ETSI EN 300 328 V2.1.1: 2016

TEST REPORT

For

AIS Class B Transponder

Trade Name: AMEC

Model: WideLink B600W, WideLink B600

Issued to

Alltek Marine Electronics Corp. 14F-2, No.237, Sec. 1, Datong Rd., Xizhi District, New Taipei City, Taiwan, R.O.C.

Issued by

Compliance Certification Services Inc. No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.) http://www.ccsrf.com service@ccsrf.com Issued Date: December 30, 2016

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	December 30, 2016	Initial Issue	ALL	Doris Chu

TABLE OF CONTENTS

1.	1. TEST RESULT CERTIFICATION							
2.	EUT	DESCRIPTION	5					
	TES 3.1	FMETHODOLOGY						
	3.2	DESCRIPTION OF TEST MODES	6					
4	INST	RUMENT CALIBRATION	7					
	4.1	MEASURING INSTRUMENT CALIBRATION						
	4.2							
	4.3	MEASUREMENT UNCERTAINTY	8					
5	FAC	LITIES AND ACCREDITATIONS	9					
	5.1	FACILITIES						
	5.2	EQUIPMENT						
	5.3	TABLE OF ACCREDITATIONS AND LISTINGS	. 10					
6	SETU	JP OF EQUIPMENT UNDER TEST						
	6.1	SETUP CONFIGURATION OF EUT						
	6.2	SUPPORT EQUIPMENT	. 11					
7	ETSI	EN 300 328 REQUIREMENTS	.12					
	7.1	RF OUTPUT POWER						
	7.2	MAXIMUM SPECTRAL POWER DENSITY						
	7.3 7.4	DUTY CYCLE, TX-SEQUENCE, TX-GAP DWELL TIME, MINIMUM FREQUENCT OCCUPATION AND HOPPING SEQUENCE	.21					
	7.4 7.5	HOPPING FREQUENCY SEPARATION	. ZZ 24					
	7.6	MEDIUM UTILISATION						
	7.7	ADAPTIVITY	-					
	7.8	OCCUPIED CHANNEL BANDWIDTH						
	7.9	TRANSMITTER UNWANTED EMISSIONS IN THE OOB DOMAIN						
	7.10 7.11	TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN RECEIVER SPURIOUS EMISSIONS						
	7.11	RECEIVER SPORIOUS EMISSIONS						
	1.12		12					
AI	PPEND	IX I PHOTOGRAPHS OF TEST SETUP	.76					

APPENDIX 1 - PHOTOGRAPHS OF EUT

1. TEST RESULT CERTIFICATION

Applicant:	Alltek Marine Electronics Corp. 14F-2, No.237, Sec. 1, Datong Rd., Xizhi District, New Taipei City, Taiwan, R.O.C.			
Equipment Under Test:	AIS Class B Transponder			
Trade Name: AMEC				
Model Number:	WideLink B600W, WideLink B600			
Date of Test:	March 9 ~ Dec 28, 2016			
	APPLICABLE STANDARDS			

AFFLICABLE STANDARDS				
STANDARD	TEST RESULT			
ETSI EN 300 328 V2.1.1: 2016	Pass			

The above equipment was tested by Compliance Certification Services Inc. for compliance with the requirements set forth in ETSI EN 300 328. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:

Sam Chuang

Sam Chuang Manager Compliance Certification Services Inc.

Tested by:

on Chen

Zeus Chen Engineer Compliance Certification Services Inc.

2. EUT DESCRIPTION

Product	AIS Class B Transponder				
Trade Name	AMEC				
Model Number	WideLink B600W, WideLink B60	00			
Model Discrepancy	WideLink B600 without Wi-Fi WideLink B600W with Wi-Fi				
Received Date	February 22, 2016				
Power supply	Power from power supply: DC 1	2/24V			
Frequency Range	IEEE 802.11b/g/ IEEE 802.11n HT 20 MHz Mode: 2412 ~ 2472 MHz IEEE 802.11n HT 40 MHz Mode: 2422~ 2462 MHz				
Modulation Technique	IEEE 802.11b mode: DSSS IEEE 802.11g mode: OFDM IEEE 802.11n HT 20 MHz Mode: OFDM IEEE 802.11n HT 40 MHz Mode: OFDM				
Number of Channels	IEEE 802.11b/g mode: 13 Channels IEEE 802.11n HT 20 MHz Mode: 13 Channels IEEE 802.11n HT 40 MHz Mode: 9 Channels				
	Mode	Transmit Power (dBm)	Transmit Power (mW)		
Transmit Power	IEEE 802.11b Mode	19.53	89.7429		
(mean EIRP)	IEEE 802.11g Mode	19.52	89.5365		
	IEEE 802.11n HT 20 MHz Mode	19.48	88.7156		
IEEE 802.11n HT 40 MHz Mode 19.49 88.920					
Antenna Specification	CHIP Antenna: 1.00 dBi Dipole Antenna: 2.94 dBi				
Temperature Range	-15°C ~ +55°C				
Hardware	M-PCB-B601MBV2				
Software	V1.1.5				

Remark: for more details, please refer to the User's manual of the EUT.

3. TEST METHODOLOGY

3.1 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to its specifications, the EUT must comply with the requirements of the following standards:

ETSI EN 300 328 – Electromagnetic compatibility and Radio spectrum Matters (ERM); Wideband Transmission systems; Data transmission equipment operating in the 2.4GHz ISM band and using spread spectrum modulation techniques: Part 2: Harmonized EN covering essential requirements under article 3.2 of the R&TTE Directive.

3.2 DESCRIPTION OF TEST MODES

The EUT (model: WideLink B600W) comes with two modes (DC 12V / DC 24V). After the preliminary test, the mode DC 12V was found to emit the worst emissions and therefore had been tested under operating condition.

The EUT is a 2x2 configuration spatial MIMO (2Tx & 2Rx) without beam forming function that operate in double TX chains and double RX chains. The 2x2 configuration is implemented with two outside TX & RX chains (Chain 0 and 1).

Software used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

IEEE 802.11b Mode:

Channel Low (2412MHz) and Channel High (2472MHz) with 1Mbps data rate were chosen for full testing.

IEEE 802.11g Mode:

Channel Low (2412MHz) and Channel High (2472MHz) with 6Mbps data rate were chosen for full testing.

IEEE 802.11n HT 20 MHz Mode:

Channel Low (2412MHz) and Channel High (2472MHz) with 6.5Mbps data rate were chosen for full testing.

IEEE 802.11n HT 40 MHz Mode:

Channel Low (2422MHz) and Channel High (2462MHz) with 13.5Mbps data rate were chosen for full testing.

4 INSTRUMENT CALIBRATION

4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

4.2 MEASUREMENT EQUIPMENT USED

Equipment Used for Emissions Measurement

Remark: Each piece of equipment is scheduled for calibration once a year and Precision Dipole is scheduled for calibration once three years.

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
DC Power Supplies	GW Instek	SPS-3610	GPE880163	01/19/2016	01/18/2017
Digital Thermo-Hygro Meter	WISEWIND	1110	D03	03/07/2016	03/06/2017
Power Meter	Anritsu	ML2495A	1012009	07/08/2015	07/07/2016
Power Sensor	Anritsu	MA2411B	917072	07/08/2015	07/07/2016
PSA Series Spectrum Analyzer	Agilent	E4445A	MY48250198	08/10/2015	08/09/2016
Signal Analyzer	R&S	FSV 40	101073	07/20/2015	07/19/2016
Spectrum Analyzer	Agilent	E4446A	US42510268	02/15/2016	02/14/2017
Thermostatic/Hrgrosatic Chamber	TAICHY	MHG-150LF	930619	10/08/2015	10/07/2016
USB Wideband Power Sensor	AGILENT	U2021XA	MY54250027	06/16/2015	06/15/2016
USB Wideband Power Sensor	AGILENT	U2021XA	MY54260016	06/16/2015	06/15/2016
USB Wideband Power Sensor	AGILENT	U2021XA	MY54260020	06/16/2015	06/15/2016
USB Wideband Power Sensor	AGILENT	U2021XA	MY54260007	10/26/2015	10/25/2016
Vector Signal Generator	R&S	SMU 200A	102239	03/10/2016	03/09/2017
AC Power Source	EXTECH	6205	1140845	N.C.R	N.C.R

MEASUREMENT UNCERTAINTY 4.3

For the test methods, according to the present document, the measurement uncertainty figures shall be calculated in accordance with TR 100 028-1 [2] and shall correspond to an expansion factor (coverage factor) k = 1,96 or k = 2 (which provide confidence levels of respectively 95 % and 95,45 % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian)).

Table 7 is based on such expansion factors.

Table 7: Maximum mea Parameter	Uncertainty
Occupied Channel Bandwidth	+/- 5%
RF output power, conducted	+/- 1,5 dB
Power Spectral Density, conducted	+/- 3 dB
Unwanted Emissions, conducted	+/- 3 dB
All emissions, radiated	+/- 6 dB
Temperature	+/- 3°C
Supply voltages	+/- 3%
Time	+/- 5%

Table 7. M 4-1-1-1

5 FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No. 199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C.
 Tel: 886-2-2217-0894 / Fax: 886-2-2217-1029

- No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)
 Tel: 886-2-2299-9720 / Fax: 886-2-2298-4045
- No.81-1, Lane 210, Bade 2nd Rd., Lujhu Township, Taoyuan County 33841, TAIWAN, R.O.C.
 Tel: 886-3-324-0332 / Fax: 886-3-324-5235

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with preselectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3M Semi Anechoic Chamber (FCC MRA: TW1039) to perform FCC Part 15 measurements	FCC MRA: TW1039
Taiwan	TAF	LP0002, RTTE01, FCC Method-47 CFR Part 15 Subpart C, D, E, RSS-210, RSS-310 IDA TS SRD, AS/NZS 4268, AS/NZS 4771, TS 12.1 & 12,2, ETSI EN 300 440-1, ETSI EN 300 440-2, ETSI EN 300 328, ETSI EN 300 220-1, ETSI EN 300 220-2, ETSI EN 301 893, ETSI EN 301 489-1/3/7/17 FCC OET Bulletin 65 + Supplement C, EN 50360, EN 50361, EN 50371, RSS 102, EN 50383, EN 50385, EN 50392, IEC 62209, CNS 14958-1, CNS 14959 FCC Method –47 CFR Part 15 Subpart B IEC / EN 61000-3-2, IEC / EN 61000-3-3, IEC / EN 61000-4-2/3/4/5/6/8/11	Taff Testing Laboratory 1309
Canada	Industry Canada	3M Semi Anechoic Chamber (IC 2324G-1 / IC 2324G-2) to perform	Canada IC 2324G-1 IC 2324G-2

* No part of this report may be used to claim or imply product endorsement by A2LA or any agency of the US Government.

6 SETUP OF EQUIPMENT UNDER TEST 6.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix I for the actual connections between EUT and support equipment.

6.2 SUPPORT EQUIPMENT

No.	Device Type	Brand	Model	Series No.	FCC ID	Data Cable	Power Cord
	N/A						

Remark:

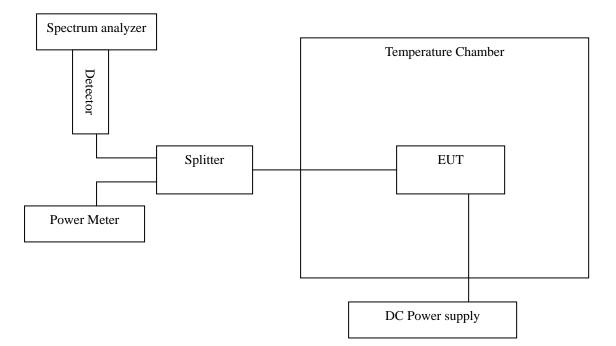
- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

7 ETSI EN 300 328 REQUIREMENTS 7.1 RF OUTPUT POWER

<u>LIMIT</u>

EN 300 328 FHSS:

The maximum RF output power for adaptive Frequency Hopping equipment shall be equal to or less than 20 dBm. The maximum RF output power for non-adaptive Frequency Hopping equipment, shall be declared by the supplier. See clause 5.3.1 m). The maximum RF output power for this equipment shall be equal to or less than the value declared by the supplier. This declared value shall be equal to or less than 20 dBm.


Other than FHSS:

For adaptive equipment using wide band modulations other than FHSS, the maximum RF output power shall be20 dBm. The maximum RF output power for non-adaptive equipment shall be declared by the supplier and shall not exceed 20 dBm. See clause 5.3.1 m). For non-adaptive equipment using wide band modulations other than FHSS, the maximum RF output power shall be equal to or less than the value declared by the supplier.

This limit shall apply for any combination of power level and intended antenna assembly.

Test Configuration

Temperature and Voltage Measurement (under normal and extreme test conditions)

TEST PROCEDURE

- 1. Please refer to ETSI EN 300 328 (V2.1.1) for the test conditions.
- 2. Please refer to ETSI EN 300 328 (V2.1.1) for the measurement method.

TEST RESULTS

Pass.

Test Results:	PASS	Test Mode:	IEEE 802.11b (MIMO Operation: Chain0 + Chain1)
Tested By:	Zeus Chen	Test Date:	April 26, 2016

Antenna Gain =							2.94 dBi	
Cable Loss =	:						1 dB	
Teet	Conditions	Transmitter Power (dBm)						
lest	Conditions	Temp (20)°C		Temp	Temp (-15)°C		Temp (55)°C	
Channel	Voltage	12	2v	1:	2v	1:	2v	
Channel	Power	chain0	chain1	chain0	chain1	chain0	chain1	
	Measured Power	13.08	12.14	13.97	12.58	12.34	11.36	
Low	Total Power	15.65		16.34		14.89		
	EIRP	18.59		19.28		17.83		
	Measured Power	13.42	12.74	13.88	13.15	12.27	13.07	
Mid	Total Power	16.10		16.54		15.70		
	EIRP	19.04		19.48		18.64		
	Measured Power	13.09	13.13	13.69	13.46	12.63	12.84	
High	Total Power	16	.12	16.59		15.75		
	EIRP	19.06		*19.53		18.69		
	Limit	Average Limit= 20 dBm						
Measurem	ent Uncertainty			+/- 1.	20dB			

Remark: EIRP=A+G+CL A = Reading G = Antenna Gain

CL = Cable Loss

Test Results:	PASS	Test Mode:	IEEE 802.11g Mode (MIMO Operation: Chain0 + Chain1)
Tested By:	Zeus Chen	Test Date:	April 26, 2016

Antenna Gai	n =						2.94 dBi	
Cable Loss =	=						1 dB	
Teat	Conditions		٦	ransmitter l	Power (dBm	ı)	·	
lest	Conditions	Temp	(20)°C	Temp	(-15)°C	Temp (55)°C		
Channel	Voltage	12	2v	1:	2v	12	2v	
Channel	Power	chain0	chain1	chain0	chain1	chain0	chain1	
	Measured Power	13.25	12.83	13.58	12.98	12.21	12.96	
Low	Total Power	16.06		16.30		15.61		
	EIRP	19.00		19.24		18.55		
	Measured Power	13.31	12.96	13.74	13.25	13.02	12.36	
Mid	Total Power	16.15		16.51		15.71		
	EIRP	19.09		19	.45	18	.65	
	Measured Power	13.28	13.15	13.54	13.60	12.89	12.63	
High	Total Power	16	.23	16.58		15.77		
	EIRP	19	19.17		*19.52		18.71	
Limit		Average Limit= 20 dBm						
Measurem	ent Uncertainty			+/- 1.	20dB			

Remark: EIRP=A+G+CL

A = Reading G = Antenna Gain CL = Cable Loss

Test	Results:	
------	----------	--

PASS

Test Mode: Zeus Chen Test Date:

IEEE 802.11n HT 20 MHz Mode (MIMO Operation: Chain0 + Chain1) April 26, 2016

Antenna Gain =

Tested By:

Cable	Loss	=

2.94 dBi 1 dB

Test	O an diti an a	Transmitter Power (dBm)					
Test Conditions		Temp (20)°C		Temp (-15)°C		Temp (55)°C	
Channel	Voltage	1:	2v	12	2v	1:	2v
Channel	Power	chain0	chain1	chain0	chain1	chain0	chain1
	Measured Power	13.17	12.87	13.52	13.12	12.88	11.91
Low	Total Power	16.03		16.33		15.43	
	EIRP	18	.97	19	.27	18	.37
	Measured Power	13.35	12.79	13.75	13.29	12.66	11.88
Mid	Total Power	16	.09	16	.54	15	.30
	EIRP	19.03		*19	.48	18	.24
	Measured Power	12.83	12.74	13.02	12.85	12.42	12.29
High	Total Power	15.80		15.95		15.37	
	EIRP	18.74		18.89		18.31	
	Limit	Average Limit= 20 dBm					
Measurem	nent Uncertainty			+/- 1.	20dB		

Remark: EIRP=A+G+CL

A = Reading

G = Antenna GainCL = Cable Loss

Test Results:	
---------------	--

Tested By:

PASS Test Mode:

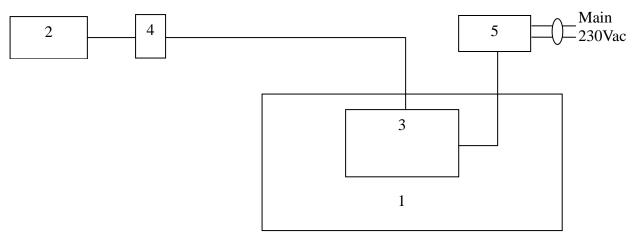
Zeus Chen Test Date:

IEEE 802.11n HT 40 MHz Mode (MIMO Operation: Chain0 + Chain1) April 26, 2016

Antenna Gain = 2.94 dBi					2.94 dBi			
Cable Loss =	:						1 dB	
Test Conditions		Transmitter Power (dBm)						
lest	Conditions	Temp	(20)°C	Temp	(-15)°C	Temp (55)°C		
Channel	Voltage	12	2v	1:	2v	12	2v	
Channel	Power	chain0	chain1	chain0	chain1	chain0	chain1	
	Measured Power	12.93	13.64	13.15	13.89	12.18	13.24	
Low	Low Total Power		16.31		16.55		15.75	
	EIRP	19.25		*19.49		18.69		
	Measured Power	12.74	13.39	13.02	13.79	11.99	13.16	
Mid	Total Power	16.09		16.43		15.62		
	EIRP	19.03		19.37		18.56		
	Measured Power	12.98	13.28	13.40	13.58	12.54	13.17	
High	Total Power	16	16.14		16.50		15.88	
	EIRP	19	.08	19	.44	18	.82	
	Limit	Average Limit= 20 dBm						
Measurement Uncertainty +/- 1.20dB								

Remark: EIRP=A+G+CL

A = ReadingG = Antenna GainCL = Cable Loss


7.2 MAXIMUM SPECTRAL POWER DENSITY

<u>LIMIT</u>

ETSI EN 300 328

For equipment using wide band modulations other than FHSS, the maximum Power Spectral Density is limited to10 dBm per MHz.

Test Configuration

Legend

- 1. Wooden table
- 2. Spectrum analyzer
- 3. EUT
- 4. DC block
- 5. Power supply

TEST PROCEDURE

- 1. Please refer to ETSI EN 300 328 (V2.1.1) for the test conditions.
- 2. Please refer to ETSI EN 300 328 (V2.1.1) for the measurement method.

For MIMO operation that employs simultaneous transmission at two chains of the transmission, measurements were done, and point of sample is captured at respective chain individually, and sums out to produce the final result.

TEST RESULTS

Pass.

Test Results: Tested By:		PASS Zeus Chen	Test Mode: Test Date:	IEEE 802.11b April 26, 2016	
Test Co	nditions	Reading (dBm/MHz) (A)	Antenna Gain (dBi) (B)	Measured Power Density (dBm/MHz) (A+B)	
Measured	Low	0.14		3.08	
Power	Mid	-0.08	2.94	2.86	
Density	High	0.47		3.41	
Limit		10 dBm/MHz			
Measurement Uncertainty		+1.5dB / -1.4dB			

Test Results:		PASS	Test Mode:	IEEE 802.11g	
Tested By	:	Zeus Chen	Test Date:	April 26, 2016	
Test Co	nditions	Reading (dBm/MHz) (A)	Antenna Gain (dBi) (B)	Measured Power Density (dBm/MHz) (A+B)	
Measured -	Low	-1.87		1.07	
Power	Mid	-1.64	2.94	1.30	
Density	High	-1.26		1.68	
Limit		10 dBm/MHz			
Measurement Uncertainty		+1.5dB / -1.4dB			

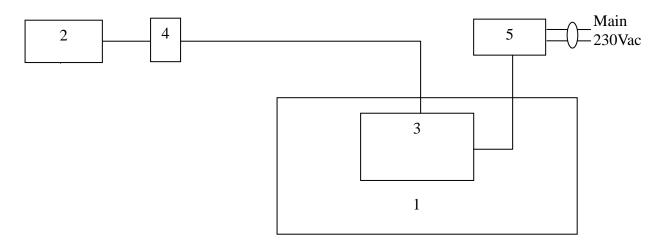
Test Results: Tested By: PASS Test Mode: Zeus Chen Test Date:

IEEE 802.11n HT 20 MHz Mode April 26, 2016

Test Conditions		Reading (dBm/MHz) (A)	Antenna Gain (dBi) (B)	Measured Power Density (dBm/MHz) (A+B)
Measured	Low	-1.18		1.76
Power	Mid	-1.95	2.94	0.99
Density	High	-2.14		0.80
Li	imit	10 dBm/MHz		
Measurement Uncertainty +1.5dB / -1.4dB				

Test Results: PAS		SS Test M	lode: IEEE 802.11n	HT 40 MHz Mode	
Tested By: Zeu		us Chen Test D	ate: April 26, 2016		
Test Co	onditions	Reading (dBm/MHz) (A)	Antenna Gain (dBi) (B)	Measured Power Density (dBm/MHz) (A+B)	
Measured	Low	-3.41		-0.47	
Power	Mid	-4.28	2.94	-1.34	
Density	High	-4.93		-1.99	
Limit		10 dBm/MHz			
	irement rtainty	+1.5dB / -1.4dB			

7.3 DUTY CYCLE, TX-SEQUENCE, TX-GAP


<u>LIMIT</u>

ETSI EN 300 328

For non-adaptive FHSS equipment, the Duty Cycle shall be equal to or less than the maximum value declared by the supplier. In addition, the maximum Tx-sequence time shall be 5 ms while the minimum Tx-gap time shall be 5 ms.

For non-adaptive equipment or to adaptive equipment when operating in a non-adaptive mode. The equipment is using wide band modulations other than FHSS. The Duty Cycle shall be equal to or less than the maximum value declared by the supplier

Test Configuration

Legend

- 1. Wooden table
- 2. Spectrum analyzer
- 3. EUT
- 4. DC block
- 5. Power supply

TEST PROCEDURE

- 1. Please refer to ETSI EN 300 328 (V2.1.1) for the test conditions.
- 2. Please refer to ETSI EN 300 328 (V2.1.1) for the measurement method.

TEST RESULTS

N/A for Modulation Technology other than non-adaptive FHSS.

7.4 DWELL TIME, MINIMUM FREQUENCT OCCUPATION AND HOPPING SEQUENCE

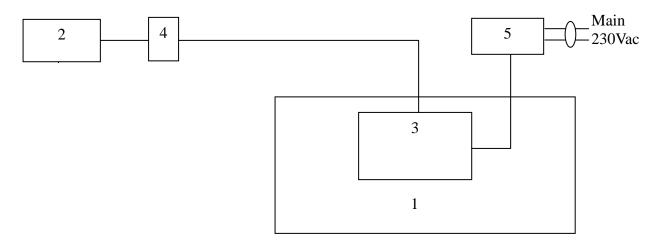
<u>LIMIT</u>

ETSI EN 300 328

Non-adaptive frequency hopping systems

The accumulated Dwell Time on any hopping frequency shall not be greater than 15 ms within any period of 15 ms multiplied by the minimum number of hopping frequencies (N) that have to be used. Non-adaptive medical devices requiring reverse compatibility with other medical devices placed on the market when earlier versions of the present document were harmonised, are allowed to have an operating mode in which the maximum dwell time is 400 ms. The hopping sequence(s) shall contain at least N hopping frequencies where N is 15 or 15 divided by the minimum Hopping Frequency Separation in MHz, whichever is the greater. The Minimum Frequency Occupation Time shall be equal to one dwell time within a period not exceeding four times the product of the dwell time per hop and the number of hopping frequencies in use.

Adaptive frequency hopping systems


Adaptive Frequency Hopping systems shall be capable of operating over a minimum of 70 % of the band specified in clause 1. The maximum accumulated dwell time on any hopping frequency shall be 400 ms within any period of 400 ms multiplied by the minimum number of hopping frequencies (N) that have to be used. The hopping sequence(s) shall contain at least N hopping frequencies at all times, where N is 15 or 15 divided by the minimum Hopping Frequency Separation in MHz, whichever is the greater. The Minimum Frequency Occupation Time shall be equal to one dwell time within a period not exceeding four times the product of the dwell time per hop and the number of hopping frequencies in use.

Other Requirements

Frequency Hopping equipment shall transmit on a minimum of two hopping frequencies. For non-Adaptive Frequency Hopping equipment, when not transmitting on a hopping frequency, the equipment has to occupy that frequency for the duration of the typical dwell time.

For Adaptive Frequency Hopping systems using LBT based DAA, if a signal is detected during the CCA, these systems may jump immediately to the next frequency in the hopping sequence (see clause 4.3.1.6.1.2 point 2) provided the limit for maximum dwell is respected.

Test Configuration

Legend

- 1. Wooden table
- 2. Spectrum analyzer
- 3. EUT
- 4. DC block
- 5. Power supply

TEST PROCEDURE

- 1. Please refer to ETSI EN 300 328 (V2.1.1) for the test conditions.
- 2. Please refer to ETSI EN 300 328 (V2.1.1) for the measurement method.

TEST RESULTS

Dwell Time: N/A for Modulation Technology other than FHSS.

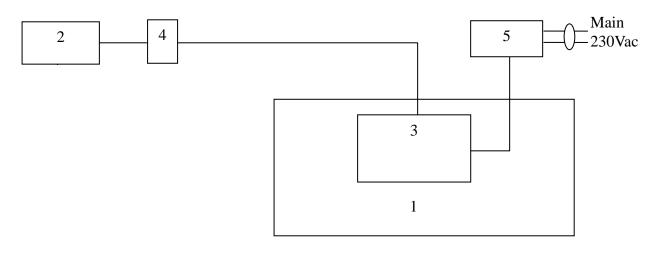
Minimum Frequency Occupation Time Result: N/A for Modulation Technology other than FHSS

Hopping sequence: N/A for Modulation Technology other than FHSS

7.5 HOPPING FREQUENCY SEPARATION

<u>LIMIT</u>

ETSI EN 300 328


Non-adaptive frequency hopping systems

The minimum Hopping Frequency Separation shall be equal to Occupied Channel Bandwidth (see clause 4.3.1.7) of a single hop, with a minimum separation of 100 kHz.

Adaptive frequency hopping systems

The minimum Hopping Frequency Separation shall be 100 kHz.

Test Configuration

Legend

- 1. Wooden table
- 2. Spectrum analyzer
- 3. EUT
- 4. DC block
- 5. Power supply

TEST PROCEDURE

- 1. Please refer to ETSI EN 300 328 (V2.1.1) for the test conditions.
- 2. Please refer to ETSI EN 300 328 (V2.1.1) for the measurement method.

TEST RESULTS

N/A for Modulation Technology other than FHSS.

7.6 MEDIUM UTILISATION

<u>LIMIT</u>

ETSI EN 300 328

The maximum Medium Utilisation factor for non-adaptive Frequency Hopping equipment shall be 10 %.

TEST PROCEDURE

- 1. Please refer to ETSI EN 300 328 (V2.1.1) for the test conditions.
- 2. Please refer to ETSI EN 300 328 (V2.1.1) for the measurement method.

TEST RESULTS

N/A for equipments that employs the adaptive mechanism. This given UE implements adaptive mechanism to identify transmission of likely presence in the band.

7.7 ADAPTIVITY

<u>LIMIT</u>

ETSI EN 300 328 Adaptive Frequency Hopping using LBT based DAA

Adaptive Frequency Hopping equipment using LBT based DAA shall comply with the following minimum set of requirements:

- At the start of every dwell time, before transmission on a hopping frequency, the equipment shall perform a Clear Channel Assessment (CCA) check using energy detect. The CCA observation time shall be not less than 0,2 % of the Channel Occupancy Time (see step 3) with a minimum of 18 μs. If the equipment finds the hopping frequency to be clear, it may transmit immediately (see step 3).
- 2) If it is determined that a signal is present with a level above the detection threshold defined in step 5. the hopping frequency shall be marked as 'unavailable'. Then the equipment may jump to the next frequency in the hopping scheme even before the end of the dwell time, but in that case the 'unavailable' channel can not be considered as being 'occupied' and shall be disregarded with respect to the requirement to maintain a minimum of 15 hopping frequencies. Alternatively, the equipment can remain on the frequency during the remainder of the dwell time. However, if the equipment remains on the frequency with the intention to transmit, it shall perform an extended CCA check in which the (unavailable) channel is observed for a random duration between the value defined for the CCA observation time in step 1 and 5 % of the Channel Occupancy Time defined in step 3. If the extended CCA check has determined the frequency to be no longer occupied, the hopping frequency becomes available again. The CCA observation time used by the equipment shall be declared by the supplier.
- 3) The total time during which an equipment has transmissions on a given hopping frequency without re-evaluating the availability of that frequency is defined as the Channel Occupancy Time. The Channel Occupancy Time for a given hopping frequency, which starts immediately after a successful CCA, shall be less than 60 ms followed by an Idle Period of minimum 5 % of the Channel Occupancy Time with a minimum of 100 µs. After this, the procedure as in step 1 shall be repeated before having new transmissions on this hopping frequency during the same dwell time.

EXAMPLE: A system with a dwell time of 400 ms can have 6 transmission sequences of 60 ms each, Separated with an Idle Period of 3 ms. Each transmission sequence was preceded with a successful CCA check of 120 μ s.

NOTE: For LBT based frequency hopping systems with a dwell time < 60 ms, the maximum Channel Occupancy Time is limited by the dwell time.

- 4) Unavailable' channels may be removed from or may remain in the hopping sequence, but in any case:
 - there shall be no transmissions on 'unavailable' channels;
- a minimum of 15 hopping frequencies shall always be maintained.
- 5) The detection threshold shall be proportional to the transmit power of the transmitter: for a 20 dBm e.i.r.p. transmitter the detection threshold level (TL) shall be equal or lower than -70 dBm/MHz at the input to the receiver (assuming a 0 dBi receive antenna). For power levels below 20 dBm e.i.r.p., the detection threshold level may be relaxed to TL = -70 dBm/MHz + 20 Pout e.i.r.p. (Pout in dBm).

Adaptive Frequency Hopping using other forms of DAA (non-LBT based)

Adaptive Frequency Hopping equipment using non-LBT based DAA, shall comply with the following minimum set of requirements:

- During normal operation, the equipment shall evaluate the presence of a signal for each of its hopping frequencies If it is determined that a signal is present with a level above the detection threshold defined in step 5. the hopping frequency shall be marked as 'unavailable'.
- 2) The frequency shall remain unavailable for a minimum time equal to 1 second or 5 times the actual number of hopping frequencies multiplied with the Channel Occupancy Time whichever is the longest. There shall be no transmissions during this period on this frequency. After this, the hopping frequency may be considered again as an 'available' frequency.
- 3) The total time during which an equipment has transmissions on a given hopping frequency without re-evaluating the availability of that frequency is defined as the Channel Occupancy Time. The Channel Occupancy Time for a given hopping frequency shall be less than 40 ms. For equipment using a dwell time > 40 ms that want to have other transmissions during the same hop (dwell time) an Idle Period (no transmissions) of minimum 5 % of the Channel Occupancy Period with a minimum of 100 µs shall be implemented. After this, the procedure as in step 1 need to be repeated before having new transmissions on this hopping frequency during the same dwell time.

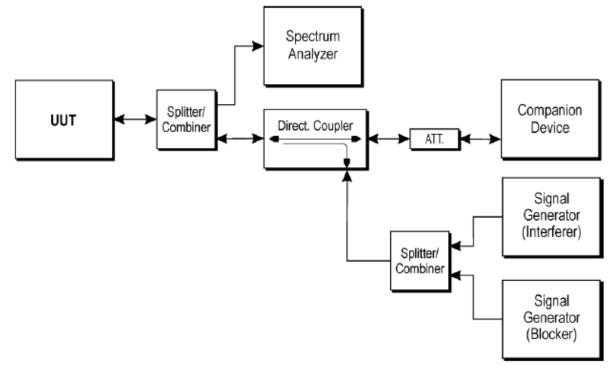
EXAMPLE: A system with a dwell time of 400 ms can have 9 transmission sequences of 40 ms each, Separated with an Idle Period of 3 ms.

NOTE: For non-LBT based frequency hopping systems with a dwell time < 40 ms, the maximum Channel Occupancy Time may be non-contiguous, i.e. spread over a number of hopping sequences (equal to 40 msec divided by the dwell time [msec]).

- 4) Unavailable' channels may be removed from or may remain in the hopping sequence, but in any case:
 - there shall be no transmissions on 'unavailable' channels;
 - a minimum of 15 hopping frequencies shall always be maintained.

5) The detection threshold shall be proportional to the transmit power of the transmitter: for a 20 dBm e.i.r.p. transmitter the detection threshold level (TL) shall be equal or lower than -70 dBm/MHz at the input to thereceiver (assuming a 0 dBi receive antenna). For power levels below 20 dBm e.i.r.p., the detection threshold levelmay be relaxed to TL = -70 dBm/MHz + 20 - Pout e.i.r.p. (Pout in dBm).

Non-LBT based Detect and Avoid


Equipment using a modulation other than FHSS and using the non-LBT based Detect and Avoid mechanism, shall comply with the following minimum set of requirements:

- During normal operation, the equipment shall evaluate the presence of a signal on its current operating channel. If it is determined that a signal is present with a level above the detection threshold defined in 4). the channel shall be marked as 'unavailable'.
- 2) The channel shall remain unavailable for a minimum time equal to 1 s after which the channel may be Considered again as an 'available' channel.
- 3) The total time during which an equipment has transmissions on a given channel without re-evaluating The availability of that channel, is defined as the Channel Occupancy Time.
- 4) The Channel Occupancy Time shall be less than 40 ms. Each such transmission sequence shall be followed with an Idle Period (no transmissions) of minimum 5 % of the Channel Occupancy Time with a minimum of 100 µs. After this, the procedure as in step 1 needs to be repeated.
- 5) The detection threshold shall be proportional to the transmit power of the transmitter: for a 20 dBm e.i.r.p. transmitter the detection threshold level (TL) shall be equal or lower than -70 dBm/MHz at the input to the receiver (assuming a 0 dBi receive antenna). For power levels below 20 dBm e.i.r.p., the detection threshold level may be relaxed to TL = -70 dBm/MHz + 20 - Pout e.i.r.p. (Pout in dBm).

LBT based Detect and Avoid

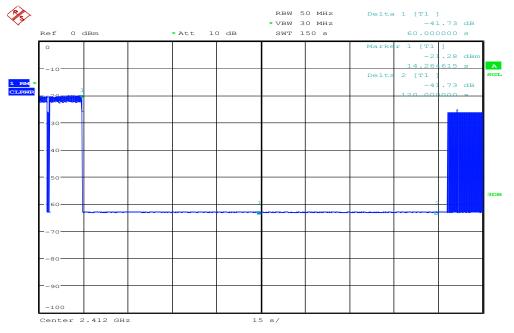
The present document defines 2 types of adaptive equipment using wide band modulations other than FHSS and that uses an LBT based Detect and Avoid mechanism: Frame Based Equipment and Load Based Equipment. Adaptive equipment which is capable of operating as either Load Based Equipment or as Frame Based Equipment is allowed to switch dynamically between these types of operation.

Test Configuration

TEST PROCEDURE

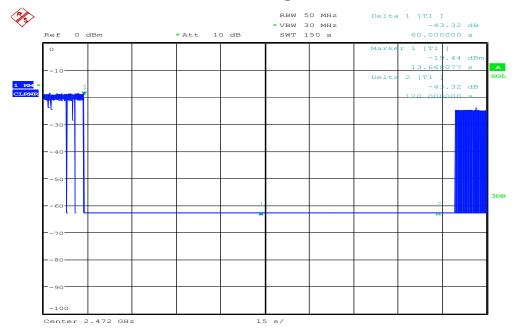
- 1. Please refer to ETSI EN 300 328 (V2.1.1) for the test conditions.
- 2. Please refer to ETSI EN 300 328 (V2.1.1) for the measurement method.

The spectrum analyser sweep was triggered by the start of the interfering signal, with the interfering signal present, a 100 % duty cycle CW signal is inserted as the blocking signal.

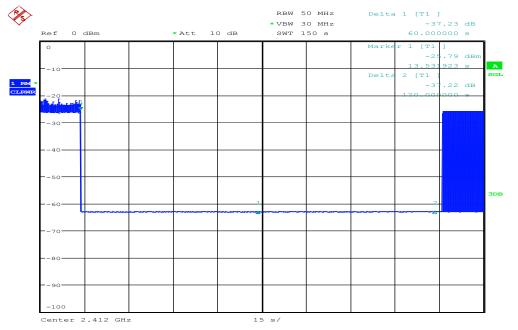

TEST RESULTS

	Signal duration a	fter interfering (s)
IEEE 802.11b Mode	2412	2472
	Pass	Pass

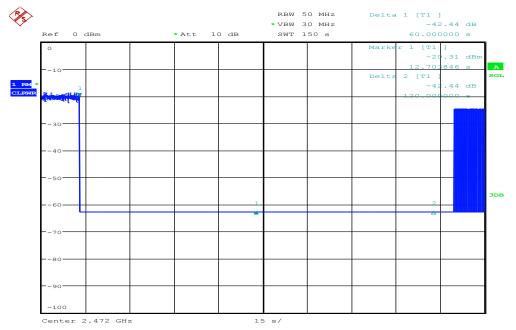
	Signal duration after interfering (s)		
IEEE 802.11g Mode	2412	2472	
	Pass	Pass	


IEEE 802.11n HT 20 MHz Mode	Signal duration after interfering (s)		
	2412	2472	
	Pass	Pass	

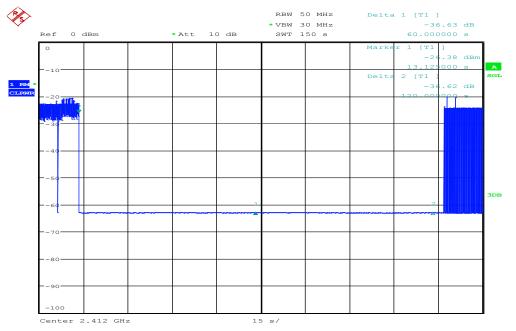
	Signal duration after interfering (s)		
IEEE 802.11n HT 40 MHz Mode	2422	2462	
	Pass	Pass	


Test results: IEEE 802.11b Mode / Low

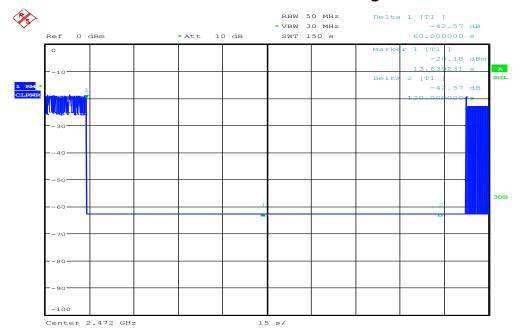
Date: 9.MAR.2016 13:54:33


Test results: IEEE 802.11b Mode / High

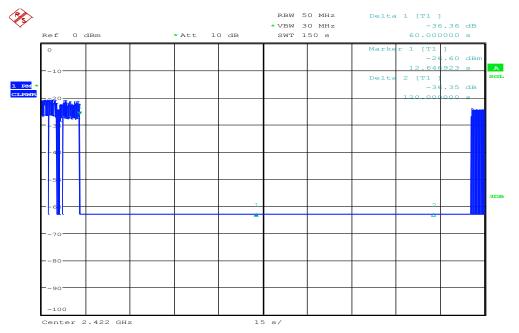
Date: 9.MAR.2016 14:52:10


Test results: IEEE 802.11g Mode / Low

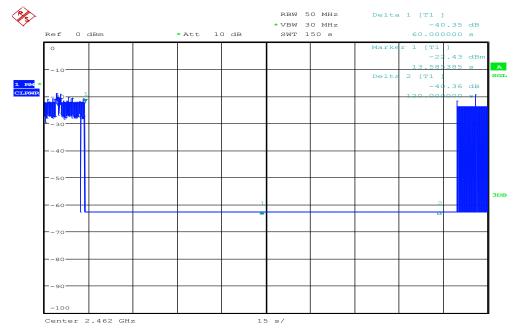
Date: 9.MAR.2016 13:59:20


Test results: IEEE 802.11g Mode / High

Date: 9.MAR.2016 14:33:45


Test results: IEEE 802.11n HT 20 MHz Mode / Low

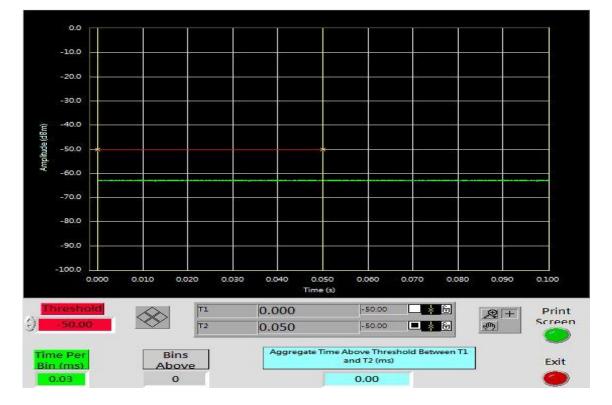
Date: 9.MAR.2016 14:08:01


Test results: IEEE 802.11n HT 20 MHz Mode / High

Date: 9.MAR.2016 14:20:22

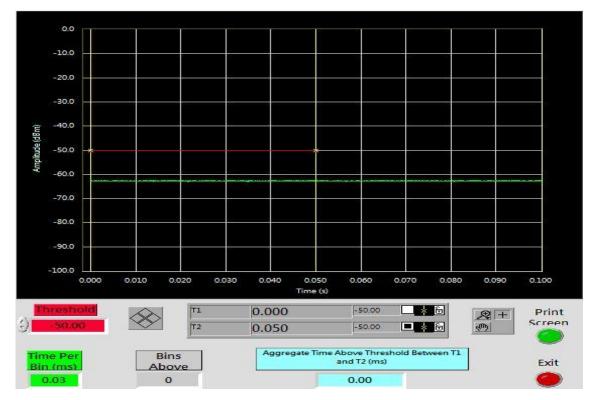
Test results: IEEE 802.11n HT 40 MHz Mode / Low

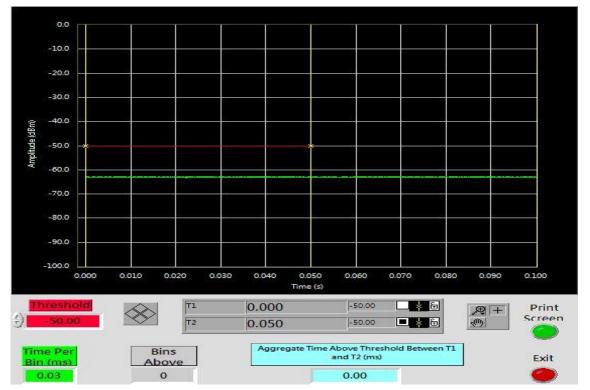
Date: 9.MAR.2016 15:14:02


Test results: IEEE 802.11n HT 40 MHz Mode / High

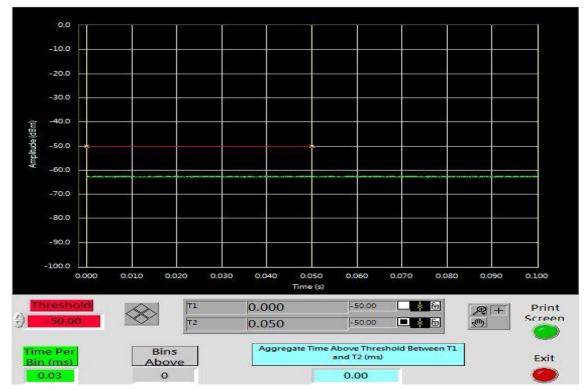
Date: 9.MAR.2016 15:28:41

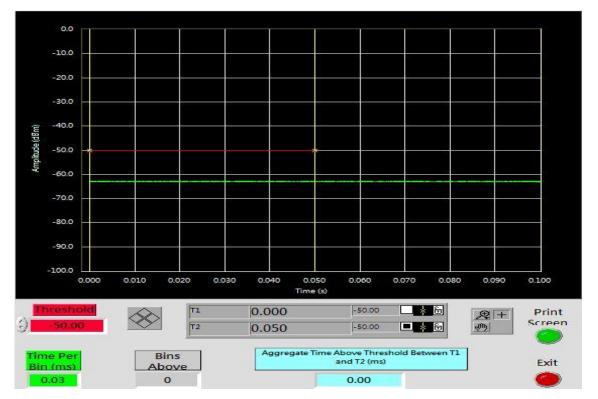
TEST RESULTS


Short Control Signalling Transmissions				
Mode	Maximum duty cycle(ms)		Limit(ma)	
	2412	2472	Limit(ms)	
IEEE 802.11b Mode	0.00	0.00	5	
IEEE 802.11g Mode	0.00	0.00	5	
IEEE 802.11n HT 20 MHz Mode	0.00	0.00	5	


Short Control Signalling Transmissions				
Mode	Maximum duty cycle(ms)		Limit(ma)	
	2422	2462	Limit(ms)	
IEEE 802.11n HT 40 MHz Mode	0.00	0.00	5	

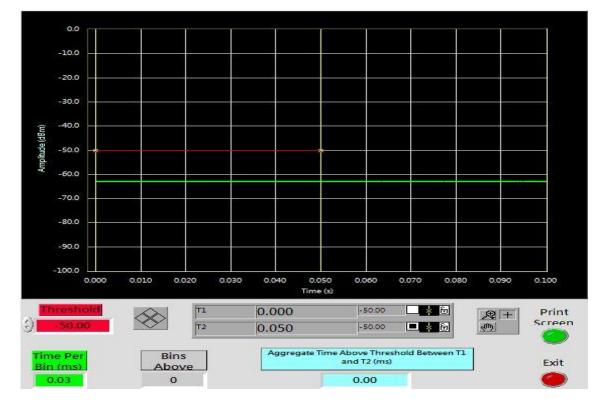
Test results: IEEE 802.11b / Low


Test results: IEEE 802.11b / High

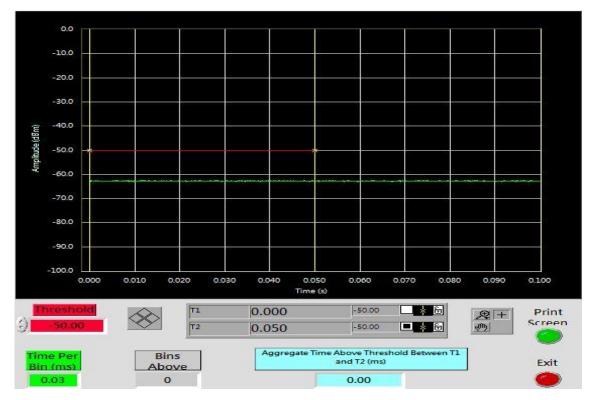


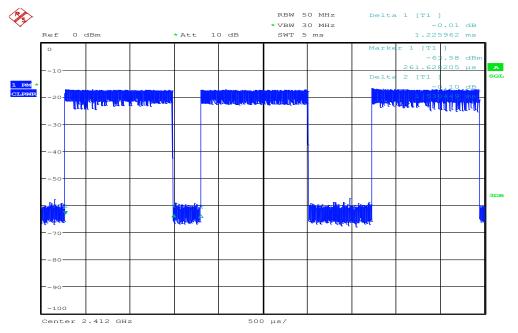
Test results: IEEE 802.11g / Low

Test results: IEEE 802.11g / High

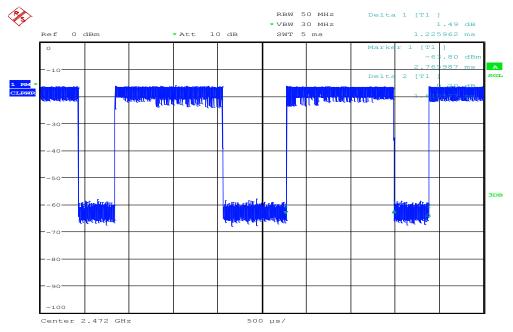


Test results: IEEE 802.11n HT 20 / Low

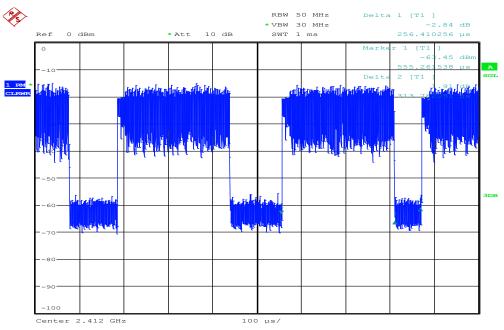

Test results: IEEE 802.11n HT 20 / High


Test results: IEEE 802.11n HT 40 / Low

Test results: IEEE 802.11n HT 40 / High

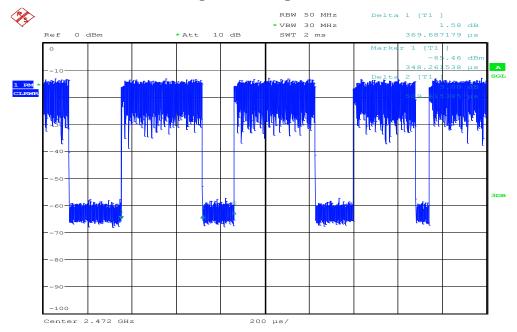

Occupancy time

Test results: IEEE 802.11b Mode / Low

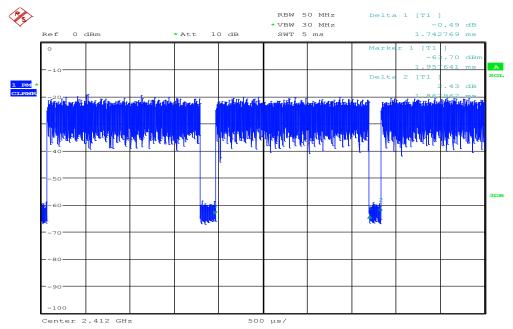


Date: 9.MAR.2016 13:40:39

Test results: IEEE 802.11b Mode / High



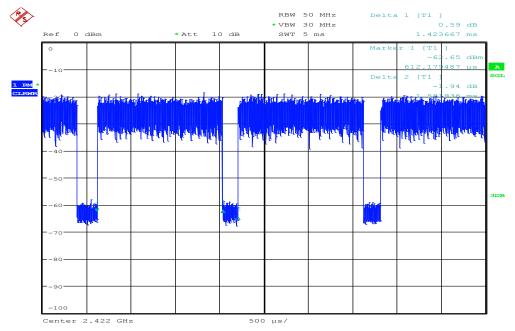
Date: 9.MAR.2016 14:41:44


Test results: IEEE 802.11g Mode / Low

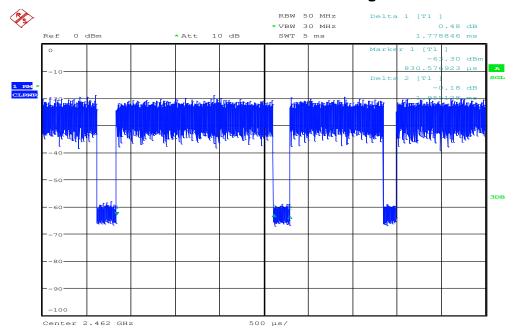
Date: 9.MAR.2016 13:56:25

Test results: IEEE 802.11g Mode / High

Date: 9.MAR.2016 14:30:21


Test results: IEEE 802.11n HT 20 MHz Mode / Low

Date: 9.MAR.2016 14:04:01


Test results: IEEE 802.11n HT 20 MHz Mode / High

Date: 9.MAR.2016 14:13:49

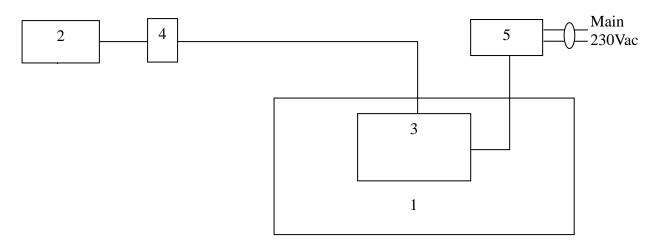
Test results: IEEE 802.11n HT 40 MHz Mode / Low

Date: 9.MAR.2016 14:56:28

Test results: IEEE 802.11n HT 40 MHz Mode / High

Date: 9.MAR.2016 15:25:55

7.8 OCCUPIED CHANNEL BANDWIDTH


<u>LIMIT</u>

ETSI EN 300 328

For non-adaptive systems using wide band modulations other than FHSS and with e.i.r.p greater than10 dBm, the occupied channel bandwidth shall be less than 20 MHz.

For non-adaptive Frequency Hopping equipment with e.i.r.p greater than 10 dBm, the Occupied Channel Bandwidth for every occupied hopping frequency shall be equal to or less than the value declared by the supplier. This declared value shall not be greater than 5 MHz.

Test Configuration

Legend

- 1. Wooden table
- 2. Spectrum analyzer
- 3. EUT
- 4. DC block
- 5. Power supply

TEST PROCEDURE

- 1. Please refer to ETSI EN 300 328 (V2.1.1) for the test conditions.
- 2. Please refer to ETSI EN 300 328 (V2.1.1) for the measurement method.

TEST RESULTS

Pass.

IEEE 802.11b Mode

Channel	Frequency (MHz)	Bandwidth (MHz)
Low	2412	14.16
High	2472	13.91

IEEE 802.11g Mode

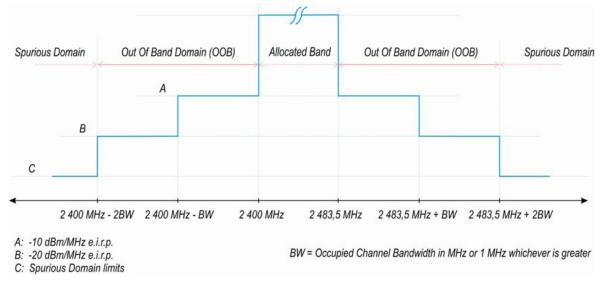
Channel	Frequency (MHz)	Bandwidth (MHz)
Low	2412	16.53
High	2472	16.47

IEEE 802.11n HT20M Mode

Channel	Frequency (MHz)	Bandwidth (MHz)
Low	2412	17.69
High	2472	17.67

IEEE 802.11n HT40M Mode

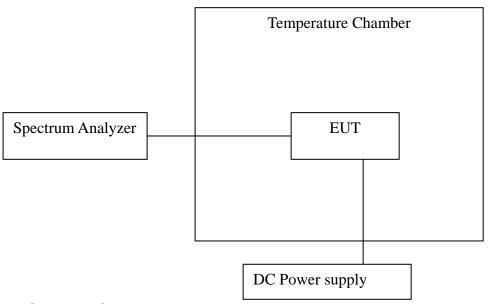
Channel	Frequency (MHz)	Bandwidth (MHz)
Low	2422	36.41
High	2462	36.41


7.9 TRANSMITTER UNWANTED EMISSIONS IN THE OOB DOMAIN

<u>LIMIT</u>

ETSI EN 300 328

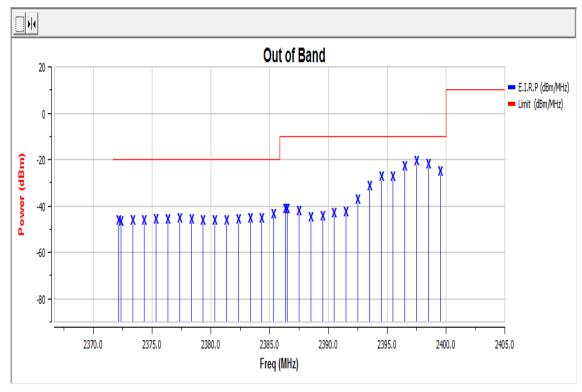
The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in figure 1.


NOTE: Within the 2 400 MHz to 2 483,5 MHz band, the Out-of-band emissions are fulfilled by compliance with the Occupied Channel Bandwidth requirement in clause 4.3.1.7.

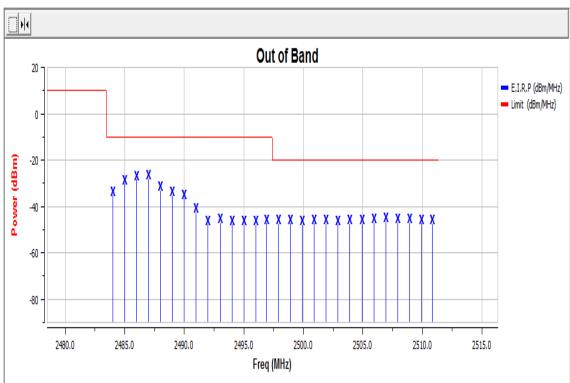
Test Configuration

Temperature and Voltage Measurement (under normal and extreme test conditions)

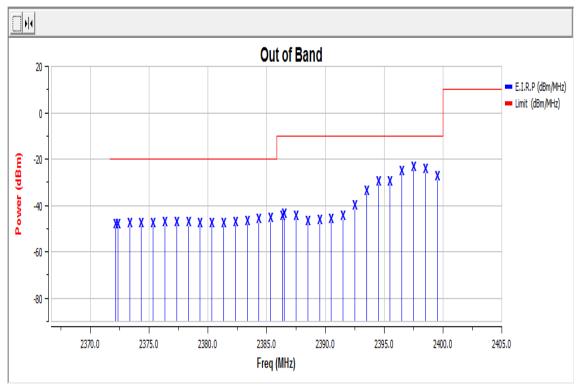
TEST PROCEDURE

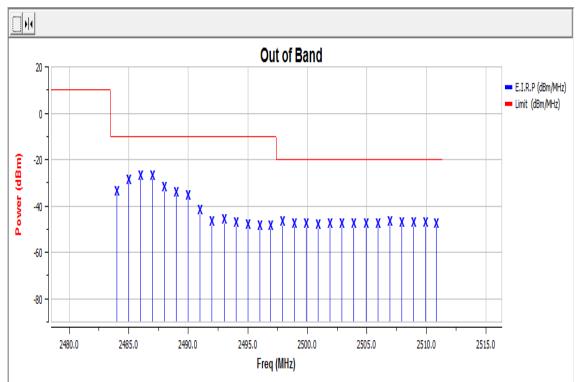

- 1. Please refer to ETSI EN 300 328 (V2.1.1) for the test conditions.
- 2. Please refer to ETSI EN 300 328 (V2.1.1) for the measurement method.

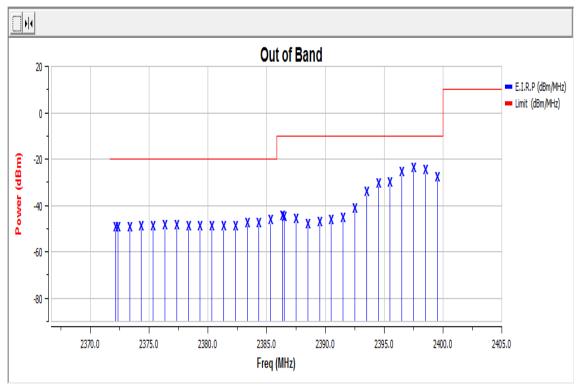
TEST RESULTS

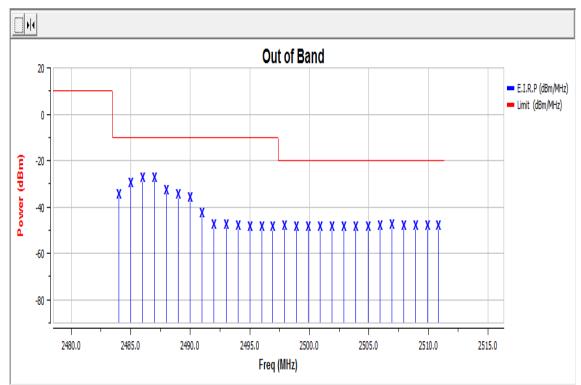

No non-compliance noted.

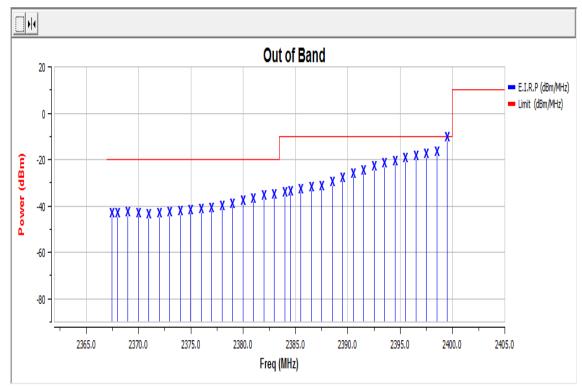
Test results: IEEE 802.11b Mode

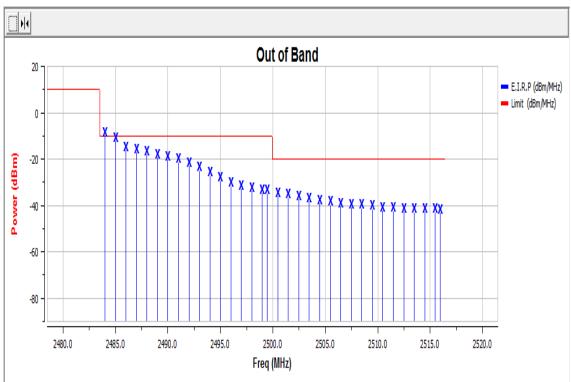

-15°C /12V CH Low



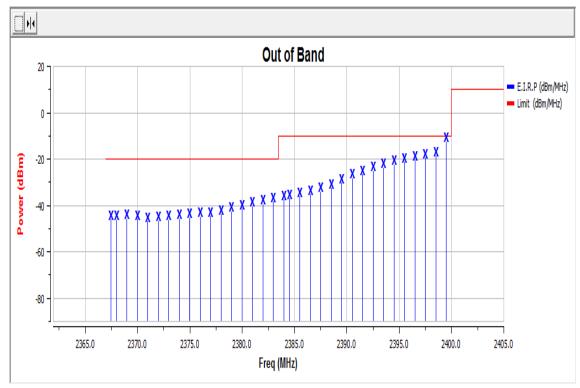


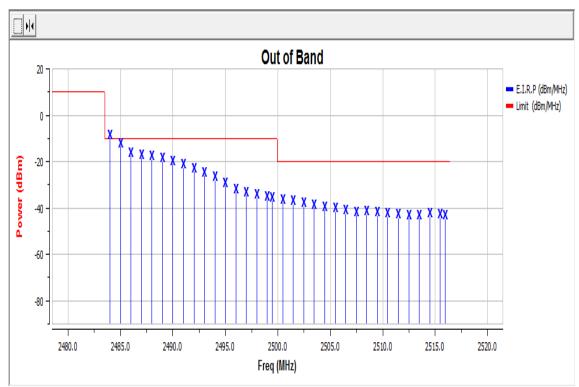


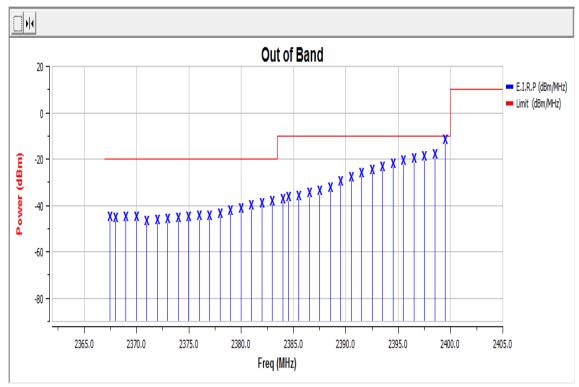


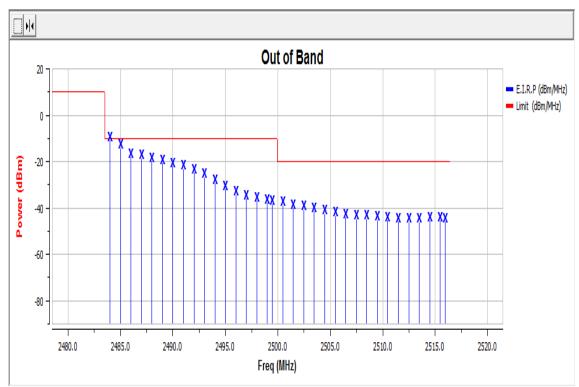


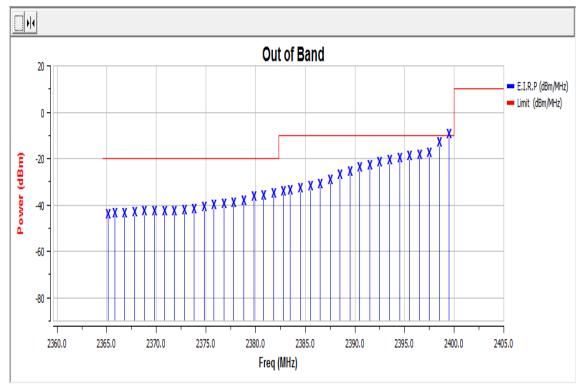
Test results: IEEE 802.11g Mode

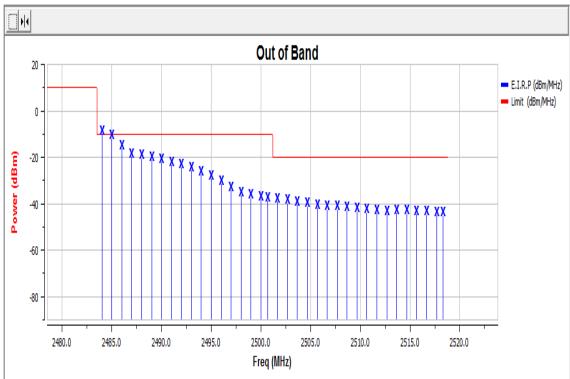

-15°C /12V CH Low



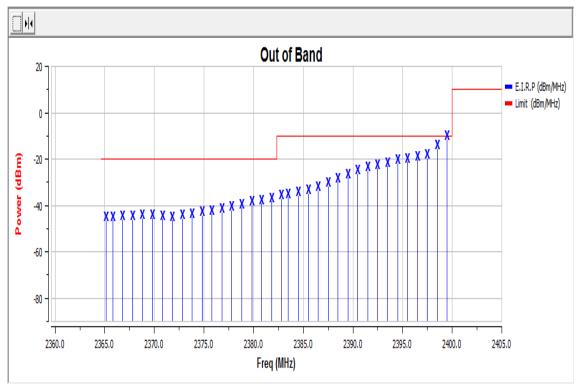


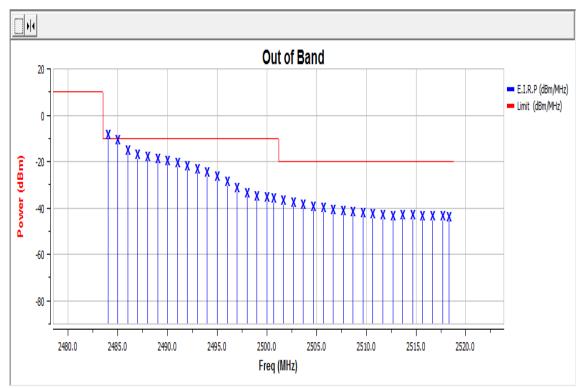


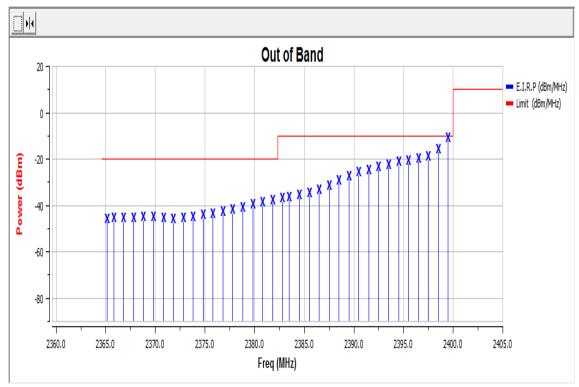


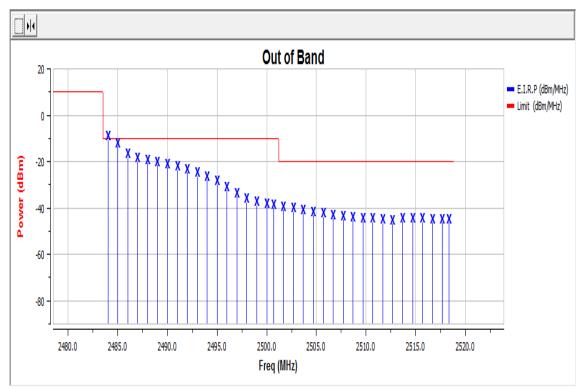


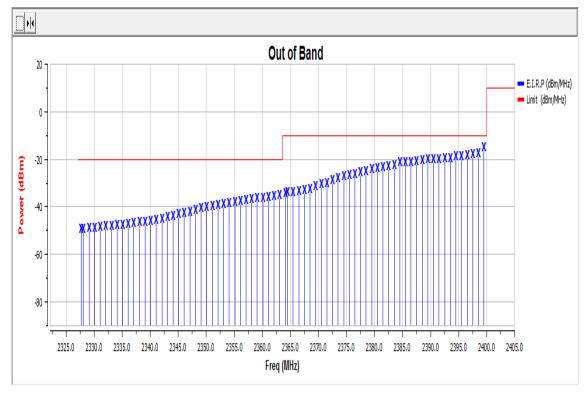
Test results: IEEE 802.11n HT 20 MHz Mode

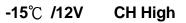

-15°C /12V CH Low

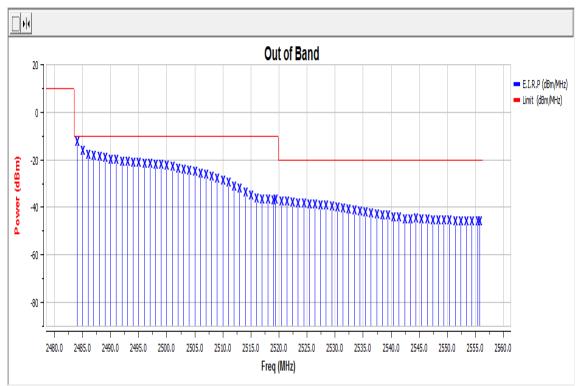

-15°C /12V CH High



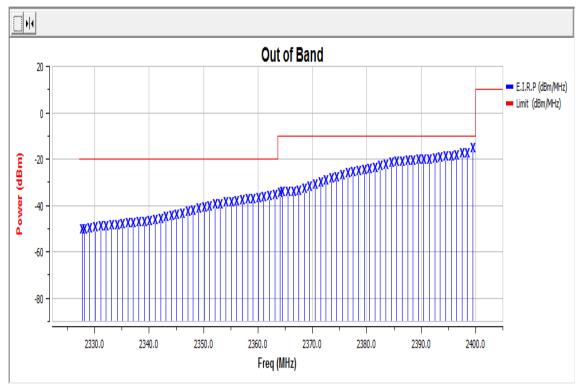


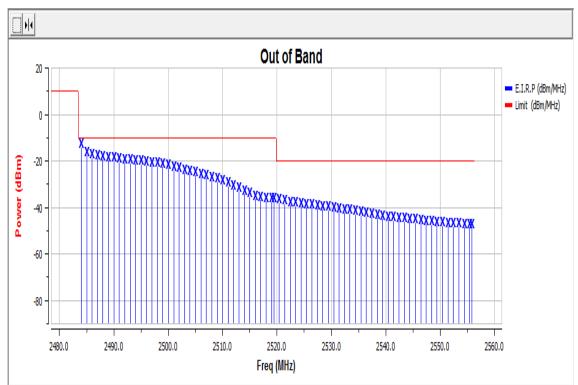


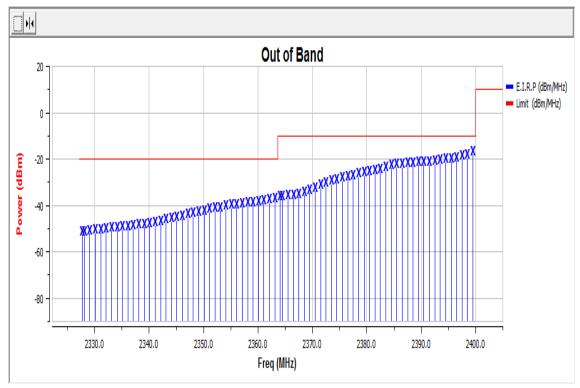


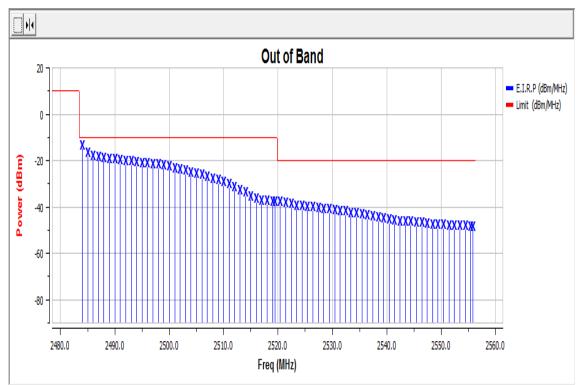


Test results: IEEE 802.11n HT 40 MHz Mode


-15°C /12V CH Low

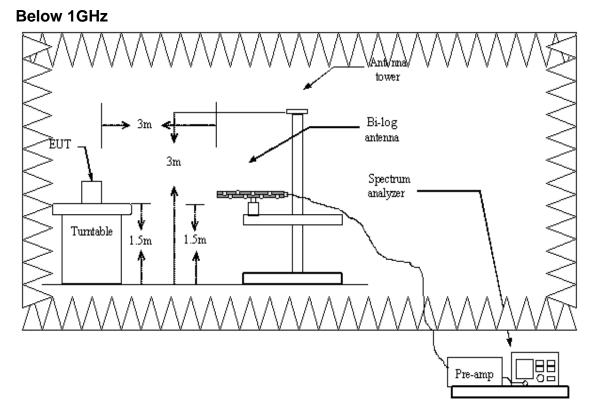






7.10 TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

<u>LIMIT</u>


ETSI EN 300 328

The transmitter unwanted emissions in the spurious domain shall not exceed the values given in table 1.

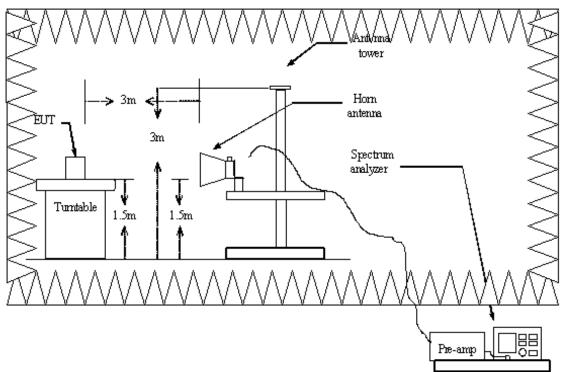
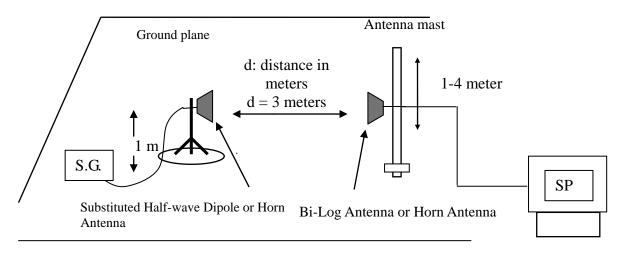

Frequency range	Maximum power, e.r.p. (≤ 1 GHz) e.i.r.p. (> 1 GHz)	Bandwidth
30 MHz to 47 MHz	-36 dBm	100 kHz
47 MHz to 74 MHz	-54 dBm	100 kHz
74 MHz to 87,5 MHz	-36 dBm	100 kHz
87,5 MHz to 118 MHz	-54 dBm	100 kHz
118 MHz to 174 MHz	-36 dBm	100 kHz
174 MHz to 230 MHz	-54 dBm	100 kHz
230 MHz to 470 MHz	-36 dBm	100 kHz
470 MHz to 862 MHz	-54 dBm	100 kHz
862 MHz to 1 GHz	-36 dBm	100 kHz
1 GHz to 12,75 GHz	-30 dBm	1 MHz

Table 1: Transmitter limits for spurious emissions


Test Configuration

Above 1GHz

Substituted Method Test Set-up

TEST PROCEDURE

- 1. Please refer to ETSI EN 300 328 (V2.1.1) for the test conditions.
- 2. Please refer to ETSI EN 300 328 (V2.1.1) for the measurement methods.

Measurement Uncertainty

The measurement uncertainty of the test is ± 2.65 dB.

TEST RESULTS

No value of the measurement limit is within 6dB, and therefore no further investigation and identification to measure emission with point of measurement is required.

Below 1GHz

Test Mode: Normal Link Tested by						
Ambient ter	nperature: 2	<u>2°C</u> Rela	ative humid	ity: <u>60 % RH</u>	Date: <u>M</u>	arch 9, 2016
Frequency (MHz)	Reading (dBm)	Correction Factor (dB)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
125.0600	-57.26	-18.62	-75.88	-36.00	-39.88	V
250.1900	-59.02	-18.79	-77.81	-36.00	-41.81	V
624.6100	-57.97	-11.75	-69.72	-54.00	-15.72	V
749.7400	-57.55	-10.53	-68.08	-54.00	-14.08	V
874.8700	-55.03	-8.91	-63.94	-36.00	-27.94	V
981.5700	-60.13	-7.56	-67.69	-36.00	-31.69	V
125.0600	-42.73	-12.81	-55.54	-36.00	-19.54	Н
375.3200	-53.18	-12.55	-65.73	-36.00	-29.73	Н
500.4500	-57.06	-9.82	-66.88	-54.00	-12.88	Н
624.6100	-52.47	-7.50	-59.97	-54.00	-5.97	Н
874.8700	-49.02	-5.04	-54.06	-36.00	-18.06	Н
981.5700	-49.78	-4.17	-53.95	-36.00	-17.95	Н

Remark:

1. The emission behaviour belongs to narrowband spurious emission.

2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Above 1GHz

Test Mode: <u>IEEE 802.11b / TX (CH Low)</u>					Tested	by: <u>Jason Lu</u>
Ambient temperature: <u>22°C</u> Relative humidity: <u>60 % RH</u>			Date: <u>M</u>	<u>larch 9, 2016</u>		
Frequency (MHz)	Reading (dBm)	Correction Factor (dB)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
4822.000	-43.98	8.21	-35.77	-30.00	-5.77	V
7405.000	-57.79	16.26	-41.53	-30.00	-11.53	V
N/A						
4822.000	-50.76	9.01	-41.75	-30.00	-11.75	Н
11306.000	-64.10	26.97	-37.13	-30.00	-7.13	Н
N/A						

Test Mode: IEEE 802.11b / TX (CH High)

Tested by: Jason Lu

			<u></u>			
Ambient ter	nperature: 2	<u>2°C</u> Rela	ative humid	ity: <u>60 % RH</u>	Date: <u>M</u>	<u>larch 9, 2016</u>
Frequency (MHz)	Reading (dBm)	Correction Factor (dB)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
4941.000	-48.23	8.15	-40.08	-30.00	-10.08	V
9885.750	-61.55	24.61	-36.94	-30.00	-6.94	V
N/A						
4941.000	-50.94	8.88	-42.06	-30.00	-12.06	Н
9890.000	-59.61	24.44	-35.17	-30.00	-5.17	Н
N/A						

- 1. The emission behaviour belongs to narrowband spurious emission.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor

Tested by: Jason Lu Ambient temperature: 22°C Relative humidity: 60 % RH Date: March 9, 2016 Correction Emission Antenna Frequency Reading Limit Margin Polarization Factor level (MHz) (dBm) (dBm) (dB) (dBm) (V/H) (dB) 4815.000 -46.11 8.22 -37.89 -30.00 -7.89 V V 10888.000 -63.63 27.17 -36.46 -30.00 -6.46 N/A 4822.000 -51.92 9.01 -42.91 -30.00 -12.91 Н 11396.000 -63.71 26.85 -36.86 -30.00 -6.86 Н N/A

Test Mode: IEEE 802.11g / TX (CH Low)

Test Mode: IEEE 802.11g / TX (CH High)

Tested by: Jason Lu

Ambient temperature: <u>22°C</u>		<u>22°C</u> Rela	ative humid	ity: <u>60 % RH</u>	Date: <u>M</u>	<u>larch 9, 2016</u>
Frequency (MHz)	Reading (dBm)	Correction Factor (dB)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
4941.000	-49.92	8.15	-41.77	-30.00	-11.77	V
11092.000	-64.44	27.21	-37.23	-30.00	-7.23	V
N/A						
4955.000	-53.08	8.92	-44.16	-30.00	-14.16	Н
10859.000	-64.07	27.19	-36.88	-30.00	-6.88	Н
N/A						

- 1. The emission behaviour belongs to narrowband spurious emission.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Test Mode:	Test Mode: <u>IEEE 802.11n HT 20 MHz Mode / TX (CH Low)</u>				Tested	Tested by: Jason Lu	
Ambient ter	mbient temperature: <u>22°C</u> Relative humidity: <u>60 % RH</u>			Date: <u>M</u>	<u>larch 9, 2016</u>		
Frequency (MHz)	Reading (dBm)	Correction Factor (dB)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)	
4822.000	-47.58	8.21	-39.37	-30.00	-9.37	V	
11282.000	-63.66	26.99	-36.67	-30.00	-6.67	V	
N/A							
4822.000	-53.28	9.01	-44.27	-30.00	-14.27	Н	
11325.000	-63.70	26.95	-36.75	-30.00	-6.75	Н	
N/A							

Test Mode: IEEE 802.11n HT 20 MHz Mode / TX (CH High)

Tested by: Jason Lu

Ambient ter	nperature: <u>2</u>	<u>2°C</u> Rela	ative humid	ity: <u>60 % RH</u>	Date: <u>M</u>	<u>larch 9, 2016</u>
Frequency (MHz)	Reading (dBm)	Correction Factor (dB)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
4941.000	-50.51	8.15	-42.36	-30.00	-12.36	V
10075.000	-63.55	25.07	-38.48	-30.00	-8.48	V
N/A						
4941.000	-54.89	8.88	-46.01	-30.00	-16.01	Н
10848.000	-64.87	27.18	-37.69	-30.00	-7.69	Н
N/A						

- 1. The emission behaviour belongs to narrowband spurious emission.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Test Mode: <u>IEEE 802.11n HT 40 MHz Mode / TX (CH Low)</u>				Tested I	by: <u>Jason Lu</u>	
Ambient ter	mbient temperature: <u>22°C</u> Relative humidity: <u>60 % RH</u>			Date: <u>M</u>	<u>larch 9, 2016</u>	
Frequency (MHz)	Reading (dBm)	Correction Factor (dB)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
4850.000	-50.55	8.16	-42.39	-30.00	-12.39	V
10014.000	-64.22	24.85	-39.37	-30.00	-9.37	V
N/A						
4850.000	-56.40	8.91	-47.49	-30.00	-17.49	Н
11662.250	-64.00	26.28	-37.72	-30.00	-7.72	Н
N/A						

Test Mode: IEEE 802.11n HT 40 MHz Mode / TX (CH High)

Tested by: Jason Lu

Ambient temperature: 22		<u>2°C</u> Rela	ative humid	ity: <u>60 % RH</u>	Date: <u>M</u>	larch 9, 2016
Frequency (MHz)	Reading (dBm)	Correction Factor (dB)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
4941.000	-53.35	8.15	-45.20	-30.00	-15.20	V
10636.250	-64.36	26.82	-37.54	-30.00	-7.54	V
N/A						
1021.000	-43.60	-2.09	-45.69	-30.00	-15.69	Н
11372.500	-63.30	26.88	-36.42	-30.00	-6.42	Н
N/A						

- 1. The emission behaviour belongs to narrowband spurious emission.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

7.11 RECEIVER SPURIOUS EMISSIONS

<u>LIMIT</u>

The spurious emissions of the receiver shall not exceed the values given in table 2.

Table 2: Spurious emission limits for receivers

Frequency range	Maximum power e.r.p. (≤ 1 GHz) e.i.r.p. (> 1 GHz)	Measurement bandwidth
30 MHz to 1 GHz	-57 dBm	100 kHz
1 GHz to 12,75 GHz	-47 dBm	1 MHz

Test Configuration

Radiated Spurious Emissions:

(Same as section 7.10 in this test report)

TEST PROCEDURE

- 1. Please refer to ETSI EN 300 328 (V2.1.1) for the test conditions.
- 2. Please refer to ETSI EN 300 328 (V2.1.1) for the measurement methods.

Measurement Uncertainty

The measurement uncertainty of the test is ± 2.65 dB.

TEST RESULTS

Pass.

Below 1GHz

Test Mode: Normal LinkTested by: Jason						by: <u>Jason Lu</u>
Ambient ter	nperature: 2	<u>2.6°C</u> Rela	ative humid	ity: <u>57.2 % R</u>	<u>H</u> Date: <u>A</u>	pril 22, 2016
Frequency (MHz)	Reading (dBm)	Correction Factor (dB)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
51.3400	-55.70	-20.61	-76.31	-57.00	-19.31	V
75.5900	-51.57	-21.31	-72.88	-57.00	-15.88	V
99.8400	-45.35	-23.06	-68.41	-57.00	-11.41	V
217.2100	-56.53	-18.93	-75.46	-57.00	-18.46	V
400.5400	-60.37	-16.20	-76.57	-57.00	-19.57	V
500.4500	-63.90	-13.52	-77.42	-57.00	-20.42	V
59 1200	56.02	14.96	71.00	57.00	14.00	Н
58.1300	-56.23	-14.86	-71.09	-57.00	-14.09	
92.0800	-39.48	-19.53	-59.01	-57.00	-2.01	Н
130.8800	-48.27	-13.03	-61.30	-57.00	-4.30	Н
230.7900	-56.06	-14.01	-70.07	-57.00	-13.07	Н
500.4500	-62.70	-9.82	-72.52	-57.00	-15.52	Н
600.3600	-63.80	-8.43	-72.23	-57.00	-15.23	Н

Remark:

1. The emission behaviour belongs to narrowband spurious emission.

2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Above 1GHz

Test Mode: Normal Link					Tested I	Tested by: Jason Lu		
Ambient ter	nperature: 2	2°C Rela	ative humid	ity: <u>60 % RH</u>	Date: <u>M</u>	larch 9, 2016		
Frequency (MHz)	Reading (dBm)	Correction Factor (dB)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)		
4941.000	-63.35	8.15	-55.20	-47.00	-8.20	V		
11282.000	-83.12	26.99	-56.13	-47.00	-9.13	V		
N/A								
4821.000	-63.76	8.21	-55.55	-47.00	-8.55	Н		
11306.000	-85.69	26.97	-58.72	-47.00	-11.72	Н		
N/A								

- 1. The emission behaviour belongs to narrowband spurious emission.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

7.12 RECEIVER BLOCKING

<u>Limit</u>

Receiver Category	 Category 1 : Adaptive equipment with a maximum RF output power greater than 10 dBm e.i.r.p. shall be considered as receiver category 1 equipment. Category 2 : Non-adaptive equipment with a Medium Utilization (MU) factor greater than 1 % and less than or equal to 10 % or adaptive equipment with a maximum RF output power of 10 dBm e.i.r.p. shall be considered as receiver category 2 equipment. Category 3 : Non-adaptive equipment with a maximum Medium Utilization (MU) factor greater than 1 % or adaptive equipment with a maximum Medium Utilization (MU) factor of 1 % or adaptive equipment with a maximum RF output power of 0 dBm e.i.r.p. shall be considered as receiver of 0 dBm e.i.r.p.
----------------------	--

Category 1						
Wanted signal mean power from companion device (dBm) Blocking signal frequency (MHz)		Blocking signal power (dBm) (see note 2)	Type of blocking signal			
Pmin + 6 dB 2 380 2 503,5		-53	CW			
Pmin + 6 dB 2 300 2 330 2 360		-47	CW			
2 300 Pmin + 6 dB 2 330 2 360		-47	CW			

NOTE 1:

Pmin is the minimum level of wanted signal (in dBm) required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal. NOTE 2:

The levels specified are levels in front of the UUT antenna. In case of conducted measurements antenna assembly gain.

Category 2						
Wanted signal mean power from companion device (dBm) Blocking signal frequency (MHz)		Blocking signal power (dBm) (see note 2)	Type of blocking signal			
Pmin + 6 dB 2 380 2 503,5		-57	CW			
Pmin + 6 dB 2 300 2 583,5		-47	CW			

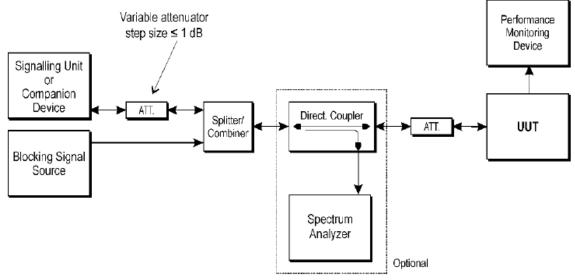
NOTE 1:

Pmin is the minimum level of the wanted signal (in dBm) required to meet the

minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal. NOTE 2:

The levels specified are levels in front of the UUT antenna. In case of conducted measurements, the levels have to be corrected by the actual antenna assembly gain.

Category 3						
Wanted signal mean power from companion device (dBm) Blocking signal frequency (MHz)		Blocking signal power (dBm) (see note 2)	Type of blocking signal			
Pmin + 12 dB	2 380 2 503,5	-57	CW			
Pmin + 12 dB 2 300 2 583,5		-47	CW			


NOTE 1:

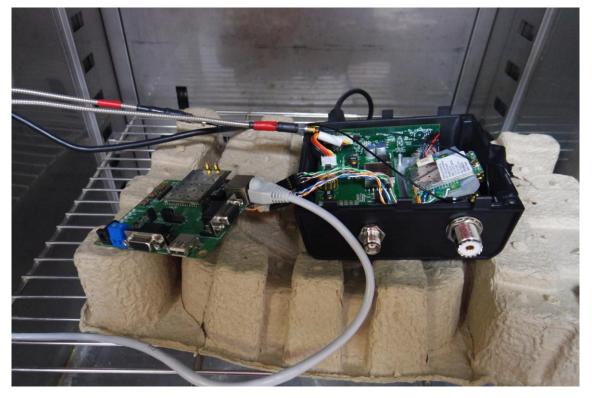
Pmin is the minimum level of the wanted signal (in dBm) required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 2:

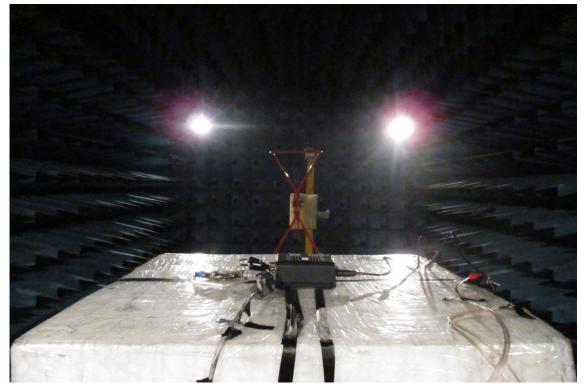
The levels specified are levels in front of the UUT antenna. In case of conducted measurements, the levels have to be corrected by the actual antenna assembly gain.

Test Configuration

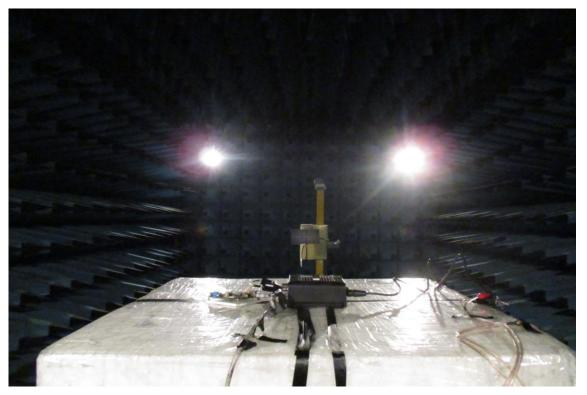
TEST PROCEDURE


- 1. Please refer to ETSI EN 300 328 (V2.1.1) for the test conditions.
- 2. Please refer to ETSI EN 300 328 (V2.1.1) for the measurement method.

TEST RESULTS


Configuration		Blocking signal frequency(MHz)	Receiver Blocking signal power (dBm)	Wanted signal mean power from companion device (dBm) [Pmin]	Pmin + 6dB Per Values (dBm)	Per Results	Limit (%)	Result
		2380	-53	-70	-64	2.00%	10.00%	Pass
		2503.5	-55	-70	-64	2.00%	10.00%	Pass
		2300		-70	-64	1.00%	10.00%	Pass
		2330	-47	-70	-64	4.00%	10.00%	Pass
IEEE		2360		-70	-64	3.00%	10.00%	Pass
802.11b	2412	2523.5		-70	-64	2.00%	10.00%	Pass
Mode		2553.5		-70	-64	5.00%	10.00%	Pass
		2583.5	-47	-70	-64	4.00%	10.00%	Pass
		2613.5		-70	-64	5.00%	10.00%	Pass
		2643.5		-70	-64	8.00%	10.00%	Pass
		2673.5		-70	-64	6.00%	10.00%	Pass
		2380	50	-72	-66	3.00%	10.00%	Pass
		2503.5	-53	-72	-66	5.00%	10.00%	Pass
		2300		-72	-66	5.00%	10.00%	Pass
		2330	-47	-72	-66	4.00%	10.00%	Pass
IEEE		2360		-72	-66	5.00%	10.00%	Pass
802.11b	2472	2523.5		-72	-66	2.00%	10.00%	Pass
Mode		2553.5		-72	-66	6.00%	10.00%	Pass
		2583.5	-47	-72	-66	3.00%	10.00%	Pass
		2613.5		-72	-66	4.00%	10.00%	Pass
		2643.5		-72	-66	4.00%	10.00%	Pass
		2673.5		-72	-66	3.00%	10.00%	Pass

APPENDIX I PHOTOGRAPHS OF TEST SETUP


Conducted Emissions Setup Photos

Radiated Emissions Setup Photos Below 1GHz

Above 1GHz

