RV-1303021

10 RF EXPOSURE COMPLIANCE

10.1LIMIT

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)		Magnetic Field Strength (H) (A/m)	Power Density (5)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)		Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

NOTE: f = frequency in MHz ; *Plane-wave equivalent power density.

10.2MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Power Meter	Anritsu	ML2495A	1128008	Feb,20,2013
2	Power Meter Sensor	Anritsu	MA2411B	1126001	Feb,20,2013

10.3MPE CALCULATION METHOD

: *Pd* (W/m²) =
$$\frac{E^2}{377}$$

 $E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$ E = E | ectric field (V/m)

 \mathbf{P} = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{2}$$

 $377 \times d^2$ From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

10.4TEST SETUP LAYOUT

EUT	Dorroy Moton
EUI	Power Meter

10.5DEVIATION FROM TEST STANDARD

No deviation

10.6EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing.

Neutron Engineering Inc._____

10.7TEST RESULTS - 2400-2483.5 MHZ

E.U.T	AIS Receiver	Model Name	CYPHO-150WS			
Temperature	26°C	Relative Humidity	60%			
Test Voltage	DC 12V					
Test Mode	IEEE 802.11b/2412 MHz, 2437 MHz, 2462 MHz					

Frequency	Antenna Gain (dBi)	Antenna Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm²)	Result
2412 MHz	2.00	1.5849	15.2400	33.4195	0.010543	1	PASS
2437 MHz	2.00	1.5849	15.0300	31.8420	0.010045	1	PASS
2462 MHz	2.00	1.5849	15.2500	33.4965	0.010567	1	PASS

E.U.T	AIS Receiver	Model Name	CYPHO-150WS			
Temperature	26°C	Relative Humidity	60%			
Test Voltage	DC 12V					
Test Mode	IEEE 802.11g/2412 MHz, 2437 MHz, 2462 MHz					

Frequency	Antenna Gain (dBi)	Antenna Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm²)	Result
2412 MHz	2.00	1.5849	19.7500	94.4061	0.029782	1	PASS
2437 MHz	2.00	1.5849	19.7600	94.6237	0.029850	1	PASS
2462 MHz	2.00	1.5849	19.1200	81.6582	0.025760	1	PASS

E.U.T	AIS Receiver	Model Name	CYPHO-150WS			
Temperature	26°C	Relative Humidity	60%			
Test Voltage	DC 12V					
Test Mode	IEEE 802.11n (20 MHz)/2412 MHz, 2437 MHz, 2462 MHz					

Frequency	Antenna Gain (dBi)	Antenna Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm²)	Result
2412 MHz	2.99	1.9907	24.9200	310.4560	0.123013	1	PASS
2437 MHz	2.99	1.9907	25.0800	322.1069	0.127629	1	PASS
2462 MHz	2.99	1.9907	24.0800	255.8586	0.101380	1	PASS