

Tel.: +49 911 655 5225 · Fax: +49 911 655 5226

Rev.: 1.2 2009-12-29 / approved: M. Jungnitsch

rodukte Products

Prüfbericht - Nr.: Test Report No.:	14022659 00)1		Seite 1 von 16 Page 1 of 16
Auftraggeber: Client:	Design Pool Ltd. Ground Floor, 13 Sai Ying Pun, Hong Kong		ξ,	
Gegenstand der Prüfung: Test Item:	Bluetooth Hands	et		
Bezeichnung: Identification:	MM04		erien-Nr.: erial No.:	Engineering sample
Wareneingangs-Nr.: Receipt No.:	00100210048-002 00100218003-002		ingangsdatum: ate of Receipt:	10.02.2010, 18.02.2010
Prüfort: Testing Location:	TÜV Rheinland H 8/F, Niche Centre, 14 V Hong Kong Prod HKPC Building, 78 Tat	Wang Tai Road, Kow uctivity Council		ong Kong
Prüfgrundlage: Test Specification:	FCC Part 15 Subp ANSI C63.4-2003 CISPR 22:1997	part C		
Prüfergebnis: Test Results:	Das vorstehend b genannter Prüfgi		erät wurde geprü	ft und entspricht oben
	The above mention	ned product was t	ested and passed	
Prüflaboratorium: Testing Laboratory:	TÜV Rheinland H 9-10/F., Emperor Interr	ong Kong Ltd. national Square , 7 V	√ang Tai Road, Kowloo	on Bay, Kowloon, Hong Kong
geprüft/ tested by:		kontrolliert/ re	eviewed by:	
Mika Chan Project Enginee Datum Date Name/Position Name/Position	Unterschrift Signature	17.06.2010 Datum Date	Sharon Li Project Manager Name/Stellung Name/Position	Unterschrift Signature
	CID: X3QMM04I		J. S. Conton	o.g.r.ataro
F(ail) = entspi	richt Prüfgrundlage richt nicht Prüfgrundlage anwendbar getestet	Abbre	eviations: P(ass) = F(ail) = N/A =	passed failed not applicable

Table of Content

	Page
Cover Page	1
Table of Content	2
Product information	4
Manufacturers declarations	4
Product function and intended use	5
Submitted documents	
Remark	
Special accessories and auxiliary equipment	
List of Test and Measurement Instruments	
Results FCC Part 15 – Subpart C	
Subclause 15.203 – Antenna Information	7
Subclause 15.204 – Antenna Information	7
Subclause 15.207 – Disturbance Voltage on AC Mains	Pass7
Subclause 15.247 (a)(1) – Carrier Frequency Separation	Pass8
Subclause 15.247 (a)(1)(iii) – Number of hopping channels	Pass8
Subclause 15.247 (a)(1)(iii) – Time of Occupancy (Dwell Time)	9
Subclause 15.247 (a) – 20 dB Bandwidth	9
Subclause 15.247 (a) – Hopping Sequence	Pass 10
Subclause 15.247 (a) – Equal Hopping Frequency Use	Pass11
Subclause 15.247 (a) – Receiver Input Bandwidth	Pass 12
Subclause 15.247 (a) – Receiver Hopping Capability	Pass 12
Subclause 15.247 (b)(1) – Peak Output Power	Pass 12
Subclause 15.247 (d) – Band edge compliance of conducted emissions	Pass 13
Subclause 15.205 – Band edge compliance of radiated emissions	Pass 13
Subclause 15.247 (d) – Spurious Conducted Emissions	Pass 14
Subclause 15.247 (c) – Spurious Radiated Emissions	Pass15
Appendix 1 – Test protocols	23 pages
Appendix 2 – Test setup	3 pages

Test Report No.: 14022659 001 Date: 17.06.2010 page 2 of 16

Appendix 3 – Photo documentation	5 pages
Appendix 4 – Product documentation	25 pages

Test Report No.: 14022659 001 Date: 17.06.2010 page 3 of 16

Product information

Manufacturers declarations

	Transceiver
Operating frequency range	2402 - 2480 MHz
Type of modulation	GFSK; Pi/4 DQPSK; 8 DPSK
Number of channels	79
Channel separation	1 MHz
Type of antenna	Whip Antenna
Antenna gain (dBi)	0
Power level	fix
Type of equipment	stand alone, plug-in radio device
Connection to public utility power line	No
Nominal voltage	V _{nor} : 3.7 V
Independent Operation Modes	Page scan
	Inquiry scan
	Connection state - ACL Link
	Connection state - SCO Link

Test Report No.: 14022659 001 Date: 17.06.2010 page 4 of 16

Product function and intended use

The test item is a Bluetooth Handset based on the Bluetooth technology.

Bluetooth is a short-range radio link intended to be a cable replacement between portable and/or fixed electronic devices.

Bluetooth operates in the unlicensed ISM Band at 2.4GHz. With the introduction of the enhanced data rate (EDR) feature, the data rates can be up to 3 Mb/s.

An increase in the peak data rate beyond the basic rate of 1 Mb/s is achieved by modulating the RF carrier using phase shift keying (PSK) techniques, resulting in an increase of two to three times the number of bits per symbol. The 2 Mb/s EDR packets use a Pi/4-DQPSK modulation and the 3 Mb/s EDR packets use 8DPSK modulation.

Submitted documents

Circuit Diagram Block Diagram Bill of material User manual

Remark

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases.

Special accessories and auxiliary equipment

The product has been tested together with the following additional accessory:

- 1. Charging Base
- 2. Adaptor:

AC/DC Power adaptor

Model number: KSD10-050-2000 Input: 100-240VAC, 50/60Hz, 300mA

Output: 5.0VDC 2000mA

Test Report No.: 14022659 001 Date: 17.06.2010 page 5 of 16

List of Test and Measurement Instruments

	Equipment used	Manufacturer	Model	S/N	Due Date
			No.		
\boxtimes	Semi-anechoic Chamber	Frankonia	Nil	Nil	27-Apr-11
\boxtimes	Test Receiver	R&S	ESU8	100141	25-May-11
\boxtimes	Bi-conical Antenna	R&S	HK116	100242	13-Apr-12
\boxtimes	Log Periodic Antenna	R&S	HL223	841516/020	13-Apr-12
\boxtimes			RTK081-		
			05S-05S-	LA2-001-10M /	
	Coaxial cable 50ohm	Rosenberger	10m	002	07-Dec-10
\boxtimes	Microwave amplifer 0.5-				
	26.5GHz, 25dB gain	HP	83017A	3950M00241	03-Oct-11
\boxtimes	High Pass Filter (cutoff				
	freq. =1000MHz)	Trilithic	23042	9829213	30-Oct-11
\boxtimes	Horn Antenna	EMCO	3115	9002-3351	16-Apr-12
\boxtimes	Spectrum Analyser	R&S	FSP 30	100416	28-Feb-10
\boxtimes	Test Receiver	R&S	ESCS 30	847115/005	24-Aug-10
\boxtimes	Artificial Mains Network	R&S	ESH3-Z5	849876/027	24-Aug-10
\boxtimes	Pulse Limiter	R&S	ESH3-Z2	100161	04-Jun-11
\boxtimes	Active Loop Antenna	EMCO	6502	9107-2651	06-Feb-11

Test Report No.: 14022659 001 Date: 17.06.2010 page 6 of 16

Pass

www.tuv.com

Results FCC Part 15 - Subpart C

Subclause 15.203 – Antenna Information

Requirement: No antenna other than that furnished by the responsible party shall be used with the

device

Results: Permanent attached antenna

Verdict: Pass

Subclause 15.204 – Antenna Information Pass

Requirement: Provide information for every antenna proposed for the use with the EUT

Results: a) Antenna type: Whip Antenna

b) Manufacturer and model no: N.A. c) Gain with reference to an isotropic radiator: 0 dBi

Verdict: Pass

Subclause 15.207 - Disturbance Voltage on AC Mains

Pass

Test Port: AC mains input port of the charger

Applied voltage: 100VAC

Applicable only to equipment designed to be connected to the public utiliy power line.

Adaptor Model: KSD10-050-2000

1) Mode of operation: Charging and Transmitting

Live measurement

Frequency range (MHz)	Frequency (MHz)	Quasi-peak dBμV	Average dBµV	Limit QP (dBµV)	Limit AV (dBµV)	Verdict
0,15 - 0,5	0.468	40.9	31.7	66 - 56	56 - 46	Pass
> 0,5 - 5	0.720	37.0	25.5	56	46	Pass
> 5 - 30	27.006	52.1	40.8	60	50	Pass

Neutral measurement

Frequency range (MHz)	Frequency (MHz)	Quasi-peak dBμV	Average dBμV	Limit QP (dBµV)	Limit AV (dBµV)	Verdict
0,15 - 0,5	0.396	42.0	27.0	66 - 56	56 - 46	Pass
0,15 - 0,5	0.462	40.4	25.1	66 - 56	56 - 46	Pass
> 0,5 - 5	-	-	-	56	46	Pass
> 5 - 30	27.024	51.6	37.7	60	50	Pass

Results: The radio frequency voltage that is conducted back onto the AC power line on any

frequency or frequencies within the band 150kHz to 30MHz does not exceed the limits.

For test Results plots refer to Appendix 1, page 2-3.

Test Report No.: 14022659 001 Date: 17.06.2010 page 7 of 16

Subclause 15.247 (a)(1) – Carrier Frequency Separation Pass

Requirement: Frequency hopping systems shall have hopping channel carrier frequencies separated

by a minimum of 25kHz or the 2/3*20dB bandwidth of the hopping channel, whichever is

greater.

Test Specification: FCC Part 15 Subpart A - Subclause 15.31

Mode of operation: Tx mode (hopping on), GFSK Port of testing: Temporary antenna port

Detector : Peak

RBW/VBW : 100 kHz / 300 kHz

Supply voltage : 3.7VDC from DC power supply

Temperature : 23°C Humidity : 50%

Results: Pre-scan has been conduced to determine the worst-case mode from all possible

combinations between available modulations and packet types.

The centre frequencies of the hopping channels are separated by more than the

2/3*20dB bandwidth. For test Results plots refer to Appendix 1, page 4.

Verdict: Pass

Subclause 15.247 (a)(1)(iii) – Number of hopping channels

Pass

Requirement: Frequency hopping systems operating in the 2400MHz-2483.5MHz bands shall use at

least 15 hopping frequencies.

Test Specification: FCC Part 15 Subpart A - Subclause 15.31

Mode of operation: Tx mode (hopping on), GFSK Port of testing: Temporary antenna port

Detector : Peak

RBW/VBW : 1 MHz / 3 MHz

Supply voltage : 3.7VDC from DC power supply

Temperature : 23°C Humidity : 50%

Results: The total number of hopping frequencies is more than 15. For test Results plots refer to

Appendix 1, page 5.

Verdict: Pass

Test Report No.: 14022659 001 Date: 17.06.2010 page 8 of 16

Subclause 15.247 (a)(1)(iii) – Time of Occupancy (Dwell Time)

Pass

Requirement: Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15

channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels

employed.

Test Specification: FCC Part 15 Subpart A - Subclause 15.31

Mode of operation: Tx mode (hopping on), DH5 packet

Port of testing : Temporary antenna port

Detector : Peak

RBW/VBW : 1 MHz / 3 MHz

Supply voltage : 3.7VDC from DC power supply

Temperature : 23°C Humidity : 50%

Results: Time period calculation = $0.4 \times 79 = 31.6s$

Dwell time = $64 \times 2.904 \times 10^{-3} = 185.856 \times 10^{-3}$

 $<= 400 \times 10^{-3} \text{ s}$

For test protocols please refer to Appendix 1, page 7-8.

Verdict: Pass

Subclause 15.247 (a) - 20 dB Bandwidth

Pass

Requirement: Frequency hopping systems shall have hopping channel carrier frequencies separated

by a minimum of 25kHz or the 2/3*20dB bandwidth of the hopping channel, whichever is

greater.

Test Specification: FCC Part 15 Subpart A – Subclause 15.31

Mode of operation: Tx mode (2402MHz, 2441MHz, 2480MHz), (8DPSK)

Port of testing : Temporary antenna port

Detector : Peak

RBW/VBW : 30 kHz / 100 kHz

Supply voltage : 3.7VDC from DC power supply

Temperature : 23°C Humidity : 50%

Results: Pre-scan has been conduced to determine the worst-case mode from all possible

combinations between available modulations and packet types.

For test protocols refer to Appendix 1, page 9-10.

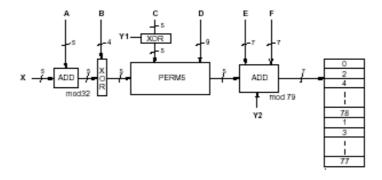
8 DPSK Modulation

Frequency (MHz)	20 dB left (MHz)	20 dB right (MHz)	20dB bandwidth (MHz)
2402	0.588	0.630	1.218
2441	0.648	0.624	1.272
2480	0.636	0.630	1.266

GFSK Modulation

Test Report No.: 14022659 001 Date: 17.06.2010 page 9 of 16

Frequency (MHz)	20 dB left (MHz)	20 dB right (MHz)	20dB bandwidth (MHz)
2402	0.444	0.402	0.846
2441	0.426	0.402	0.828
2480	0.438	0.402	0.840


Subclause 15.247 (a) - Hopping Sequence

Pass

Requirement: The hopping sequence is generated and provided with an example.

Hopping sequence

The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master. The X input determines the phase in the 32-hop segment, whereas Y1 and Y2 selects between master-to-slave and slave-to-master transmission. The inputs A to D determine the ordering within the segment, the inputs E and F determine the mapping onto the hop frequencies.

Test Report No.: 14022659 001 Date: 17.06.2010 page 10 of 16


```
Example data:
Hop sequence {k} for CONNECTION STATE:
CLK start: 0x0000010
ULAP: 0x00000000
             00 02 | 04 06 | 08 0a | 0c 0e | 10 12 | 14 16 | 18 1a | 1c 1e |
#ticks:
0x0000010: 08 66 | 10 70 | 12 19 | 14 23 | 16 01 | 18 05 | 20 33 | 22 37 |
0x0000030: 24 03 | 26 07 | 28 35 | 30 39 | 32 72 | 34 76 | 36 25 | 38 29
0x0000050: 40 74 | 42 78 | 44 27 | 46 31 | 48 09 | 50 13 | 52 41 | 54 45
0x0000070: 56 11 | 58 15 | 60 43 | 62 47 | 32 17 | 36 19 | 34 49 | 38 51
0x0000090: 40 21 | 44 23 | 42 53 | 46 55 | 48 33 | 52 35 | 50 65 | 54 67
0x00000b0: 56 37 | 60 39 | 58 69 | 62 71 | 64 25 | 68 27 | 66 57 | 70 59
0x00000d0: 72 29 | 76 31 | 74 61 | 78 63 | 01 41 | 05 43 | 03 73 | 07 75
0x00000f0: 09 45 | 13 47 | 11 77 | 15 00 | 64 49 | 66 53 | 68 02 | 70 06
0x0000110: 01 51 | 03 55 | 05 04 | 07 08 | 72 57 | 74 61 | 76 10 | 78 14
0x0000130: 09 59 | 11 63 | 13 12 | 15 16 | 17 65 | 19 69 | 21 18 | 23 22
0x0000150: 33 67 | 35 71 | 37 20 | 39 24 | 25 73 | 27 77 | 29 26 | 31 30
0x0000170: 41 75 | 43 00 | 45 28 | 47 32 | 17 02 | 21 04 | 19 34 | 23 36
0x0000190: 33 06 | 37 08 | 35 38 | 39 40 | 25 10 | 29 12 | 27 42 | 31 44
0x00001b0: 41 14 | 45 16 | 43 46 | 47 48 | 49 18 | 53 20 | 51 50 | 55 52
0x00001d0: 65 22 | 69 24 | 67 54 | 71 56 | 57 26 | 61 28 | 59 58 | 63 60
0x00001f0: 73 30 | 77 32 | 75 62 | 00 64 | 49 34 | 51 42 | 57 66 | 59 74
0x0000210: 53 36 | 55 44 | 61 68 | 63 76 | 65 50 | 67 58 | 73 03 | 75 11
0x0000230: 69 52 | 71 60 | 77 05 | 00 13 | 02 38 | 04 46 | 10 70 | 12 78
0x0000250: 06 40 | 08 48 | 14 72 | 16 01 | 18 54 | 20 62 | 26 07 | 28 15
0x0000270: 22 56 | 24 64 | 30 09 | 32 17 | 02 66 | 06 74 | 10 19 | 14 27
0x0000290: 04 70 | 08 78 | 12 23 | 16 31 | 18 03 | 22 11 | 26 35 | 30 43
0x00002b0: 20 07 | 24 15 | 28 39 | 32 47 | 34 68 | 38 76 | 42 21 | 46 29
0x00002d0: 36 72 | 40 01 | 44 25 | 48 33 | 50 05 | 54 13 | 58 37 | 62 45
0x00002f0: 52 09 | 56 17 | 60 41 | 64 49 | 34 19 | 36 35 | 50 51 | 52 67
0x0000310:\ 38\ 21\ |\ 40\ 37\ |\ 54\ 53\ |\ 56\ 69\ |\ 42\ 27\ |\ 44\ 43\ |\ 58\ 59\ |\ 60\ 75
0x0000330: 46 29 | 48 45 | 62 61 | 64 77 | 66 23 | 68 39 | 03 55 | 05 71
0x0000350: 70 25 | 72 41 | 07 57 | 09 73 | 74 31 | 76 47 | 11 63 | 13 00
0x0000370: 78 33 | 01 49 | 15 65 | 17 02 | 66 51 | 70 67 | 03 04 | 07 20
0x0000390: 68 55 | 72 71 | 05 08 | 09 24 | 74 59 | 78 75 | 11 12 | 15 28
0x00003b0: 76 63 | 01 00 | 13 16 | 17 32 | 19 53 | 23 69 | 35 06 | 39 22
0x00003d0: 21 57 | 25 73 | 37 10 | 41 26 | 27 61 | 31 77 | 43 14 | 47 30
0x00003f0: 29 65 | 33 02 | 45 18 | 49 34 | 19 04 | 21 08 | 23 20 | 25 24 |
```

Subclause 15.247 (a) - Equal Hopping Frequency Use

Pass

Requirement: Each of the transmitter's hopping channels is used equally on average.

Equal hopping frequency use

The EUT complies with the Bluetooth RF specifications. For details refer to the Bluetooth standard.

Test Report No.: 14022659 001 Date: 17.06.2010 page 11 of 16

Subclause 15.247 (a) - Receiver Input Bandwidth

Pass

Requirement: The associated receiver(s) complies with the requirement that its input bandwidth matches

the bandwidth of the transmitted signal.

Receiver input bandwidth

The receiver bandwidth is equal to the receiver bandwidth in the 79 hopping channel mode, which is 1 MHz.

The receiver bandwidth was verified during Bluetooth RF conformance testing.

Subclause 15.247 (a) - Receiver Hopping Capability

Pass

Requirement: The associated receiver has the ability to shift frequencies in synchronisation with the

transmitted signals.

Receiver hopping Capability

The EUT complies with the Bluetooth RF specifications. For details refer to the Bluetooth standard.

Subclause 15.247 (b)(1) - Peak Output Power

Pass

Test Specification: FCC Part 15 Subpart A – Subclause 15.31 Mode of operation: Tx mode (2402MHz, 2441MHz, 2480MHz)

Port of testing : Temporary antenna port

Detector : Peak

RBW/VBW : 3 MHz / 10 MHz

Supply voltage : 3.7VDC from DC power supply

Temperature : 23°C Humidity : 50%

Requirement: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at

least 75 hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 Watt. For all other frequency hopping systems in the 2400 – 2483.5 MHz band:

0.125 Watts.

Results: For test protocols please refer to Appendix 1, page 11-15.

GFSK Modulation

Frequency (MHz)	Maximum peak output power (dBm)	Cable attenuation (dB)	Output power (dBm)	Limit (W/dBm)	Verdict
2402	0.99	3.52	4.510	1 / 30.0	Pass
2441	-0.30	3.65	3.350	1 / 30.0	Pass
2480	-0.23	3.60	3.370	1 / 30.0	Pass

Pi/4 DQPSK Modulation

Frequency (MHz)	Maximum peak output power (dBm)	Cable attenuation (dB)	Output power (dBm)	Limit (W/dBm)	Verdict
2402	2.45	3.52	5.970	1 / 30.0	Pass
2441	2.18	3.65	5.830	1 / 30.0	Pass

Test Report No.: 14022659 001 Date: 17.06.2010 page 12 of 16

2480	0.74	3.60	4.340	1 / 30.0	Pass				
8 DPSK Modulat	8 DPSK Modulation								
Frequency (MHz)	Maximum peak output power (dBm)	Cable attenuation (dB)	Output power (dBm)	Limit (W/dBm)	Verdict				
2402	2.60	3.52	6.120	1 / 30.0	Pass				
2441	2.42	3.65	6.070	1 / 30.0	Pass				
2480	0.99	3.60	4.590	1 / 30.0	Pass				

Subclause 15.247	(d) – Band edge compliance of conducted emissions	Pass
Mode of operation Port of testing Detector RBW/VBW	: FCC Part 15 Subpart A – Subclause 15.31 : Tx mode (2402MHz, 2480MHz), 8DPSK : Temporary antenna port : Peak : 100 kHz / 300 kHz : 3.7VDC from DC power supply : 23°C : 50%	
Requirement:	In any 100 kHz bandwidth outside the frequency band in which the digitally modulated intentional radiator is operating, the radio frequency bandwidth within the band that contains the highest level of the deseither an RF conducted or a radiated measurement.	ency power that is nat in the 100 kHz
Results:	Pre-scan has been conduced to determine the worst-case mode from combinations between available modulations and packet types. There is no peak found outside any 100 kHz bandwidth of the oper For test protocols refer to Appendix 1, page 16-17.	·

Subclause 15.20	5 – Band edge compliance of radiated emissions	Pass
•	: FCC Part 15 Subpart A – Subclause 15.31 : Tx mode (2402MHz, 2480MHz), 8DPSK : Temporary antenna port : Peak : 1 MHz / 3 MHz : 3.7VDC from DC power supply : 23°C : 50%	
Requirement:	Radiated emissions which fall in the restricted bans, as defined in comply with the radiated emission limits specified in 15.209(a).	15.205 (a), must also
Results:	There is no peak found in the restricted bands. For test protocols page 18-21.	refer to Appendix 1,

Test Report No.: 14022659 001 Date: 17.06.2010 page 13 of 16

Subclause 15.247 (d) - Spurious Conducted Emissions

Pass

Test Specification: FCC Part 15 Subpart A - Subclause 15.31

Mode of operation: Tx mode (2402MHz, 2441MHz, 2480MHz), 8DPSK

Port of testing : Temporary antenna port

Detector : Peak

RBW/VBW : 100 kHz / 300 kHz

Supply voltage : 3.7VDC from DC power supply

Temperature : 23 °C Humidity : 50 %

Requirement: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or

digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on

either an RF conducted or a radiated measurement.

Results: Pre-scan has been conduced to determine the worst-case mode from all possible

combinations between available modulations and packet types.

There is no peak found outside any 100kHz bandwidth of the operating frequency band in the three transmit frequency. All three transmit frequency modes comply with the limit stated in subclause 15.247(d). For test protocols refer to Appendix 1, page 22-23.

Operating frequency (MHz)	Spurious frequency (MHz)	Spurious Level (dBm)	Reference value (dBm)	Delta (dB)	Verdict
2402	4800.000	-42.12	-0.96	-41.16	Pass
2441	4850.000	-40.69	1.18	-41.87	Pass
2480	4950.000	-47.35	-1.57	-45.78	Pass

Test Report No.: 14022659 001 Date: 17.06.2010 page 14 of 16

Subclause 15.247	7 (c) – Spurious R	adiated Emissions	Pass
	: Enclosure : Peak : 100 kHz / 300 kl 1 MHz / 3 MHz f	MHz, 2441MHz, 2480MHz), 8DPSk Hz for f < 1 GHz	<
Requirement:	level of the desir bands, as define	andwidth outside the frequency based power. In addition, radiated emed in section15.205(a), must also consection 15.205(c).	
Results:	Pre-scan has been conduced to determine the worst-case mode from all possible combinations between available modulations and packet types. All three transmit frequency modes comply with the field strength within the restricted bands. There is no spurious found below 30MHz.		
Tx frequency 2402	2MHz	Vertical Polarization	
Fre MH		Level dBuV/m	Limit/ Detector dBuV/m
128.0		38.00	43.5/ QP
288.0	000	29.70	46/ QP
288.0 1591		29.70 45.63	46/ QP 74.0 / P
1591.	820	45.63	74.0 / P
1591. 1591.	820 820	45.63 36.37	74.0 / P 54.0 / A
1591. 1591. 4804.	820 820 000	45.63 36.37 61.29	74.0 / P 54.0 / A 74.0 / P
1591. 1591.	820 820 000 000	45.63 36.37	74.0 / P 54.0 / A
1591. 1591. 4804. 4804. Tx frequency 2402 Fre MH	820 820 000 000 2MHz	45.63 36.37 61.29 49.47 Horizontal Polarization Level dBuV/m	74.0 / P 54.0 / A 74.0 / P 54.0 / A Limit/ Detector dBuV/m
1591. 1591. 4804. 4804. Tx frequency 2402	820 820 000 000 2MHz	45.63 36.37 61.29 49.47 Horizontal Polarization Level	74.0 / P 54.0 / A 74.0 / P 54.0 / A Limit/ Detector dBuV/m 43.5/ QP
1591. 1591. 4804. 4804. Tx frequency 2402 Fre MH	820 820 000 000 2MHz	45.63 36.37 61.29 49.47 Horizontal Polarization Level dBuV/m -	74.0 / P 54.0 / A 74.0 / P 54.0 / A 74.0 / P 54.0 / A Limit/ Detector dBuV/m 43.5/ QP 46/ QP
1591. 1591. 4804. 4804. Tx frequency 2402 Fre MH - - 1591	820 820 000 000 2MHz eq Iz	45.63 36.37 61.29 49.47 Horizontal Polarization Level dBuV/m 42.57	74.0 / P 54.0 / A 74.0 / P 54.0 / A 74.0 / P 54.0 / A Limit/ Detector dBuV/m 43.5/ QP 46/ QP 74.0 / P
1591. 1591. 4804. 4804. Tx frequency 2402 Fre MH	820 820 000 000 2MHz eq Iz	45.63 36.37 61.29 49.47 Horizontal Polarization Level dBuV/m -	74.0 / P 54.0 / A 74.0 / P 54.0 / A 74.0 / P 54.0 / A Limit/ Detector dBuV/m 43.5/ QP 46/ QP 74.0 / P 54.0 / A
1591. 1591. 4804. 4804. Tx frequency 2402 Fre MH - - 1591	820 820 000 000 2MHz eq Iz	45.63 36.37 61.29 49.47 Horizontal Polarization Level dBuV/m 42.57	74.0 / P 54.0 / A 74.0 / P 54.0 / A Limit/ Detector dBuV/m 43.5 / QP 46 / QP 74.0 / P 54.0 / A
1591. 1591. 4804. 4804. Tx frequency 2402 Fre MH	820 820 000 000 2MHz eq Iz .82 .82	45.63 36.37 61.29 49.47 Horizontal Polarization Level dBuV/m 42.57	74.0 / P 54.0 / A 74.0 / P 54.0 / A 74.0 / P 54.0 / A Limit/ Detector dBuV/m 43.5/ QP 46/ QP 74.0 / P 54.0 / A
1591. 1591. 4804. 4804. Tx frequency 2402 Fre MH - - 1591	820 820 000 000 2MHz eq Iz .82 .82	45.63 36.37 61.29 49.47 Horizontal Polarization Level dBuV/m 42.57 33.67	74.0 / P 54.0 / A 74.0 / P 54.0 / A Limit/ Detector dBuV/m 43.5 / QP 46 / QP 74.0 / P 54.0 / A
1591. 1591. 4804. 4804. Tx frequency 2402 Fre MH - - 1591 1591	820 820 000 000 2MHz eq iz .82 .82 .82	45.63 36.37 61.29 49.47 Horizontal Polarization Level dBuV/m - 42.57 33.67 Vertical Polarization	74.0 / P 54.0 / A 74.0 / P 54.0 / A 24.0 / A Limit/ Detector dBuV/m 43.5/ QP 46/ QP 74.0 / P 54.0 / A 74.0 / P 54.0 / A
1591. 1591. 4804. 4804. Tx frequency 2402 Fre MH 1591 1591 Tx frequency 2441 Fre	820 820 000 000 2MHz eq iz .82 .82 .82	45.63 36.37 61.29 49.47 Horizontal Polarization Level dBuV/m 42.57 33.67 Vertical Polarization	74.0 / P 54.0 / A 74.0 / P 54.0 / A 24.0 / A Limit/ Detector dBuV/m 43.5/ QP 46/ QP 74.0 / P 54.0 / A 74.0 / P 54.0 / A Limit/ Detector
1591. 1591. 4804. 4804. Tx frequency 2402 Fre MH 1591 1591 Tx frequency 2441 Fre MH	820 820 000 000 2MHz eq lz .82 .82 .82	45.63 36.37 61.29 49.47 Horizontal Polarization Level dBuV/m 42.57 33.67 Vertical Polarization Level dBuV/m	74.0 / P 54.0 / A 74.0 / P 54.0 / A 74.0 / P 54.0 / A Limit/ Detector dBuV/m 43.5/ QP 46/ QP 74.0 / P 54.0 / A 74.0 / P 54.0 / A Limit/ Detector dBuV/m
1591. 1591. 4804. 4804. Tx frequency 2402 Fre MH - 1591 1591 Tx frequency 2441 Fre MH 128.6 288.6 1626.	820 820 000 000 2MHz eq lz .82 .82 .82 .82 IMHz eq lz 000 001 651	45.63 36.37 61.29 49.47 Horizontal Polarization Level dBuV/m 42.57 33.67 Vertical Polarization Level dBuV/m 38.00	74.0 / P 54.0 / A 74.0 / P 54.0 / A 24.0 / P 54.0 / A Limit/ Detector dBuV/m 43.5/ QP 46/ QP 74.0 / P 54.0 / A 74.0 / P 54.0 / A Limit/ Detector dBuV/m 43.5/ QP
1591. 1591. 4804. 4804. Tx frequency 2402 Fre MH 1591 1591 Tx frequency 2441 Fre MH 128.0 288.0	820 820 000 000 2MHz eq lz .82 .82 .82 .82 IMHz eq lz 000 001 651	45.63 36.37 61.29 49.47 Horizontal Polarization Level dBuV/m 42.57 33.67 Vertical Polarization Level dBuV/m 38.00 29.80	74.0 / P 54.0 / A 74.0 / P 54.0 / A P 54.0 / A Limit/ Detector dBuV/m 43.5/ QP 46/ QP 74.0 / P 54.0 / A 74.0 / P 54.0 / A Limit/ Detector dBuV/m 43.5/ QP 46/ QP
1591. 1591. 4804. 4804. Tx frequency 2402 Fre MH - 1591 1591 Tx frequency 2441 Fre MH 128.0 288.0 1626.	820 820 000 000 2MHz eq Iz .82 .82 .82 .82 .82	45.63 36.37 61.29 49.47 Horizontal Polarization Level dBuV/m 42.57 33.67 Vertical Polarization Level dBuV/m 38.00 29.80 41.93	74.0 / P 54.0 / A 74.0 / P 54.0 / A 24.0 / P 54.0 / A Limit/ Detector dBuV/m 43.5/ QP 46/ QP 74.0 / P 54.0 / A 74.0 / P 54.0 / A Limit/ Detector dBuV/m 43.5/ QP 46/ QP 74.0 / P

Test Report No.: 14022659 001 Date: 17.06.2010 page 15 of 16

Freq	Level	Limit/ Detector
MHz	dBuV/m	dBuV/m
-	-	43.5/ QP
608.000	29.10	46/ QP
1626.603	46.42	74.0 / P
1626.651	43.50	54.0 / A
4882.051	67.78	74.0 / P
4881.971	43.01	54.0 / A
Tx frequency 2480MHz	Vertical Polarization	
Freq	Level	Limit/ Detector
MHz	dBuV/m	dBuV/m
128.000	38.50	43.5/ QP
-	-	46/ QP
1652.548	42.64	74.0 / P
1652.660	37.85	54.0 / A
4959.696	68.59	74.0 / P
4959.920	43.40	54.0 / A
Tx frequency 2480MHz	Horizontal Polarization	
Freq	Level	Limit/ Detector
MHz	dBuV/m	dBuV/m
119.948	26.70	43.5/ QP
-	-	46/ QP
1652.740	41.92	74.0 / P
1652.644	36.76	54.0 / A
4959.631	67.04	74.0 / P
4959.920	42.99	54.0 / A

Test Report No.: 14022659 001 Date: 17.06.2010 page 16 of 16