

Test of AJA Video Systems Inc.
Ki Pro 802.11b/g Wireless A/V Control System
To: FCC 47 CFR Part 15.247 & IC RSS-210
Test Report Serial No.: COMM02-A2 Rev A

TEST REPORT
FROM
MiCOMLabs

Test of AJA Video Systems Inc.
Ki Pro 802.11b/g Wireless A/V Control System
to
To FCC 47 CFR Part 15.247 & IC RSS-210
Test Report Serial No.: COMM02-A2 Rev A

This report supersedes: None

Manufacturer: AJA Video Systems, Inc
443 Crown Point Circle
Grass Valley, California 95945
USA

Product Function: A/V recording and playback device

Copy No: pdf **Issue Date:** 4th June 2009

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc.
440 Boulder Court, Suite 200
Pleasanton, CA 94566 USA
Phone: +1 (925) 462-0304
Fax: +1 (925) 462-0306
www.micomlabs.com

CERTIFICATE #2381.01

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Title: Ki Pro 802.11b/g Wireless A/V Control System
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: COMM02-A2 Rev A
Issue Date: 4th June 2009
Page: 3 of 92

This page has been left intentionally blank

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

TABLE OF CONTENTS

ACCREDITATION, LISTINGS and RECOGNITION.....	5
1. TEST RESULT CERTIFICATE	8
2. REFERENCES AND MEASUREMENT UNCERTAINTY	9
2.1. Normative References	9
2.2. Test and Uncertainty Procedures	9
3. PRODUCT DETAILS AND TEST CONFIGURATIONS	10
3.1. Technical Details	10
3.2. Scope of Test Program.....	11
3.3. Equipment Model(s) and Serial Number(s)	12
3.4. Antenna Details	12
3.5. Cabling and I/O Ports	12
3.6. Test Configurations.....	13
3.7. Equipment Modifications.....	15
3.8. Deviations from the Test Standard	15
4. TEST SUMMARY	16
5. TEST RESULTS	18
5.1. Device Characteristics	18
5.1.1. <i>6 dB and 99 % Bandwidth</i>	18
5.1.2. <i>Peak Output Power</i>	26
5.1.3. <i>Peak Power Spectral Density</i>	35
5.1.4. <i>Maximum Permissible Exposure</i>	43
5.1.5. <i>Conducted Spurious Emissions</i>	44
5.1.6. <i>Radiated Emissions</i>	56
5.1.7. <i>AC Wireline Conducted Emissions (150 kHz – 30 MHz)</i>	85
6. PHOTOGRAPHS.....	88
6.1. Radiated Spurious Emissions 115 Vac 60 Hz	88
6.2. General Measurement Test Set-Up	89
6.3. AC Wireline Emissions Test Set-Up	90
7. TEST EQUIPMENT DETAILS.....	91

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Ki Pro 802.11b/g Wireless A/V Control System
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: COMM02-A2 Rev A
Issue Date: 4th June 2009
Page: 5 of 92

ACCREDITATION, LISTINGS and RECOGNITION

ACCREDITATION

MiCOM Labs, Inc. an accredited laboratory complies with the international standard BS EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <http://www.a2la.org/scopepdf/2381-01.pdf>

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Ki Pro 802.11b/g Wireless A/V Control System
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: COMM02-A2 Rev A
Issue Date: 4th June 2009
Page: 6 of 92

LISTINGS

MiCOM Labs test facilities are listed by the following organizations;

North America

United States of America

Federal Communications Commission (FCC): 102167

Canada

Industry Canada: 4143A

Japan Registration

VCCI Membership Number: 2959

- Radiation 3 meter site; Registration No. R-2881
- Line Conducted, Registration Nos. C-3181 & T-1470
- Emissions; Registration Nos. C-3180 & T-1469

RECOGNITION

APEC MRA (Asia-Pacific Economic Community Mutual Recognition Agreement)

Conformity Assessment Body (CAB) – MiCOM Labs

Test data generated by MiCOM Labs is accepted in the following countries under the APEC MRA.

Country	Recognition Body	Phase	CAB Identification No.
Australia	Australian Communications and Media Authority (ACMA)	I	US0159
Hong Kong	Office of the Telecommunication Authority (OFTA)	I	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	I	
Singapore	Infocomm Development Authority (IDA)	I	
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	I	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Ki Pro 802.11b/g Wireless A/V Control System
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: COMM02-A2 Rev A
Issue Date: 4th June 2009
Page: 7 of 92

DOCUMENT HISTORY

Document History		
Revision	Date	Comments
Draft		
Rev A	4 th June 2009	Initial Release

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Ki Pro 802.11b/g Wireless A/V Control System
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: COMM02-A2 Rev A
Issue Date: 4th June 2009
Page: 8 of 92

1. TEST RESULT CERTIFICATE

Manufacturer:	AJA Video Systems, Inc 443 Crown Point Circle Grass Valley, California 95945 USA	Tested By:	MiCOM Labs, Inc. 440 Boulder Court Suite 200 Pleasanton California, 94566, USA
EUT:	A/V recording and playback device	Telephone:	+1 925 462 0304
Model:	Ki Pro	Fax:	+1 925 462 0306
S/N:	0016		
Test Date(s):	16th March to 16th April 2009; 15th May, 2009	Website:	www.micomlabs.com

STANDARD(S)	TEST RESULTS
FCC 47 CFR Part 15.247 & IC RSS-210	EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

1. This document reports conditions under which testing was conducted and the results of testing performed.
2. Details of test methods used have been recorded and kept on file by the laboratory.
3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve
Quality Manager MiCOM Labs,

Gordon Hurst
President & CEO MiCOM Labs, Inc.

CERTIFICATE #2381.01

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Ki Pro 802.11b/g Wireless A/V Control System
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: COMM02-A2 Rev A
Issue Date: 4th June 2009
Page: 9 of 92

2. REFERENCES AND MEASUREMENT UNCERTAINTY

2.1. Normative References

Ref.	Publication	Year	Title
(i)	FCC 47 CFR Part 15.247	2007	Code of Federal Regulations
(ii)	Industry Canada RSS-210	Issue 7 June 2007	Low Power License-Exempt Radiocommunication Devices (All Frequency Bands)
(iii)	Industry Canada RSS-Gen	Issue 2 June 2007	General Requirements and Information for the Certification of Radiocommunication Equipment.
(iv)	ANSI C63.4	2003	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
(v)	CISPR 22/ EN 55022	2006	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
(vi)	M 3003	Edition 1 Dec. 1997	Expression of Uncertainty and Confidence in Measurements
(vii)	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
(viii)	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
(ix)	A2LA	14 th September 2005	Reference to A2LA Accreditation Status – A2LA Advertising Policy

2.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor $k = 2$, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Ki Pro 802.11b/g Wireless A/V Control System
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: COMM02-A2 Rev A
Issue Date: 4th June 2009
Page: 10 of 92

3. PRODUCT DETAILS AND TEST CONFIGURATIONS

3.1. Technical Details

Details	Description
Purpose:	Test of the Ki Pro 802.11b/g Wireless A/V Control System to FCC Part 15.247 and Industry Canada RSS-210 regulations.
Applicant:	As Manufacturer
Manufacturer:	AJA Video Systems, Inc 443 Crown Point Circle Grass Valley, California 95945 USA
Laboratory performing the tests:	MiCOM Labs, Inc. 440 Boulder Court, Suite 200 Pleasanton, California 94566 USA
Test report reference number:	COMM02-A2 Rev A
Date EUT received:	16 th March 2009
Standard(s) applied:	FCC 47 CFR Part 15.247 & IC RSS-210
Dates of test (from - to):	16th March to 16th April 2009; 15th May, 2009
No of Units Tested:	1
Type of Equipment:	A/V recording and playback device
Manufacturers Trade Name:	AJA Video Systems Ki Family
Model:	Ki Pro
Location for use:	Indoor/Outdoor
Declared Frequency Range(s):	2400 - 2483.5 MHz
Software Release	1.0
Type of Modulation:	Per 802.11 –CCK, BPSK, QPSK, DSSS, OFDM
Declared Nominal Peak EIRP	802.11b: +18.0 dBm
Output Power:	802.11g: +21.0 dBm
EUT Modes of Operation:	802.11 b/g
Transmit/Receive Operation:	Time Division Duplex
Rated Input Voltage and Current:	100-240VAC 1.1A (Max), 12Vdc 3.3A
Operating Temperature Range:	Declared range 0 to +40°C
ITU Emission Designator:	802.11b – 14M0W7D 802.11g – 16M8W7D
Clock Frequencies	CPU 400 MHz, 133 MHz, 66.67 MHz; ETH 25 MHz, 125 MHz, SATA 75 MHz; PCI 33.33 MHz, 100 MHz; Firewire 98.304 MHz; Video Board 27, 80, 148.3516, 148.5 MHz.
Frequency Stability:	±50 ppm max
Equipment Dimensions:	9" x 3.2" x 6"
Weight:	3.6 lbs
Primary function of equipment:	A/V recording and playback device with 802.11 b/g wireless command and control capability.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

3.2. Scope of Test Program

The scope of the test program was to test the AJA Video Systems Inc Ki Pro A/V recording and playback device with wireless transceiver in the frequency ranges 2400 - 2483.5 MHz for compliance against FCC 47 CFR Part 15.247 and Industry Canada RSS-210 specifications.

The unit operates via either a 100 - 240 Vac 60/50 Hz power adaptor or can be battery powered via 12Vdc for field operation.

AJA Video Systems Inc
Ki Pro A/V recording and playback device

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Ki Pro 802.11b/g Wireless A/V Control System
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: COMM02-A2 Rev A
Issue Date: 4th June 2009
Page: 12 of 92

3.3. Equipment Model(s) and Serial Number(s)

Type (EUT/Support)	Equipment Description (Including Brand Name)	Mfr	Model No.	Serial No.
EUT	A/V recording and playback device.	AJA Video Systems Inc	Ki Pro	0016
Support	Laptop PC	IBM	Thinkpad	Not Available
Support	HDMI to SD/HD-SDI Video and Audio Converter	AJA Video Systems Inc	AJA HA5	1A00559
Support	HD-SDI/SDI to HDMI Video and Audio Converter	AJA Video Systems Inc	AJA HI5	03972
Support	Multiformat Pattern Generator	Leader	LT450	Not Available
Support	Video Display	Sharp	Aquos LC-30D30U	Not Available

3.4. Antenna Details

1. 2400-2500 MHz
 - Integral 2 dBi Monopole Omni directional

3.5. Cabling and I/O Ports

Number and type of I/O ports

- 1) SDI - Digital video I/O (Qty 2)
- 2) HDMI I/O (Qty 2)
- 3) BNC - Component Analog Video I/O (Qty 6)
- 4) BNC - Composite Analog Video Out (Qty 1)
- 5) XLR Analog Audio I/O (Qty 4)
- 6) RCA Analog Audio I/O (Qty 4)
- 7) BNC - Analog LTC I/O (Qty 2)
- 8) 2.5 mm phono-jack- LANC - Control I/O (Qty 3)
- 9) RS-422 9-pin D-sub (Qty 1)
- 10) FireWire 800 (Qty 1)
- 11) 10/100/1000 Ethernet (Qty 1)
- 12) FireWire 400 (Qty 1)
- 13) Express Cards (Qty 2)
- 14) SATA Drive (Qty 1)
- 15) 3.5 mm phono-jack (Qty 1)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Ki Pro 802.11b/g Wireless A/V Control System
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: COMM02-A2 Rev A
Issue Date: 4th June 2009
Page: 13 of 92

3.6. Test Configurations

Testing was performed to determine the highest power level versus bit rate. 802.11b 1 MB/s, and 6 MB/s for 802.11g were found to provide the highest power levels. These data rates were used to exercise the product throughout the entire test program.

Matrix of Channel test configurations.

Operational Mode (802.11)	Frequencies (MHz)
b, g	2,412 2,437 2,462

Matrix of Access Point Data Rate Configurations

'b' Mode Data Rate	'g' Mode Data Rate
1 Mb/s	6 Mb/s

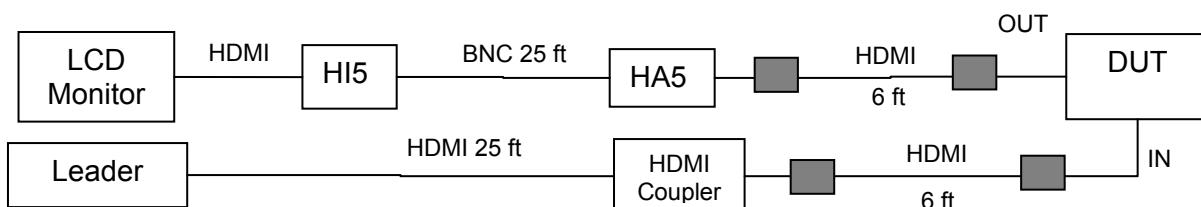
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

EUT Configuration during Radiated Emissions Testing:

The video mode of operation: HDMI, SDIO or Composite Video for the Ki Pro is selected in software such that only one of the three options is used at any given time. None of these modes can be operated simultaneously with the other. During pre-scan testing of the Ki Pro device, it was determined that using the HDMI I/O was the worst case configuration for producing digital emissions. Therefore, this operational configuration was used for FCC emissions testing.

EUT Terminal configurations:-

- Signal IN: HDMI IN
- Signal Out: HDMI Out
- Control/TC: Firewire cable connected
- Lens Tap: Terminated to Lanc loop in loop back mode
- Lanc loop: Terminated to Lens Tap in loop back mode
- CVBS: 1 meter BNC cable terminated in 75 Ohm load (composite video monitor)
- LTC In: Terminated to LTC Out in loop back mode
- LTC Out: Terminated to LTC In in loop back mode
- Analog Audio Outputs: Mic: Left / Right / Line: Left / Right


Cables details utilized during Radiated Emissions Testing:

HDMI IN: 6 ft cable (cable part number: HH-28F-06) connected to the 25 foot HDMI cable by female to female HDMI Adaptor.

HDMI OUT: 6 ft cable (cable part number: HH-28F-06) connected to AJA HA5 Convertor Box. The AJA HA5 Convertor Box is connected to AJA HI5 convertor box via 25 ft coaxial cable. The HI5 connected via 3ft cable to LCD monitor.

Note: 25 foot cables were used to connect the EUT to the AE equipment located outside of the anechoic chamber. The maximum cable length during typical operation as declared by the manufacturer is 15 feet.

Diagram of EUT test setup for Radiated Emissions

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

HDMI Cable with Ferrites (Part Number: HH-28F-06)

3.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. Ferrite was added internally to the EUT on the power supply cable.
2. EUT User manual to indicate HDMI Cable part numbers (as indicated in section 3.6 Test Configuration) or equivalent, required to bring EUT configuration into compliance.

Note: Test lab was not in control of EUT's during entire test period. EUT's were returned to the manufacturer for troubleshooting and review.

3.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

Title: Ki Pro 802.11b/g Wireless A/V Control System
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: COMM02-A2 Rev A
Issue Date: 4th June 2009
Page: 16 of 92

4. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the **FCC CFR47 Part 15.247** and **Industry Canada RSS-210** and **Industry Canada RSS-Gen**.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(a)(2) A8.2(1) 4.4	6 dB and 99 % Bandwidths	≥ 500 kHz	Conducted	Complies	5.1.1
15.247(b)(3) 15.31(e) A8.4(4)	Peak Output Power Voltage Variation	Shall not exceed 1W Variation of supply voltage 85 % -115 %	Conducted	Complies	5.1.2
15.247(e) A8.2	Peak Power Spectral Density	Shall not be greater than +8 dBm in any 3 kHz band	Conducted	Complies	5.1.3
15.247(i) 5.5	Maximum Permissible Exposure	Exposure to radio frequency energy levels	Conducted	Complies	5.1.4
15.247(d) 15.205 / 15.209 A8.5 2.2 4.7	Spurious Emissions (30MHz - 26 GHz b/g and 30 MHz – 40 GHz a)	The radiated emission in any 100 kHz of out-band shall be at least 20 dB below the highest in-band spectral density	Conducted	Complies	5.1.5

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Ki Pro 802.11b/g Wireless A/V Control System
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: COMM02-A2 Rev A
Issue Date: 4th June 2009
Page: 17 of 92

List of Measurements (continued)

The following table represents the list of measurements required under the **FCC CFR47 Part 15.247**, **Industry Canada RSS-210**, and **Industry Canada RSS-Gen.**

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(d) 15.205 / 15.209 A8.5 2.2 2.6 4.7 Industry Canada only RSS-Gen §4.8, §6	Radiated Emissions Transmitter Radiated Spurious Emissions Radiated Band Edge Receiver Radiated Spurious Emissions	Restricted Bands Emissions above 1 GHz Band-edge results Peak Emissions Emissions above 1 GHz	Radiated	Complies Complies Complies Complies	5.1.6 5.1.6.1 5.1.6.1. 5.1.6.2
15.205 / 15.209 2.2	Radiated Spurious Emissions	Emissions <1 GHz (30M-1 GHz)	Radiated	Complies	5.1.6.3
15.109 ICES-003	Radiated Digital Emissions	Radiated Digital Emissions	Radiated	Complies	5.1.6.4
15.207 7.2.2	AC Wireline Conducted Emissions 150 kHz–30 MHz	Conducted Emissions	Conducted	Complies	5.1.7

Note 1: Test results reported in this document relate only to the items tested

Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

Note 3: Section 3.7 'Equipment Modifications' highlights the modifications that were required to bring the product into compliance with the above test matrix

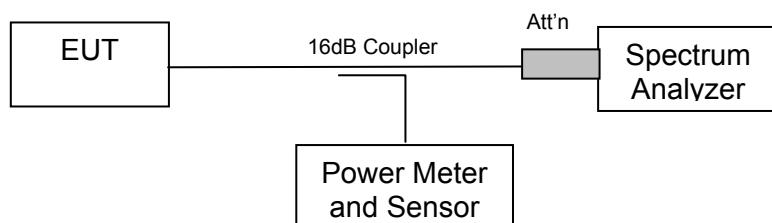
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5. TEST RESULTS

5.1. Device Characteristics

5.1.1. 6 dB and 99 % Bandwidth

FCC, Part 15 Subpart C §15.247(a)(2)


Industry Canada RSS-210 §A8.2

Industry Canada RSS-Gen §4.4

Test Procedure

The bandwidth at 6 dB and 99 % is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

Test Measurement Set up

Measurement set up for 6 dB and 99 % bandwidth test

Measurement Results for 6 dB & 99% Bandwidth

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

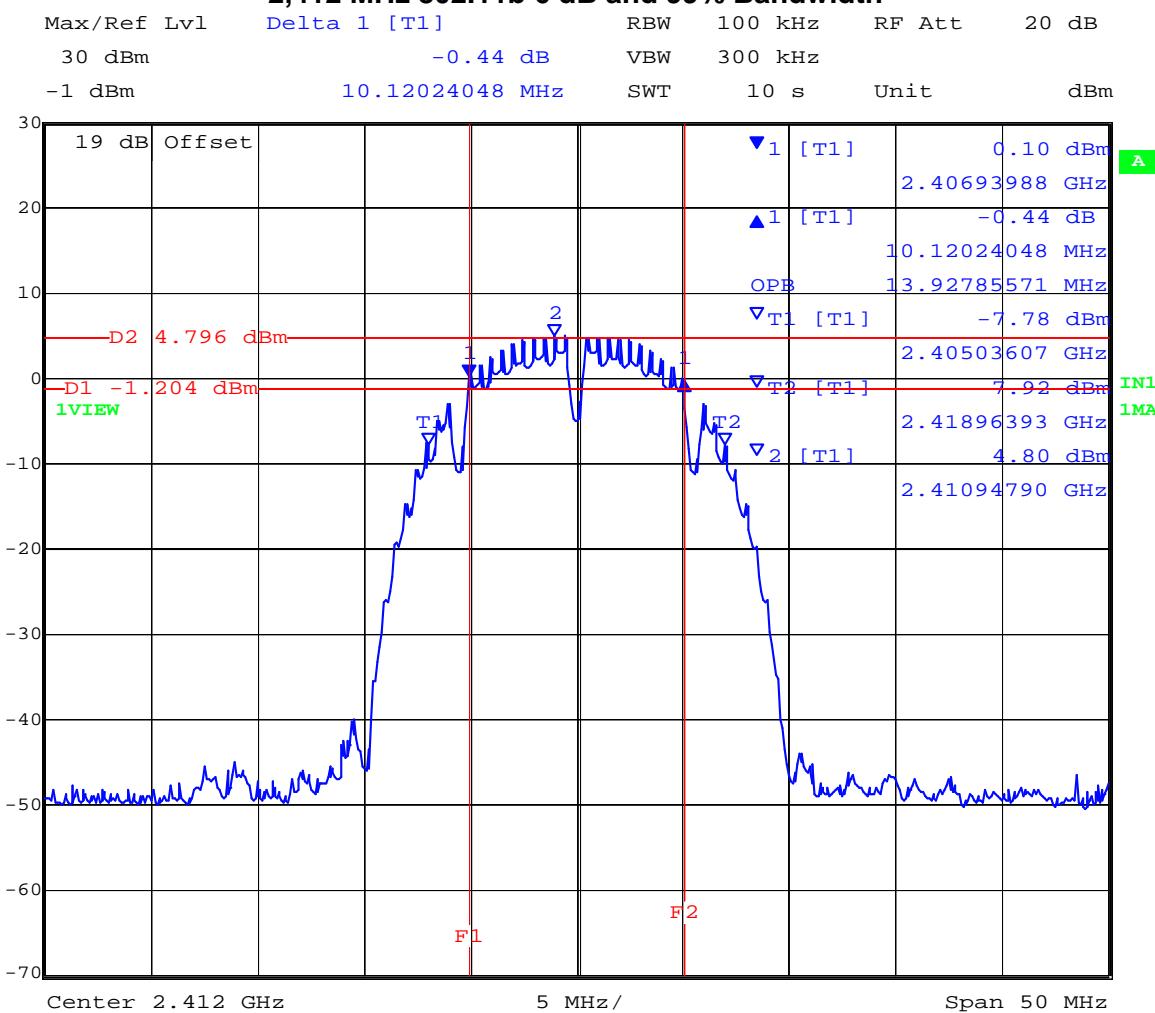
Radio Parameters

Duty Cycle: 100%

Output: Modulated Carrier

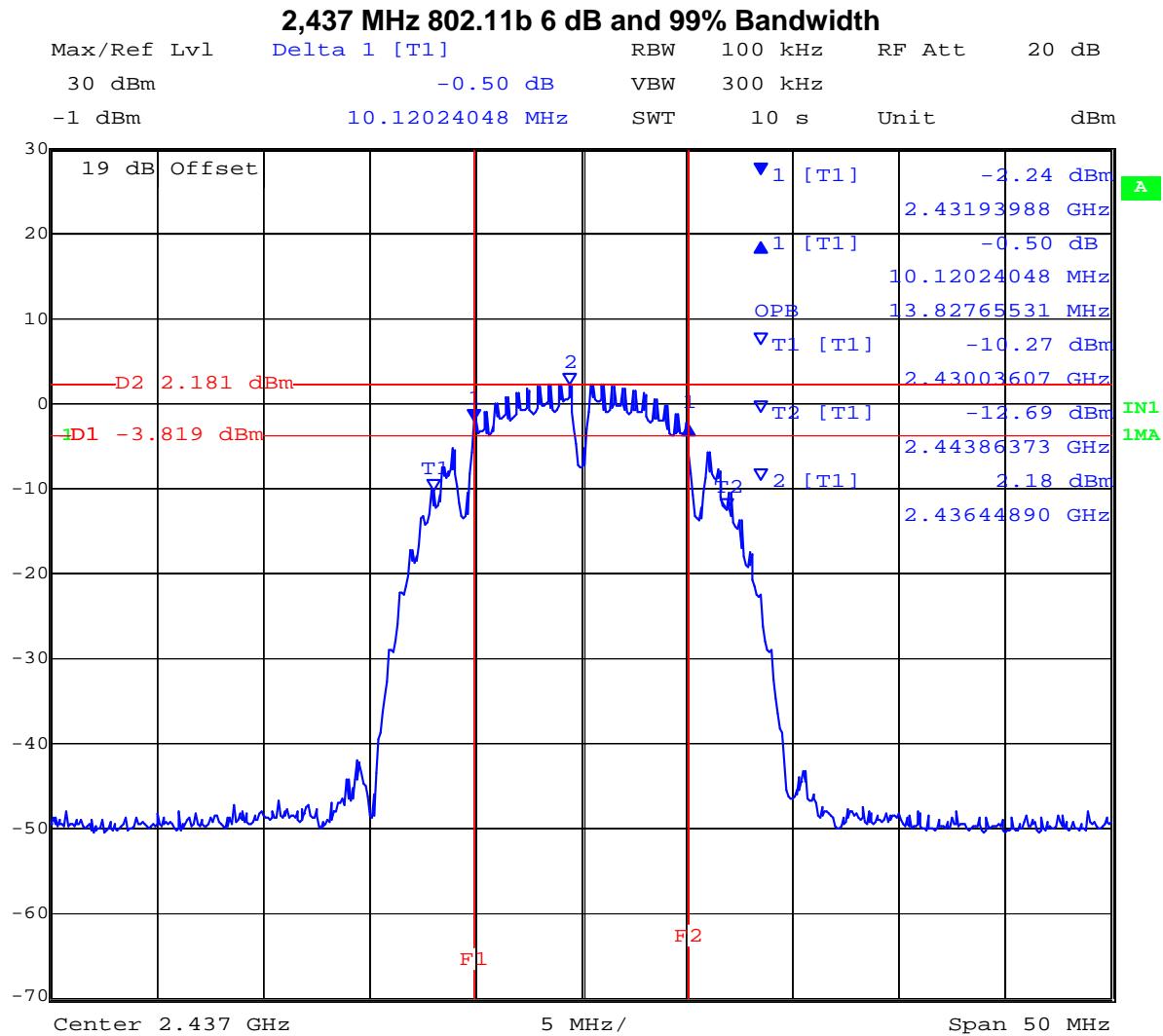
Power: Maximum

Measurement Results for 6 dB and 99% Operational Bandwidth(s)


Ambient conditions.

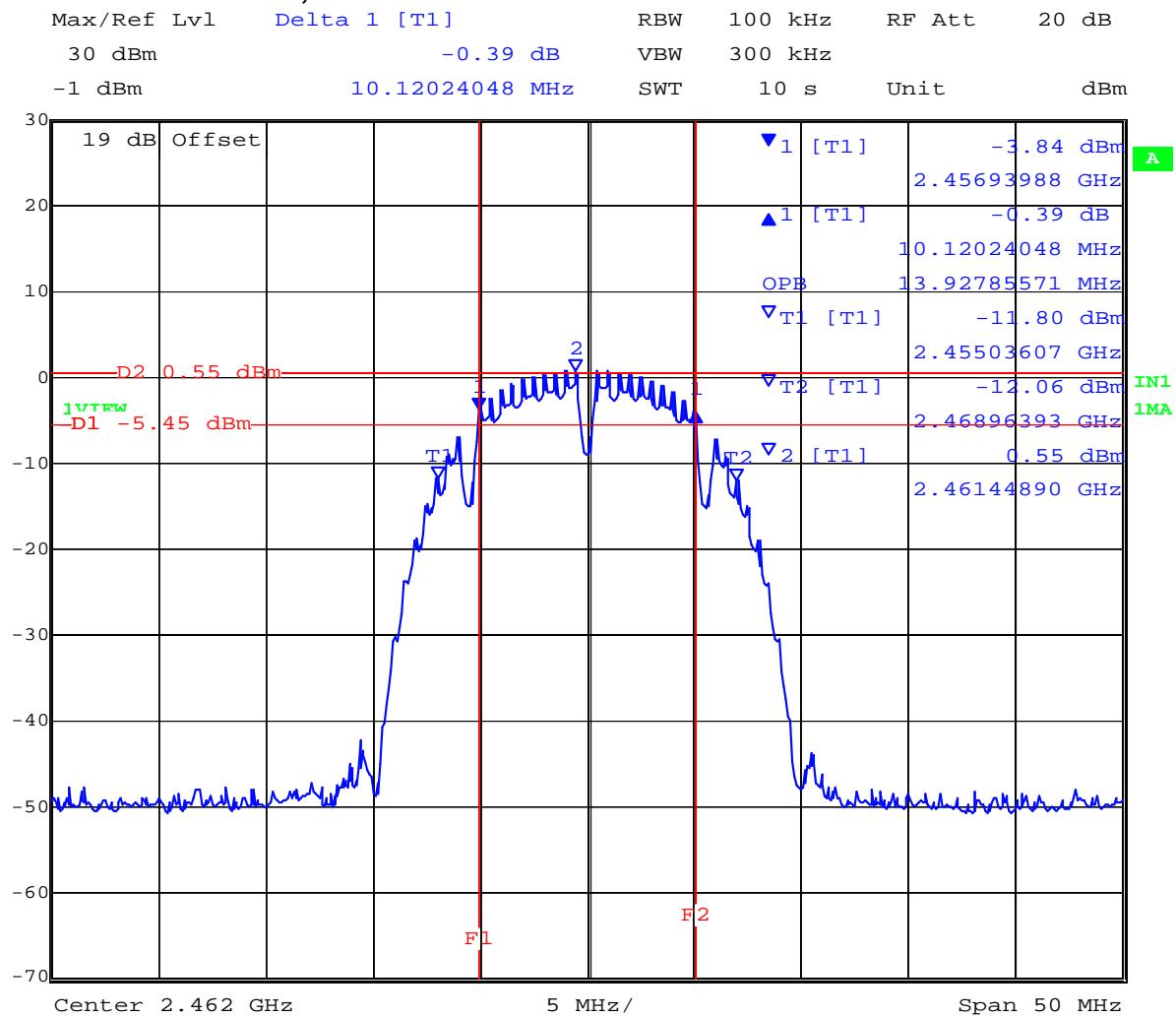
Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS – 802.11b - 1 Mb/s


Center Frequency (MHz)	6 dB Bandwidth (MHz)	99% Bandwidth (MHz)
2,412	10.120	13.928
2,437	10.120	13.828
2,462	10.120	13.928

2,412 MHz 802.11b 6 dB and 99% Bandwidth

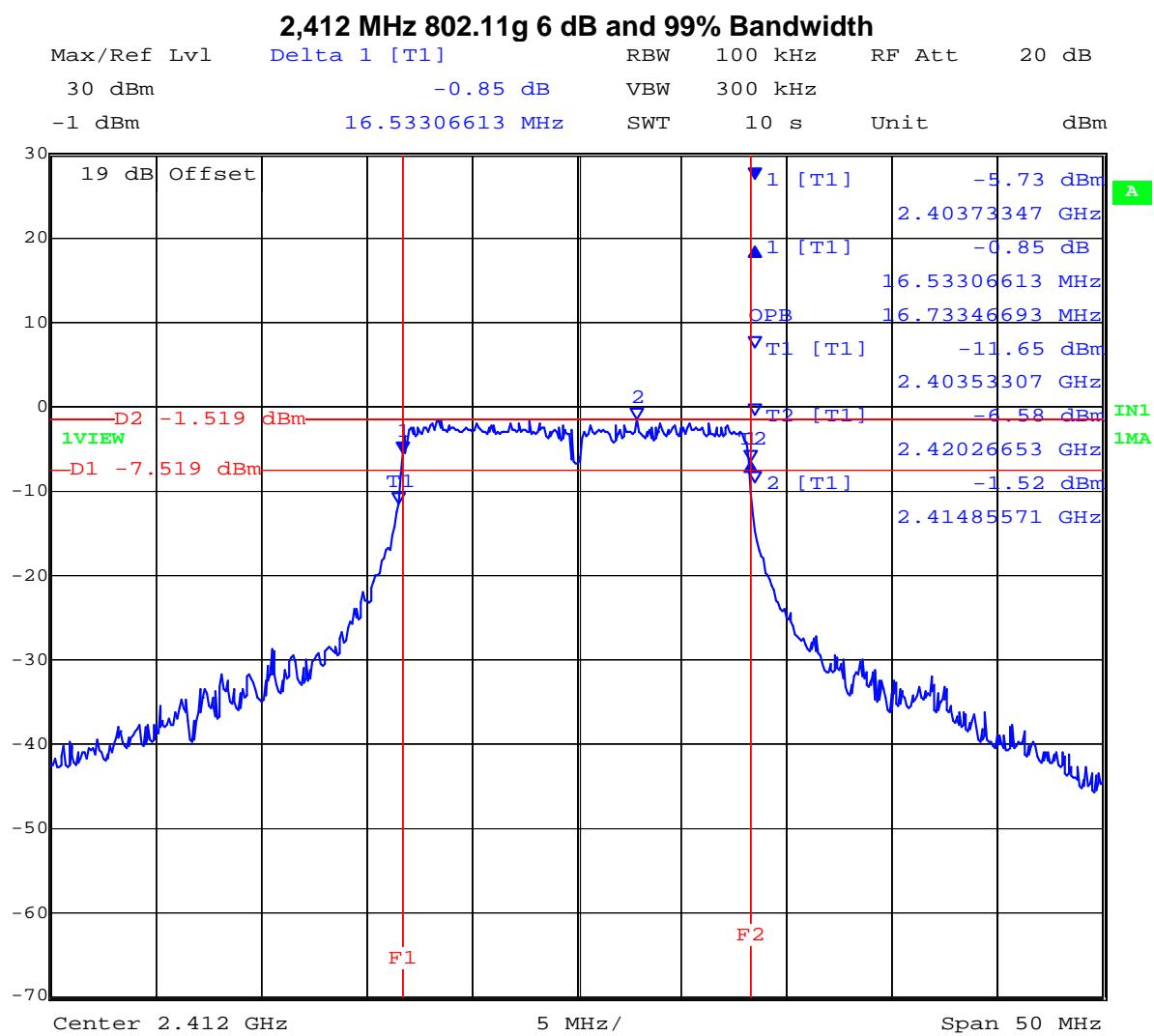
Date: 16.MAR.2009 17:48:48


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Date: 16.MAR.2009 17:50:06

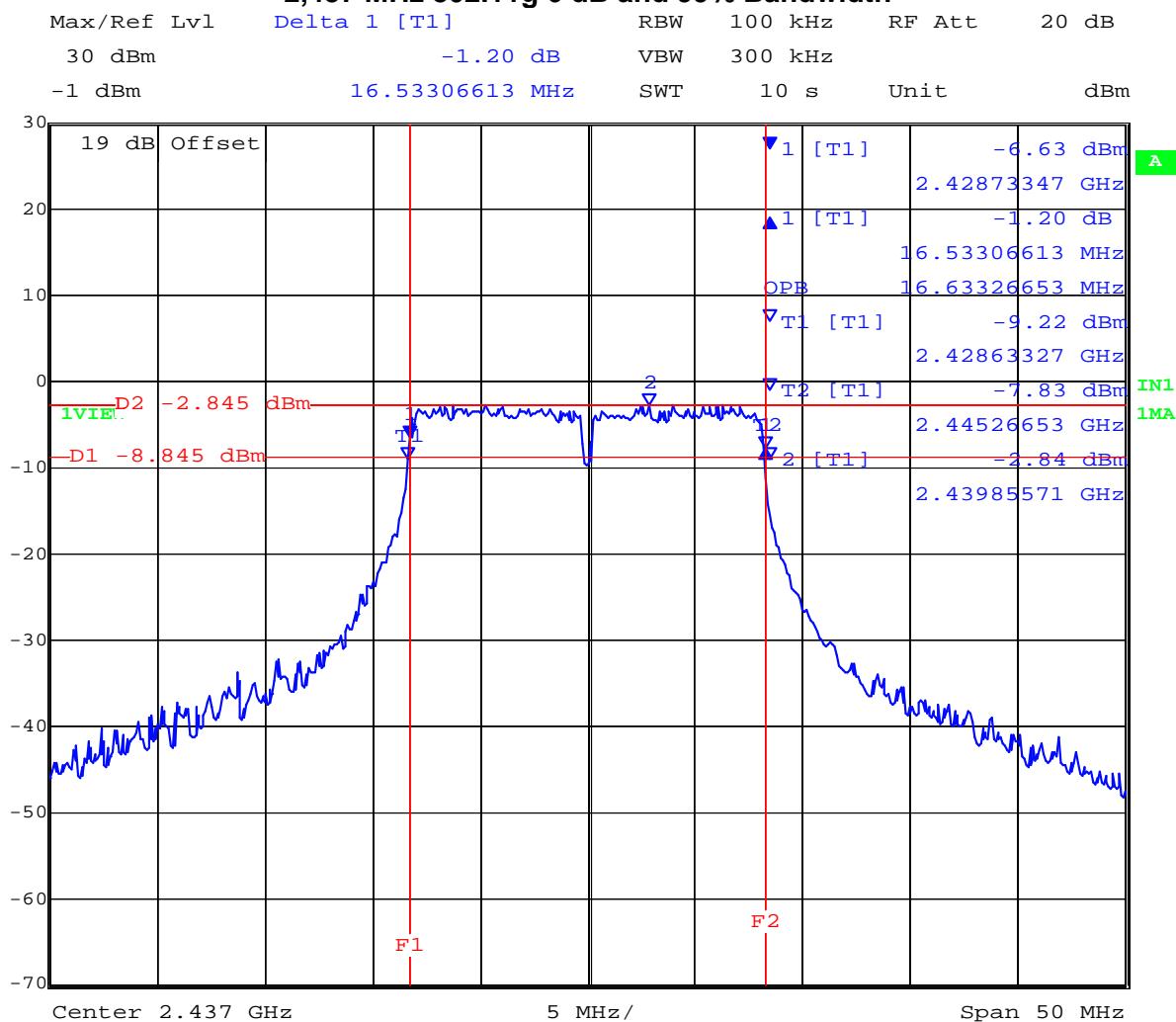
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

2,462 MHz 802.11b 6 dB and 99% Bandwidth

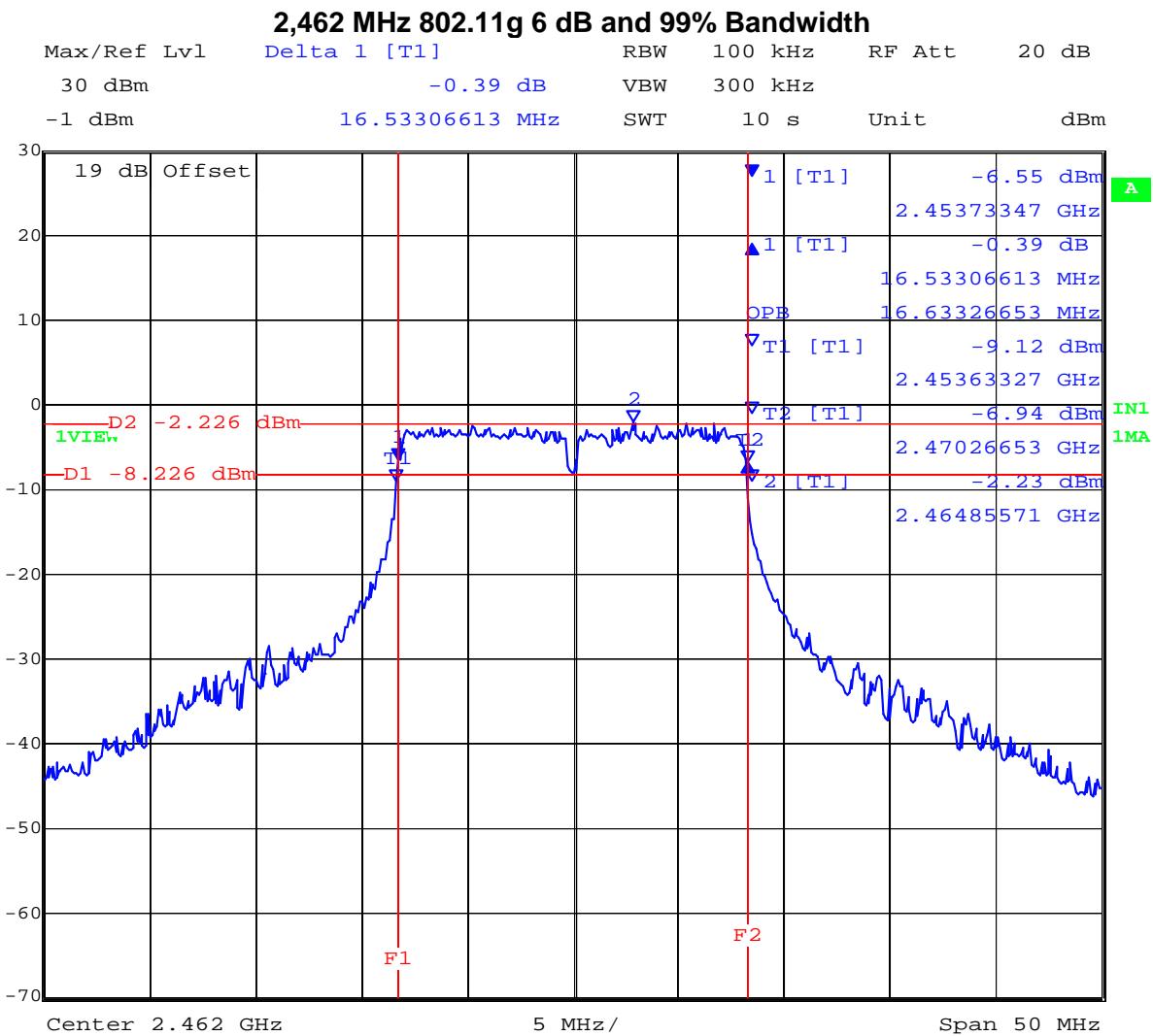


Date: 16.MAR.2009 17:51:49

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


TABLE OF RESULTS – 802.11g - 6 Mb/s

Center Frequency (MHz)	6 dB Bandwidth (MHz)	99% Bandwidth (MHz)
2,412	16.533	16.733
2,437	16.533	16.633
2,462	16.533	16.633


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

2,437 MHz 802.11g 6 dB and 99% Bandwidth

Date: 16.MAR.2009 17:55:13

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Ki Pro 802.11b/g Wireless A/V Control System
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: COMM02-A2 Rev A
Issue Date: 4th June 2009
Page: 25 of 92

Specification

Limits

§15.247 (a)(2) & RSS-210 §A8.2(1)

The minimum 6 dB bandwidth shall be at least 500 kHz.

§ IC RSS-Gen 4.4.1 Occupied Bandwidth When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

§ IC RSS-Gen 4.4.2 6 dB Bandwidth Where indicated, the 6 dB bandwidth is measured at the points when the spectral density of the signal is 6 dB down from the in –band spectral density of the modulated signal, with the transmitter modulated by a representative signal.

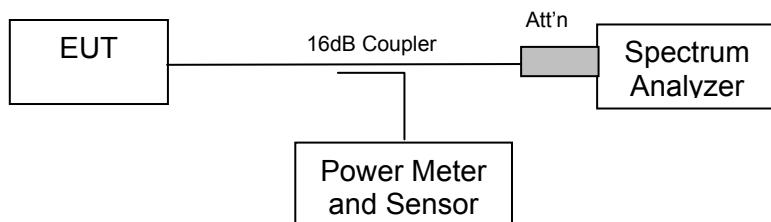
Laboratory Measurement Uncertainty for Spectrum Measurement

Measurement uncertainty	±2.81 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of RF Spectrum Mask'	0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


5.1.2. Peak Output Power

FCC, Part 15 Subpart C §15.247(b)(3), §15.31(e)
Industry Canada RSS-210 §A8.4(4)

Test Procedure

The transmitter terminal of EUT was connected to the input of the spectrum analyzer set to measure peak power. The resolution filter bandwidth was set to 6 dB, peak detector selected and the analyzer built-in power function was used to measure peak power over the 99 % bandwidth.

Test Measurement Set up

Measurement set up for Transmitter Peak Output Power

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

b/g (2.4 GHz) Maximum Antenna Gain = +2 dBi

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

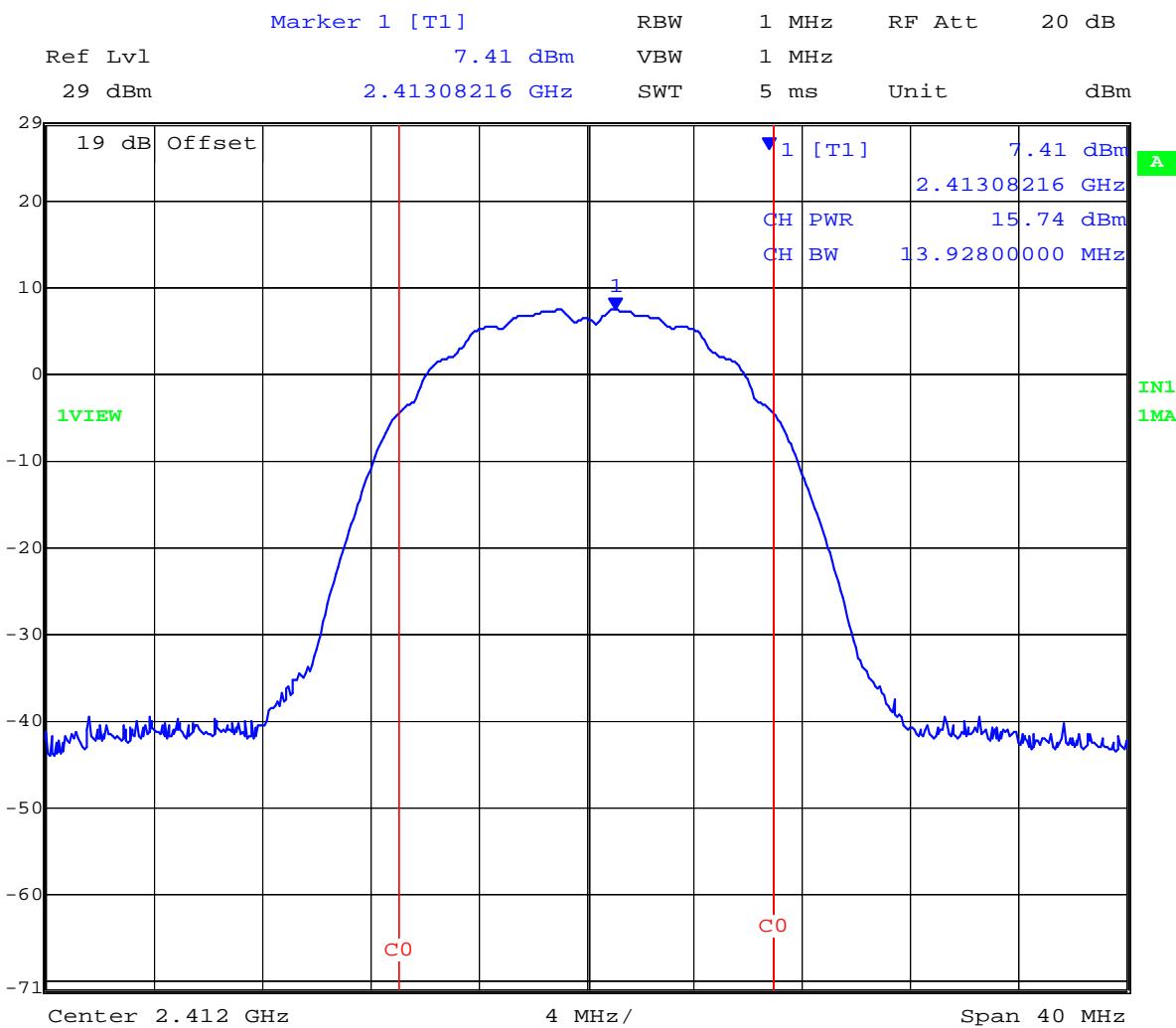
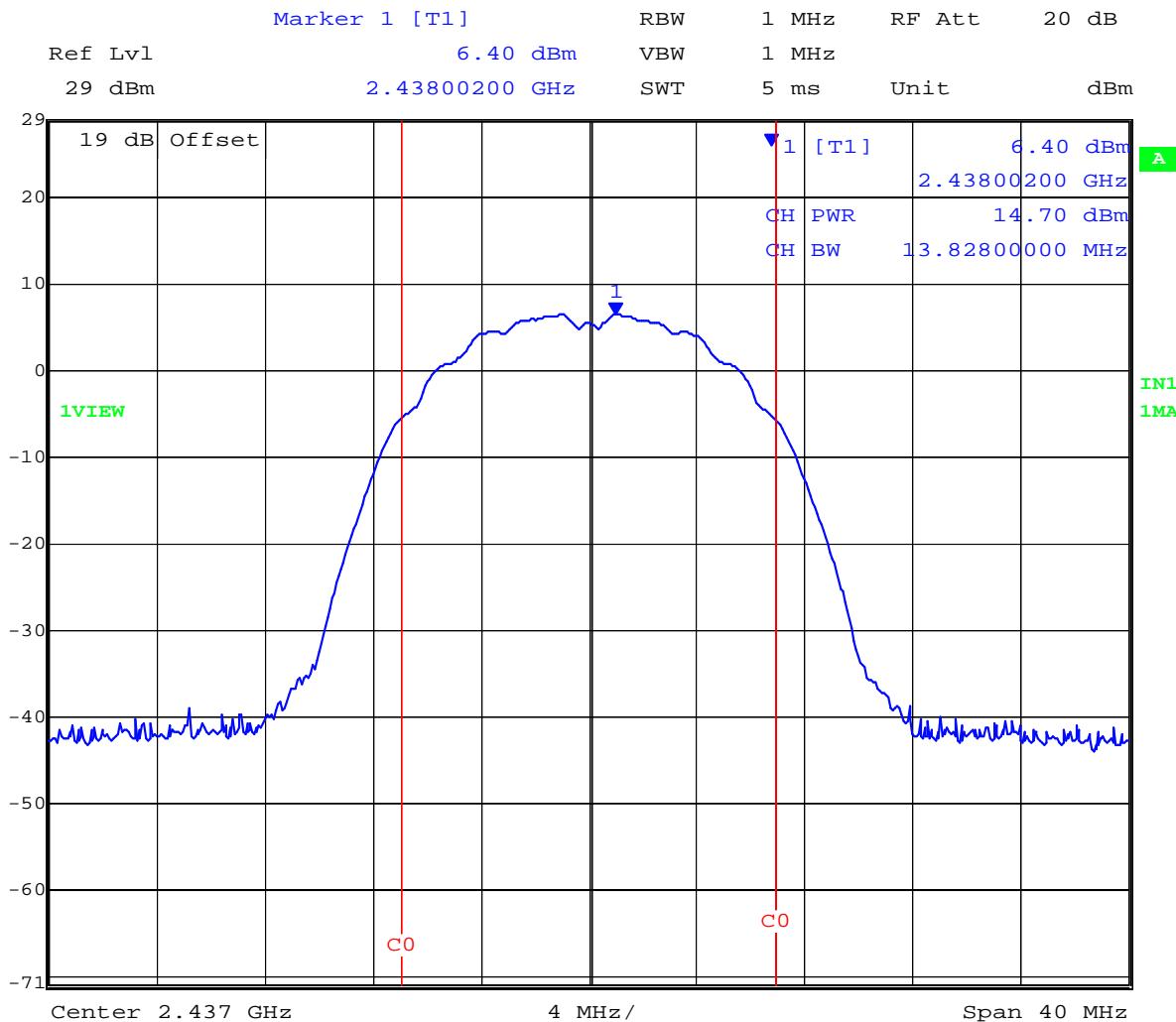

Title: Ki Pro 802.11b/g Wireless A/V Control System
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: COMM02-A2 Rev A
Issue Date: 4th June 2009
Page: 27 of 92

TABLE OF RESULTS – 802.11b – 1Mb/s

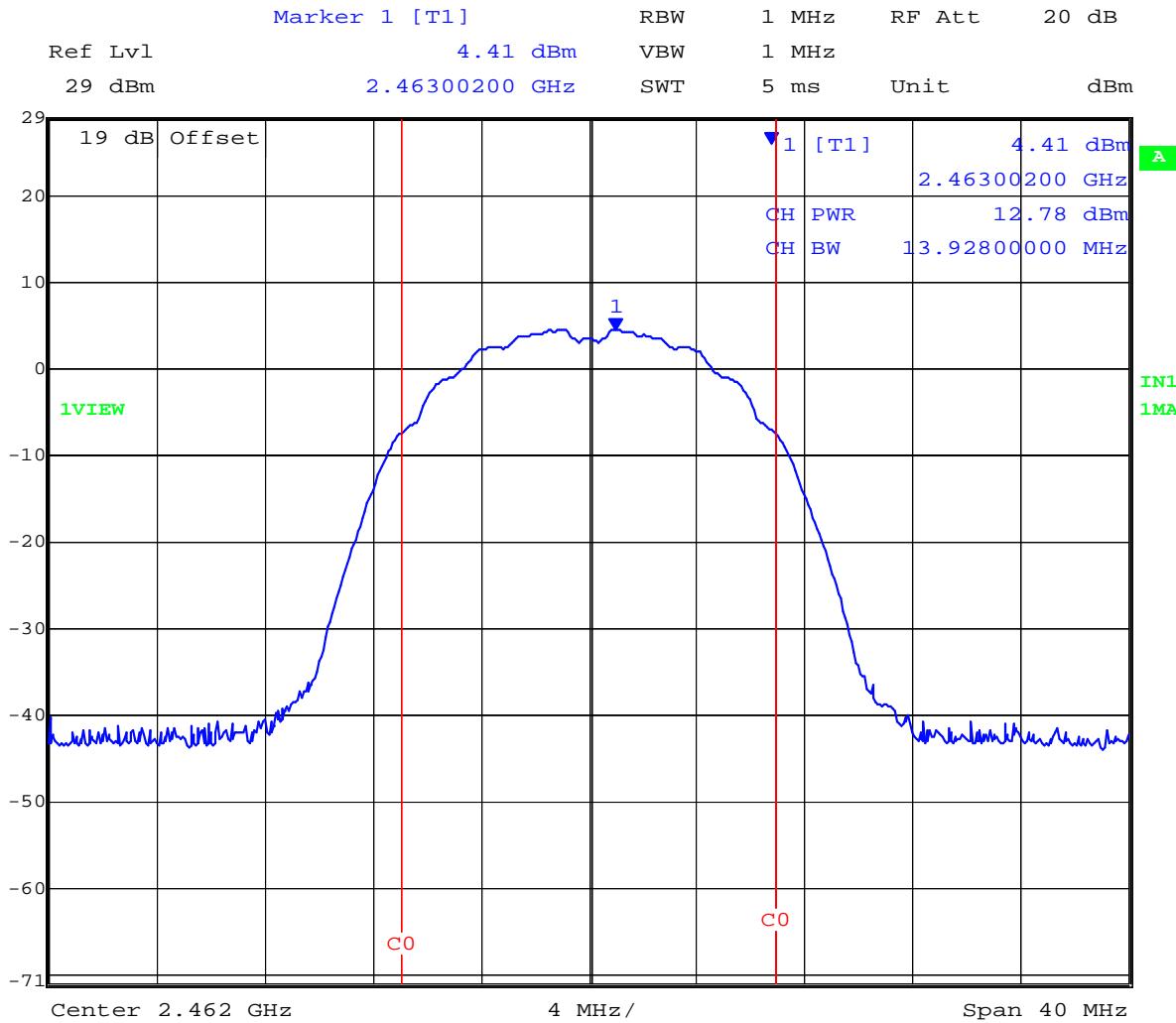
Maximum Conducted Power


Center Frequency (MHz)	99% Measurement Bandwidth (MHz)	Average Power (dBm)	Peak Power (dBm)	EIRP (dBm) 2dBi Antenna
2,412	13.928	+13.44	+15.74	+17.74
2,437	13.828	+12.42	+14.70	+14.70
2,462	13.920	+10.61	+12.78	+14.78

2,412 MHz 802.11b Peak Power (dBm)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

2,437 MHz 802.11b Peak Power (dBm)


Date: 16.MAR.2009 19:24:48

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Ki Pro 802.11b/g Wireless A/V Control System
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: COMM02-A2 Rev A
Issue Date: 4th June 2009
Page: 29 of 92

2,462 MHz 802.11b Peak Power (dBm)

Date: 16.MAR.2009 19:23:52

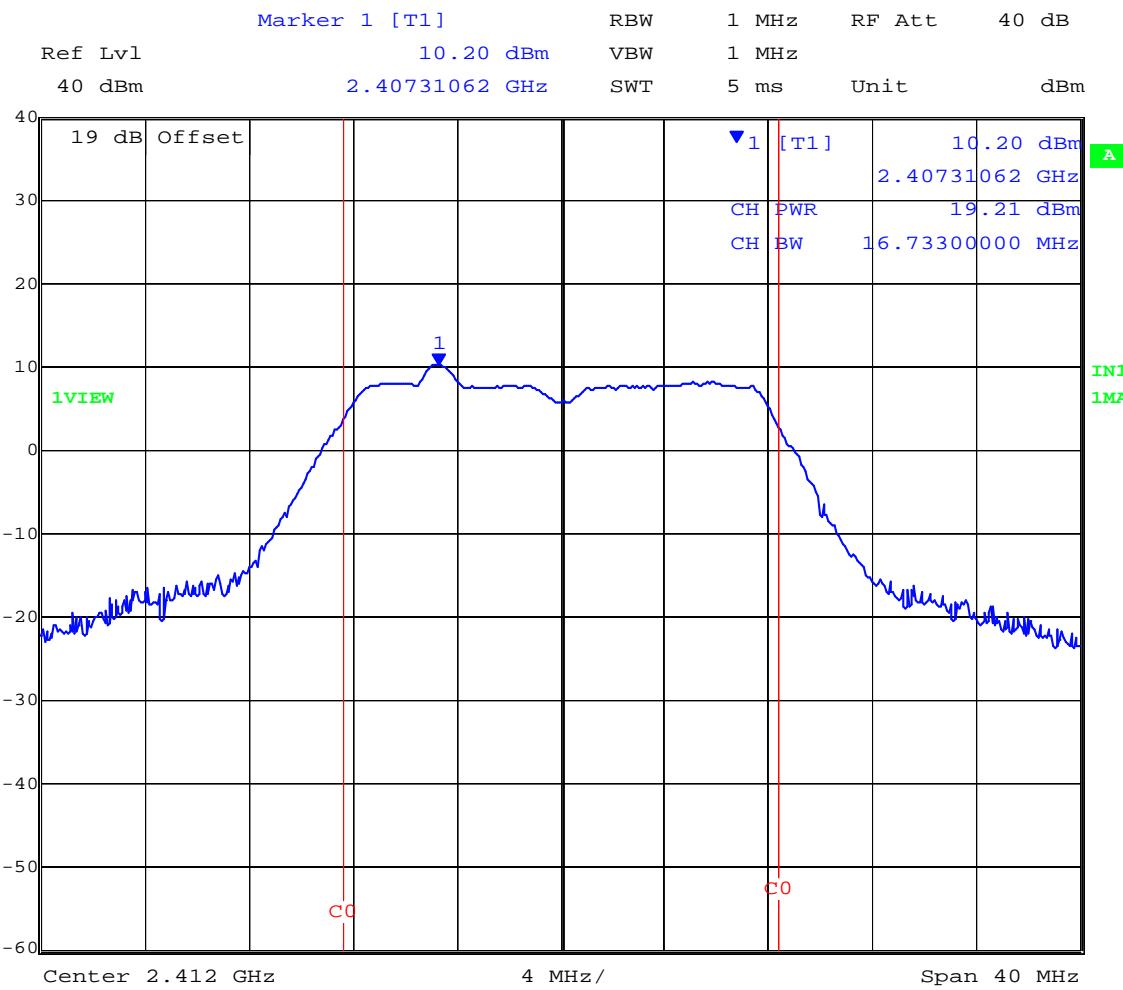

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

TABLE OF RESULTS – 802.11g – 6Mb/s

Maximum Conducted Power

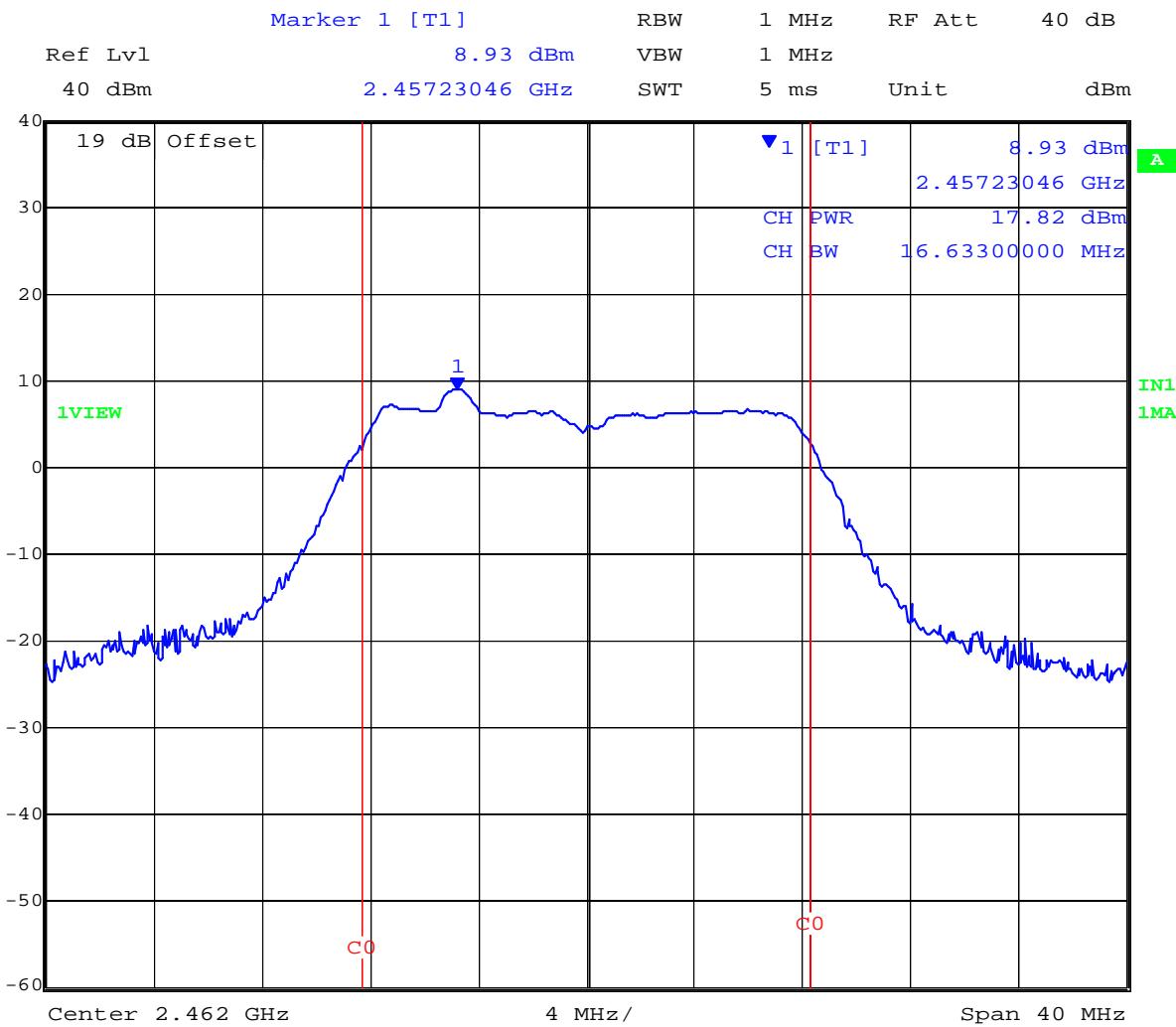
Center Frequency (MHz)	99% Measurement Bandwidth (MHz)	Average Power (dBm)	Peak Power (dBm)	EIRP (dBm) 0dBi Antenna
2,412	16.733	+12.44	+19.21	+21.21
2,437	16.633	+11.66	+18.47	+20.47
2,462	16.633	+11.10	+17.82	+19.82

2,412 MHz 802.11g Peak Power (dBm)

Date: 16.MAR.2009 19:21:42

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

2,437 MHz 802.11g Peak Power (dBm)


Date: 16.MAR.2009 19:20:24

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Ki Pro 802.11b/g Wireless A/V Control System
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: COMM02-A2 Rev A
Issue Date: 4th June 2009
Page: 32 of 92

2,462 MHz 802.11g Peak Power (dBm)

Date: 16.MAR.2009 19:19:13

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Ki Pro 802.11b/g Wireless A/V Control System
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: COMM02-A2 Rev A
Issue Date: 4th June 2009
Page: 33 of 92

Specification

Limits

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

§15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1.0 watt.

15.247 (b) (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

15.247 (c) Operation with directional antenna gains greater than 6 dBi.

(1) Fixed point-to-point operation:

(i) Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

(ii) Systems operating in the 5725–5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted output power.

§15.31 (e) For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

§ RSS-210 A8.4(4) For systems employing digital modulation techniques operating in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands the maximum peak conducted power shall not exceed 1 watt.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Ki Pro 802.11b/g Wireless A/V Control System
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: COMM02-A2 Rev A
Issue Date: 4th June 2009
Page: 34 of 92

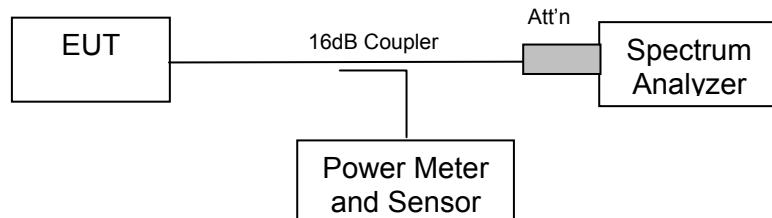
Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty	±1.33 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


5.1.3. Peak Power Spectral Density

FCC, Part 15 Subpart C §15.247(e)
Industry Canada RSS-210 §A8.2

Test Procedure

The transmitter output was connected to a spectrum analyzer and the maximum level in a 3 kHz bandwidth was measured. A peak value was found over the full emission bandwidth and the frequency span reduced to obtain enhanced resolution. Sweep time \geq span / 3 kHz with video averaging turned off. The Peak Power Spectral Density is the highest level found across the emission in a 3 kHz resolution bandwidth.

Test Measurement Set up

Measurement set up for Peak Power Spectral Density

Measurement Results for Peak Power Spectral Density

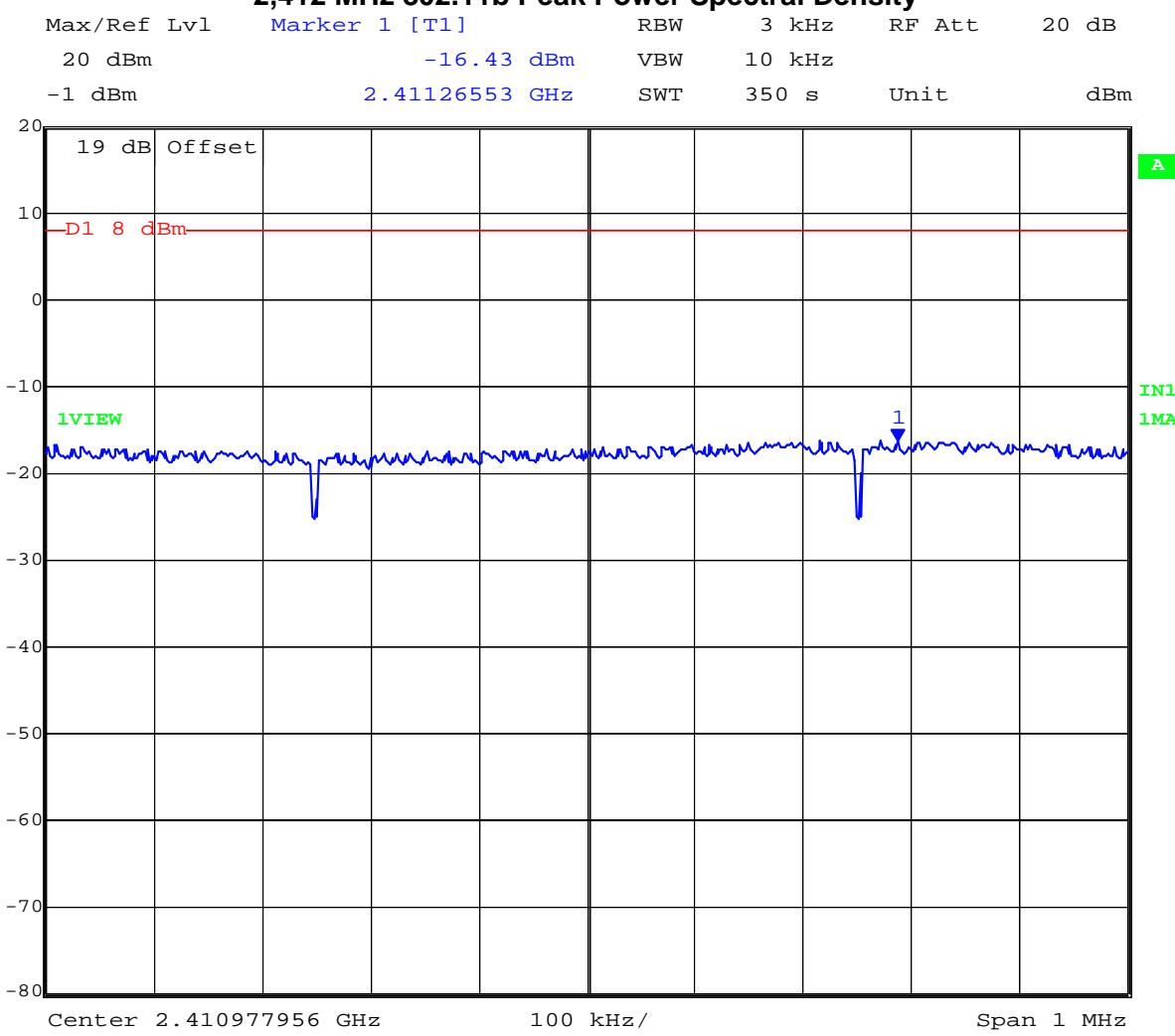
Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Radio Parameters

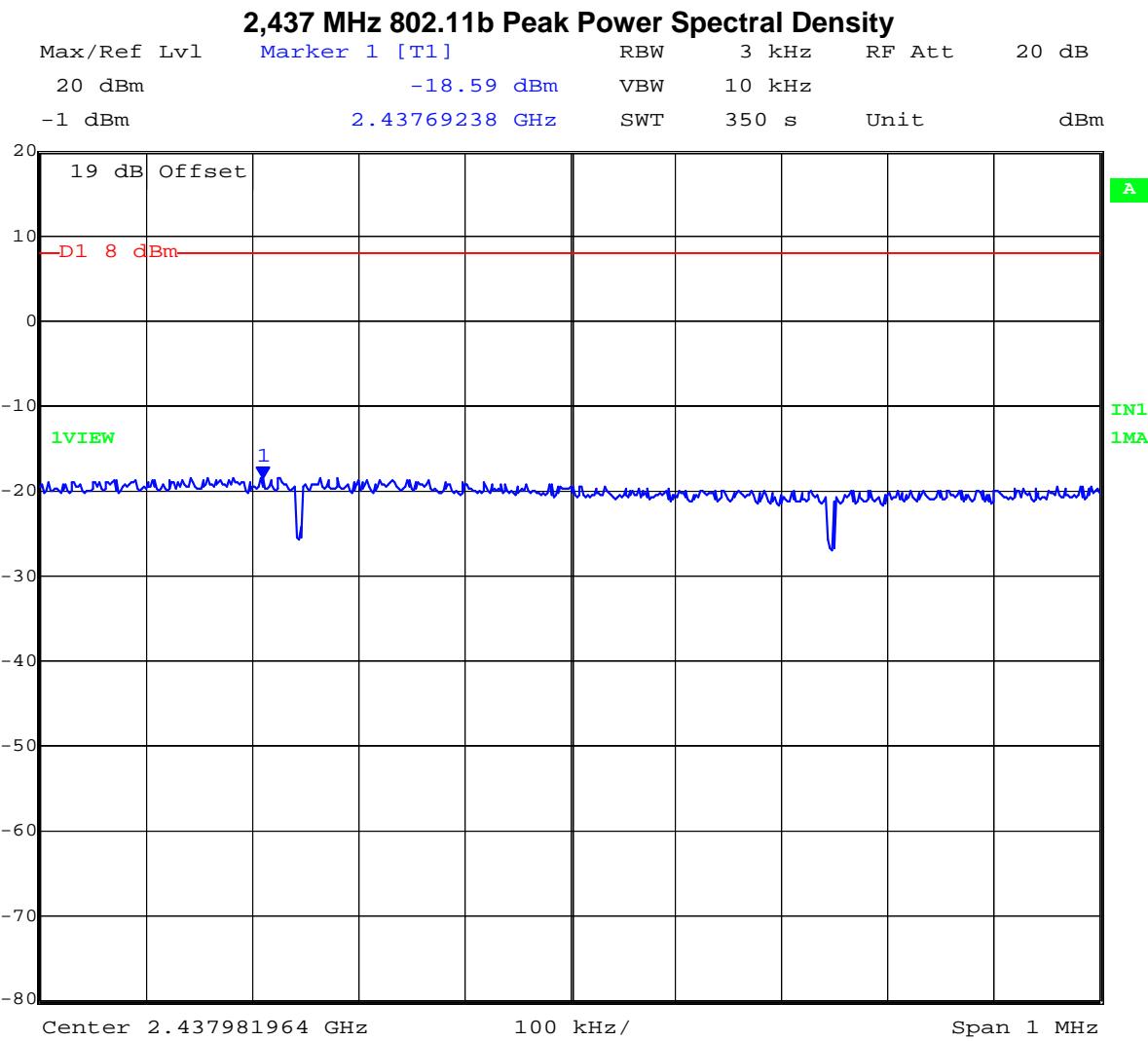
Duty Cycle: 100%

Output: Modulated Carrier

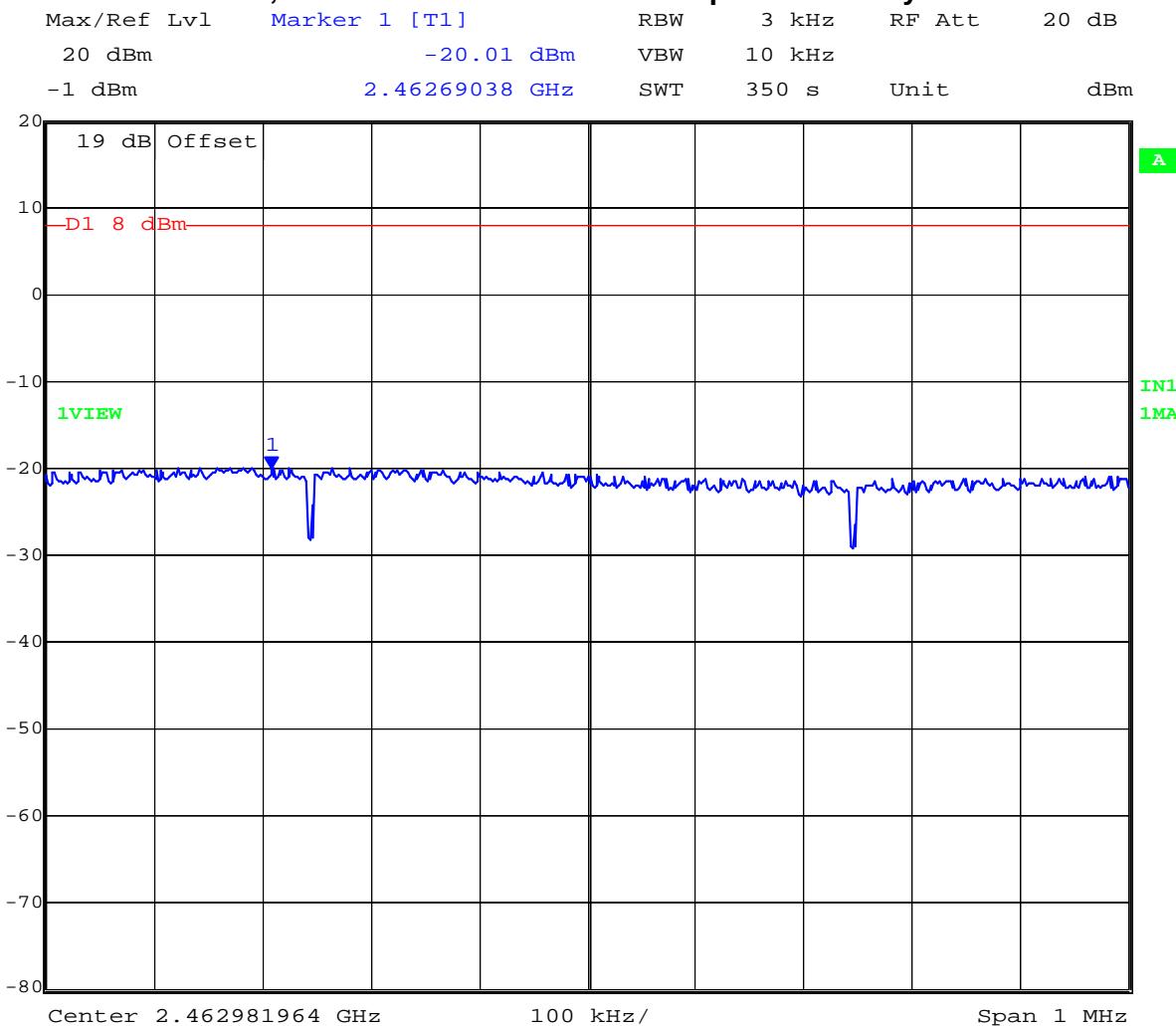


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

TABLE OF RESULTS – 802.11b – 1Mb/s


Center Frequency (MHz)	Peak Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Margin (dBm)
2,412	2411.26553	-16.43	+8	-24.43
2,437	2437.69238	-18.59	+8	-26.59
2,462	2462.69038	-20.01	+8	-28.01

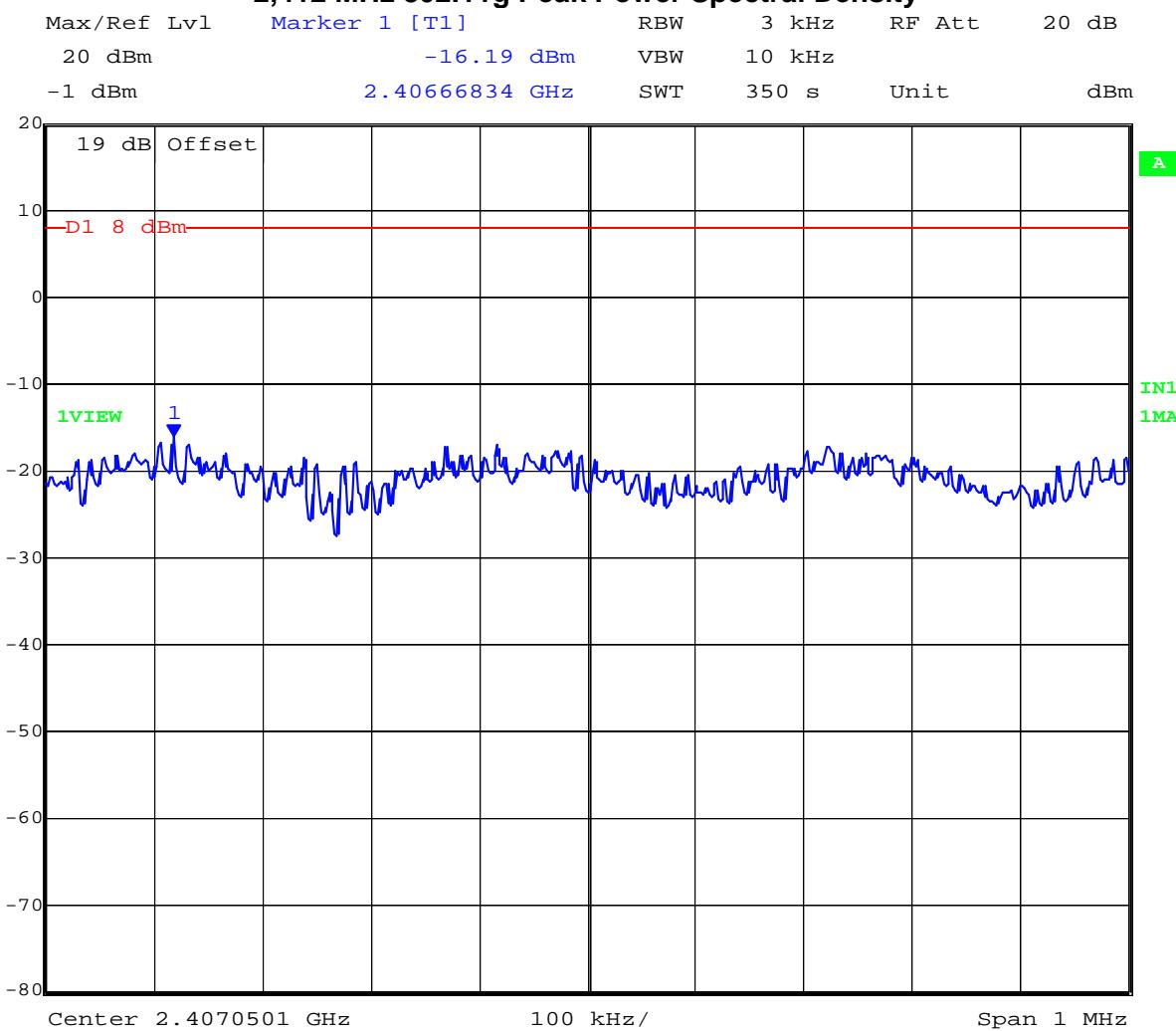
2,412 MHz 802.11b Peak Power Spectral Density


Date: 16.MAR.2009 18:10:57

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

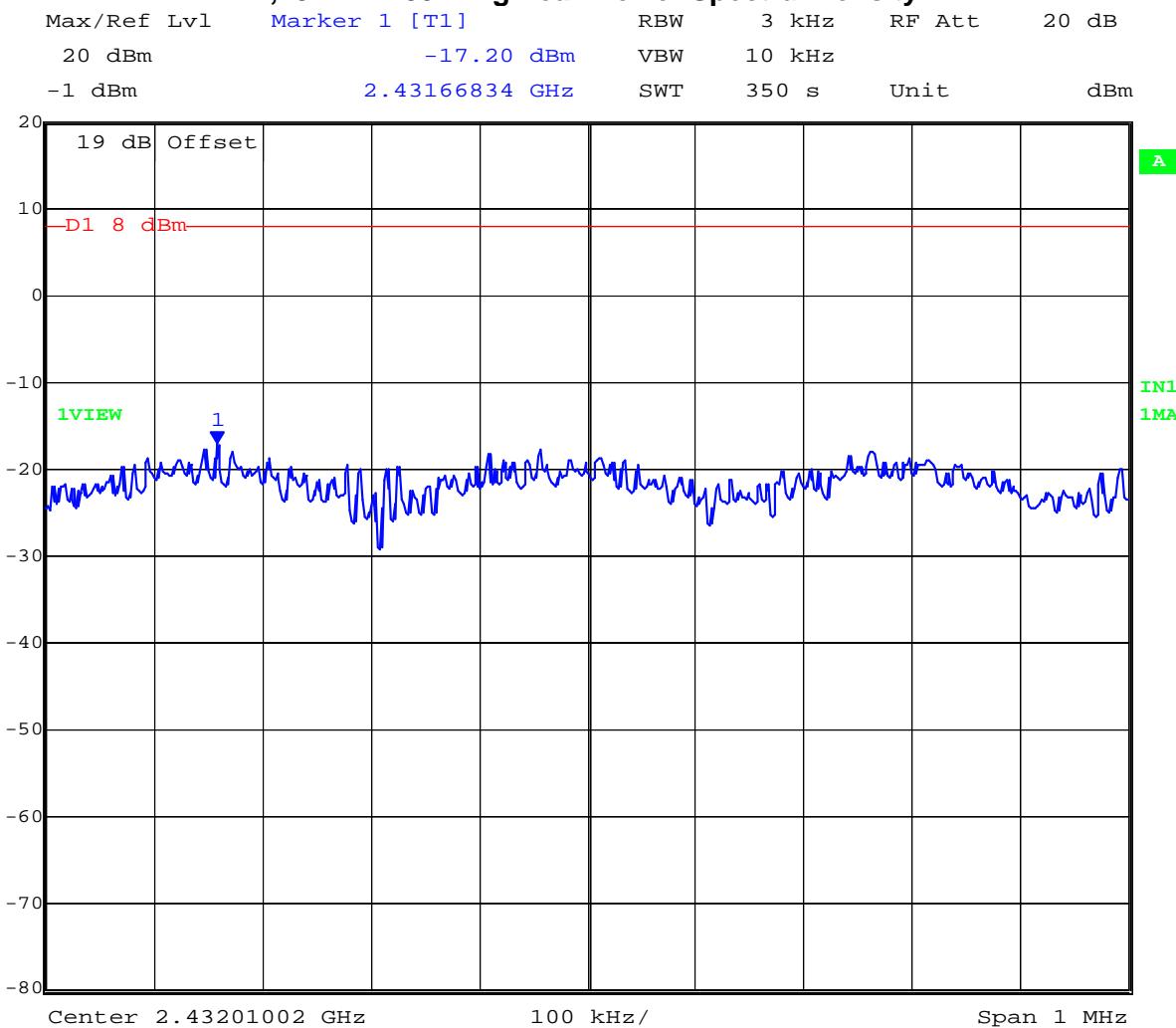
2,462 MHz 802.11b Peak Power Spectral Density


Date: 16.MAR.2009 18:26:14

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

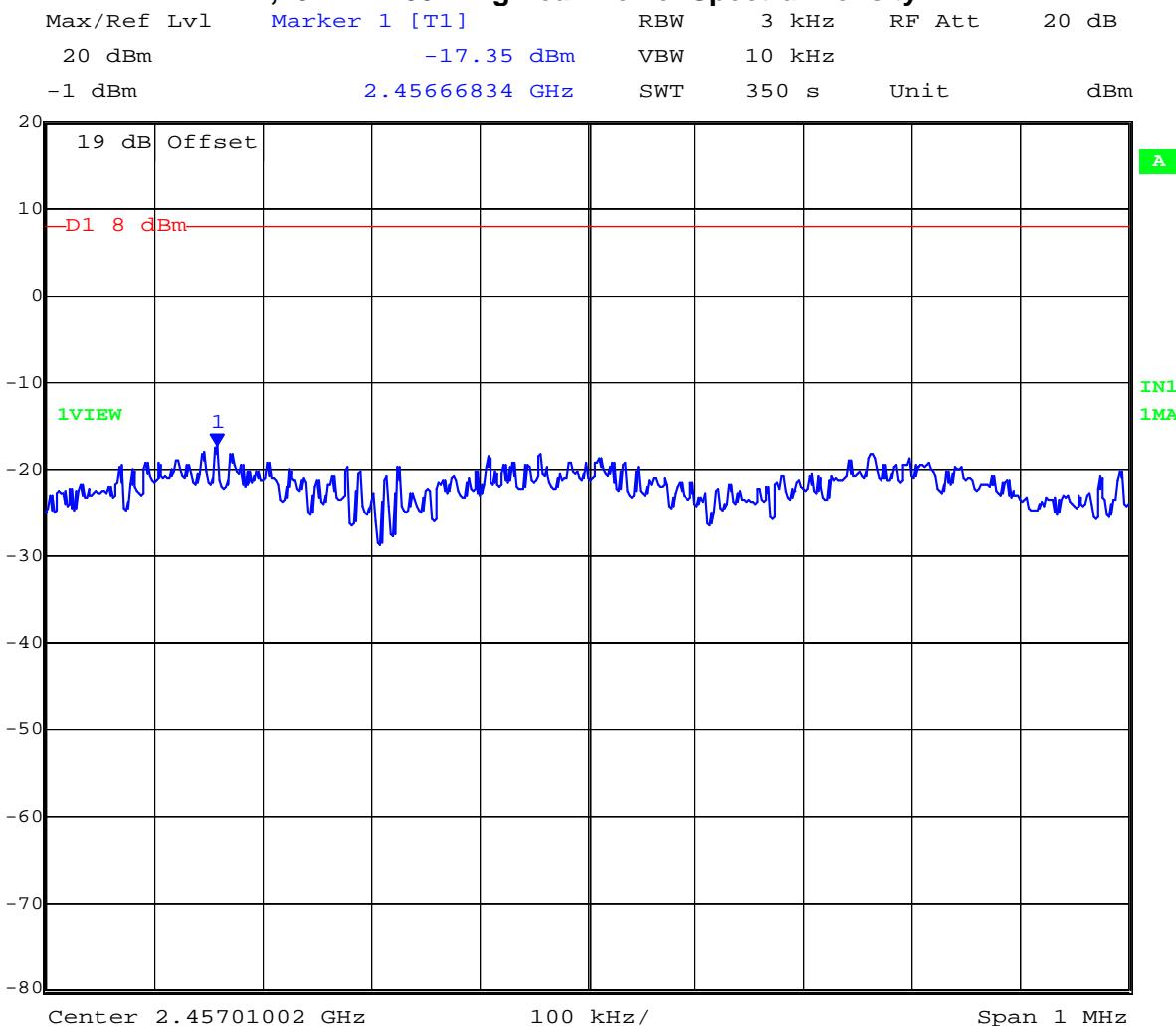
TABLE OF RESULTS – 802.11g – 6 Mb/s

Center Frequency (MHz)	Peak Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Margin (dBm)
2,412	2406.66834	-16.19	+8	-24.19
2,437	2431.66834	-17.20	+8	-25.20
2,462	2456.66834	-17.35	+8	-25.35


2,412 MHz 802.11g Peak Power Spectral Density

Date: 16.MAR.2009 18:51:15

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


2,437 MHz 802.11g Peak Power Spectral Density

Date: 16.MAR.2009 18:43:42

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

2,462 MHz 802.11g Peak Power Spectral Density

Date: 16.MAR.2009 18:34:17

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Ki Pro 802.11b/g Wireless A/V Control System
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: COMM02-A2 Rev A
Issue Date: 4th June 2009
Page: 42 of 92

Specification

Peak Power Spectral Density Limits

§15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission

RSS-210 §A8.2(2) The transmitter power spectral density (into the antenna) shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission or over 1.0 second if the transmission exceeds 1.0 second duration.

Laboratory Measurement Uncertainty for Spectral Density

Measurement uncertainty	±1.33 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Ki Pro 802.11b/g Wireless A/V Control System
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: COMM02-A2 Rev A
Issue Date: 4th June 2009
Page: 43 of 92

5.1.4. Maximum Permissible Exposure

FCC, Part 15 Subpart C §15.247(i)
Industry Canada RSS-Gen §5.5

Calculations for Maximum Permissible Exposure Levels – Portable Device

$$\text{Power Density} = P_d \text{ (mW/cm}^2\text{)} = \text{EIRP}/(4\pi d^2)$$

$$\text{EIRP} = P * G$$

P = Peak output power (mW)

G = Antenna numeric gain (numeric)

d = Separation distance (cm)

Numeric Gain = $10 ^ (G \text{ (dBi)}/10)$

FCC KDB 447498 item 4) c) iii) (3) - SAR required if device operates within 5 cm with source-based time-averaged power greater than 300 / sqrt(f in GHz). At 2.437 GHz power = 123mW (+20.9 dBm)

Client declared that the Ki Pro A/V Controller will be used no less than 10cm (4 in) from the head and exhibits a maximum peak output power of +19.21 dBm. System duty cycle will be a maximum of 0631 in any 100mS period. Because the EUT belongs to the General Population/Uncontrolled Exposure the limit of power density is 1.0 mW/cm²

Freq. Band (GHz)	Antenna Gain (dBi)	Numeric Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)
2.4(g)	2	1.59	+19.21	83.37

Duty Cycle (100ms period) 100 No relaxation for duty cycle operation sought

Max. Peak Power Density (100%): 0.105 mW/cm²

From the above results the Ki Pro is one order of magnitude less than the 1 mW/cm² limit

Specification

Maximum Permissible Exposure Limits

§15.247(i) Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency levels in excess of the Commission's guidelines.

FCC §1.1310 Limit = 1mW / cm² from 1.310 Table 1

RSS-Gen §5.5 Before equipment certification is granted, the applicable requirements of RSS-102 shall be met.

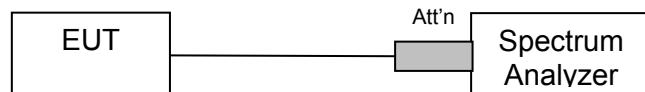
Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty	±1.33 dB
-------------------------	----------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.5. Conducted Spurious Emissions

FCC, Part 15 Subpart C §15.247(d); 15.205; 15.209


Industry Canada RSS-210 §A8.5, §2.2

Industry Canada RSS-Gen 4.7

Test Procedure

Conducted emissions were measured at a limit of 20 dB below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Emissions at the band edge were measured and recorded. Measurements were made while EUT was operating in transmit mode of operation at the appropriate center frequency.

Test Measurement Set up

Band-edge measurement test configuration

Measurement Results of Conducted Spurious Emissions

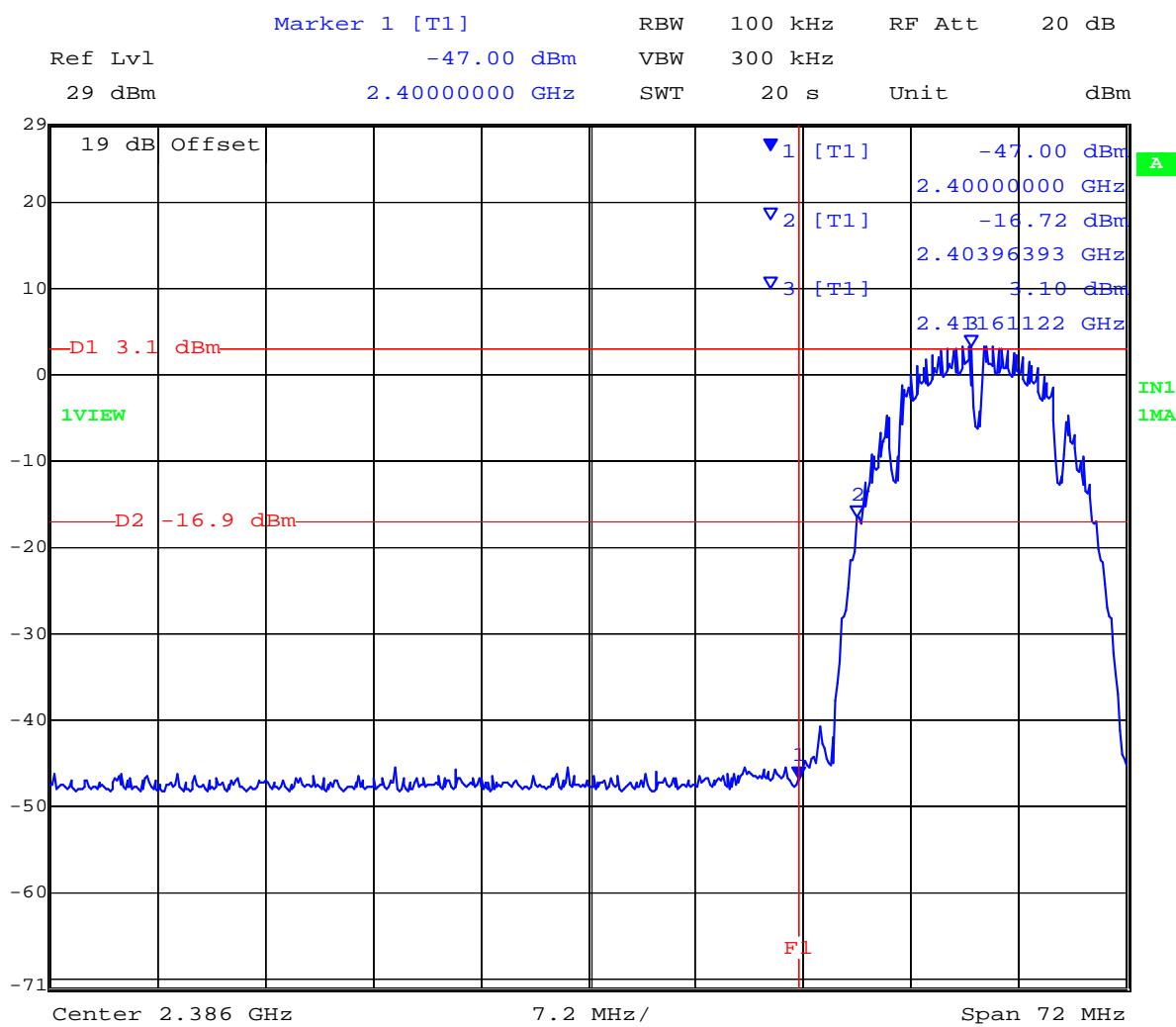
Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Radio Parameters

Duty Cycle: 100%

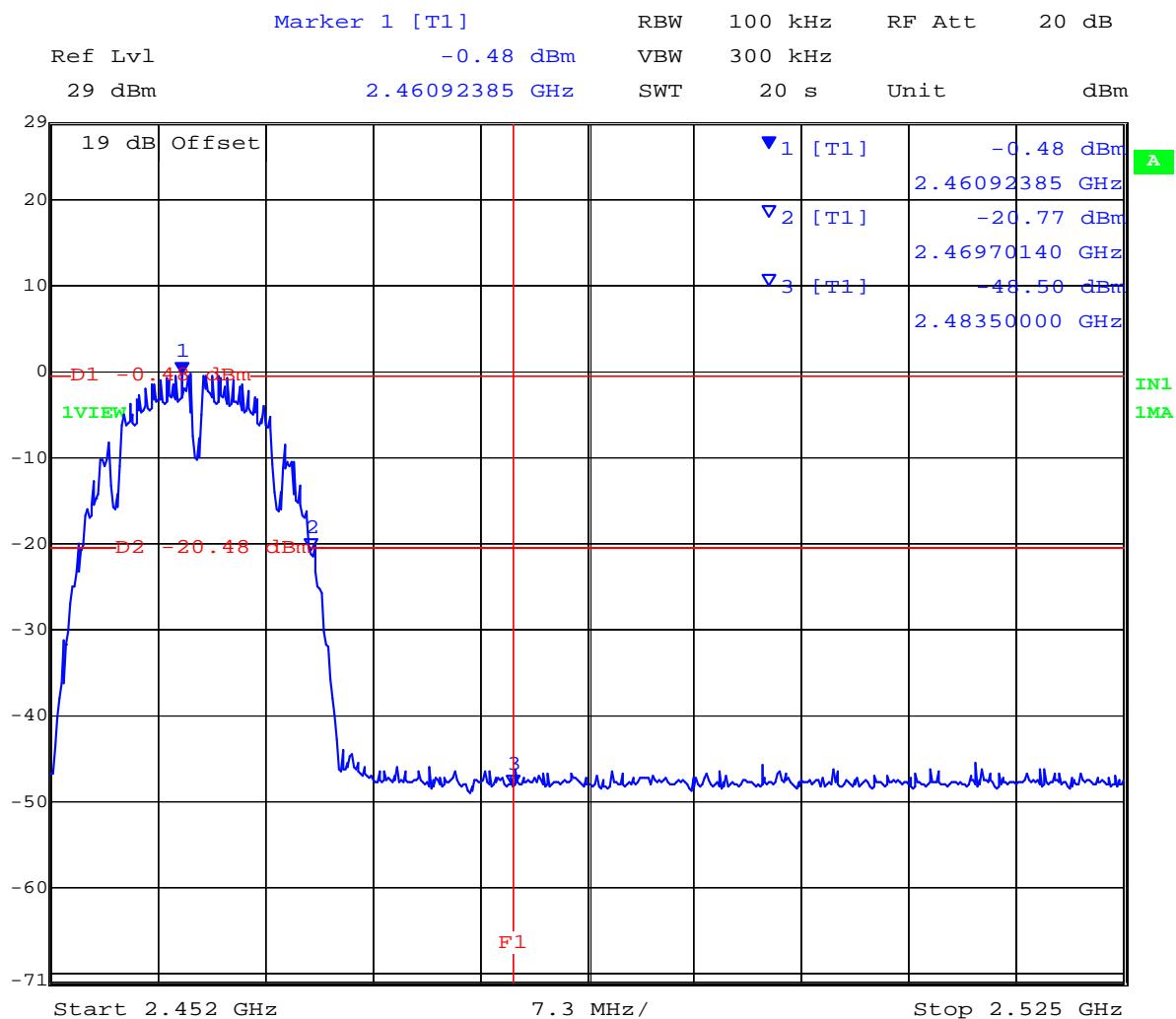
Output: Modulated Carrier


Conducted Band-Edge Results

Measurements were performed with the transmitter tuned to the channel closest to the band-edge being measured. All emissions were maximized during measurement. Limits which were derived from the band-edge measurements provided below are drawn on each plot.

TABLE OF RESULTS – 802.11b – 1 Mbit/s

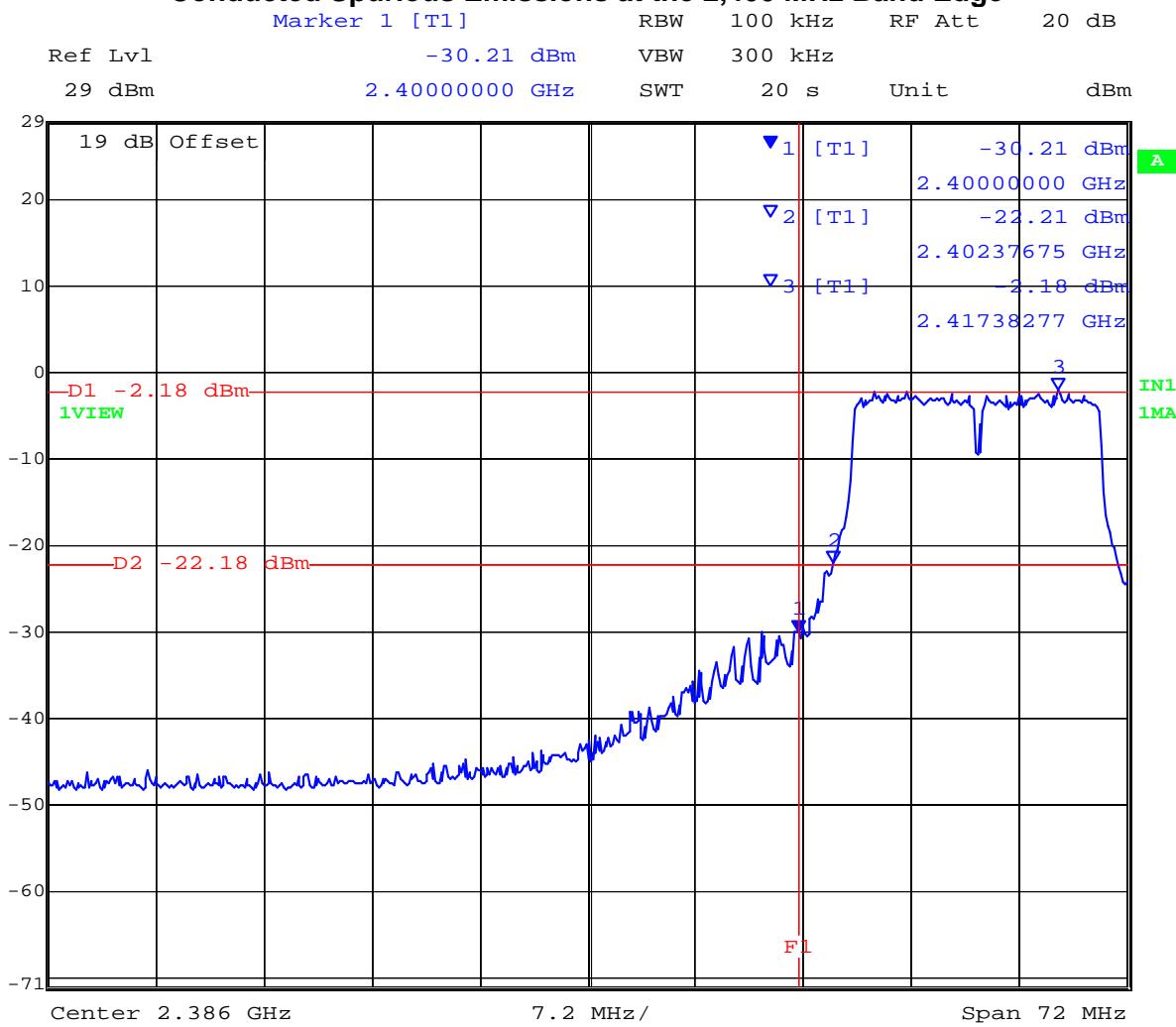
Center Frequency (MHz)	Band edge Frequency (MHz)	Limit (20 dB below peak of fundamental)	Amplitude @ Band edge (dBm)	Margin (dB)
2,412	2,400	-16.90	-47.00	-30.10
2,462	2,483.5	-20.48	-48.50	-28.02


Conducted Spurious Emissions at the 2,400 MHz Band Edge

Date: 16.MAR.2009 19:04:19

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

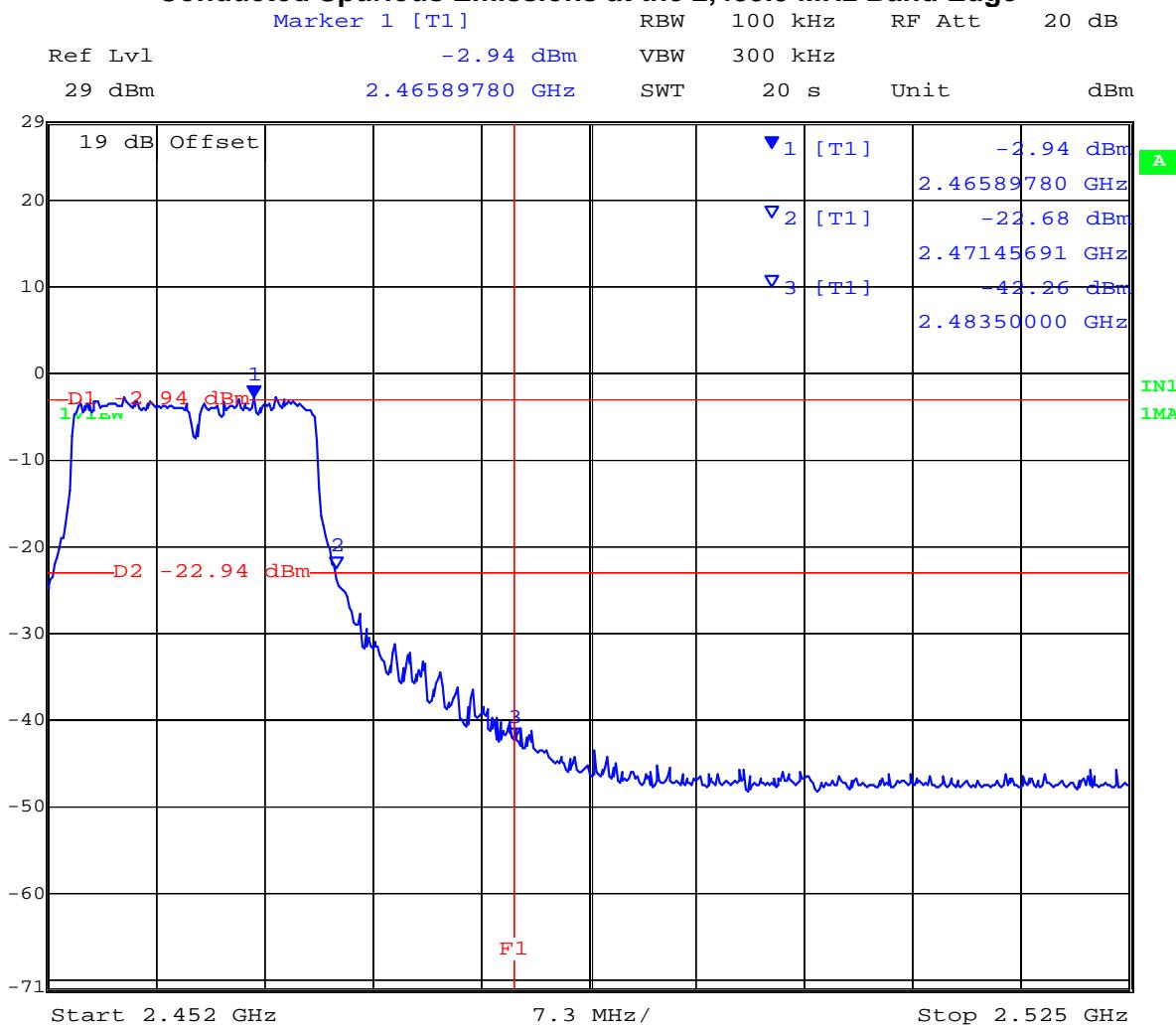
Conducted Spurious Emissions at the 2,483.5 MHz Band Edge


Date: 16.MAR.2009 19:12:30

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

TABLE OF RESULTS – 802.11g – 6 Mbit/s

Center Frequency (MHz)	Band edge Frequency (MHz)	Limit (20 dB below peak of fundamental)	Amplitude @ Band edge (dBm)	Margin (dB)
2,412	2,400	-22.18	-30.21	-8.03
2,462	2,483.5	-22.94	-42.26	-19.32


Conducted Spurious Emissions at the 2,400 MHz Band Edge

Date: 16.MAR.2009 19:07:11

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Conducted Spurious Emissions at the 2,483.5 MHz Band Edge

Date: 16.MAR.2009 19:14:04

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

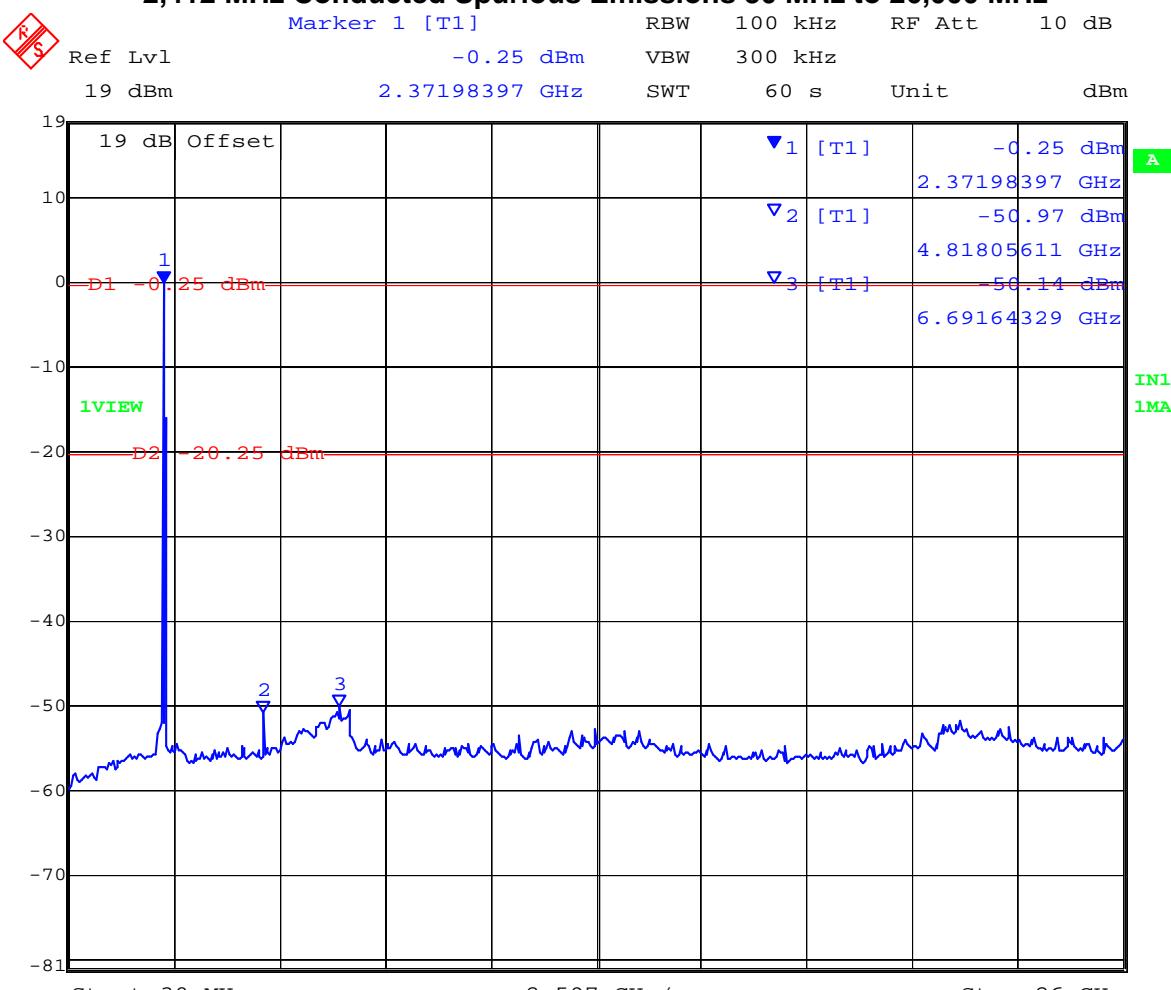

Spurious Emissions (30 - 26,000 MHz)

TABLE OF RESULTS – 802.11b – 1 Mbit/s

Channel Centre Frequency (MHz)	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Margin (dB)
2,412	30	26,000	-50.14	-20.25	-29.89

802.11b – 1 Mbit/s

2,412 MHz Conducted Spurious Emissions 30 MHz to 26,000 MHz

Date: 16.MAR.2009 18:54:43

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

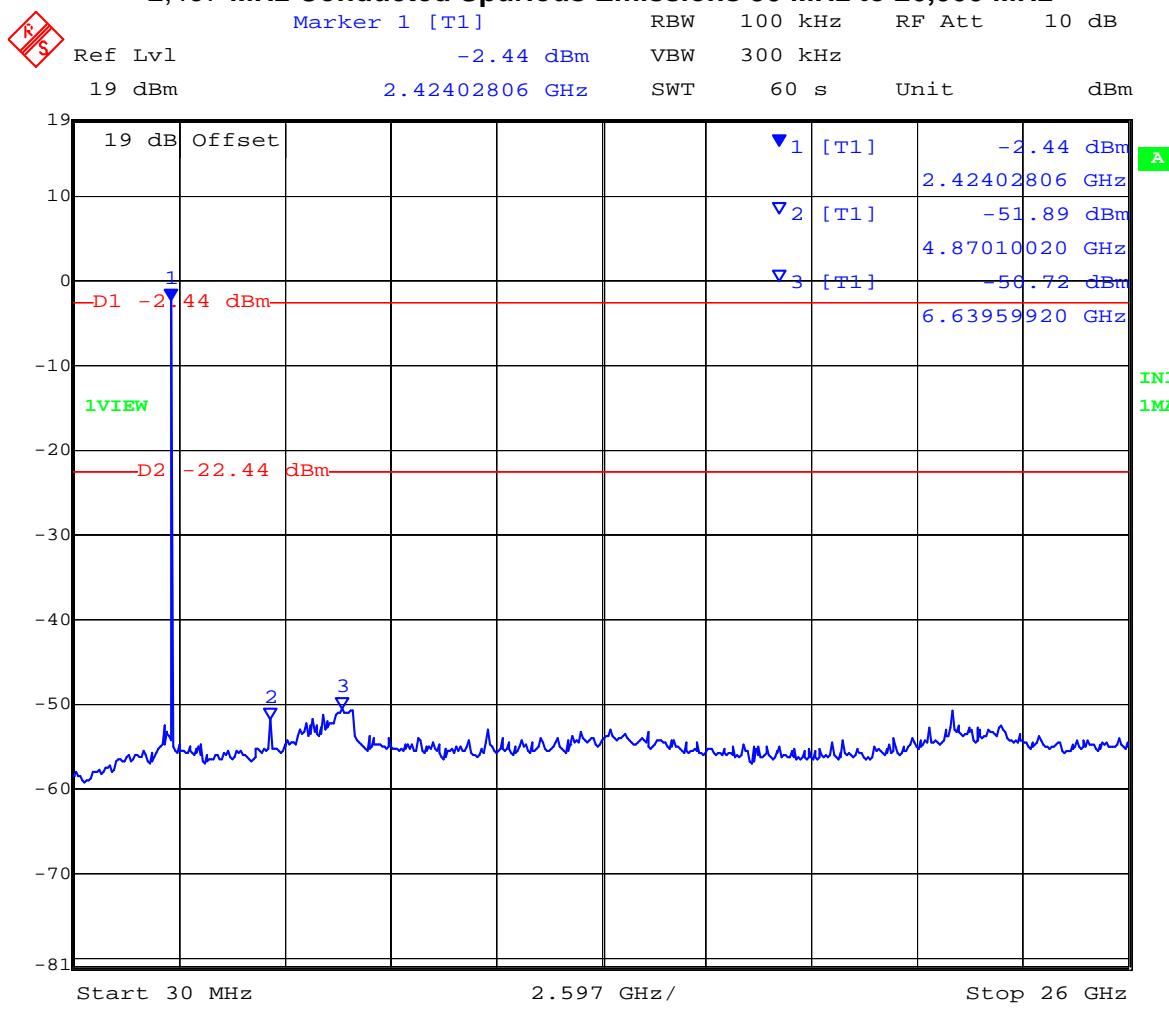

Spurious Emissions (30 - 26,000 MHz)

TABLE OF RESULTS – 802.11b – 1 Mbit/s

Channel Centre Frequency (MHz)	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Margin (dB)
2,437	30	26,000	-50.72	-22.44	-28.28

802.11b – 1 Mbit/s

2,437 MHz Conducted Spurious Emissions 30 MHz to 26,000 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

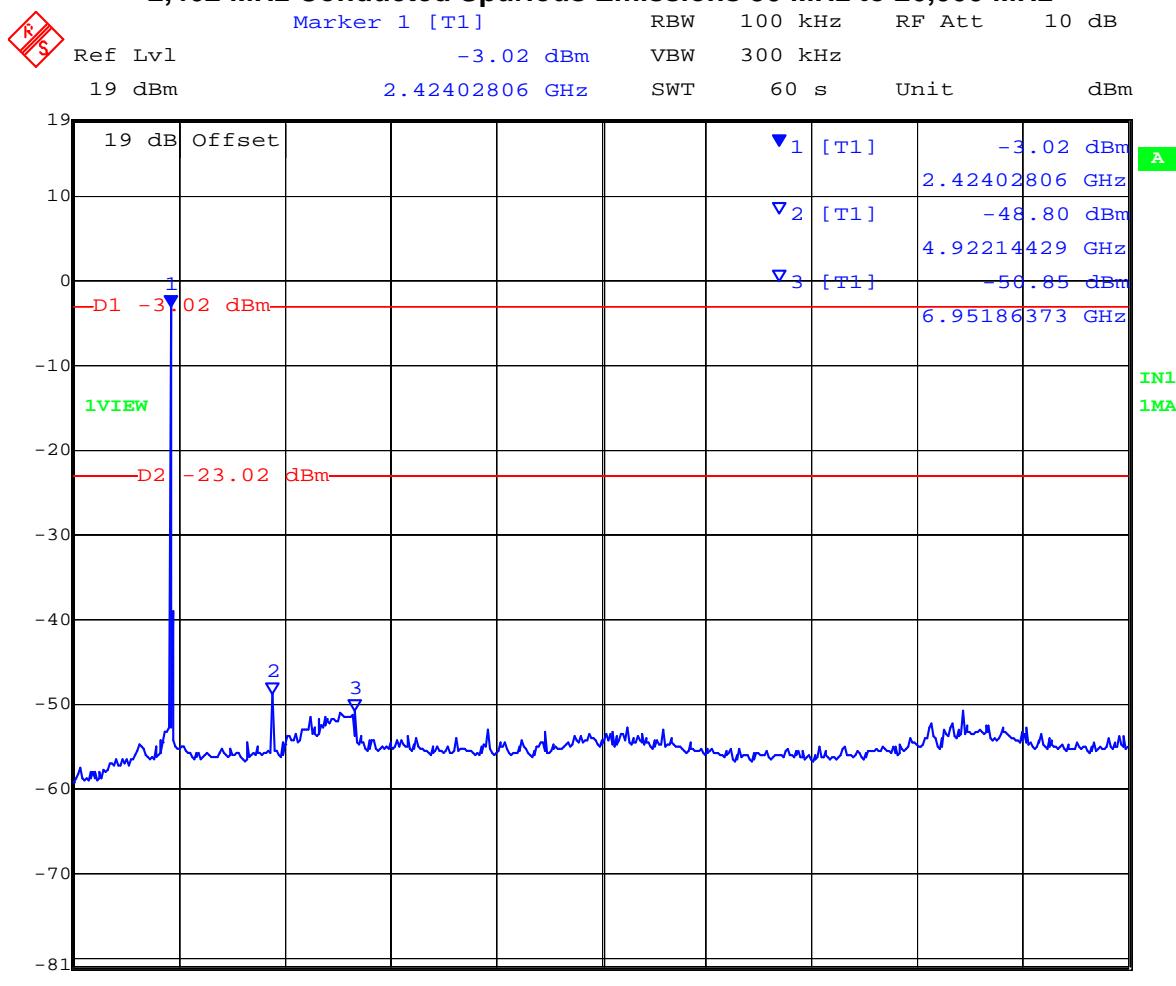

Spurious Emissions (30 - 26,000 MHz)

TABLE OF RESULTS – 802.11b – 1 Mbit/s

Channel Centre Frequency (MHz)	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Margin (dB)
2,462	30	26,000	-48.80	-23.02	-25.78

802.11b – 1 Mbit/s

2,462 MHz Conducted Spurious Emissions 30 MHz to 26,000 MHz

Date: 16.MAR.2009 19:01:05

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

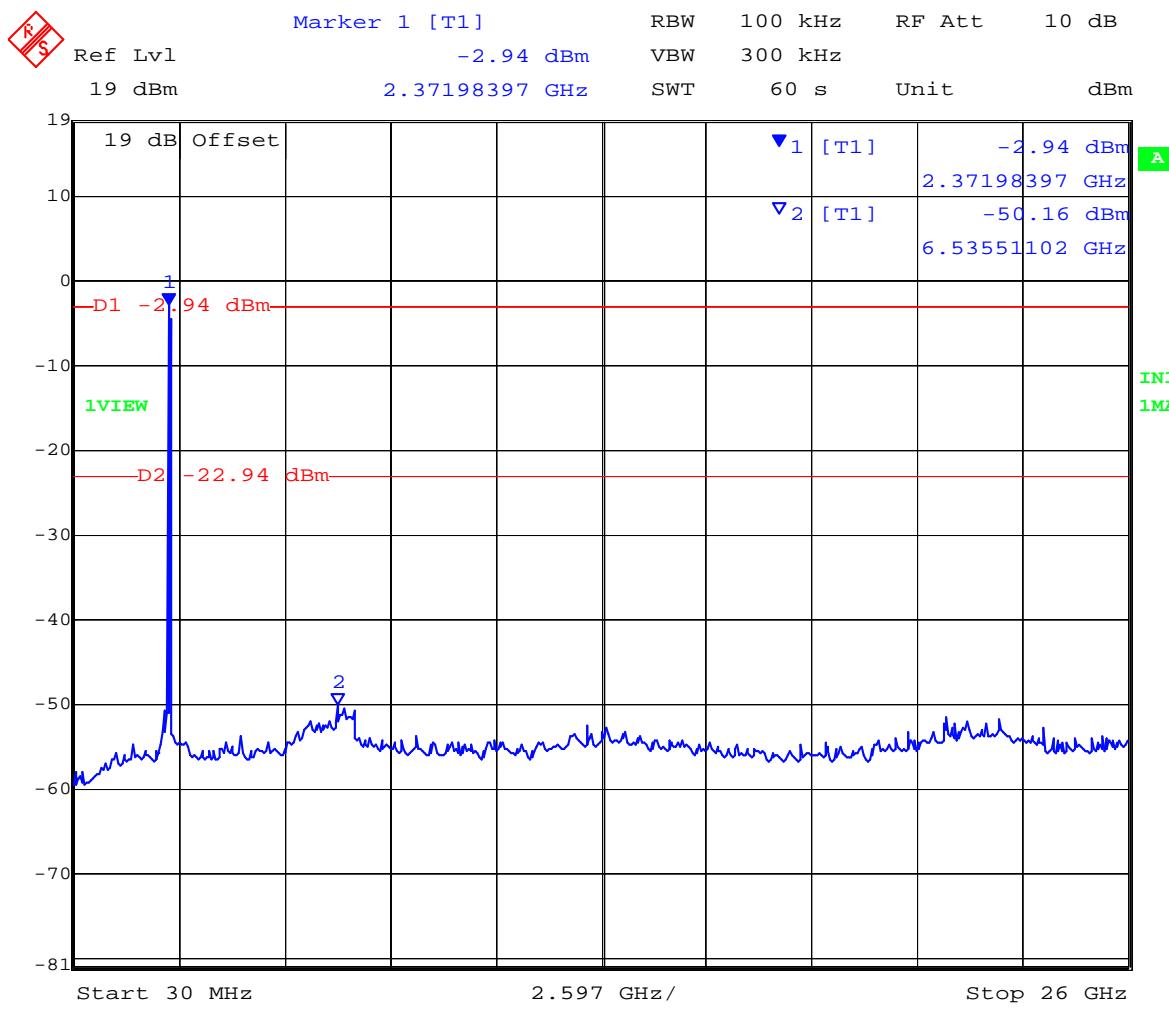

Spurious Emissions (30 - 26,000 MHz)

TABLE OF RESULTS – 802.11g – 6 Mbit/s

Channel Centre Frequency (MHz)	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Margin (dB)
2,412	30	26,000	-50.16	-22.94	-27.22

802.11g – 6 Mbit/s

2,412 MHz Conducted Spurious Emissions 30 MHz to 26,000 MHz

Date: 16.MAR.2009 19:08:29

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

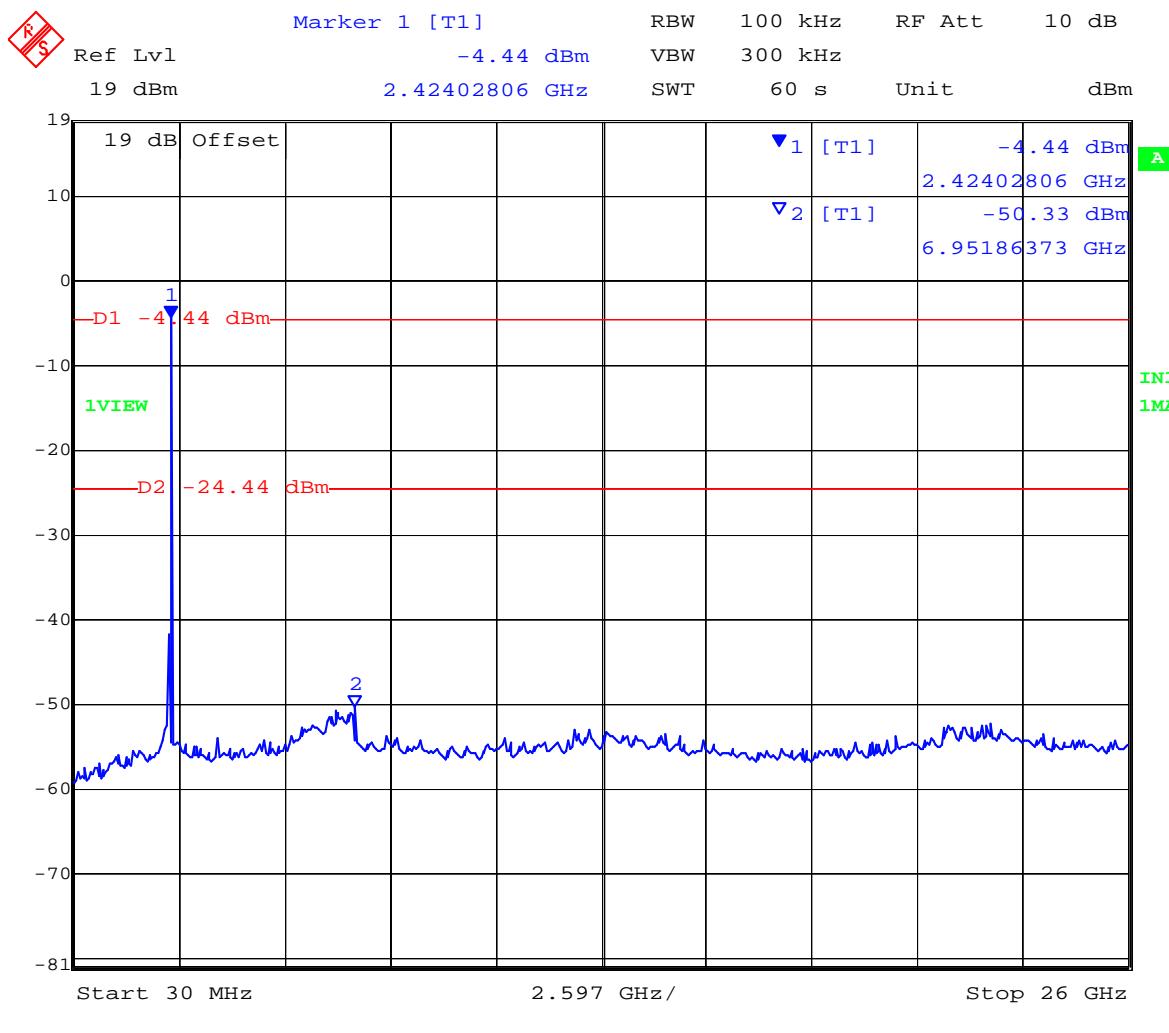

Spurious Emissions (30 - 26,000 MHz)

TABLE OF RESULTS – 802.11g – 6 Mbit/s

Channel Centre Frequency (MHz)	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Margin (dB)
2,437	30	26,000	-50.33	-24.44	-25.89

802.11g – 6 Mbit/s

2,437 MHz Conducted Spurious Emissions 30 MHz to 26,000 MHz

Date: 16.MAR.2009 19:06:34

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

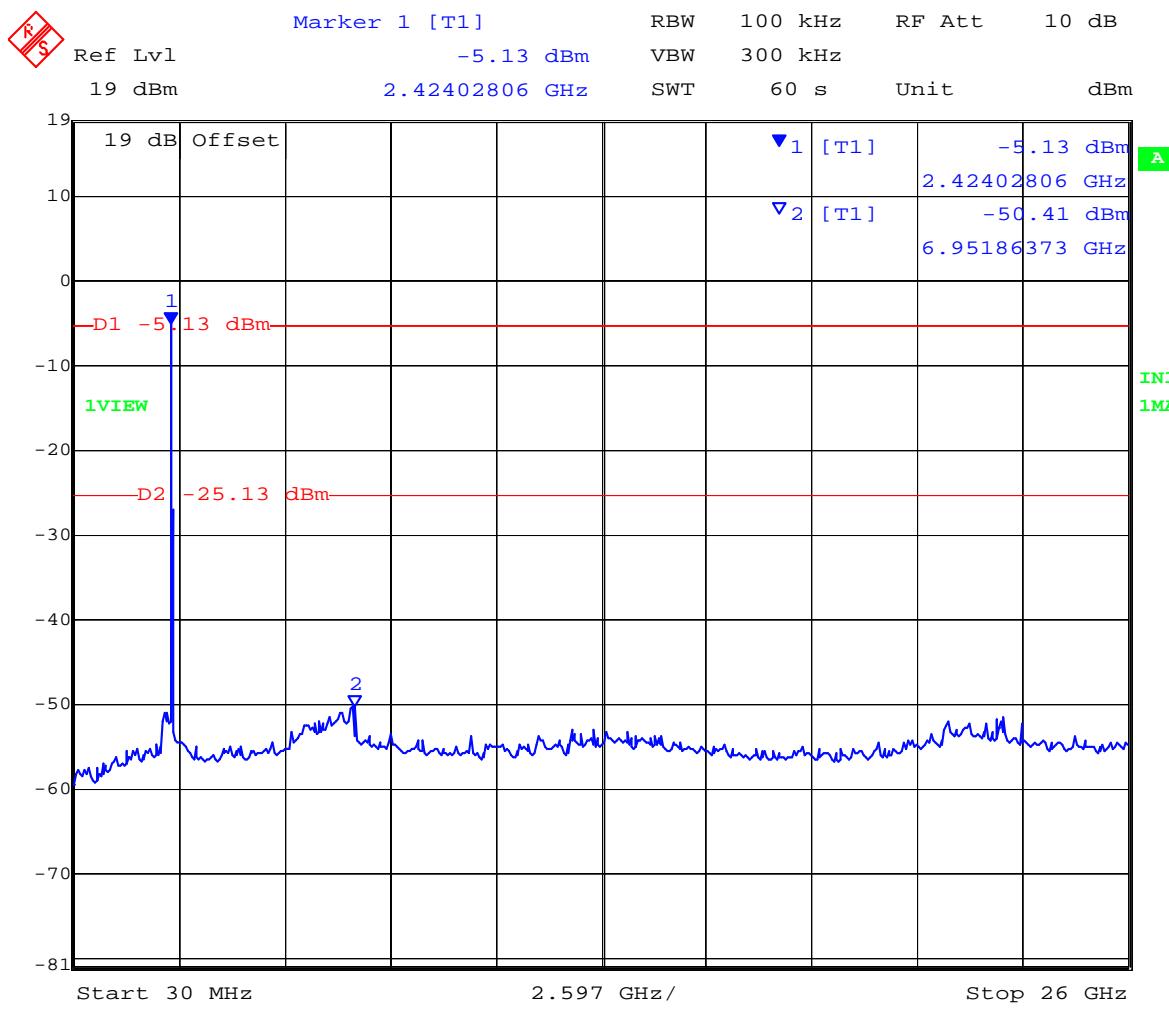

Spurious Emissions (30 - 26,000 MHz)

TABLE OF RESULTS – 802.11g – 6 Mbit/s

Channel Centre Frequency (MHz)	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Margin (dB)
2,462	30	26,000	-50.41	-25.13	-25.28

802.11g – 6 Mbit/s

2,462 MHz Conducted Spurious Emissions 30 MHz to 26,000 MHz

Date: 16.MAR.2009 19:11:24

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Ki Pro 802.11b/g Wireless A/V Control System
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: COMM02-A2 Rev A
Issue Date: 4th June 2009
Page: 55 of 92

Specification

Limits Band-Edge

Lower Limit Band-edge	Upper Limit Band-edge	Limit below highest level of desired power
2,400 MHz	2,483.5 MHz	≥ 20 dB

§15.247(d) and RSS-210 §A8.5 In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

§15.247(d)

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section §15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(a)).

RSS-210 §A8.5 If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required. In addition, radiated emissions which fall in the restricted bands of Table 1 must also comply with the radiated emission limits specified in Tables 2 and 3.

RSS-Gen §4.7

The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate of carrier frequency), or from 30 MHz, whichever is the lowest frequency, to the 5th harmonic of the highest frequency generated without exceeding 40 GHz.

Laboratory Measurement Uncertainty for Conducted Spurious Emissions

Measurement uncertainty	±2.37 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-05 'Measurement of Spurious Emissions'	0088, 0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117.

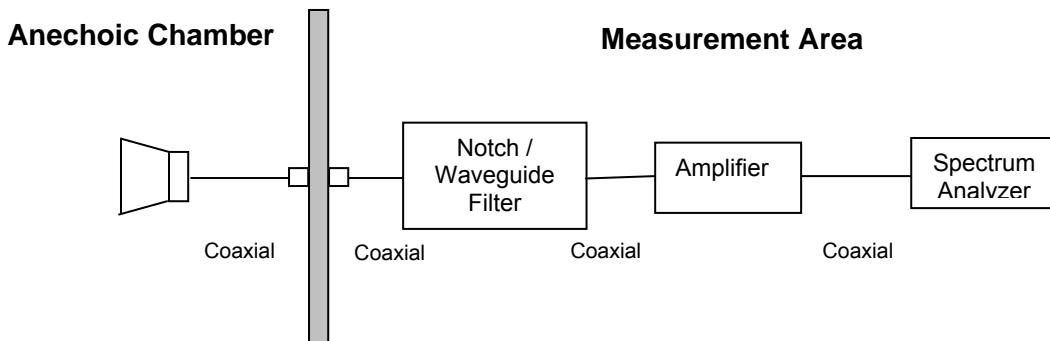
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.6. Radiated Emissions

5.1.6.1. Transmitter Radiated Spurious Emissions (above 1 GHz)

FCC, Part 15 Subpart C §15.247(d) 15.205; 15.209

Industry Canada RSS-210 §A8.5, §2.2, §2.6


Industry Canada RSS-Gen §4.7

Test Procedure

Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

Test Measurement Set up

Measurement set up for Radiated Emission Test

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

$$FS = R + AF + CORR - FO$$

where: FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL – AG + NFL

CL = Cable Loss

AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Ki Pro 802.11b/g Wireless A/V Control System
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: COMM02-A2 Rev A
Issue Date: 4th June 2009
Page: 57 of 92

For example:

Given receiver input reading of 51.5 dB μ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 \text{ dB}\mu\text{V/m}$$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

$$\text{Level (dB}\mu\text{V/m)} = 20 * \text{Log} (\text{level (}\mu\text{V/m)})$$

$$40 \text{ dB}\mu\text{V/m} = 100 \mu\text{V/m}$$

$$48 \text{ dB}\mu\text{V/m} = 250 \mu\text{V/m}$$

Ambient conditions.

Temperature: 17 to 23°C

Relative humidity: 31 to 57 %

Pressure: 999 to 1012 mbar

Radio Parameters

Duty Cycle: 100%

Output: Modulated Carrier

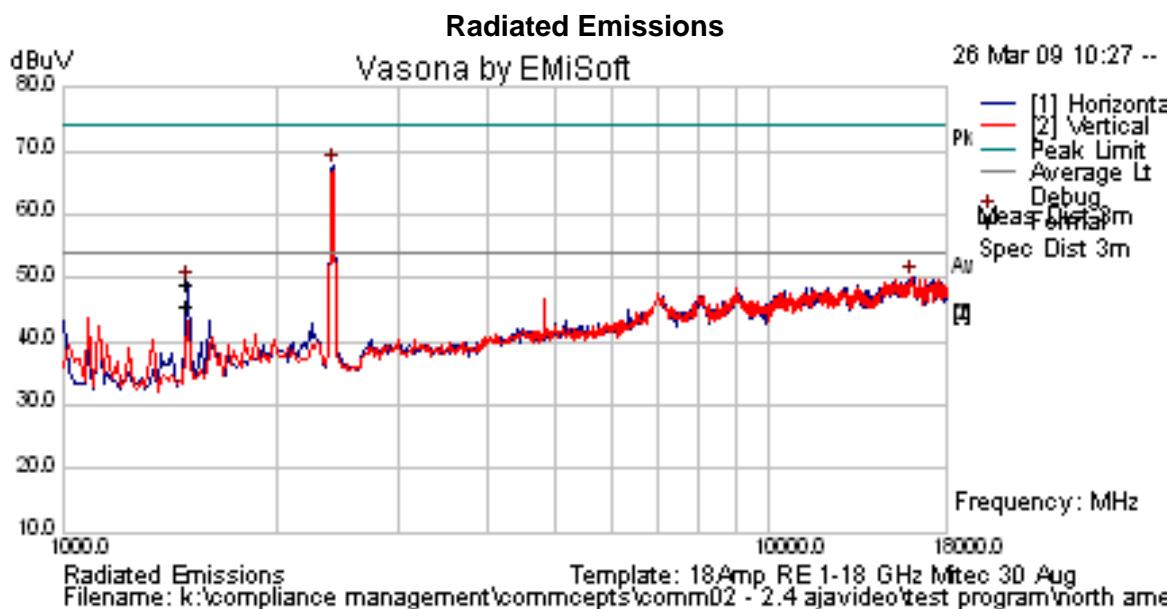
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Radiated Spurious Emissions above 1 GHz

Test Setup - 802.11b – 1Mb/s

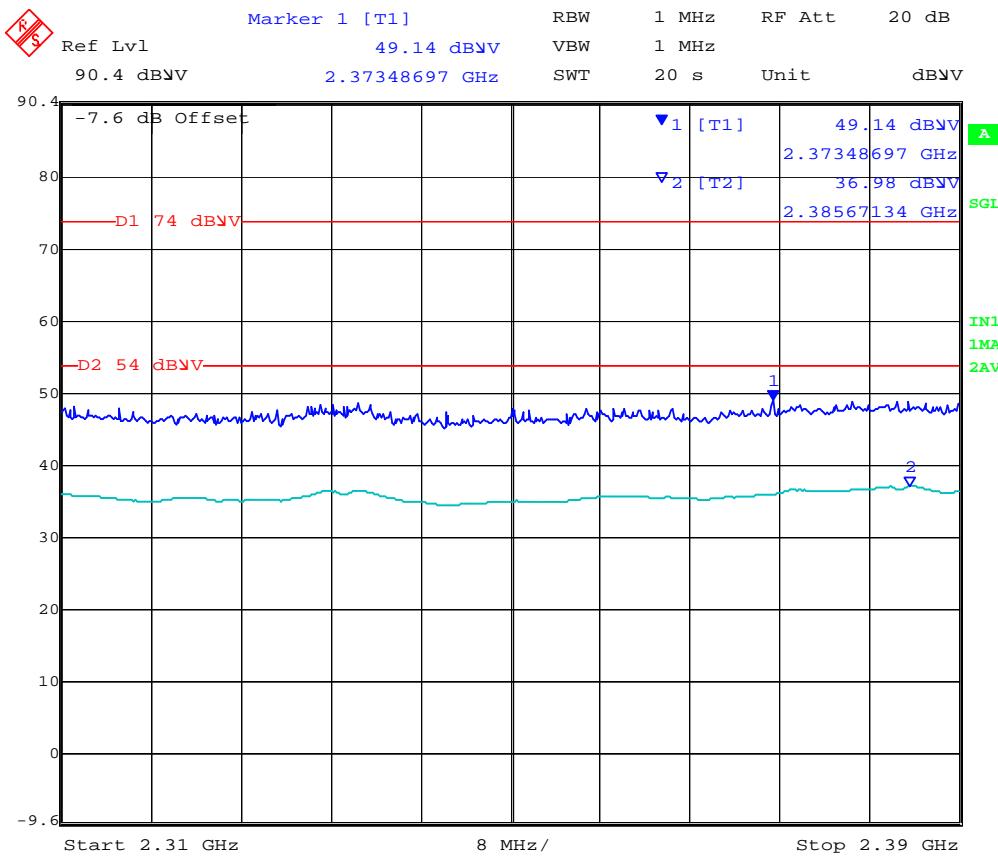
TABLE OF RESULTS – 802.11b, 1Mb/s Channel 1 (2,412 MHz) INTEGRAL Antenna 2dBi

Test configuration;- AC Adaptor connection only

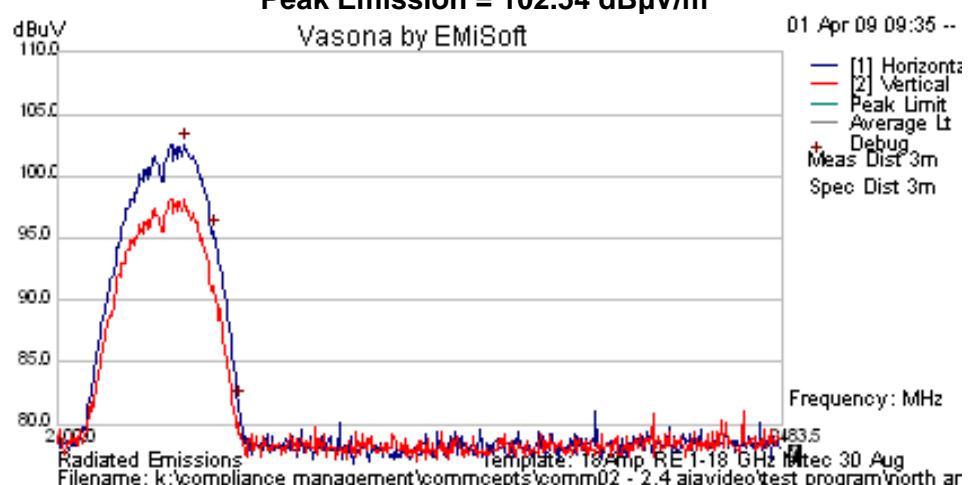

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV	Measurement Type	Pol	Hgt cm	Limit dBuV	Margin dB	Pass /Fail	Comments
2414.558116	57.23	12.96	32.35	102.54	Peak [Scan]	H	100	N/A	N/A	N/A	Pk Emission
2390	Power Setting = Maximum			49.14		V	100	74	-24.86	Pass	Band Edge
2390				36.98		V	100	54	-17.02	Pass	Band Edge
1500.076	61.78	2.37	-14.93	49.22	Peak Max	H	98	151	74	-24.78	
1500.076	58.15	2.37	-14.93	45.59	Average Max	H	98	151	54	-8.41	

Pk Emission – Peak Emission

Band-edge – Restricted Bands


RB – Restricted Band

NRB – Non-Restricted Band



The peak emission breaking the average limit line is the transmitter fundamental.

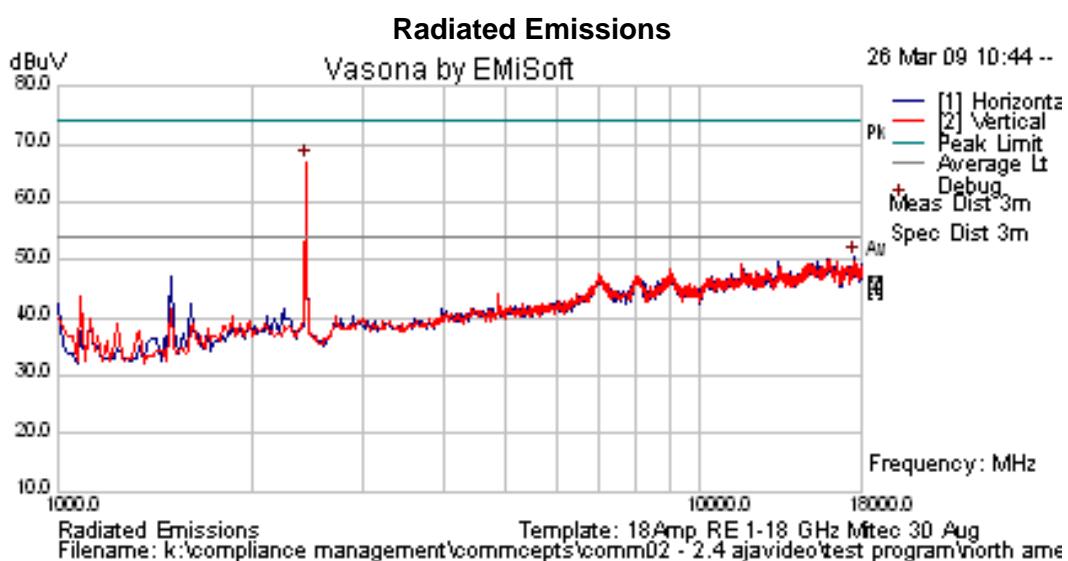
Band Edge Emissions for 802.11b -2,412 MHz

802.11b 2,412 MHz - INTEGRAL Antenna Peak Emission = 102.54 dB μ V/m

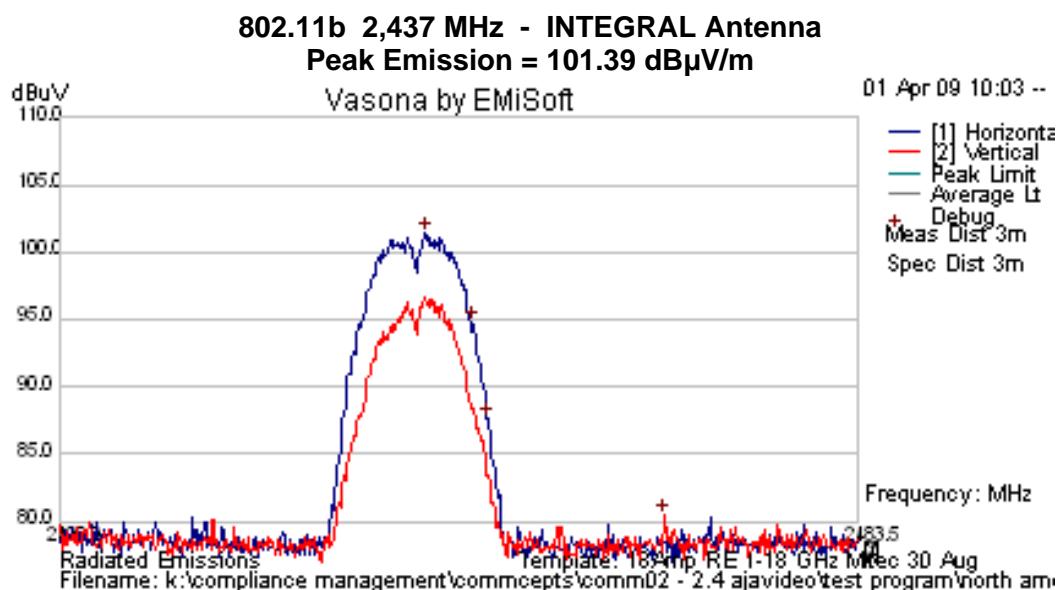
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

TABLE OF RESULTS – 802.11b, 1Mb/s Channel 6 (2,437) INTEGRAL Antenna 2dBi

Test configuration;- AC Adaptor connection only


Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV	Measurement Type	Pol	Hgt cm	Limit dBuV	Margin dB	Pass /Fail	Comments
2437.98497	56.05	12.97	32.37	101.39	Peak [Scan]	H	100	N/A	N/A	N/A	Pk Emission

Pk Emission – Peak Emission


Band-edge – Restricted Bands

RB – Restricted Band

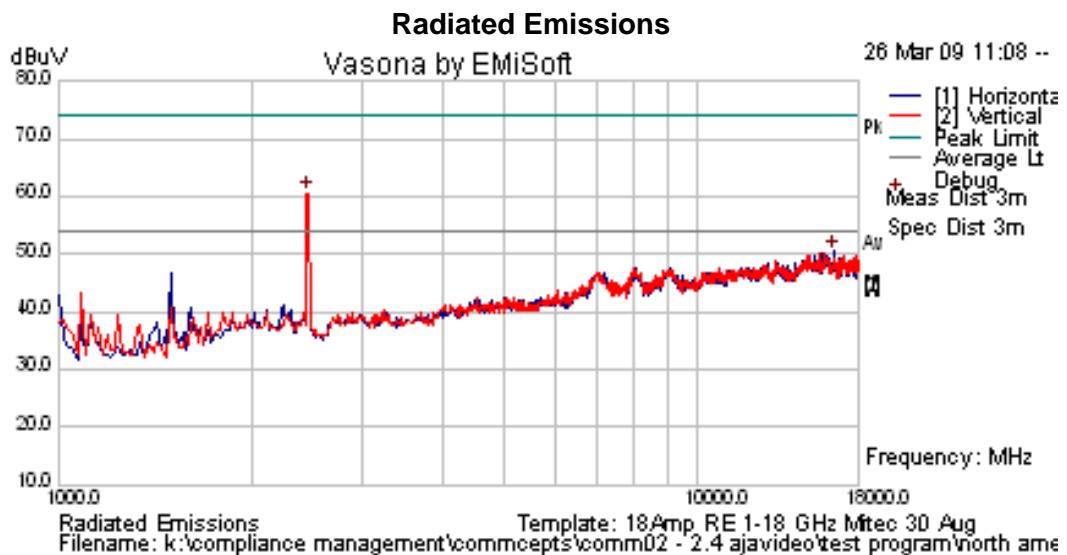
NRB – Non-Restricted Band

The peak emission breaking the average limit line is the transmitter fundamental.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

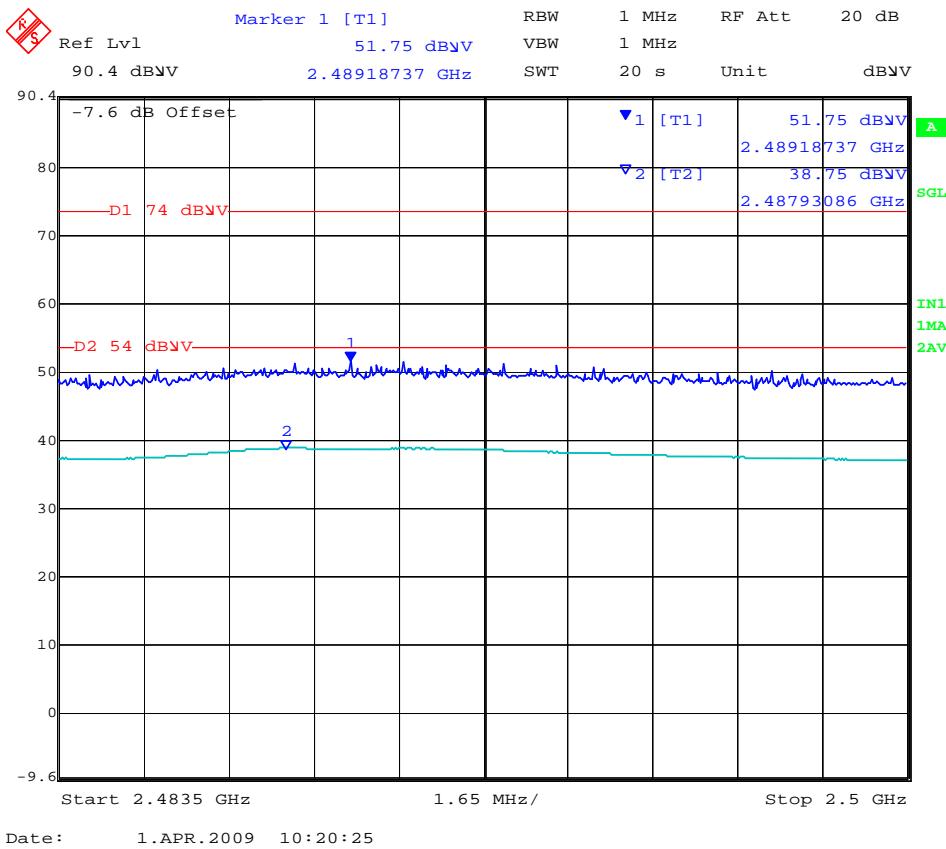
TABLE OF RESULTS – 802.11b, 1Mb/s Channel 11 (2,462 MHz) INTEGRAL Antenna 2dBi

Test configuration:- AC Adaptor connection only

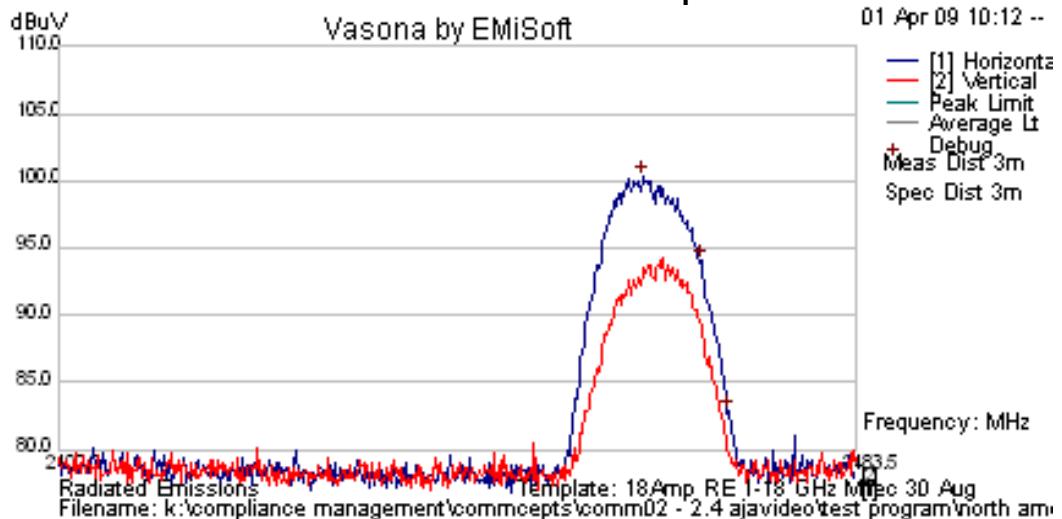

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV	Measurement Type	Pol	Hgt cm	Limit dBuV	Margin dB	Pass /Fail	Comments
2462.219	54.89	12.98	32.38	100.25	Peak [Scan]	H	100	N/A	N/A	N/A	Pk Emission
2483.5				51.75	Peak Max	V	100	74	-22.25	Pass	Band Edge
2483.5				38.75	Average Max	V	100	54	-15.25	Pass	Band Edge

Pk Emission – Peak Emission

Band-edge – Restricted Bands


RB – Restricted Band

NRB – Non-Restricted Band



The peak emission breaking the average limit line is the transmitter fundamental.

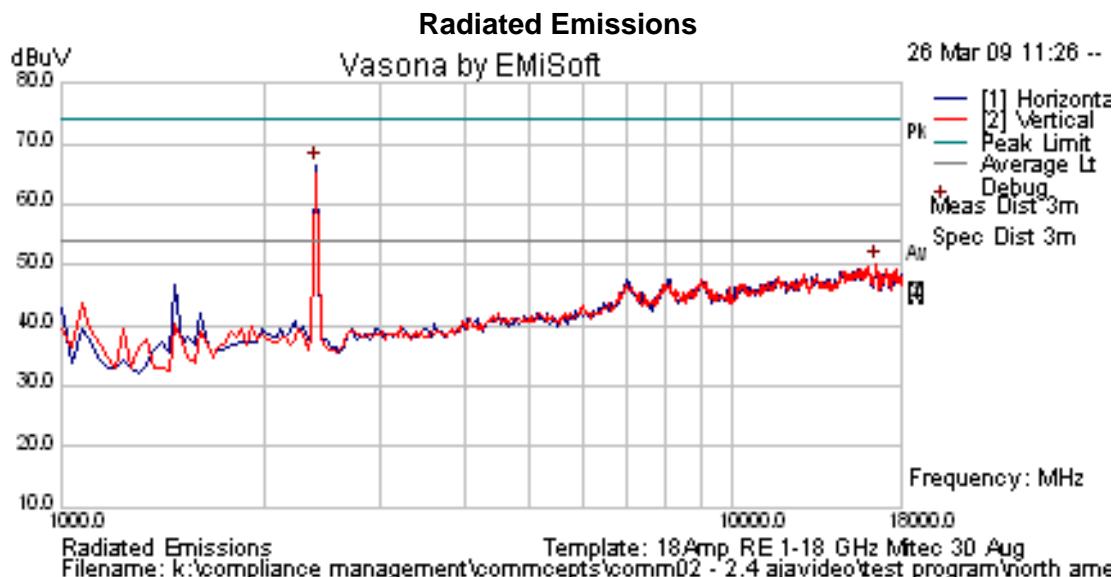
Band Edge Emissions for 802.11b -2,462 MHz

802.11b 2,462 MHz - INTEGRAL Antenna Peak Emission = 100.25 dB μ V/m

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

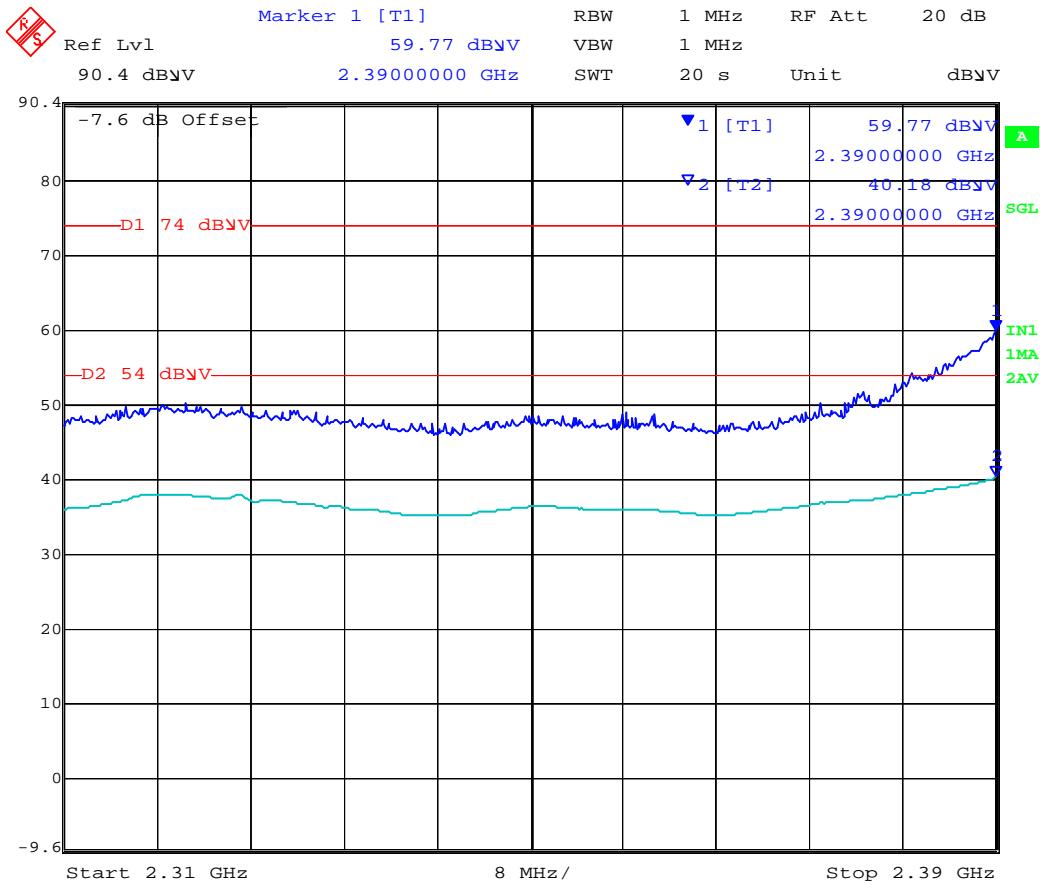
TABLE OF RESULTS – 802.11g, 6 Mb/s Channel 1 (2,412 MHz) INTEGRAL Antenna 2dBi

Test configuration;- AC Adaptor connection only


Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV	Measurement Type	Pol	Hgt cm	Limit dBuV	Margin dB	Pass /Fail	Comments
2417.068136	57.37	12.96	32.35	102.69	Peak [Scan]	H	100	N/A	N/A	N/A	Pk Emission
2390	Power Setting = Maximum			59.77	Peak Max	V	100	74	-14.23	Pass	Band Edge
2390				40.18	Average Max	V	100	54	-13.82	Pass	Band Edge

Pk Emission – Peak Emission

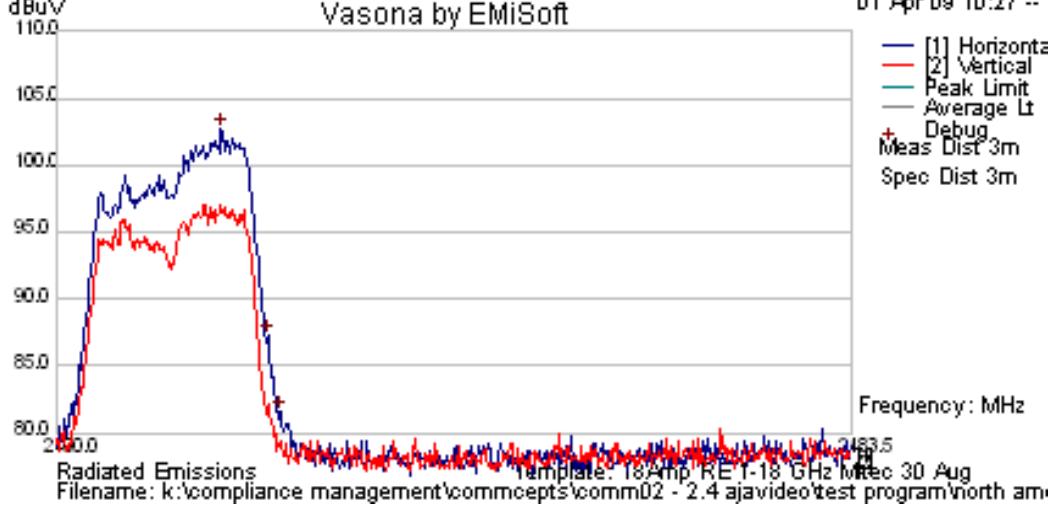
Band-edge – Restricted Bands


RB – Restricted Band

NRB – Non-Restricted Band

The peak emission breaking the average limit line is the transmitter fundamental.

Band Edge Emissions for 802.11g – 2,412 MHz


Date: 1.APR.2009 10:03:27

802.11g 2,412 MHz - INTEGRAL Antenna

Peak Emission = 102.69 dB μ V/m

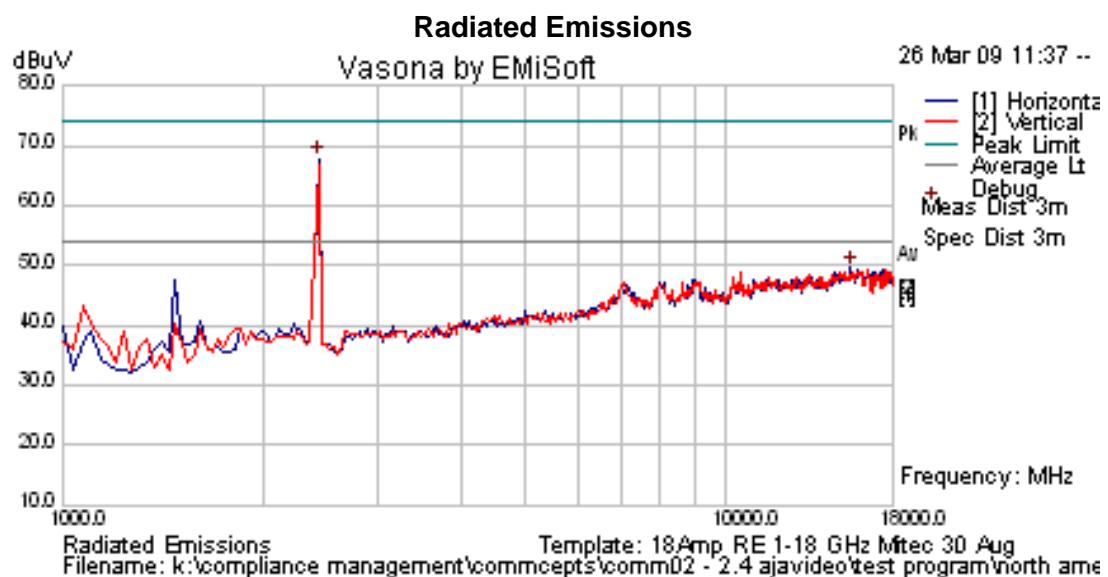
Vasona by EMiSoft

01 Apr 09 10:27 --

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

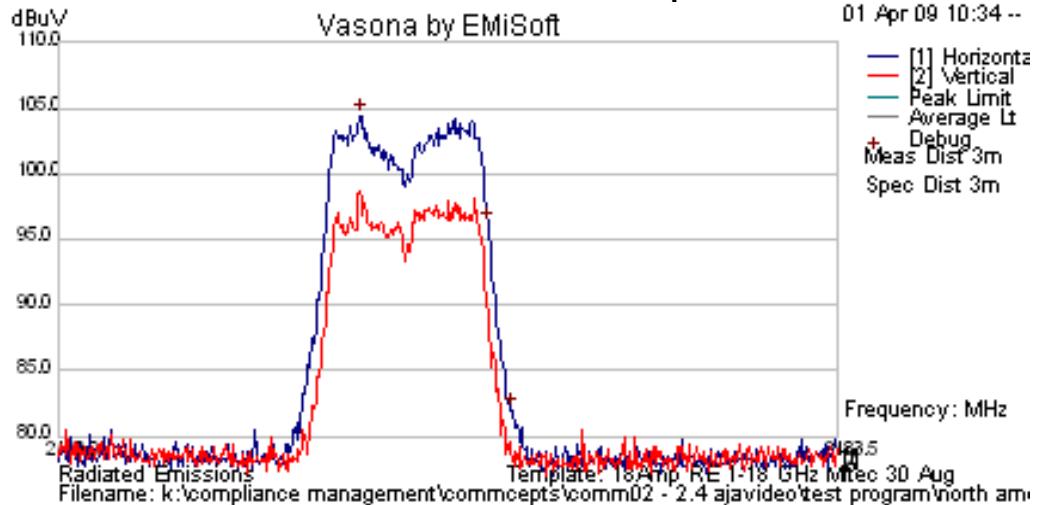
TABLE OF RESULTS – 802.11g, 6 Mb/s Channel 6 (2,437) INTEGRAL Antenna 2dBi

Test configuration;- AC Adaptor connection only


Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV	Measurement Type	Pol	Hgt cm	Limit dBuV	Margin dB	Pass /Fail	Comments
2432.295591	59.1	12.97	32.36	104.43	Peak [Scan]	H	100	N/A	N/A	N/A	Pk Emission

Pk Emission – Peak Emission

Band-edge – Restricted Bands


RB – Restricted Band

NRB – Non-Restricted Band

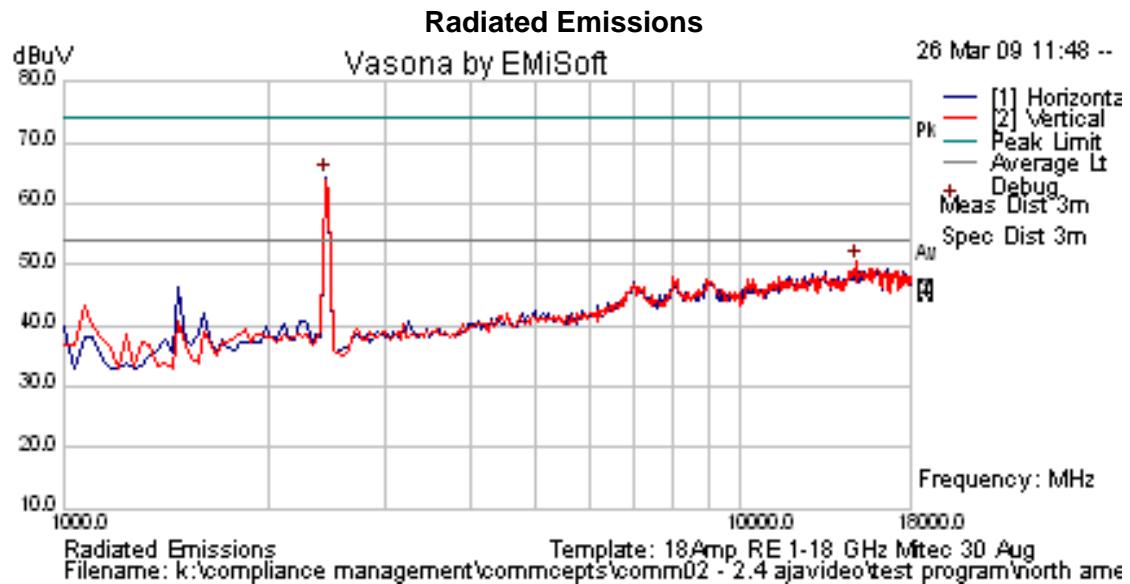
The peak emission breaking the average limit line is the transmitter fundamental.

802.11g 2,437 MHz - INTEGRAL Antenna
Peak Emission = 104.43 dB μ V/m

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

TABLE OF RESULTS – 802.11g – 6 Mb/s Channel 11 (2,462 MHz) INTEGRAL Antenna
2dBi

Test configuration;- AC Adaptor connection only

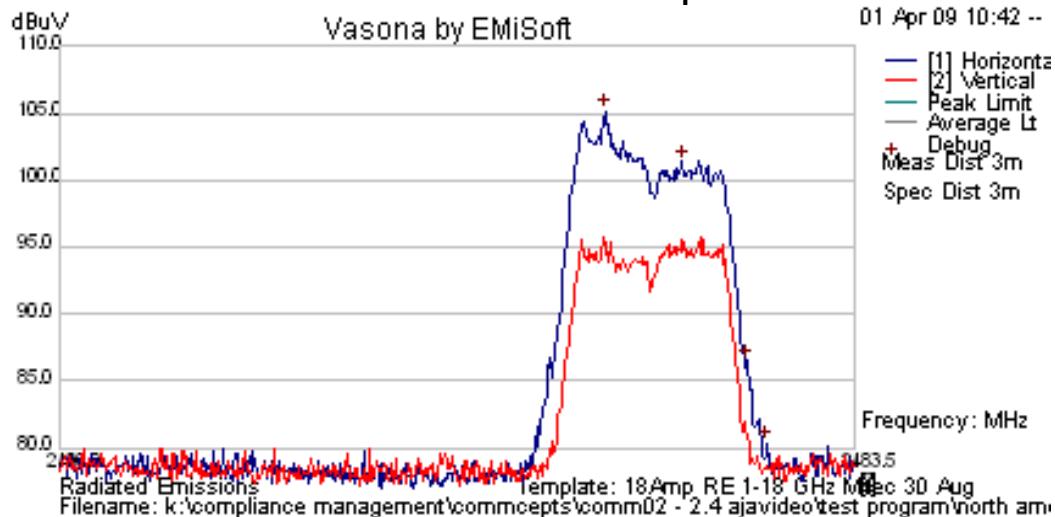

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV	Measurement Type	Pol	Hgt cm	Limit dBuV	Margin dB	Pass /Fail	Comments
2457.061122	59.82	12.98	32.38	105.17	Peak [Scan]	H	100	N/A	N/A	N/A	Pk Emission
2483.5	Power Setting = Maximum			64.54	Peak Max	V	100	74	-9.46	Pass	Band Edge
2483.5				43.20	Average Max	V	100	54	-10.8	Pass	Band Edge

Pk Emission – Peak Emission

Band-edge – Restricted Bands

RB – Restricted Band

NRB – Non-Restricted Band


The peak emission breaking the average limit line is the transmitter fundamental.

Band Edge Emissions for 802.11g -2,462 MHz

Date: 1.APR.2009 10:31:21

802.11g 2,462 MHz - INTEGRAL Antenna Peak Emission = 105.17 dB μ V/m

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Specification Limits

FCC §15.247(d) and RSS-210 §A8.5 In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

FCC §15.247(d)

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section §15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(a)).

IC RSS-210 §A8.5 If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required. In addition, radiated emissions which fall in the restricted bands of Table 1 must also comply with the radiated emission limits specified in Tables 2 and 3.

IC RSS-Gen §4.7

The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate of carrier frequency), or from 30 MHz, whichever is the lowest frequency, to the 5th harmonic of the highest frequency generated without exceeding 40 GHz.

FCC §15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

FCC §15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

FCC §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

Title: Ki Pro 802.11b/g Wireless A/V Control System
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: COMM02-A2 Rev A
Issue Date: 4th June 2009
Page: 71 of 92

§15.209 (a) Limit Matrix

Frequency(MHz)	Field Strength (μ V/m)	Field Strength (dB μ V/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB
-------------------------	---------------

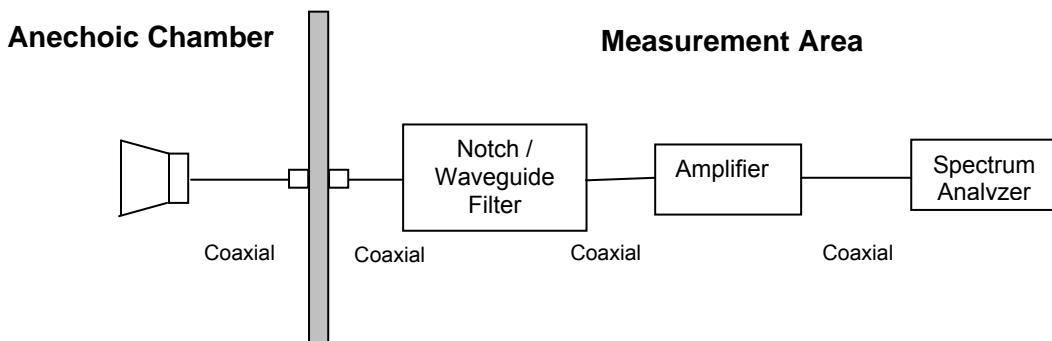
Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.6.2. Receiver Radiated Spurious Emissions (above 1 GHz)

Industry Canada RSS-Gen §4.8, §6


Test Procedure

Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

All Sectors of the EUT were tested simultaneously

Test Measurement Set up

Measurement set up for Radiated Emission Test

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

$$FS = R + AF + CORR - FO$$

where: FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Ki Pro 802.11b/g Wireless A/V Control System
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: COMM02-A2 Rev A
Issue Date: 4th June 2009
Page: 73 of 92

For example:

Given receiver input reading of 51.5 dB μ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 \text{ dB}\mu\text{V/m}$$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

$$\text{Level (dB}\mu\text{V/m)} = 20 * \text{Log} (\text{level (}\mu\text{V/m)})$$

$$40 \text{ dB}\mu\text{V/m} = 100 \mu\text{V/m}$$

$$48 \text{ dB}\mu\text{V/m} = 250 \mu\text{V/m}$$

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Receiver Radiated Spurious Emissions above 1 GHz

The 2.4 GHz receiver radiated spurious emissions were tested on mid-channel.

Test Setup – 2.4 GHz channel 2437 GHz,

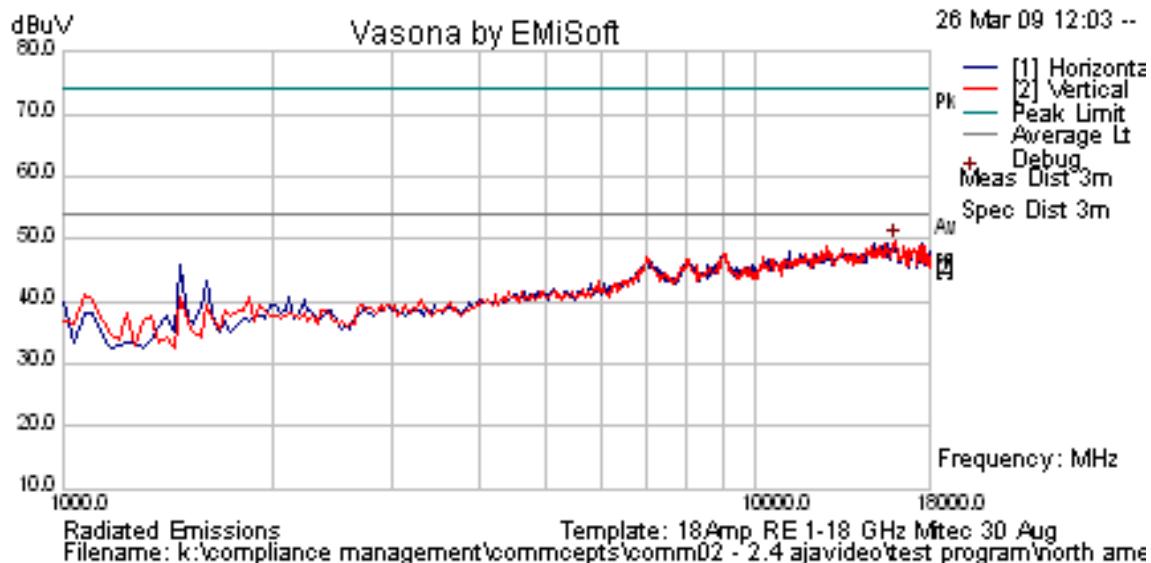

Test configuration;- AC Adaptor connection only

TABLE OF RESULTS –

Freq. (MHz)	Pol. (H/V)	Raw Reading (dB μ V/m)	Correction Factor (dB)	Corrected Field Strength (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)

No Receiver Spurious Emissions were observed above 1 GHz

Radiated Emissions

The above is a peak emission plot

Title: Ki Pro 802.11b/g Wireless A/V Control System
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: COMM02-A2 Rev A
Issue Date: 4th June 2009
Page: 75 of 92

Specification

Receiver Radiated Spurious Emissions

Industry Canada RSS-Gen §4.8,

The search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver (e.g. local oscillator, intermediate or carrier frequency), or 30 MHz, whichever is the higher, to at least 3 times the highest tunable or local oscillator frequency, whichever is the higher, without exceeding 40 GHz.

RSS-Gen §6

The following receiver spurious emission limits shall be complied with;

(a) If a radiated measurement is made, all spurious emissions shall comply with the limits of Table 1.

Frequency (MHz)	Field Strength (μ V/m)	Field Strength (dB μ V/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Laboratory Measurement Uncertainty for Radiated Emissions

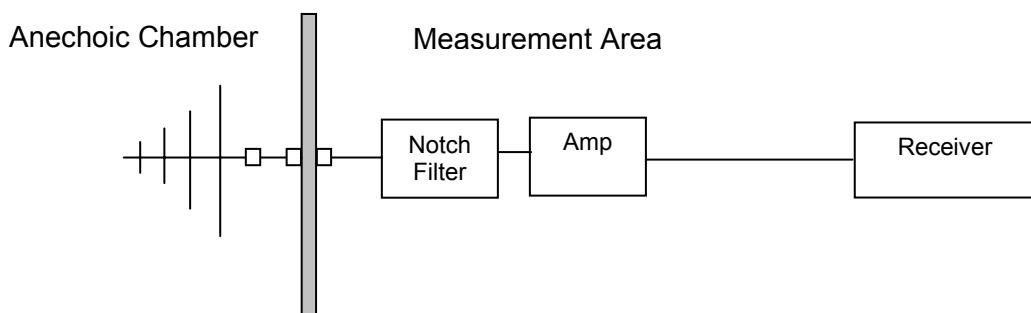
Measurement uncertainty	+5.6/ -4.5 dB
-------------------------	---------------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.6.3. Radiated Spurious Emissions (30M-1 GHz)


FCC, Part 15 Subpart C §15.205/ §15.209
Industry Canada RSS-210 §2.2

Test Procedure

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed. The anechoic chamber test set-up is identified in Section 6 Test Set-Up Photographs.

The EUT had two methods of powering on ac/dc converter and Power over Ethernet (POE). Both modes were tested for emissions below 1GHz.

Test Measurement Set up

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

$$FS = R + AF + CORR$$

where:

FS = Field Strength

R = Measured Receiver Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL – AG + NFL

CL = Cable Loss

AG = Amplifier Gain

Title: Ki Pro 802.11b/g Wireless A/V Control System
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: COMM02-A2 Rev A
Issue Date: 4th June 2009
Page: 77 of 92

For example:

Given a Receiver input reading of 51.5dB μ V; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3\text{dB}\mu\text{V/m}$$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

$$\text{Level (dB}\mu\text{V/m)} = 20 * \text{Log} (\text{level (}\mu\text{V/m)})$$

$$40 \text{ dB}\mu\text{V/m} = 100\mu\text{V/m}$$

$$48 \text{ dB}\mu\text{V/m} = 250\mu\text{V/m}$$

Measurement Results for Spurious Emissions (30 MHz – 1 GHz)

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

EUT parameters:

Transmitter operation: 802.11b

Data Rate(s): 1 Mb/s

Frequency: 2412 MHz

Power Level: Maximum

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Radiated Spurious Emissions below 1 GHz

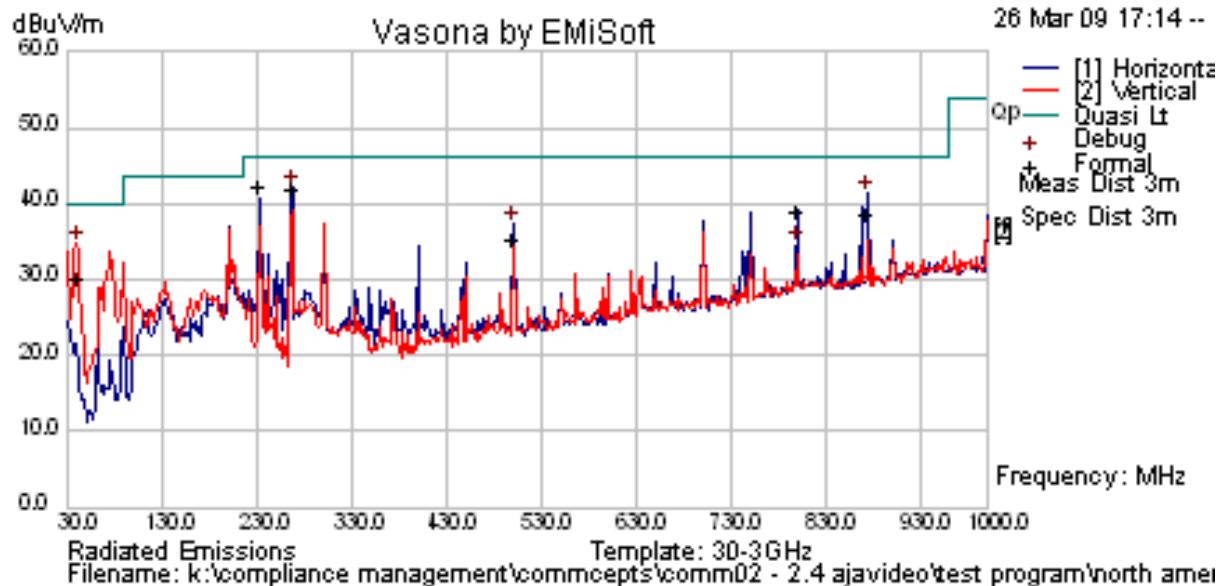

Test Setup - 802.11b – 1Mb/s

TABLE OF RESULTS – 802.11b, 1Mb/s Channel 6 (2,437 MHz) INTEGRAL Antenna 2dBi

Test configuration;- AC Adaptor connection only

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Comments
266.649	54.5	5.05	-17.49	42.06	Quasi Max	H	138	207	46	-3.94	
874.978	39.25	7.24	-7.72	38.77	Quasi Max	H	157	37	46	-7.23	
40.196	44.26	3.57	-17.5	30.34	Quasi Max	V	100	128	40	-9.66	
233.315	56.49	4.92	-19.1	42.32	Quasi Max	H	135	30	46	-3.68	
499.987	42.02	6	-12.62	35.4	Quasi Max	H	200	105	46	-10.6	
799.985	40.22	7.18	-8.39	39.01	Quasi Max	H	103	63	46	-6.99	

Radiated Emissions

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Ki Pro 802.11b/g Wireless A/V Control System
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: COMM02-A2 Rev A
Issue Date: 4th June 2009
Page: 79 of 92

Specification

Limits

§15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

§15.209 (a) and RSS-Gen §2.2 Limit Matrix

Frequency(MHz)	Field Strength (μ V/m)	Field Strength (dB μ V/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB
-------------------------	---------------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Ki Pro 802.11b/g Wireless A/V Control System
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: COMM02-A2 Rev A
Issue Date: 4th June 2009
Page: 80 of 92

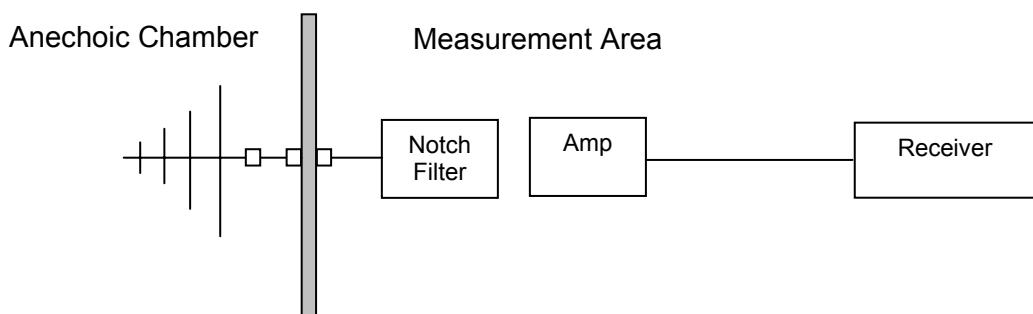
5.1.6.4. Radiated Digital Emissions (30M-2 GHz)

**FCC, Part 15 Subpart B §15.109,
Industry Canada ICES-003**

Frequency Range

Highest declared oscillator/clock frequency = 400MHz
Upper frequency of measurement = 2000 MHz

Test Procedure


Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed. The anechoic chamber test set-up is identified in Section 6 Test Set-Up Photographs.

Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. The highest emissions relative to the limit are listed for each frequency spanned. Measurements on frequencies over 1 MHz are based on the use of measurement instrumentation employing the peak and average detector function (as applicable). All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Test Measurement Set up

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

$$FS = R + AF + CORR$$

where:

FS = Field Strength

R = Measured Receiver Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL – AG + NFL

CL = Cable Loss

AG = Amplifier Gain

For example:

Given a Receiver input reading of 51.5dB μ V; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3\text{dB}\mu\text{V/m}$$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

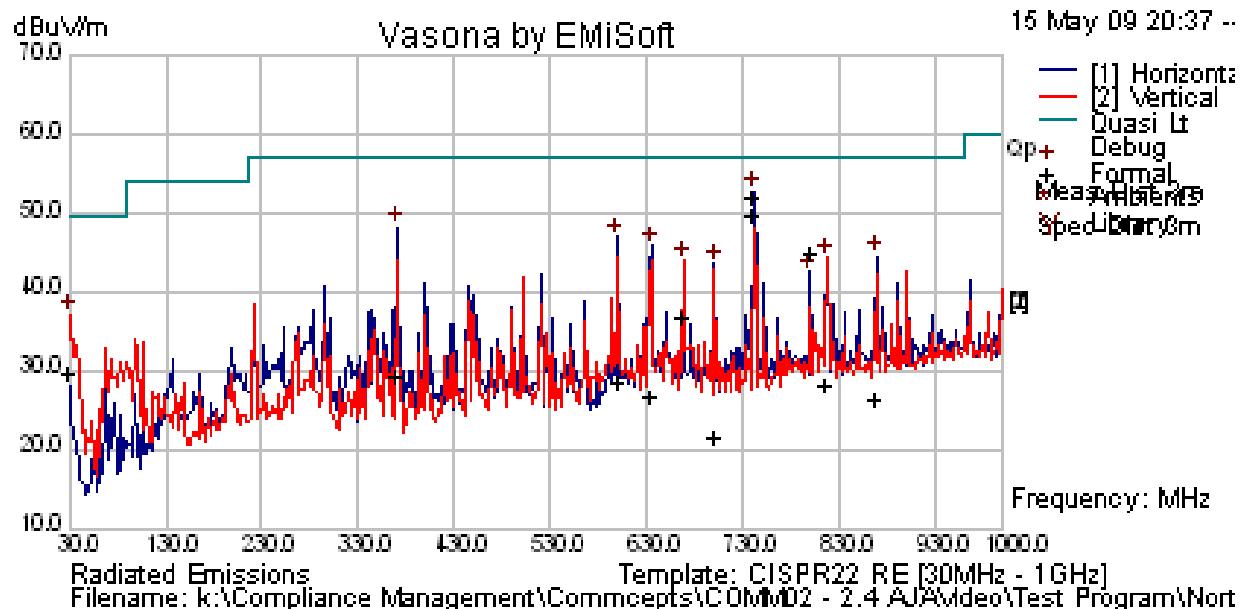
$$\text{Level (dB}\mu\text{V/m)} = 20 * \text{Log} (\text{level (}\mu\text{V/m)})$$

$$40 \text{ dB}\mu\text{V/m} = 100\mu\text{V/m}$$

$$48 \text{ dB}\mu\text{V/m} = 250\mu\text{V/m}$$

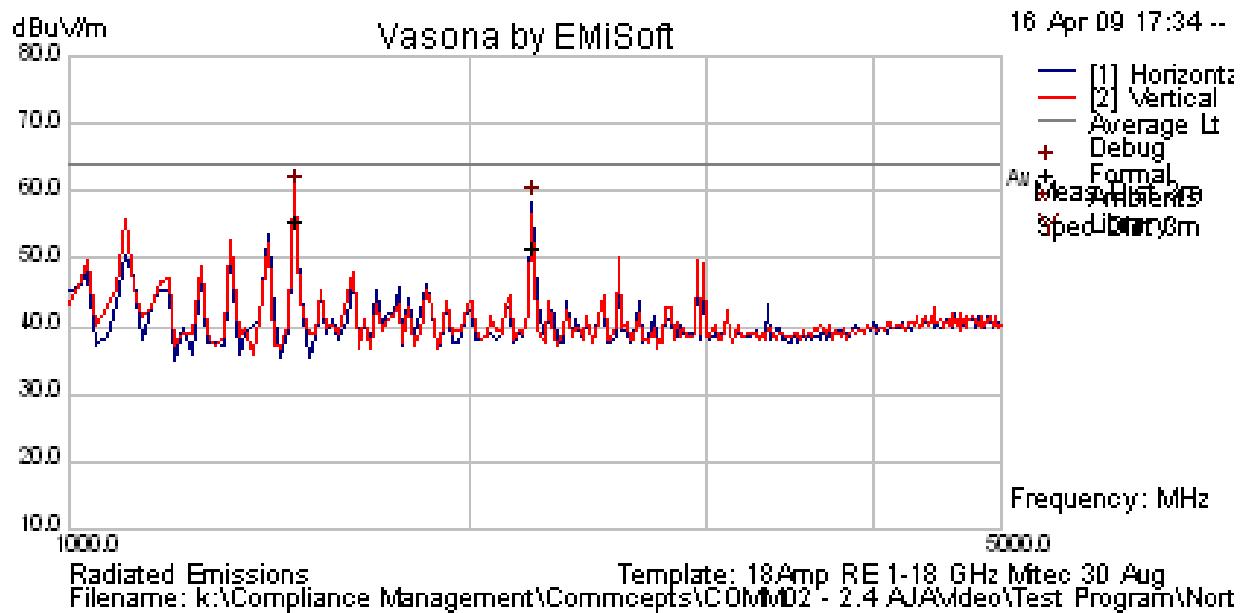
Measurement Results for Digital Spurious Emissions (30 MHz – 2 GHz)

Ambient conditions.


Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

EUT parameters:

Please refer to section 3.6 for EUT configuration.


Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Comments
741.9083	53.26	6.83	-9.29	50.8	Quasi Peak	V	98	360	57	-6.2	Pass
800.0046	46.31	7.18	-8.39	45.1	Quasi Max	H	98	137	57	-11.9	Pass
667.7145	40.61	6.58	-10.24	36.95	Quasi Max	H	108	320	57	-20.05	Pass
30	36.11	3.37	-9.58	29.9	Quasi Max	V	401	0	49.5	-19.6	Pass
370.1938	38.84	5.54	-15.07	29.31	Quasi Max	V	103	237	57	-27.69	Pass
599.7101	33.46	6.4	-11.29	28.57	Quasi Max	H	140	82	57	-28.43	Pass

Digital Spurious Emissions (30 MHz – 1 GHz) - Class A Limits

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Digital Spurious Emissions (Greater than 1 GHz) - Class A Limits

Specification

FCC CFR 47 Part 15 Subpart A §15.33
Industry Canada ICES-003

Frequency Range

Highest Frequency generated or used in the device	Upper frequency of measurement
Below 1.705 MHz	30 MHz
1.705 – 108 MHz	1000 MHz
108 – 500 MHz	2000 MHz
500 – 1000 MHz	5000 MHz
Above 1000 MHz	5 th harmonic of the highest frequency or 40 GHz, whichever is lower. For Industry Canada, measurements above 6GHz are not required.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Ki Pro 802.11b/g Wireless A/V Control System
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: COMM02-A2 Rev A
Issue Date: 4th June 2009
Page: 84 of 92

Limits

FCC §15.109 Limit Matrix

Frequency (MHz)	Class B Field Strength (μ V/m) @ 3m	Class B Field Strength (dB μ V/m) @ 3m	Class A Field Strength (μ V/m) @ 10 m	Class A Field Strength (dB μ V/m) @ 10 m	Class A Field Strength (dB μ V/m) @ 3 m	Measurement Distance (meters)
30-88	100	40.0	90	39.1	50.0	3
88-216	150	43.5	150	43.5	53.5	3
216-960	200	46.0	210	46.4	56.0	3
Above 960	500	54.0	300	49.5	64.0	3

Industry Canada ICES-003 Limit Matrix (below 1 GHz)

Frequency (MHz)	Class B Field Strength (dB μ V/m) @ 10 m	Class B Field Strength (dB μ V/m) @ 3 m	Class A Field Strength (dB μ V/m) @ 10 m	Class A Field Strength (dB μ V/m) @ 3 m	Measurement Distance (meters)
30-230	30	40.5	40	50.5	3
230-1,000	37	47.5	47	57.5	3

Industry Canada ICES-003 Limit Matrix (above 1 GHz)

Frequency (MHz)	Class B Field Strength (dB μ V/m) @ 3 m		Class A Field Strength (dB μ V/m) @ 3 m		Measurement Distance (meters)
	Average	Peak	Average	Peak	
1 – 3 GHz	50	70	56	76	3
3 – 6 GHz	54	74	60	80	3

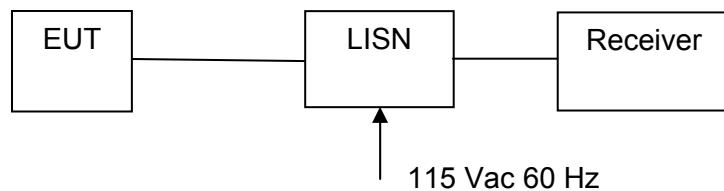
Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB
-------------------------	---------------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


5.1.7. AC Wireline Conducted Emissions (150 kHz – 30 MHz)

FCC, Part 15 Subpart C §15.207
Industry Canada RSS-Gen §7.2.2

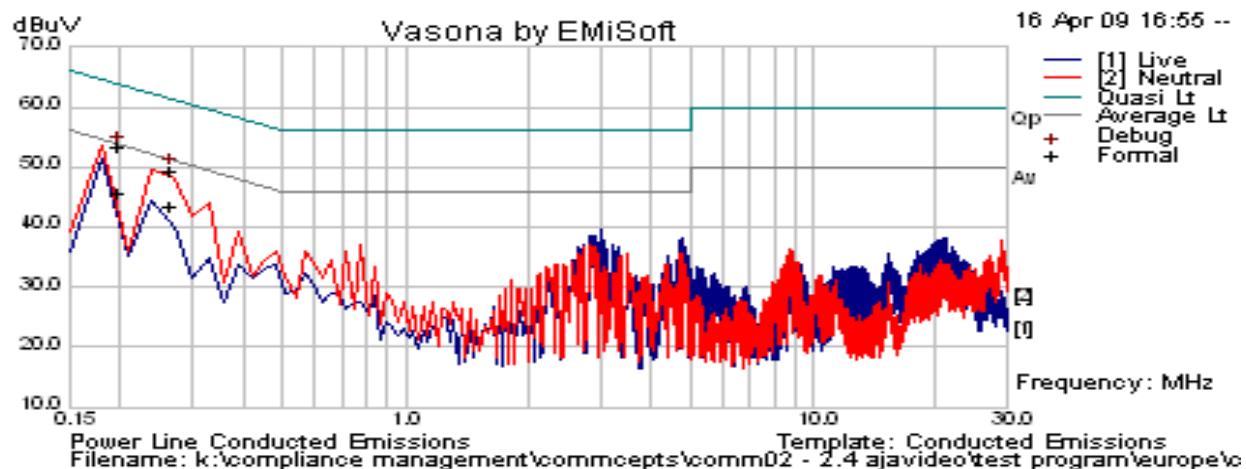
Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

Test Measurement Set up

Measurement set up for AC Wireline Conducted Emissions Test

Measurement Results for AC Wireline Conducted Emissions (150 kHz – 30 MHz)


Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Date	4/16/2009
Engineer	Clinton Bradley
Test Case	COMM02 EN55022 AC Mains Conducted Emissions 150kHz - 30MHz
Frequency	N/A
Antenna Model	N/A
Power setting	N/A
Test	EUT FCC3: HDMI Video Use Case - HDMI Video Output, Composite Video Monitor
Conditions	Ferrite on HDMI Cables - Cable Part Number HH-28F-06 / or Ferrite part number Fair-Rite 0461167281 (2 on each cable)

Frequency MHz	Raw dBuV	Cable Loss	Factors dB	Level dBuV	Measurement Type	Line	Limit dBuV	Margin dB	Pass /Fail
0.198108	35.54	9.9	0.1	45.54	Average	Neutral	54	-8.15	Pass
0.263747	33.48	9.9	0.1	43.49	Average	Neutral	51	-7.82	Pass
2.95816	25.9	10.1	0.18	36.22	Average	Neutral	46	-9.8	Pass
0.198108	43.22	9.9	0.1	53.23	Quasi Peak	Neutral	64	-10.5	Pass
0.263747	39.51	9.9	0.1	49.51	Quasi Peak	Neutral	61	-11.8	Pass
2.95816	26.9	10.1	0.18	37.23	Quasi Peak	Neutral	56	-19	Pass
0.332	32.7	9.89	0.1	42.7	Peak	Neutral	49.4	-6.7	Pass
4.784	24.4	10.1	0.2	34.7	Peak	Live	46	-11	Pass
8.822	25.4	10.3	0.3	35.99	Peak	Neutral	50	-14	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Ki Pro 802.11b/g Wireless A/V Control System
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: COMM02-A2 Rev A
Issue Date: 4th June 2009
Page: 87 of 92

Specification

Limit

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

RSS-Gen §7.2.2

The radio frequency voltage that is conducted back into the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table below. The tighter limit applies at the frequency range boundaries.

§15.207 (a) and RSS-Gen §7.2.2 Limit Matrix

The lower limit applies at the boundary between frequency ranges

Frequency of Emission (MHz)	Conducted Limit (dB μ V)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency

Laboratory Measurement Uncertainty for Conducted Emissions

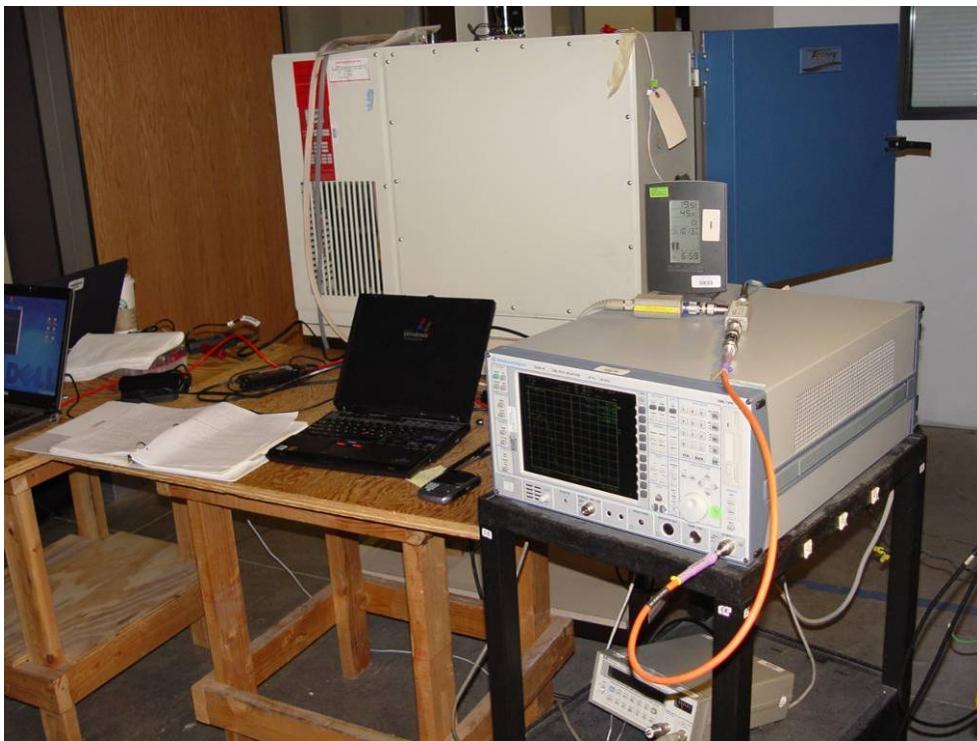
Measurement uncertainty	± 2.64 dB
-------------------------	---------------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-EMC-01 'Measurement of Conducted Emissions'	0158, 0184, 0193, 0190, 0293, 0307

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6. PHOTOGRAPHS


6.1. Radiated Spurious Emissions 115 Vac 60 Hz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.2. General Measurement Test Set-Up

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.3. AC Wireline Emissions Test Set-Up

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Ki Pro 802.11b/g Wireless A/V Control System
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: COMM02-A2 Rev A
Issue Date: 4th June 2009
Page: 91 of 92

7. TEST EQUIPMENT DETAILS

Asset #	Instrument	Manufacturer	Part #	Serial #
0088	Spectrum Analyzer	Hewlett Packard	8564E	3410A00141
0134	Amplifier	Com Power	PA 122	181910
0158	Barometer /Thermometer	Control Co.	4196	E2846
0193	EMI Receiver	Rhode & Schwartz	ESI 7	838496/007
0252	SMA Cable	Megaphase	Sucoflex 104	None
0310	2m SMA Cable	Micro-Coax	UFA210A-0-0787-3G03G0	209089-001
0312	3m SMA Cable	Micro-Coax	UFA210A-1-1181-3G0300	209092-001
0313	Coupler	Hewlett Packard	86205A	3140A01285
0314	30dB N-Type Attenuator	ARRA	N9444-30	1623
0070	Power Meter	Hewlett Packard	437B	3125U11552
0116	Power Sensor	Hewlett Packard	8485A	3318A19694
0117	Power Sensor	Hewlett Packard	8487D	3318A00371
0184	Pulse Limiter	Rhode & Schwartz	ESH3Z2	357.8810.52
0190	LISN	Rhode & Schwartz	ESH3Z5	836679/006
0293	BNC Cable	Megaphase	1689 1GVT4	15F50B001
0301	5.6 GHz Notch Filter	Micro-Tronics	RBC50704	001
0302	5.25 GHz Notch Filter	Micro-Tronics	BRC50703	002
0303	5.8 GHz Notch Filter	Micro-Tronics	BRC50705	003
0304	2.4GHzHz Notch Filter	Micro-Tronics	--	001
0307	BNC Cable	Megaphase	1689 1GVT4	15F50B002
0335	1-18GHz Horn Antenna	ETS- Lindgren	3117	00066580
0337	Amplifier	MiCOM Labs	--	--
0338	Antenna	Sunol Sciences	JB-3	A052907

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

440 Boulder Court, Suite 200
Pleasanton, CA 94566, USA
Tel: 1.925.462.0304
Fax: 1.925.462.0306
www.micomlabs.com