

| ISE                                                                 | ED CABid: ES1909                                                                                                                                                                     | Test Report No:<br>NIE: 69157RRF.007                                                                                          |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| <b>Test Report</b><br>USA FCC Part 15.209<br>CANADA RSS-Gen Issue 5 | 5                                                                                                                                                                                    |                                                                                                                               |
| (*) Identification of item tested                                   | Rechargeable wireless hearing                                                                                                                                                        | ng instrument                                                                                                                 |
| (*) Trademark                                                       | ReSound, Beltone                                                                                                                                                                     |                                                                                                                               |
| (*) Model and /or type reference                                    | CABR70                                                                                                                                                                               |                                                                                                                               |
| Other identification of the product                                 | HW version: PCBA,CAM BTE<br>SW version: Dooku2<br>FCC ID: XC26CABR70<br>IC: 6941C-CABR70                                                                                             | 70 RHI,V1.A,C6.0                                                                                                              |
| (*) Features                                                        | BT 1/2Mbit, proximity & MI rae enclosure                                                                                                                                             | dio, rechargeable battery, IP68                                                                                               |
| Applicant                                                           | GN HEARING A/S<br>Lautrupbjerg 7, 2750 Ballerup                                                                                                                                      | o, Denmark                                                                                                                    |
| Test method requested, standard                                     | USA FCC Part 15.209 (10-1-2<br>limits; general requirements.<br>CANADA RSS-Gen Issue 5 a<br>General Requirements for Co<br>ANSI C63.10-2013: American<br>Unlicensed Wireless Devices | 20 Edition): Radiated emission<br>mendment 1 (March 2019).<br>mpliance of Radio Apparatus.<br>n National Standard for Testing |
| Summary                                                             | IN COMPLIANCE                                                                                                                                                                        |                                                                                                                               |
| Approved by (name / position & signature)                           | Rafael López<br>EMC Consumer & RF Lab. M                                                                                                                                             | lanager                                                                                                                       |
| Date of issue                                                       | 2022-02-03                                                                                                                                                                           |                                                                                                                               |
| Report template No                                                  | FDT08_23 (*) "Data provided by the client"                                                                                                                                           |                                                                                                                               |





# Index

| Competences and guarantees   | .3 |
|------------------------------|----|
| General conditions           | .3 |
| Uncertainty                  | .3 |
| Data provided by the client  | .3 |
| Usage of samples             | .4 |
| Test sample description      | .4 |
| Identification of the client | .5 |
| Testing period and place     | .5 |
| Document history             | .5 |
| Environmental conditions     | .5 |
| Remarks and comments         | .6 |
| Testing verdicts             | .7 |
| Summary                      | .7 |
| Appendix A: Test results     | .8 |



# Competences and guarantees

DEKRA Testing and Certification S.A.U. is a testing laboratory accredited by the National Accreditation Body (ENAC -Entidad Nacional de Acreditación), to perform the tests indicated in the Certificate No. 51/LE 147.

DEKRA Testing and Certification S.A.U is a FCC-recognized accredited testing laboratory with appropriate scope of accreditation that include testing performed in this test report.

DEKRA Testing and Certification S.A.U is an ISED-recognized accredited testing laboratory, CABid: ES1909, with the appropriate scope of accreditation that covers the performed tests in this report.

In order to assure the traceability to other national and international laboratories, DEKRA Testing and Certification S.A.U. has a calibration and maintenance program for its measurement equipment.

DEKRA Testing and Certification S.A.U. guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated on the report and, it is based on the knowledge and technical facilities available at DEKRA Testing and Certification S.A.U. at the time of performance of the test.

DEKRA Testing and Certification S.A.U. is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Test Report apply only to the particular item under test established in this document.

**IMPORTANT:** No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of DEKRA Testing and Certification S.A.U.

### General conditions

- 1. This report is only referred to the item that has undergone the test.
- 2. This report does not constitute or imply on its own an approval of the product by the Certification Bodies or competent Authorities.
- 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of DEKRA Testing and Certification S.A.U.
- 4. This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of DEKRA Testing and Certification S.A.U. and the Accreditation Bodies.

### Uncertainty

Uncertainty (factor k=2) was calculated according to the DEKRA Testing and Certification S.A.U. internal document PODT000.

# Data provided by the client

The following data has been provided by the client:

- 1. Information relating to the description of the sample ("Identification of the item tested", "Trademark", "Model and/or type reference tested").
- 2. The sample of the model CABR70 is a rechargeable wireless hearing aid.

DEKRA Testing and Certification S.A.U. declines any responsibility with respect to the information provided by the client and that may affect the validity of result.



# Usage of samples

Samples undergoing test have been selected by: The client.

- Sample S/01 is composed of the following elements:

| Control Nº | Description                                 | Model  | Serial Nº  | Reception  |
|------------|---------------------------------------------|--------|------------|------------|
| 69157B/018 | Rechargeable wireless<br>hearing instrument | CABR70 | 2100814940 | 2021/11/24 |

Sample S/01 has undergone the test(s): The Conducted tests indicated in the Appendix A.

- Sample S/02 is composed of the following elements:

| Control Nº | Description                                 | Model  | Serial Nº  | Reception  |
|------------|---------------------------------------------|--------|------------|------------|
| 69157B/013 | Rechargeable wireless<br>hearing instrument | CABR70 | 2100814935 | 2021/11/24 |

Sample S/02 has undergone the test(s): The Radiated tests indicated in the Appendix A.

# Test sample description

| Ports                                  |                              |              | C               | able    |                        |
|----------------------------------------|------------------------------|--------------|-----------------|---------|------------------------|
|                                        | Port name and                | Specified    | Attached        | Shielde | ed Coupled             |
|                                        | description                  | max          | during tes      | t       | to                     |
|                                        |                              | length [m]   |                 |         | patient <sup>(3)</sup> |
|                                        | -                            |              |                 |         |                        |
|                                        | -                            |              |                 |         |                        |
|                                        | -                            |              |                 |         |                        |
| Supplementary information to the ports | -                            |              |                 |         |                        |
| Rated power supply:                    | Valtage and Frequency        |              | Reference poles |         |                        |
|                                        | voltage and Frequency        | ·            | L1 L2           | 2 L3    | N PE                   |
|                                        | AC:                          |              |                 |         |                        |
|                                        | DC: 3.8 Vdc                  |              |                 | •       | · · ·                  |
| Rated Power:                           | -                            |              |                 |         |                        |
| Clock frequencies :                    | -                            |              |                 |         |                        |
| Other parameters:                      | -                            |              |                 |         |                        |
| Software version:                      | Dooku2                       |              |                 |         |                        |
| Hardware version:                      | PCBA,CAM BTE70 RHI,V1.A,C6.0 |              |                 |         |                        |
| Dimensions in cm (W x H x D) :         | -                            |              |                 |         |                        |
| Mounting position:                     | Table top equipr             | nent         |                 |         |                        |
|                                        | □ Wall/Ceiling mou           | inted equipm | nent            |         |                        |
|                                        | Floor standing e             | quipment     |                 |         |                        |
|                                        | Hand-held equip              | ment         |                 |         |                        |
|                                        | Other:                       |              |                 |         |                        |
| Modules/parts:                         | Module/parts of test item    |              |                 | Туре    | Manufacturer           |
|                                        | -                            |              |                 |         |                        |
|                                        | -                            |              |                 |         |                        |
|                                        | Description                  |              | Ту              | ре      | Manufacturer           |



| Accessories (not part of the test        | -           |           |            |
|------------------------------------------|-------------|-----------|------------|
| item) :                                  |             |           |            |
| Documents as provided by the             | Description | File name | Issue date |
| applicant :                              | -           |           |            |
| <sup>3)</sup> Only for Medical Equipment |             |           |            |

<sup>(3)</sup> Only for Medical Equipment

# Identification of the client

**GN HEARING A/S** 

Lautrupbjerg 7, 2750 Ballerup, Denmark

### Testing period and place

| Test Location | DEKRA Testing and Certification S.A.U. |
|---------------|----------------------------------------|
| Date (start)  | 2021-12-14                             |
| Date (finish) | 2021-12-21                             |

# **Document history**

| Report number | Date       | Description    |
|---------------|------------|----------------|
| 69157RRF.007  | 2019-02-21 | First release. |

# **Environmental conditions**

In the control chamber, the following limits were not exceeded during the test:

| Temperature       | Min. = 15 °C<br>Max. = 35 °C |
|-------------------|------------------------------|
| Relative humidity | Min. = 20 %<br>Max. = 75 %   |

In the semianechoic chamber, the following limits were not exceeded during the test.

| Temperature       | Min. = 15 °C<br>Max. = 35 °C |
|-------------------|------------------------------|
| Relative humidity | Min. = 20 %<br>Max. = 75 %   |

In the chamber for conducted measurements, the following limits were not exceeded during the test:

| Temperature       | Min. = 15 °C<br>Max. = 35 °C |
|-------------------|------------------------------|
| Relative humidity | Min. = 20 %<br>Max. = 75 %   |



# Remarks and comments

The tests have been performed by the technical personnel: Antonio Manuel Sánchez, Jaime Barranquero.

Used instrumentation:

| Conducted M | easurements: |
|-------------|--------------|
|-------------|--------------|

| 00110000 |                                                                       | Last Calibration | Due Calibration |  |  |
|----------|-----------------------------------------------------------------------|------------------|-----------------|--|--|
| 1.       | Signal and Spectrum Analyzer 2 Hz - 50 GHz                            | 2021/07          | 2023/07         |  |  |
| 2.       | DC Power Supply 30V/3A 90W, GW INSTEK<br>GPS-3030D                    | N/A              | N/A             |  |  |
| 3.       | Digital Multimeter FLUKE 175                                          | 2021/12          | 2021/12 2022/12 |  |  |
| Radiated | Measurements:                                                         | Last Calibration | Due Calibration |  |  |
| 1.       | Semianechoic Absorber Lined Chamber<br>ALBATROSS PROJECTS GMBH P29419 | 2020/01          | 2023/01         |  |  |
| 2.       | Shielded Room ALBATROSS PROJECTS<br>GMBH P29419                       | N/A              | N/A             |  |  |
| 3.       | Ultralog Antenna 30MHz-6GHz, ROHDE AND SCHWARZ HL562E_UPG             | 2019/10          | 2022/10         |  |  |
| 4.       | EMI Test Receiver 2 Hz - 44 GHz ROHDE AND<br>SCHWARZ ESW44            | 2020/02          | 2022/02         |  |  |
| 5.       | ACTIVE LOOP ANTENNA 9 KHZ-30 MHz<br>SCHWARZBECK FMZB 1519B            | 2019/11          | 2022/11         |  |  |



# Testing verdicts

| Not applicable: | N/A |
|-----------------|-----|
| Pass:           | Р   |
| Fail:           | F   |
| Not measured:   | N/M |

# Summary

### 1. SRD 10.667 MHz.

| FCC PART 15.209 / RSS-Gen PARAGRAPH                   |         |        |
|-------------------------------------------------------|---------|--------|
| Requirement – Test case                               | Verdict | Remark |
| Occupied bandwidth                                    | Р       |        |
| 15.209 (a) / RSS-Gen 8.9. Transmitter emission limits | Р       |        |
| Supplementary information and remarks:<br>None.       |         |        |



# Appendix A: Test results



### INDEX

| TEST CONDITIONS              | 1(                         | ) |
|------------------------------|----------------------------|---|
| Occupied Bandwidth           |                            | 2 |
| 15.209 (a) / RSS-Gen 8.9. Tr | ransmitter emission limits | 3 |



### **TEST CONDITIONS**

| (*) Declared by the A | pplicant |
|-----------------------|----------|
|-----------------------|----------|

POWER SUPPLY (\*):

Vnominal:3.8 VdcType of Power Supply:Rechargeable battery.

### ANTENNA (\*):

| Type of Antenna:               | Integral (induction coil). |
|--------------------------------|----------------------------|
| Maximum Declared Antenna Gain: | N/A                        |

#### TEST FREQUENCIES:

Nominal Operating Frequency: 10.667 MHz

#### CONDUCTED MEASUREMENTS:

The equipment under test EUT was set up in a shielded room and it is connected to the spectrum analyzer through a RF cable and a coupling device.



#### RADIATED MEASUREMENTS:

All radiated tests were performed in a semi-anechoic chamber. The measurement antenna is situated at a distance of 3 m (Loop antenna for the range between 9 kHz to 30 MHz and Bilog antenna for 30 MHz to 200 MHz).

For radiated emissions in the range 9 kHz to 30 MHz that is performed at a distance closer than the specified distance, an inverse proportionality factor of 40 dB per decade is used to normalize the measured data for determining compliance.

The equipment under test was set up on a non-conductive platform above the ground plane and the situation and orientation was varied to find the maximum radiated emission. It was also rotated 360° and the antenna height was varied from 1 to 4 meters to find the maximum radiated emission.

In the range between 9 kHz and 30 MHz the measurements were made in the three different orientation planes of the loop antenna to determine the maximum received field. Measurements above 30 MHz up to 200 MHz were made in both horizontal and vertical planes of polarization.



Radiated measurements setup f < 30 MHz:



Radiated measurements setup f > 30 MHz up to 200 MHz:



Shielded Control Room For Radiated Measurements



### Occupied Bandwidth

#### RESULTS:

| 99% Bandwidth (MHz)           | 3.655985279 |
|-------------------------------|-------------|
| Measurement uncertainty (kHz) | <±0.50      |





### 15.209 (a) / RSS-Gen 8.9. Transmitter emission limits

#### SPECIFICATION:

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table (see §15.205(c) / RSS-Gen):

| Frequency Range<br>(MHz) | Field strength ( $\mu$ V/m) | Field strength<br>(dBµV/m) | Measurement<br>distance (m) |  |
|--------------------------|-----------------------------|----------------------------|-----------------------------|--|
| 0.009-0.490              | 0.009-0.490 2400/F(kHz) -   |                            | 300                         |  |
| 0.490-1.705              | 24000/F(kHz)                | -                          | 30                          |  |
| 1.705 - 30.0 30          |                             | 29.54                      | 30                          |  |
| 30 - 88                  | 100                         | 40                         | 3                           |  |
| 88 - 216                 | 150                         | 43.5                       | 3                           |  |
| 216 - 960 200            |                             | 46                         | 3                           |  |
| Above 960                | 500                         | 54                         | 3                           |  |

#### RESULTS:

All tests were performed in a semi-anechoic chamber at a distance of 3 m, except for the measurement of the fundamental emission that was performed at a distance of 1 m due to its extremely low emission level. The maximum peak value of the fundamental emission was measured as the worst case.

The spectrum was inspected from 9 kHz to 200 MHz searching for spurious signals.

The field strength is calculated by adding correction factor to the measured level from the spectrum analyser. This correction factor includes antenna factor and cable loss.

#### Fundamental emission:

| E(dBµV/m) extrapolated to 30 m (40 dB/decade) | -19.89 |
|-----------------------------------------------|--------|
| Equivalent level (dBµA/m) at 30 m             | -71.39 |
| Measurement uncertainty (dB)                  | <±3.04 |

Verdict: PASS

#### Frequency range 9 kHz - 30 MHz:

No spurious frequencies detected at less than 20 dB below the limit.

Verdict: PASS

### Frequency range 30 - 200 MHz:

No spurious frequencies detected at less than 20 dB below the limit.

Verdict: PASS



### FUNDAMENTAL EMISSION:

| MultiView 😁                                          | Spectrum                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |          |          |                      |                               |                                                                                                                 |                                   |
|------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------|----------|----------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Ref Level 10.00<br>Att<br>Input<br>TDE Input2 "E 9k- | dBµV/m<br>0 dB ● SWT 10 n<br>2 DC PS C<br>30MHz 1to30m"   | ● RBW 10 kHz<br>ns ● VBW 30 kHz<br>Off Notch Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mode Sweep                   |          |          |                      |                               | Frequency 1                                                                                                     | 0.6600000 MHz                     |
| 1 Frequency Swe                                      | ep                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |          |          |                      |                               |                                                                                                                 | 1Pk View                          |
|                                                      |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |          |          |                      |                               | M                                                                                                               | l[1] -19.89 dBμV/m                |
|                                                      |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |          |          |                      |                               |                                                                                                                 | 10.572750 MHz                     |
| 0 dBµV/m                                             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |          |          |                      |                               |                                                                                                                 |                                   |
|                                                      |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |          |          |                      |                               |                                                                                                                 |                                   |
| -10 dBµV/m                                           |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |          |          |                      |                               |                                                                                                                 |                                   |
|                                                      |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | M1       |          |                      |                               |                                                                                                                 |                                   |
| -20 dBµV/m                                           |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | X AI     | ۸۸ ۸     |                      |                               |                                                                                                                 |                                   |
|                                                      |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | A .[\[*\ | MAL N    |                      |                               |                                                                                                                 |                                   |
| -30 dBµV/m                                           | And all they thread to an                                 | March and an an all survey and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marthe en wet 1 Around       | and M .  | Marchile | Manager and a se     | a bara a bara bara a sa sa sa | h have barres                                                                                                   | h                                 |
| an nandri larran an an annar fala ya                 | A MANA AND AND AND AN | a Cone, of the control of the second of the control | h was not not be the the the | Y        | . Q      | MAN A KA. MANDAN, MA | and the second and here and   | an yan Ukan yan katin katin yang katin yang katin katin yang katin katin yang katin katin yang katin katin yang | and a supervised and a shore when |
| -40 dBµV/m                                           |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |          |          |                      |                               |                                                                                                                 |                                   |
|                                                      |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |          |          |                      |                               |                                                                                                                 |                                   |
| -50 dBµV/m                                           |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |          |          |                      |                               |                                                                                                                 |                                   |
|                                                      |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |          |          |                      |                               |                                                                                                                 |                                   |
| -60. dBuV/m                                          |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |          |          |                      |                               |                                                                                                                 |                                   |
|                                                      |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |          |          |                      |                               |                                                                                                                 |                                   |
| 70 dBuild/m                                          |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |          |          |                      |                               |                                                                                                                 |                                   |
| -70 dBpv/m                                           |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |          |          |                      |                               |                                                                                                                 |                                   |
|                                                      |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |          |          |                      |                               |                                                                                                                 |                                   |
| -80 dBµV/m                                           |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |          |          |                      |                               |                                                                                                                 |                                   |
|                                                      |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |          |          |                      |                               |                                                                                                                 |                                   |
| CF 10.66 MHz                                         |                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10000 pts                    |          | 5        | 00.0 kHz/            | 1                             | 1                                                                                                               | Span 5.0 MHz                      |



### FREQUENCY RANGE 9 kHz - 30 MHz:



Note: The scan is performed with a peak detector.

Resolution bandwidth: 200 Hz for 9 kHz  $\leq$  f  $\leq$  150 kHz 9 kHz for 150 kHz  $\leq$  f  $\leq$  30 MHz

FREQUENCY RANGE 30 - 200 MHz:



Note: The scan is performed with a peak detector.