,037$ $156\ 2449,419$ $205\ 2461,801$ $254\ 2474,182$ $59\ 2424,908$ $108\ 2437,290$ $157\ 2449,672$ $206\ 2462,053$ $255\ 2474,435$ $60\ 2425,161$ $109\ 2437,543$ $158\ 2449,924$ $207\ 2462,306$ $61\ 2425,414$ $110\ 2437,795$ $159\ 2450,177$ $208\ 2462,559$ $62\ 2425,667$ $111\ 2438,048$ $160\ 2450,430$ $209\ 2462,811$ $63\ 2425,919$ $112\ 2438,301$ $161\ 2450,682$ $210\ 2463,064$ $64\ 2426,172$ $113\ 2438,553$ $162\ 2450,935$ $211\ 2463,317$ $65\ 2426,425$ $114\ 2438,806$ $163\ 2451,188$ $212\ 2463,569$ $66\ 2426,677$ $115\ 2439,059$ $164\ 2451,440$ $213\ 2463,822$ $67\ 2426,930$ $116\ 2439,312$ $165\ 2451,693$ $214\ 2464,075$ $68\ 2427,183$ $117\ 2439,564$ $166\ 2451,946$ $215\ 2464,327$ $69\ 2427,435$ $118\ 2439,817$ $167\ 2452,198$ $216\ 2464,580$ $70\ 2427,688$ $119\ 2440,070$ $168\ 2452,451$ $217\ 2464,833$ $71\ 2427,941$ $120\ 2440,322$ $169\ 2452,704$ $218\ 2465,085$ $72\ 2428,193$ $121\ 2440,575$ $170\ 2452,957$ $219\ 2465,338$ $73\ 2428\ 446$ $122\ 2440\ 828$ $171\ 2453\ 209$ $220\ 2465\ 591$	56 2425	.898	104 2430.279	155 2448.001	202 2401.042	251 24/3.424
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57 2424	.130	105 2450.552	154 2448.914	205 2401.295	252 2473.077
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59 2424	.405	100 2430.783	155 2449.100	204 2401.348	233 2473.929
$39\ 2424,906$ $108\ 2437,290$ $137\ 2449,072$ $200\ 2402,033$ $233\ 2474,433$ $60\ 2425,161$ $109\ 2437,543$ $158\ 2449,924$ $207\ 2462,306$ $61\ 2425,414$ $110\ 2437,795$ $159\ 2450,177$ $208\ 2462,559$ $62\ 2425,667$ $111\ 2438,048$ $160\ 2450,430$ $209\ 2462,811$ $63\ 2425,919$ $112\ 2438,301$ $161\ 2450,682$ $210\ 2463,064$ $64\ 2426,172$ $113\ 2438,553$ $162\ 2450,935$ $211\ 2463,317$ $65\ 2426,425$ $114\ 2438,806$ $163\ 2451,188$ $212\ 2463,569$ $66\ 2426,677$ $115\ 2439,059$ $164\ 2451,440$ $213\ 2463,822$ $67\ 2426,930$ $116\ 2439,312$ $165\ 2451,693$ $214\ 2464,075$ $68\ 2427,183$ $117\ 2439,564$ $166\ 2451,946$ $215\ 2464,327$ $69\ 2427,435$ $118\ 2439,817$ $167\ 2452,198$ $216\ 2464,580$ $70\ 2427,688$ $119\ 2440,070$ $168\ 2452,451$ $217\ 2464,833$ $71\ 2427,941$ $120\ 2440,322$ $169\ 2452,704$ $218\ 2465,085$ $72\ 2428,193$ $121\ 2440,575$ $170\ 2452,957$ $219\ 2465,338$ $73\ 2428\ 446$ $122\ 2440\ 828$ $171\ 2453\ 209$ $220\ 2465\ 591$	50 2424	.030	10/ 2437.037	150 2449.419	205 2401.001	254 2474.162
$00\ 2423.101$ $109\ 2437.343$ $138\ 2449.924$ $207\ 2402.300$ $61\ 2425.414$ $110\ 2437.795$ $159\ 2450.177$ $208\ 2462.559$ $62\ 2425.667$ $111\ 2438.048$ $160\ 2450.430$ $209\ 2462.811$ $63\ 2425.919$ $112\ 2438.301$ $161\ 2450.682$ $210\ 2463.064$ $64\ 2426.172$ $113\ 2438.553$ $162\ 2450.935$ $211\ 2463.317$ $65\ 2426.425$ $114\ 2438.806$ $163\ 2451.188$ $212\ 2463.569$ $66\ 2426.677$ $115\ 2439.059$ $164\ 2451.440$ $213\ 2463.822$ $67\ 2426.930$ $116\ 2439.312$ $165\ 2451.693$ $214\ 2464.075$ $68\ 2427.183$ $117\ 2439.564$ $166\ 2451.946$ $215\ 2464.327$ $69\ 2427.435$ $118\ 2439.817$ $167\ 2452.198$ $216\ 2464.580$ $70\ 2427.688$ $119\ 2440.070$ $168\ 2452.451$ $217\ 2464.833$ $71\ 2427.941$ $120\ 2440.322$ $169\ 2452.704$ $218\ 2465.085$ $72\ 2428.193$ $121\ 2440.575$ $170\ 2452.957$ $219\ 2465.338$ $73\ 2428\ 446$ $122\ 2440\ 828$ $171\ 2453\ 209$ $220\ 2465\ 591$	59 2424 60 2425	.908	100 2437.290	157 2449.072	200 2402.035	255 2474.455
61 2423.414110 2437.793139 2430.177208 2402.33962 2425.667111 2438.048160 2450.430209 2462.81163 2425.919112 2438.301161 2450.682210 2463.06464 2426.172113 2438.553162 2450.935211 2463.31765 2426.425114 2438.806163 2451.188212 2463.56966 2426.677115 2439.059164 2451.440213 2463.82267 2426.930116 2439.312165 2451.693214 2464.07568 2427.183117 2439.564166 2451.946215 2464.32769 2427.435118 2439.817167 2452.198216 2464.58070 2427.688119 2440.070168 2452.451217 2464.83371 2427.941120 2440.322169 2452.704218 2465.08572 2428.193121 2440.575170 2452.957219 2465.33873 2428 446122 2440 828171 2453 209220 2465 591	61 2425	.101	109 2437.343	150 2449.924	207 2402.500	
62 2425.007 111 2438.048 100 2430.430 209 2402.811 63 2425.919 112 2438.301 161 2450.682 210 2463.064 64 2426.172 113 2438.553 162 2450.935 211 2463.317 65 2426.425 114 2438.806 163 2451.188 212 2463.569 66 2426.677 115 2439.059 164 2451.440 213 2463.822 67 2426.930 116 2439.312 165 2451.693 214 2464.075 68 2427.183 117 2439.564 166 2451.946 215 2464.327 69 2427.435 118 2439.817 167 2452.198 216 2464.580 70 2427.688 119 2440.070 168 2452.451 217 2464.833 71 2427.941 120 2440.322 169 2452.704 218 2465.085 72 2428.193 121 2440.575 170 2452.957 219 2465.338 73 2428 446 122 2440 828 171 2453 209 220 2465 591	62 2425	.414	110 2437.793	159 2450.177	208 2402.339	
63 2425.919 112 2438.301 101 2430.082 210 2405.004 64 2426.172 113 2438.553 162 2450.935 211 2463.317 65 2426.425 114 2438.806 163 2451.188 212 2463.569 66 2426.677 115 2439.059 164 2451.440 213 2463.822 67 2426.930 116 2439.312 165 2451.693 214 2464.075 68 2427.183 117 2439.564 166 2451.946 215 2464.327 69 2427.435 118 2439.817 167 2452.198 216 2464.580 70 2427.688 119 2440.070 168 2452.451 217 2464.833 71 2427.941 120 2440.322 169 2452.704 218 2465.085 72 2428.193 121 2440.575 170 2452.957 219 2465.338 73 2428 446 122 2440 828 171 2453 209 220 2465 591	62 2425	010	111 2430.040	161 2450.450	209 2402.811	
$64\ 2420.172$ $113\ 2438.335$ $102\ 2430.933$ $211\ 2403.317$ $65\ 2426.425$ $114\ 2438.806$ $163\ 2451.188$ $212\ 2463.569$ $66\ 2426.677$ $115\ 2439.059$ $164\ 2451.440$ $213\ 2463.822$ $67\ 2426.930$ $116\ 2439.312$ $165\ 2451.693$ $214\ 2464.075$ $68\ 2427.183$ $117\ 2439.564$ $166\ 2451.946$ $215\ 2464.327$ $69\ 2427.435$ $118\ 2439.817$ $167\ 2452.198$ $216\ 2464.580$ $70\ 2427.688$ $119\ 2440.070$ $168\ 2452.451$ $217\ 2464.833$ $71\ 2427.941$ $120\ 2440.322$ $169\ 2452.704$ $218\ 2465.085$ $72\ 2428.193$ $121\ 2440.575$ $170\ 2452.957$ $219\ 2465.338$ $73\ 2428\ 446$ $122\ 2440\ 828$ $171\ 2453\ 209$ $220\ 2465\ 591$	64 2425	.919	112 2430.301	162 2450 025	210 2403.004	
65 2426.425 114 2438.806 165 2431.188 212 2465.369 66 2426.677 115 2439.059 164 2451.440 213 2463.822 67 2426.930 116 2439.312 165 2451.693 214 2464.075 68 2427.183 117 2439.564 166 2451.946 215 2464.327 69 2427.435 118 2439.817 167 2452.198 216 2464.580 70 2427.688 119 2440.070 168 2452.451 217 2464.833 71 2427.941 120 2440.322 169 2452.704 218 2465.085 72 2428.193 121 2440.575 170 2452.957 219 2465.338 73 2428 446 122 2440 828 171 2453 209 220 2465 591	65 2420	.172	113 2430.333	162 2450.955	211 2403.317	
66 2426.077 113 2439.039 104 2431.440 213 2403.822 67 2426.930 116 2439.312 165 2451.693 214 2464.075 68 2427.183 117 2439.564 166 2451.946 215 2464.327 69 2427.435 118 2439.817 167 2452.198 216 2464.580 70 2427.688 119 2440.070 168 2452.451 217 2464.833 71 2427.941 120 2440.322 169 2452.704 218 2465.085 72 2428.193 121 2440.575 170 2452.957 219 2465.338 73 2428 446 122 2440 828 171 2453 209 220 2465 591	66 2420	.423	114 2430.000	164 2451.100	212 2403.309	
67 2426.930 110 2439.312 103 2431.093 214 2404.073 68 2427.183 117 2439.564 166 2451.946 215 2464.327 69 2427.435 118 2439.817 167 2452.198 216 2464.580 70 2427.688 119 2440.070 168 2452.451 217 2464.833 71 2427.941 120 2440.322 169 2452.704 218 2465.085 72 2428.193 121 2440.575 170 2452.957 219 2465.338 73 2428 446 122 2440 828 171 2453 209 220 2465 591	67 2420	.077	115 2459.059	165 2451.440	215 2405.822	
66 2427.165 117 2439.304 100 2431.940 213 2404.327 69 2427.435 118 2439.817 167 2452.198 216 2464.580 70 2427.688 119 2440.070 168 2452.451 217 2464.833 71 2427.941 120 2440.322 169 2452.704 218 2465.085 72 2428.193 121 2440.575 170 2452.957 219 2465.338 73 2428 446 122 2440 828 171 2453 209 220 2465 591	68 2427	.950	110 2439.312	105 2451.095 166 9451 046	214 2404.073 215 2161 227	
09 2427.435 118 2439.817 107 2432.198 210 2404.380 70 2427.688 119 2440.070 168 2452.451 217 2464.833 71 2427.941 120 2440.322 169 2452.704 218 2465.085 72 2428.193 121 2440.575 170 2452.957 219 2465.338 73 2428 446 122 2440 828 171 2453 209 220 2465 591	60 2427	.105	11/2439.304	100 2431.940	215 2404.527	
70 2427.000 117 2440.070 108 2432.431 217 2404.833 71 2427.941 120 2440.322 169 2452.704 218 2465.085 72 2428.193 121 2440.575 170 2452.957 219 2465.338 73 2428 446 122 2440 828 171 2453 209 220 2465 591	70 2427	688	110 2439.01/	107 2432.190	210 2404.300	
71 2427.741 120 2440.522 109 2452.704 218 2405.085 72 2428.193 121 2440.575 170 2452.957 219 2465.338 73 2428 446 122 2440 828 171 2453 209 220 2465 591	71 2427	.000 0/1	117 2440.070	100 2432.431	21/2404.000	
73 2428 446 122 2440.575 170 2452.957 219 2405.558 73 2428 446 122 2440 828 171 2453 200 220 2465 501	11 2421	.741 103	120 2440.322	107 2432.704	210 2403.003	
	73 7478	446	121 2440.373	170 2452.557	219 2405.550	

FCC Article 15.247, FCC Part 15 Class B for AMPT End Unit

123 2441.080	172 2453.462	221 2465.844
124 2441.333	173 2453.715	222 2466.096
125 2441.586	174 2453.967	223 2466.349
126 2441.838	175 2454.220	224 2466.602
127 2442.091	176 2454.473	225 2466.854
128 2442.344	177 2454.725	226 2467.107
129 2442.596	178 2454.978	227 2467.360
130 2442.849	179 2455.231	228 2467.612
131 2443.102	180 2455.483	229 2467.865
132 2443.354	181 2455.736	230 2468.118
133 2443.607	182 2455.989	231 2468.370
134 2443.860	183 2456.241	232 2468.623
135 2444.113	184 2456.494	233 2468.876
136 2444.365	185 2456.747	234 2469.128
137 2444.618	186 2457.000	235 2469.381
138 2444.871	187 2457.252	236 2469.634
139 2445.123	188 2457.505	237 2469.886
140 2445.376	189 2457.758	238 2470.139
141 2445.629	190 2458.010	239 2470.392
142 2445.881	191 2458.263	240 2470.645
143 2446.134	192 2458.516	241 2470.897
144 2446.387	193 2458.768	242 2471.150
145 2446.639	194 2459.021	243 2471.403
	$\begin{array}{c} 123\ 2441.080\\ 124\ 2441.333\\ 125\ 2441.586\\ 126\ 2441.838\\ 127\ 2442.091\\ 128\ 2442.344\\ 129\ 2442.596\\ 130\ 2442.849\\ 131\ 2443.102\\ 132\ 2443.354\\ 133\ 2443.607\\ 134\ 2443.860\\ 135\ 2444.113\\ 136\ 2444.365\\ 137\ 2444.618\\ 138\ 2444.871\\ 139\ 2445.123\\ 140\ 2445.376\\ 141\ 2445.629\\ 142\ 2445.881\\ 143\ 2446.134\\ 144\ 2446.387\\ 145\ 2446.639\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

EUT Block Diagram:

EUT Pictures

Exterior Overall View	Page 16
Interior PCB Top View	Page 16
Interior PCB Bottom View	Page 17
Associated USB Gateway Device	Page 17
Gateway Control Application	Page 18

Exterior View

Interior PCB Top View

Interior PCB Bottom View

USB Gateway Device View

Gateway Control Application View

Equipment Test Setup:

Support Equipment & Cabling

Setup Diagram	Description	Model	Serial No. /	EMC Consideration
Legend			Part No.	
Α	End Unit Transceiver	31570001	AHD56	2.4 GHz Transceiver
В	Power Supply	Kempco	ATE-55-	1 Meter Shielded
			5M	
С	Load Unit	8 ea - Dale 1	RE75G1R0	CAL RMC50030W 1%
		Ohm Resistor	0	
		Array		
D	Load Cable			3 Meters
Е	Power Supply DC Cable			3 Meters

Block Diagram

Setup Pictures

Spurious Radiated Prescreen Setup	Page 20
Conducted Setup Front View	Page 21
Conducted Setup Rear View	Page 21
Spurious and Rx Radiated Setup Front View	Page 22
Spurious and Rx Radiated Setup Rear View	Page 22
Transmit Setup Front Orientation	Page 23
Transmit Setup End Orientation	Page 23
Transmit Setup Side Orientation	Page 24

Spurious Radiated Prescreen Setup

Conducted Setup Front View

Conducted Setup Rear View

Spurious and Rx Radiated Setup Front View

Spurious and Rx Radiated Setup Rear View

Transmit Setup Flat Orientation

Transmit Setup End Orientation

Transmit Setup Side Orientation

Measurement Report

Standards Applied to Test

ANSI C63.4 – 2003 CFR47 FCC Part 15, Subpart B, Class B limits AHD test procedures TP0101-01, TP0102-01

Equipment Configuration

For the testing, the placement of the EUT and the support equipment was selected to -

- Be a representation of a configuration typical of user installation, and
- Comply with the minimum system configuration of ANSI C63.4.

Test Methodology

Line Conducted:

Detailed Line Conducted test methodology is located in Appendix A.

Conducted testing was performed in both transmit and receive modes.

The cable losses of the coax used in line conducted testing are charted in this appendix.

Radiated

Spurious, transmit, and receive radiated testing was performed at a 3 meter open field test site, and completed according to the procedures in FCC 15, Subpart B with supporting instructions from ANSI C63.4. Please reference Appendix A for further details on Test Methodology.

A scan of the EUT was made in a shielded room to study the emission profile of this EUT. This scan indicated low level spurious emissions from the unit.

The suspect spurious signals recorded in the shielded room prescan for each module were then measured at the 3-meter open area test site. Spurious radiated emissions were measured in normal operating tx/rx mode.

For transmit signal strength measurement, the EUT was configured to operate in a maximized packet rate mode and measurements were taken at the mid-range fundamental and second harmonic frequencies (2442, 4884 MHz) in two polarizations (horizontal, vertical) and three orientations (flat, side, and end.) This was done to determine the EUT orientation that maximized emissions.

Once positioned in the maximized orientation, the EUT was tested at the low (2410 MHz), mid range (2442 MHz), and high (2475 MHz) operating frequencies within the EUT's operating range.

Because the EUT has an integrated antenna, measurements were converted from electrical field strength (dBuV/m) to EIRP (watts and dBm) using the formula $P = (ED)^{2/30}$.

Because maximized packet rate mode was utilized to test the device, zero span (time scale) measurements were taken to determine PWM duty cycle attenuation over a 100 mSec period. Based on these findings, the maximized data rate mode (peak) measurements were then compensated -10.12 dB to provide average transmit signal strength for comparison to FCC limits.

Upper level harmonics were measured to10 harmonics (24 GHz) over the total range of operating frequencies. Worst case signal conditions were recorded at harmonics of the low, mid, and high operating range frequencies.

For receive operation, the EUT was exercised at the low (2410 MHz), medium (2442 MHz), and high (2474 MHz) frequencies within the EUT's operating range, as well as 5 harmonics (12 GHz) of those frequencies. Averaging and peak detection methods were used and evaluated against averaging based limits. Worst case signal conditions were recorded.

Tx and Rx Harmonics over 6 GHz were measured at the U of M test Site (see Appendix.)

In addition, a variety of 15.247 specific band edge measurements were taken, in both frequency hopping and digital modulation modes.

The EUT under test was placed per ANSI C63.4

The EUT was exercised as follows:

- 1. Device was powered via external power supply
- 2. The device was activated via Gateway Transceiver Control Application
- 3. Receive Operation was evidenced by Local Oscillator signal
- 4. Transmit Operation was evidenced by Transmit Signal

The pictures, in the preceding pages, show the position of the equipment and cabling that produced the maximum signal level.

Variance from Test Procedure:

None

Test Data

Line Conducted:

NEUTRAL to Ground Measurement. Class B Plot of Peak Values

NEUTRAL to Ground Conducted Class B Tabulated Measurements

Frequency	dBuV Reading		FCC / EN55022		dB Margin	
rrequency	ubu v 1	touding	dBuV C	dBuV Class B Limit		un 9111
MHz	QP	Avg	QP	Avg	QP	Avg
0.16	56.19	15.91	65.57	55.57	9.38	39.66
0.18	51.84	10.90	64.34	54.34	12.50	43.44
0.22	46.30	7.83	62.67	52.67	16.37	44.84
0.33	33.41	-1.65	59.44	49.44	26.03	51.09
10.97	34.34	31.60	60.00	50.00	25.66	18.40
23.73	21.36	16.12	60.00	50.00	38.64	33.88

PHASE to Ground Measurement. Class B Plot of Peak Values

PHASE to Ground Conducted Class B Tabulated Measurements

Frequency	v dBuV Reading		FCC / EN55022		dB Margin	
riequency	uDu (1	teading	dBuV Class B Limit			u1911
MHz	QP	Avg	QP	Avg	QP	Avg
0.17	55.87	13.42	64.79	54.79	8.92	41.37
0.18	52.04	11.27	64.58	54.58	12.54	43.31
0.22	46.58	8.27	62.90	52.90	16.32	44.63
0.33	31.65	0.85	59.34	49.34	27.69	48.49
10.86	32.86	29.71	60.00	50.00	27.14	20.29
23.98	29.34	24.79	60.00	50.00	30.66	25.21

Radiated Spurious Emissions

Vertically Polarized 3 Meter Class B Graph of Spurious Quasi-Peak Measurements

Mode Class B Tabulated Spurious Quasi-Peak Measurements

Frequency	Corrected Quasipeak Measurement	Turntable Azimuth	Antenna Height	FCC Class B Limit	Margin Class B
MHz	dBuV/m	deg	Mtr	dBuV/m	dBuV/m
68.90	30.74	290	1.0	40.00	9.26
71.81	32.71	60	1.0	40.00	7.29
162.76	40.22	190	1.0	43.50	3.28
167.54	40.07	190	1.0	43.50	3.43
192.23	35.34	180	1.0	43.50	8.16
270.02	35.39	60	1.0	46.00	10.61

Horizontally Polarized Class B Graph of Spurious Quasi-Peak Measurements

Class B Tabulated Quasi-Peak Measurements

Frequency	Corrected	Turntable	Antenna	FCC Class	Margin
	Quasipeak	Azimuth	Height	b Limit	
	Measurement				
MHz	dBuV/m	deg	Mtr	dBuV/m	dBuV/m
76.90	38.90	200	4.0	40.00	1.10
80.35	38.60	200	4.0	40.00	1.40
129.00	36.60	290	2.2	43.50	6.90
172.00	28.60	180	1.9	43.50	14.90

Radiated Receive Local Oscillator Emissions

Frequency	Corrected Average Measurement	Turntable Azimuth	Antenna Height	FCC Class B Limit	Margin Class B
MHz	dBuV/m	deg	Mtr	dBuV/m	dBuV/m
2408.99	9.44	0	1.0	54.00	44.56
2441.50	9.83	0	1.0	54.00	44.17
2474.24	9.90	0	1.0	54.00	44.10
4819.00	23.40	0	1.0	54.00	30.60
4883.97	22.46	0	1.0	54.00	31.54
4949.05	40.91	0	1.0	54.00	13.09

Horizontally Polarized Class B Tabulated Quasi-Peak Measurements

Maximized
Class B Upper Harmonic Measurements

Frequency	Corrected Average Measurement	Turntable Azimuth	Antenna Height	FCC Class B Limit	Margin Class B
MHz	dBuV/m	deg	Mtr	dBuV/m	dBuV/m
7230.00	34.20	0	1.0	54.00	19.80
7324.49	*	0	1.0	54.00	NA
7422.72	*	0	1.0	54.00	NA
9640.00	38.00	0	1.0	54.00	16.00
9765.99	*	0	1.0	54.00	NA
9896.96	*	0	1.0	54.00	NA
12050.00	38.90	0	1.0	54.00	15.10
12207.48	*	0	1.0	54.00	NA
12371.21	*	0	1.0	54.00	NA

Radiated Transmit Emissions

Transmit Duty Cycle Pulse Width Plot

Transmit Duty Cycle Period Plot

Fundamental Worst Case Tabulated Measurements

Frequency	Corrected	EUT	Compensated	V/m	EIRP	Turntable	Antenna	FCC	Margin
	Peak	orientation	Average			Azimuth	Height	15.247	Class B
	Measurement		Measurement					limit	
MHz	dBuV/m		dBuV/m	V/m	mW	deg	Mtr	mW	dBuV/m
2410.00	102.20	h-flat	92.08	0.04	0.48	240	2.2	125.0	124.52
2442.04	105.45	h-flat	95.33	0.06	1.02	220	1.1	125.0	123.98
2474.44	93.15	h-flat	83.03	0.01	0.06	270	1.7	125.0	124.94

Second Harmonic Worst Case Tabulated Measurements

Frequency	Corrected	EUT	Compensated	Turntable	Antenna	Average	Margin
	Peak	orientation	Average	Azimuth	Height	FCC 15.249	Class B
	Measurement		Measurement			limit	
MHz	dBuV/m		dBuV/m	deg	Mtr	dBuV/m	dBuV/m
4819.93	56.40	h - flat	46.28	300	1.4	54.0	7.72
4884.20	61.44	h -side	51.32	340	1.5	54.0	2.68
4949.05	52.91	h - side	42.79	270	1.1	54.0	11.21

Maximized Upper Harmonic
Tabulated Measurement

Frequency	Corrected	Compensated	Antenna	Average	Margin
	Peak	Average	Height	FCC limit	Class B
	Measurement	Measurement			
MHz	dBuV/m	dBuV/m	Mtr	dBuV/m	dBuV/m
7230.00	50.20	40.08	1.00	54.00	13.92
7326.00	44.50	34.38	1.00	54.00	19.62
7420.50	41.00	30.88	1.00	54.00	23.12
9640.00	47.90	37.78	1.00	54.00	16.22
9768.00	45.40	35.28	1.00	54.00	18.72
9894.00	47.20	37.08	1.00	54.00	16.92
12050.00	41.70	31.58	1.00	54.00	22.42
12210.00	44.90	34.78	1.00	54.00	19.22
12367.50	43.50	33.38	1.00	54.00	20.62
14460.00	46.60	36.48	1.00	54.00	17.52
14652.00	45.30	35.18	1.00	54.00	18.82
14841.00	45.90	35.78	1.00	54.00	18.22
16870.00	46.50	36.38	1.00	54.00	17.62
17094.00	45.00	34.88	1.00	54.00	19.12
17314.50	42.70	32.58	1.00	54.00	21.42
19280.00	39.20	29.08	1.00	54.00	24.92
19536.00	42.80	32.68	1.00	54.00	21.32
19788.00	42.40	32.28	1.00	54.00	21.72
21690.00	43.70	33.58	1.00	54.00	20.42
21978.00	44.90	34.78	1.00	54.00	19.22
22261.50	45.70	35.58	1.00	54.00	18.42
24100.00	45.10	34.98	1.00	54.00	19.02
24420.00	46.60	36.48	1.00	54.00	17.52
24735.00	47.60	37.48	1.00	54.00	16.52

Band Edge Tabulated Measurement Digital Modulation Mode

Frequency	Corrected	EUT	Compensated	Turntable	Antenna	Average	Average	Margin
	Peak	orientation	Average	Azimuth	Height	FCC 15.249	peak -	Class B
	Measurement		Measurement			limit	50dB	
MHz	dBuV/m		dBuV/m	deg	Mtr	dBuV/m	dBuV/m	dBuV/m
2400.06	48.23	h-side	38.11	270	1.1	54.0	-	15.89
2483.20	48.04	h-side	37.92	270	1.1	54.0	-	16.08

Band Edge Tabulated Measurement Hopping Frequency Mode

Frequency	Corrected	EUT	Compensated	Turntable	Antenna	Average	Average	Margin
	Peak	orientation	Average	Azimuth	Height	FCC 15.249	peak -	Class B
	Measurement		Measurement			limit	50dB	
MHz	dBuV/m		dBuV/m	deg	Mtr	dBuV/m	dBuV/m	dBuV/m
2400.21	47.83	h-side	37.71	270	1.1	54.0	-	16.29
2483.30	46.94	h-side	36.82	270	1.1	54.0	-	17.18

15.247 Specific Transmit Emissions, Hopping Frequency Mode

25 Channel Plot

20 dB Bandwidth Plot

Carrier Separation

100kHz BW In Band Max Signal

FCC Article 15.247, FCC Part 15 Class B for AMPT End Unit

100KHz BW In Band High End Max

15.247 Reference	Spec Data	Units	Units Spec		Margin
	Operating Mode		Frequency Hopper /	Frequency	ΝΑ
a.1	Min # of channels		15	26	11
a.1	Channel Carrier Frequencies		2400-2483	2410-2475	NA
a.1	channel 20 dB BW	MHz	None	0.705	NA
a.1	Min Carrier separation	MHz	0.705	2.52	1.82
a.1	hopping algorithm		Pseudo Random, equal distribution		
a 1 iii	max time occupied per channel	mSec	400	374 16	25 84
b.1	max power (eirp)	mw	125	1.08	123.92
b.4	max antenna gain		6	2.15	3.85
d	measured in band 100 KHz BW signal	dBuV	None	99.32	NA
d	measured in band "skirt" 100KHz BW signal	dBuV	79.32	77.42	1.90
d	max in band 100	dDm	Nana	4.00	
d	max in band "skirt" 100KHz BW Power	dBm	-15.91	-17.81	1.90

Tabulated 15.247 Frequency Hopping Data

15.247 Specific Transmit Emissions, Digital Modulation Mode

10 Channel Plot + Carrier Separation *

* Note: Regarding 10 Channel Plot: 12 channels are displayed because the center is a hop channel to control the END unit and the highest channel 255 is not used in slave mode.

20 dB Bandwidth Plot

Digital Channel 6dB BW Plot

Digital Channel 3 KHz Power Density Plot

15.247	Spec Data	Units	Spec	Measurement	Margin
Reference					
	Operating Mode		Frequency Hopper / Digital Modulation	Digital Modulation	NA
a.1	# of channels	12	NA		
a.1	Channel Carrier Frequencies	2410- 2474	2400-2483		
a.1	channel 20 dB BW	MHz	None	1.455	NA
a.2	min channel 6 dB BW	MHz	0.5	0.52	0.02
a.1	max Carrier separation	MHz	0.52	6.55	6.03
b.3	max power (eirp)		1000	1.08	998.92
е	Measured 3 KHz Field Density	dBuV	103.23	87.3	15.93
е	Max 3 KHz Power Density	dBm	8	-7.93	15.93

Tabulated 15.247 Digital Modulation Data

RF Exposure Calculation:

Tabulated RF Exposure Calculations

FCC Spec Reference	Spec Data	Units	Spec	Data	Margin
KDB 447948 D01	min SAR Evaluation Limit = 60/2.45GHz	mW	24.490	1.020	23.470
			Antenna unchangeable	Integrated PCB	
15.203	Fixed Antenna	NA	by end user	Antenna	
1 1310	Max Occupational Exposure (assuming distance of 2.5cm) using formula EIRP/(4*(ni)*(d^2))	mW/cm^2	5 000	0.013	4 987
	General Population Exposure (assuming distance of 2.5cm) using formula				
1.1310	EIRP/(4*(pi)*(d^2))	mW/cm^2	1.000	0.013	0.987

Measurement Facilities & Equipment

Test Site

The AHD test facility is centered on 9 acres of rural property near Sister Lakes, Michigan. The mailing address is 92723 Michigan Hwy152, Sister Lakes, 49047. This test facility is NVLAP accredited (LabCode 200129-0). It has been fully described in a report filed with the FCC (No.90413) and Industry Canada (file:IC3161).

Measurement Equipment Used

11	Lasurement Equipment Osea				
	Equipment	Model	S/N	Last Cal	Calibration
				Date	Interval
	HP EMI Receiver system	HP 8546A			
	RF Filter Section	HP-85460A	3448A00283	25 July-09	12 months
	RF Receiver Section	HP-85462A	3625A00342	25 July-09	12 months
	EMCO BiconiLog Antenna	3142	1069	27-July-09	12 months
	Solar LISN	8012-50-R-24-BNC	962137	3-Aug-09	12 months
	Solar LISN	8012-50-R-24-BNC	962138	23-July-09	12 months
	(LCI) Double shielded 50ohm Coax	RG58/U	920809	11-Mar-09	12 months
	(3-m) LMR-400 Ultra Flex	LMR400	C090804	4-Dec-09	6 months
	(3-m) CS-3227 RG8	CS-3227	C060914	4-Dec-09	6 months
	(10-m) Amelco 50ohm Coax	RG213U	9903-10ab	4-Dec-09	6 months
	Double Ridged Horn	ONO91202-2	A00329	27-July-09	12 months
	Keytek Surge	711B	8511854	05-Jan-09	12 months
	Schaffner ESD	NSG432	01027	04-Jan-09	12 months
	Schaffner EFT	NSG600/641	0113	05-Jan-09	12 months

Test Site 2

The University of Michigan test facility is located at 8501 Beck Road, Belleville, Michigan 48111. This test facility has been fully described and accepted by the FCC and Industry Canada.

This facility was utilized to measure emissions occurring at frequencies greater than 6GHz.

Measurement Equipment Used

Equipment	Model	S/N	Last Cal Date	Calibration Interval
C-Band Std. Gain Horn	UM NRL design		calibration l	by design &
XN-Band Std. Gain Horn	UM NRL design		calibration l	by design &
X-Band Std. Gain Horn	SA 12-8.2	730	calibration by design & physical inspection.	
Avantek RF amplifier	AFT-12665		28-July-09	12 months
3ft Low Loss coax	RG142	-	with Avante	ek amp
Spectrum Analyzer	HP 8593E	3412A01131	2-June-09	12 months

Environment

The test was performed with the equipment under test, and measurement equipment inside the all-weather enclosure. Ambient temperature was 67 deg F, the relative humidity 35 %.

APPENDIX A

Measurement Procedures

Line Conducted

The system was placed upon a $1 \ge 1.5$ meter non-metallic table 80cm from the ground floor and 40cm from the vertical conducting plane in the prescribed setup per ANSI C63.4. This table is housed in a shielded enclosure to prevent the detection of unwanted ambients.

The EUT, or host unit if applicable, was connected to the LISN being monitored by the EMI Receiver. The remaining support devices requiring mains power were connected to a second LISN.

The EUT was continuously exercised by methods supplied by the manufacturer.

While monitoring the display of the EMI Receiver, via remote video monitor, the cables were manipulated to determine a position that maximized the emissions being observed. Once the highest amplitude relative to the limit was determined for the Phase current carrying line the procedure was repeated for the Neutral current carrying line.

The configuration that created an emission closest to the limit was used during the course of taking final measurements. Pictures of this final configuration are recorded in this report.

The principal settings of the EMI Receiver for line conducted testing include: Bandwidth = 9 kHz Detector Function: scanning and signal search = Peak Detection Mode measurements = Quasi Peak Detection and Average Detection

The cable losses of the coax used in line conducted testing are charted in this appendix.

Radiated

The system was placed upon a $1 \ge 1.5$ meter non-metallic table 80cm from the open field site ground plane in the prescribed setup per ANSI C63.4, Figure 9(c).

The table sits upon a remote controlled turntable. The receiving antenna, located at the appropriate standards distance of 3 or 10 meters from the table center, is also remote controlled.

The EUT was continuously exercised by software supplied by the manufacturer.

Preliminary tests were done at the 3 meter open field test site. The final tests are done at the appropriate standards distance of 3 or 10 meters. The "Biconical/Log Periodic" broadband antenna connected to an EMI Receiver, meeting CISPR 16, is used throughout the testing.

During the preliminary scans and while monitoring the display of the EMI Receiver, the turntable was rotated 360 degrees and the receiving antenna height varied from 1 to 4 meters to search out the highest emissions. At the significant emissions, the cables were manipulated to determine a position that maximized the emissions being observed. Once the cable position was determined that presented the highest amplitude relative to the limit for Vertical polarized emissions the procedure was repeated for the Horizontal polarization.

The configuration that created an emission closest to the limit was used during the course of taking final measurements. Pictures of this final configuration are recorded in this report. The principal settings of the EMI Receiver for radiated testing include:

The principal settings of the ENT Receiver for faulated testing include.		
Bandwidth:	120kHz	
Detector Function:	scanning and signal search = Peak Mode	
	measurements = Quasi Peak Mode.	
Search Range:	30MHz to 1000MHz or to 2GHz as appropriate	
The cable loss of the coax used in radiated scanning is charted in this appendix.		
The antenna factors, for the test distance used, are charted in this appendix.		

The resultant Field Strength (FS) is a summation in decibels (dB) of the Indicated Receiver Level (RF), the Antenna Correction Factor (AF), and the Cable Loss Factor (CF). If a PreAmplifier (PA) is used, its gain (dB) is subtracted from the above sum.

Formula 1: FS(dBuV/m) = RF(dBuV) + AF(dB/m) + CF(dB) - PA(dB)To convert the Field Strength dBuV/m term to uV/m, the dBuV/m is first divided by 20. The Base 10 AntiLog is taken of this quotient. The result is the Field Strength value in uV/m terms.

Formula 2: FS(uV/m) = AntiLog[(FS(dBuV/m))/20]

Cable Loss

Line Conducted 150KHz through 30MHz, Coax #920809 Last Calibration date: Mar 11, 2009

Antenna Factors

10 Meter Distance Factors

AHD Accreditation

i

FEDERAL COMMUNICATIONS COMMISSION

Laboratory Division 7435 Oakland Mills Road Columbia, MD 21046

April 16, 2008

Registration Number: 90413

AHD EMC Laboratory 92723 M-152, Dowagiac, MI 49047

Attention: Gordon Helm

Measurement facility located at Sister Lakes 3 & 10 meter site Date of Renewal: April 16, 2008

Dear Sir or Madam:

Re:

Your request for renewal of the registration of the subject measurement facility has been received. The information submitted has been placed in your file and the registration has been renewed. The name of your organization will remain on the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years.

Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website <u>www.fcc.gov</u> under E-Filing OET Equipment Authorization Electronic Filing, Test Firms.

MS Alle fand Industry Analyst

NARTE Seal

