

CE Test Report

Product Name	AIS Class B Transponder
Model No.	CAMINO-108, CAMINO-108W

Applicant	Alltek Marine Electronics Corp.
Address	7F, No.605, Ruei Guang Rd., Neihu, Taipei, Taiwan, 114 R.O.C.

Date of Receipt	May 06, 2013
Issued Date	Oct. 21, 2013
Report No.	135096R-RFCEP02V01
Report Version	V2.0

The Test Results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.

This report must not be used to claim product endorsement by TAF or any agency of the Government.

Test Report Certification

Issued Date: Oct. 21, 2013

Report No.: 135096R-RFCEP02V01

Product Name	AIS Class B Transponder					
Applicant	Alltek Marine Electronics Corp.					
Address	7F, No.605, Ruei Guang Rd., Neihu, Taipei, Taiwan, 114 R.O.C.					
Manufacturer	Alltek Marine Electronics Corp.					
Model No.	CAMINO-108, CAMINO-108W					
EUT Rated Voltage	e DC 9.6~31.2V					
EUT Test Voltage	Test Voltage DC 12/24V					
Trade Name	AMEC					
Applicable Standard ETSI EN 301 489-17:V2.2.1 (2012-09)						
ETSI EN 301 489-1: V1.9.2 (2011-09)						
Test Result	Complied					

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by TAF or any agency of the Government.

Documented By

(Senior Adm. Specialist / Jinn Chen)

Tested By

(Assistant Engineer / Andy Lin)

Approved By

(Manager / Vincent Lin)

TABLE OF CONTENTS

	Description	1 agc
1.	GENERAL INFORMATION	6
1.1.	EUT Description	
1.2.	Tested System Details	
1.3.	EUT Test Setup Environment & Configuration of AIS System	
1.4.	Performance Check Method	
1.5.	EUT Operation Procedures	
1.6.	Test Facility	10
2.	Conducted Emission	11
2.1.	Test Equipment	11
2.2.	Test Setup	
2.3.	Limits	12
2.4.	Test Procedure	13
2.5.	Test Specification	13
2.6.	Uncertainty	
2.7.	Test Result	13
3.	Radiated Emission	14
3.1.	Test Equipment	
3.2.	Test Setup	
3.3.	Limits	
3.4.	Test Procedure	
3.5.	Test Specification	
3.6.	Uncertainty	
3.7.	Test Result	
4.	Power Harmonics, Voltage Fluctuation and Flicker	
4.1.	Test Equipment	
4.2.	Test Setup	
4.3.	Limits	
4.4.	Test Procedure	
4.5.	Test Specification	
4.6.	Uncertainty	
4.7.	Test Result	
5.	Electrostatic Discharge (ESD)	
5.1.	Test Equipment	
5.1.	Test Setup	
5.2. 5.3.	Test Level	
5.3. 5.4.	Test Procedure	
5.5.	Test Specification	
5.6.	Uncertainty	
5.7.	Test Result	
_		
6.	Radiated Susceptibility (RS)	
6.1.	Test Equipment	
6.2.	Test Setup	
6.3.	Test Level	
6.4.	Test Procedure	
6.5.	Test Specification	
6.6.	Uncertainty	
6.7.	Test Result	
7.	Electrical Fast Transient/Burst (EFT/B)	
7.1.	Test Equipment	
7.2.	Test Setup	
7.3.	Test Level	26

7.4.	Test Procedure	26
7.5.	Test Specification	26
7.6.	Uncertainty	
7.7.	Test Result	26
8.	Surge	27
8.1.	Test Equipment	
8.2.	Test Setup	
8.3.	Test Level	27
8.4.	Test Procedure	28
8.5.	Test Specification	28
8.6.	Uncertainty	28
8.7.	Test Result	28
9.	Conducted Susceptibility (CS)	29
9.1.	Test Equipment	29
9.2.	Test Setup	29
9.3.	Test Level	29
9.4.	Test Procedure	30
9.5.	Test Specification	30
9.6.	Uncertainty	30
9.7.	Test Result	30
10.	Voltage Dips and Interruption	31
10.1.	Test Equipment	31
10.2.	Test Setup	31
10.3.	Test Level	31
10.4.	Test Procedure	32
10.5.	Test Specification	32
10.6.	Uncertainty	32
10.7.	Test Result	32
11.	EMC Reduction Method During Compliance Testing	33
12.	Test Result	34
12.1.	Test Data of Conducted Emission	35
12.2.	Test Data of Radiated Emission	39
12.3.	Test Data of Power Harmonics, Voltage Flucturation and Flicker	43
12.4.	Test Data of Electrostatic Discharge	44
12.5.	Test Data of Radiated Susceptibility	46
12.6.	Test Data of Electrical Fast Transient	48
12.7.	Test Data of Surge	
12.8.	Test Data of Conducted Susceptibility	
12.9.	Test Data of Voltage Dips and Interruption	53
Attachment 1:	EUT Test Setup Photographs	
Attachment 2:	EUT Detailed Photographs	

Revision History

Rev.	Issue Date	Revisions	Effect page
V1.0	August 22, 2013	Initial Issue	All
V2.0	October 21, 2013	1) Add Revision History	5, 8, 9
		2) Modify section 1.2 Tested System Details	
		3) Modify section 1.3 EUT Test Setup Environment &	
		Configuration of AIS System	
		4) Add section 1.4 Performance Check Method	
		5) Modify section 1.5 EUT Operation Procedures	

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	AIS Class B Transponder		
Trade Name	AMEC		
Model No.	CAMINO-108, CAMINO-108W		
Frequency Range	802.11b/g/n-20: 2412-2472MHz		
Number of Channels	802.11b/g/n-20: 13CH		
Data Rate	802.11b: 1-11Mbps, 802.11g: 6-54Mbps, 802.11n: up to 72.2Mbps		
Channel Separation	802.11b/g/n-20MHz: 5 MHz		
Type of Modulation	pe of Modulation 802.11b: DBPSK, DQPSK, CCK		
	802.11g/n:OFDM, BPSK, QPSK, 16QAM, 64QAM		
Channel Control	nnel Control Auto		
Antenna Gain	Refer to the table "Antenna List"		
Antenna Type	Dipole		
VHF Cable	Shielded, 10m		
GPS Cable	Shielded, 10m		
Hardware	M-PCB-B108MBV1		
Software	V1.2.6		

Antenna List

No.	Manufacturer	Part No.	Antenna Type	Peak Gain
1	Alltek Marine Electronics Corp.	M-ANT-SAA04-05005G-01	Dipole	2 dBi for 2.4 GHz

802.11b/g/n-20MHz Center Frequency of Each Channel (WLAN):

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 01:	2412 MHz	Channel 02:	2417 MHz	Channel 03:	2422 MHz	Channel 04:	2427 MHz
Channel 05:	2432 MHz	Channel 06:	2437 MHz	Channel 07:	2442 MHz	Channel 08:	2447 MHz
Channel 09:	2452 MHz	Channel 10:	2457 MHz	Channel 11:	2462 MHz	Channel 12:	2467 MHz
Channel 13:	2472 MHz						

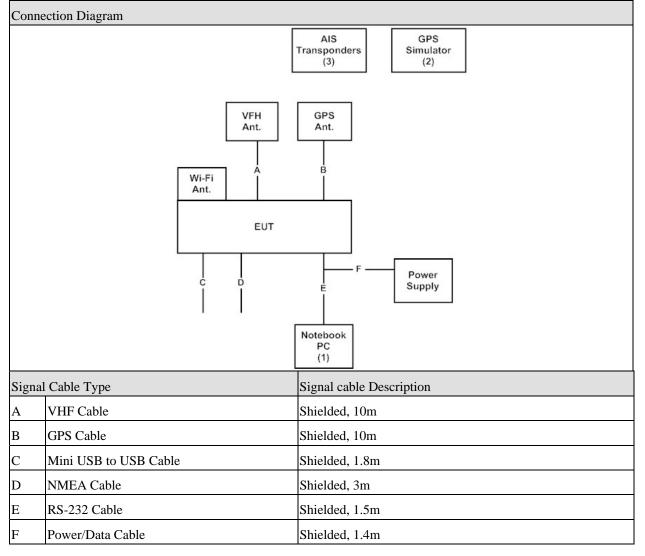
802.11n-40MHz Center Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 01:	2422 MHz	Channel 02:	2427 MHz	Channel 03:	2432 MHz	Channel 04:	2437 MHz
Channel 05:	2442 MHz	Channel 06:	2447 MHz	Channel 07:	2452 MHz	Channel 08:	2457 MHz
Channel 09:	2462 MHz						

- 1. This device only use in telecommunication centers.
- 2. QuieTek verified the construction and function in typical operation. All the test modes were carried out with the EUT in normal operation, which was shown in this test report and defined as:

EMI Mode	Normal Operation (WLAN Mode)
EMS Mode	Normal Operation (WLAN Mode)

1.2. Tested System Details


The types for all equipment, plus descriptions of all cables used in the tested system (including SD cards) are:

Pro	duct	Manufacturer	Model No.	Serial No.	Power Cord
1	Notebook PC	DELL	PP04X	7607342512	Non-shielded, 1.8m
2	GPS Simulator	Agilent	E4438C	N/A	Non-shielded, 1.8m
3	AIS Transponders	AMEC	CAMINO-101 /	N/A	Non-shielded, 1.8m
			CAMINO-701		

1.3. EUT Test Setup Environment & Configuration of AIS System

In order to do performance-check during EMC immunity tests, an equipment setup (AIS related) as shown in the following diagram is used in general.

A Satellite Simulator is used during the tests to emulate GPS signal source for the EUT.

1.4. Performance Check Method

The EUT is set into autonomous mode with reporting interval of 180 seconds in the test environment in Section 1.3. Additional AIS transponders are used to monitor the content of reports and the reporting intervals of EUT. The EUT performance shall not be degraded during or after the test. A PC software tool is used in parallel to record the AIS transmitting rate and receiving rate. The data is used to check if there is any degradation of performance or loss of function.

An IEC-61162 Datalogger software is used (running on PC) to check the EUT performance during and after the test together with the additional AIS transponders.

1.5. EUT Operation Procedures

- 1 Setup the EUT and Peripherals as shown in section 1.3.
- 2 Turn on the power of all equipment.
- 3 The EUT and the notebook PC will show the transmitting and receiving characteristics when the communication is success.
- 4 The wireless LAN function is used to perform the wireless data transmission.
- 5 Verify that the EUT works properly.

1.6. Test Facility

Ambient conditions in the laboratory:

Items	Test Item	Required	Actual
Temperature (°C)		15-35	20
Humidity (%RH)	IEC 61000-4-2	30-60	50
Barometric pressure (mbar)		860-1060	950-1000
Temperature (°C)		15-35	23
Humidity (%RH)	IEC 61000-4-3	25-75	50
Barometric pressure (mbar)		860-1060	950-1000
Temperature (°C)		15-35	24
Humidity (%RH)	IEC 61000-4-4	25-75	58
Barometric pressure (mbar)		860-1060	950-1000
Temperature (°C)		15-35	25
Humidity (%RH)	IEC 61000-4-5	10-75	49
Barometric pressure (mbar)		860-1060	950-1000
Temperature (°C)		15-35	24
Humidity (%RH)	IEC 61000-4-6	25-75	50
Barometric pressure (mbar)		860-1060	950-1000
Temperature (°C)		15-35	25
Humidity (%RH)	IEC 61000-4-11	25-75	49
Barometric pressure (mbar)		860-1060	950-1000

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site :

http://tw.quietek.com/tw/emc/accreditations/accreditations.htm

The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site : http://www.quietek.com/

Site Description: Accredited by TAF

Accredited Number: 0914

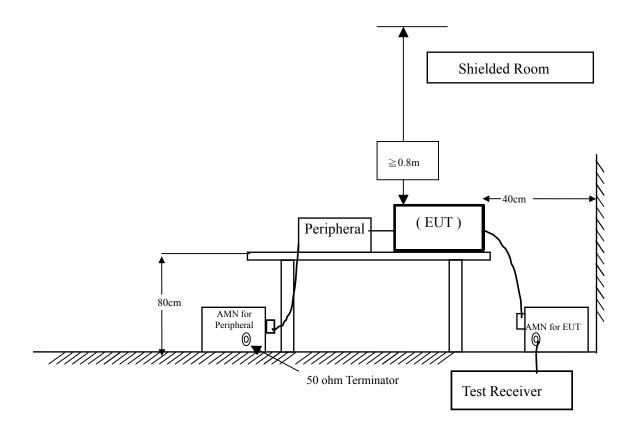
Site Name: Quietek Corporation

Site Address: No. 5-22, Rueishu Keng, Linkou Dist.,

New Taipei City 24451, Taiwan. R.O.C.

TEL: 886-2-8601-3788 FAX: 886-2-8601-3789 E-Mail: service@quietek.com

2. Conducted Emission


2.1. Test Equipment

	Equipment	Manufacturer	Model No. / Serial No.	Last Cal.	Remark
X	Test Receiver	R & S	ESCS 30 / 825442/018	Sep., 2012	
X	Artificial Mains Network	R & S	ENV4200 / 848411/10	Feb., 2013	Peripherals
X	LISN	R & S	ESH3-Z5 / 825562/002	Feb., 2013	EUT
	DC LISN	Schwarzbeck	8226 / 176	Mar, 2013	EUT
X	Pulse Limiter	R & S	ESH3-Z2 / 357.8810.52	Feb., 2013	
X	4-wire ISN	R & S	ENY41 / 837032/001	Feb., 2013	
X	Double 2-Wire ISN	R & S	ENY22 / 835354/008	Feb., 2013	
	No.1 Shielded Room				

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked by "X" are used to measure the final test results.

2.2. Test Setup

2.3. Limits

(1) Mains terminal

1) 11		Limits	(dBuV)		
Frequency MHz	Limit for conducted emissions of equipment intended to be used in telecommunication centers only OP AV		Limit for condu	ucted emissions	
			QP	AV	
0.15 - 0.50	79	66	66-56	56-46	
0.50-5.0	73	60	56	46	
5.0 - 30	73	60	60	50	

Remarks: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz \sim 0.50 MHz.

(2) Telecommunication ports

	Limits (dBuV)			
Frequency MHz	Limit for conducted emissions from telecommunication ports of equipment intended for use in telecommunication centers only		Limit for conducted emissions from telecommunication ports	
	QP	AV	QP	AV
0.15 - 0.50	97-87	84-74	84-74	74-64
5.0 – 30	87	74	74	64

Remarks: In the above table, the tighter limit applies at the band edges.

AC Mains:

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of AC line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ETSI EN 301489-1: V1.9.2 (2011-09) on conducted measurement.

The bandwidth of the field strength meter (R & S Test Receiver ESCS 30) is set at 9kHz.

Telecommunication Port:

The mains voltage shall be supplied to the EUT via the LISN when the measurement of telecommunication port is performed. The common mode disturbances at the telecommunication port shall be connected to the ISN, which is 150ohm impedance. Both alternative cables are tested related to the LCL requested. The measurement range is from 150kHz to 30MHz. The bandwidth of measurement is set to 9kHz. The 60dB LCL ISN is used for cat. 5 cable, 50dB LCL ISN is used for cat. 3 and 80dB LCL is wed for alternative one.

2.5. Test Specification

According to ETSI EN 301489-1: V1.9.2 (2011-09) EN 55022:2010+AC:2011

2.6. Uncertainty

+ 2.26 dB

2.7. Test Result

The emission from the EUT is below the specified limits. The worst-case emissions are shown in section 12.1.

The EUT complies the acceptance criterion and passes the test.

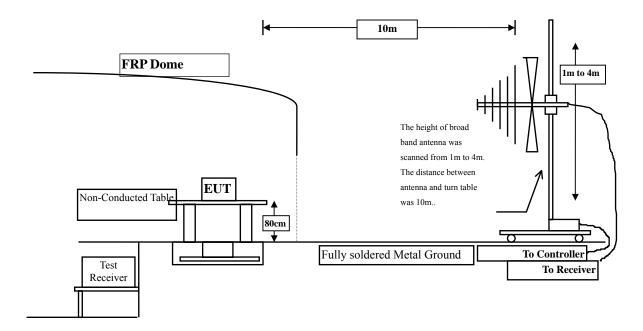
3. Radiated Emission

3.1. Test Equipment

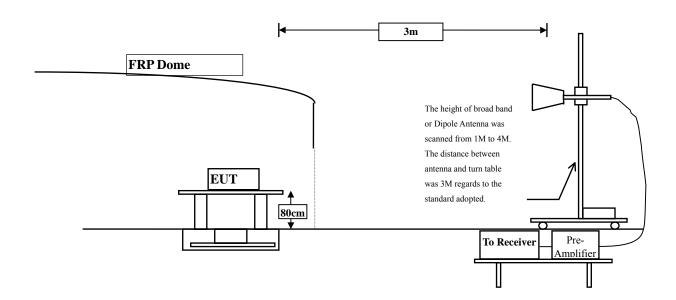
The following test equipment are used during the Radiated emission test:

Test Site	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
☐Site # 1	Test Receiver	R & S	ESVS 10 / 834468/003	July, 2013
	Spectrum Analyzer	Advantest	R3162/ 00803480	May, 2013
	Pre-Amplifier	Advantest	BB525C/ 3307A01812	May, 2013
	Bilog Antenna	SCHAFFNER	CBL6112B / 2697	Nov., 2012
☐Site # 2	Test Receiver	R & S	ESCS 30 / 836858 / 022	Nov., 2012
	Spectrum Analyzer	Advantest	R3162 / 100803466	May, 2013
	Pre-Amplifier	Advantest	BB525C/3307A01814	May, 2013
	Bilog Antenna	SCHAFFNER	CBL6112B / 2705	Oct., 2012
	Horn Antenna	ETS	3115 / 0005-6160	July, 2013
	Pre-Amplifier	QTK	QTK-AMP-01/0001	July, 2013
⊠Site # 3	Test Receiver	R & S	ESI 26 / 838786 / 004	May, 2013
	Spectrum Analyzer	Advantest	R3162 / 100803480	May, 2013
	Pre-Amplifier	QTK	QTK-AMP-03 / 0003	May, 2013
	Bilog Antenna	SCHAFFNER	CBL6112B / 2697	May, 2013
	Horn Antenna	ETS	3115 / 0005-6160	July, 2013
	Pre-Amplifier	QTK	QTK-AMP-01 / 0001	July, 2013
	Pre-Amplifier	QTK	AP-180C / CHM_0906076	Sep., 2012

Note:


^{1.} All equipments are calibrated every one year.

^{2.} The test instruments marked by "X" are used to measure the final test results.



3.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

3.3. Limits

Limits for radiated disturbance under 1 GHz at a measurement distance of 10 m

	Limits (dBuV/m)		
Frequency MHz	Limit for radiated emissions from ancillary equipment intended for use in telecommunication centers only, and measured on a stand alone basis	Limit for radiated emissions from ancillary equipment, measured on a stand alone basis	
	QP	QP	
30-230	40	30	
230-1000	47	37	

Limits for radiated disturbance above 1 GHz at a measurement distance of 3 m

Frequency range	Average Limit (dBµV/m)	Peak limit (dBμV/m)	
1 000 MHz to 3 000 MHz	50	70	
3 000 MHz to 6 000 MHz	54	74	
NOTE: The lower limit applies at the transition frequency.			

Limits above 1 GHz for radiated emissions from ancillary equipment intended for use in telecommunication centres only, and measured on a stand alone basis at a measurement distance of 3 m

Frequency range	Average Limit (dBμV/m)	Peak limit (dBμV/m)		
1 000 MHz to 3 000 MHz	56	76		
3 000 MHz to 6 000 MHz	60	80		
NOTE: The lower limit applies at the transition frequency.				

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 10 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated on radiated measurement. Radiated emissions were invested over the frequency range from 30MHz to1GHz using a receiver bandwidth of 120kHz. Radiated was performed at an antenna to EUT distance of 10 meters. Radiated emissions were invested over the frequency range from 1GHz to 6GHz using a receiver bandwidth of 1MHz. Radiated was performed at an antenna to EUT distance of 3 meters.

3.5. Test Specification

According to ETSI EN 301489-1: V1.9.2 (2011-09) EN 55022:2010+AC:2011

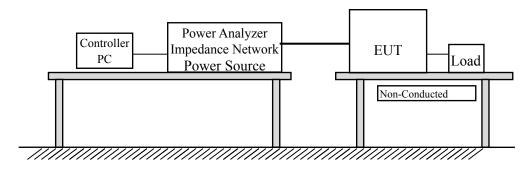
3.6. Uncertainty

± 3.8 dB

3.7. Test Result

The emission from the EUT is below the specified limits. The worst-case emissions are shown in section 12.2.

The EUT complies the acceptance criterion and passes the test.


4. Power Harmonics, Voltage Fluctuation and Flicker

4.1. Test Equipment

Item	Instrument	4Manufacturer	Type No/Serial No.	Last Calibration
1	Power Harmonics Tester	SCHAFFNER	Profline 2105-400 S/N: HK54148	June, 2013
2	Analyzer	SCHAFFNER	CCN 1000-1/X71887	June, 2013
3	No.3 Shielded Room			

Note: All equipments are calibrated every one year.

4.2. Test Setup

4.3. Limits

➤ Limits of Class A Harmonics Currents

Harmonics Order	Maximum Permissible harmonic current A	Harmonics Order	Maximum Permissible harmonic current A
Od	dd harmonics	Even harmonics	
3	2.30	2	1.08
5	1.14	4	0.43
7	0.77	6	0.30
9	0.40	$8 \le n \le 40$	0.23 * 8/n
11	0.33		
13	0.21		
$15 \le n \le 39$	0.15 * 15/n		

➤ Limits of Class B Harmonics Currents

For Class B equipment, the harmonic of the input current shall not exceed the maximum permissible values given in table that is the limit of Class A multiplied by a factor of 1.5.

➤ Limits of Class C Harmonics Currents

Harmonics Order	Maximum Permissible harmonic current Expressed as a percentage of the input current at the fundamental frequency
n	%
11	/0
2	2
3	30 · λ*
5	10
7	7
9	5
11 ≤ n ≤ 39	3
(odd harmonics only)	
*λ is the circuit power factor	

>Limits of Class D Harmonics Currents

Harmonics Order	Maximum Permissible harmonic current per watt	Maximum Permissible harmonic current
n	mA/W	A
3	3.4	2.30
5	1.9	1.14
7	1.0	0.77
9	0.5	0.40
11	0.35	0.33
13 ≤ n ≤ 39	3.85/n	See limit of Class A
(odd harmonics only)		

4.4. Test Procedure

The EUT is supplied in series with power analyzer from a power source having the same normal voltage and frequency as the rated supply voltage and the equipment under test. And the rated voltage at the supply voltage of EUT of 0.94 times and 1.06 times shall be performed.

4.5. Test Specification

According to EN 61000-3-2:2006+A2:2009, EN 61000-3-3:2008

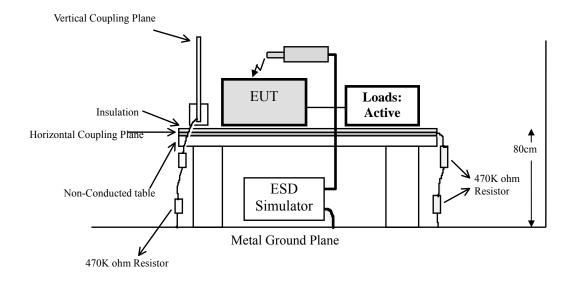
4.6. Uncertainty

 \pm 3.23 %

4.7. Test Result

Owing to the DC operation of EUT, this test item is not performed.

5. Electrostatic Discharge (ESD)


5.1. Test Equipment

	Instrument	Manufacturer	Type No.	Serial No	Cal. Date
	ESD Simulator System	SCHAFFNER	NSG 438	695	May, 2013
X	ESD Simulator System	NoiseKen	TC-815R	ESS0929097	Aug, 2013
	ESD Simulator System	Thermo		0510189/ 0510190	June, 2013
	ESD Simulator System	EM TEST	dito	V0635101749	Sep, 2012
X	Horizontal Coupling Plane (HCP)	QuieTek	HCP AL50	N/A	N/A
X	Vertical Coupling Plane (VCP)	QuieTek	VCP AL50	N/A	N/A

Note: 1. All equipments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

5.2. Test Setup

5.3. Test Level

Item	Environmental Phenomena	Units	Test Specification	Performance Criteria	
Enclos	Enclosure Port				
	Electrostatic Discharge	kV(Charge Voltage)	±8 (Air Discharge) ±4 (Contact Discharge)	В	

Direct application of discharges to the EUT:

Contact discharge was applied only to conductive surfaces of the EUT.

Air discharges were applied only to non-conductive surfaces of the EUT.

During the test, it was performed with single discharges. For the single discharge time between successive single discharges will be keep longer 1 second. It was at least ten single discharges with positive and negative at the same selected point.

The selected point, which was performed with electrostatic discharge, was marked on the red label of the EUT.

Indirect application of discharges to the EUT:

Vertical Coupling Plane (VCP):

The coupling plane, of dimensions $0.5m \times 0.5m$, is placed parallel to, and positioned at a distance 0.1m from, the EUT, with the Discharge Electrode touching the coupling plane.

The four faces of the EUT will be performed with electrostatic discharge. It was at least ten single discharges with positive and negative at the same selected point.

Horizontal Coupling Plane (HCP):

The coupling plane is placed under to the EUT. The generator shall be positioned vertically at a distance of 0.1m from the EUT, with the Discharge Electrode touching the coupling plane.

The four faces of the EUT will be performed with electrostatic discharge. It was at least ten single discharges with positive and negative at the same selected point.

5.5. Test Specification

According to IEC 61000-4-2: 2008

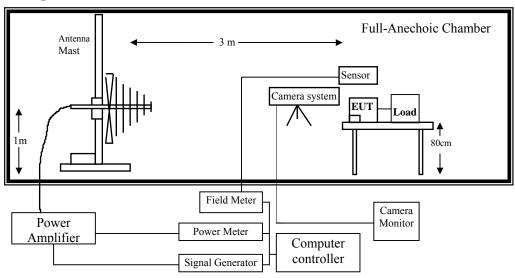
5.6. Uncertainty

+ 6.003 %

5.7. Test Result

The test result is shown in section 12.4.

The acceptance criterion is met and the EUT passed the test.


6. Radiated Susceptibility (RS)

6.1. Test Equipment

Item	Equipment	Manufacturer	Model No. / Serial No.	Last Cal.
1	Signal Generator	R & S	SML03/103330	Sep., 2012
2	Power Amplifier	Schaffner	CBA9413B/4020	N/A
3	Power Amplifier	A & R	30S1G3/309453	N/A
4	Biconilog Antenna	EMCO	3149/00071675	N/A
5	Power Meter	R & S	NRVD / 100219	Jan., 2013
6	Directional Coupler	A & R	DC6180/22735	N/A
7	Directional Coupler	A & R	DC7144A/312249	N/A
8	No.2 EMC Fully Chamber			

Note: All equipments are calibrated every one year.

6.2. Test Setup

6.3. Test Level

Item	Environmental Phenomena	Units	Test Specification	Performance Criteria
Enclosure Port				
	Radio-Frequency	MHz	80-1000	
			1400-2700	
	Electromagnetic Field	V/m(Un-modulated, rms)	3	A
	Amplitude Modulated	% AM (1kHz)	80	

Page: 23 of 55

The EUT and load, which are placed on a table that is 0.8 meter above ground, are placed with one coincident with the calibration plane such that the distance from antenna to the EUT was 3 meters.

Both horizontal and vertical polarization of the antenna and four sides of the EUT are set on measurement.

In order to judge the EUT performance, a CCD camera is used to monitor EUT screen.

All the scanning conditions are as follows:

Condition of Test Remarks

1. Field Strength 3 V/m Level 2

2. Radiated Signal AM 80% Modulated with 1kHz sinusoidal audio signal

3. Scanning Frequency 80MHz - 1000MHz, 1400MHz - 2700MHz

4 Dwell Time 3 Seconds

5. Frequency step size Δf : 1%

6. The rate of Swept of Frequency 1.5×10^{-3} decades/s

6.5. Test Specification

According to IEC 61000-4-3:2010

6.6. Uncertainty

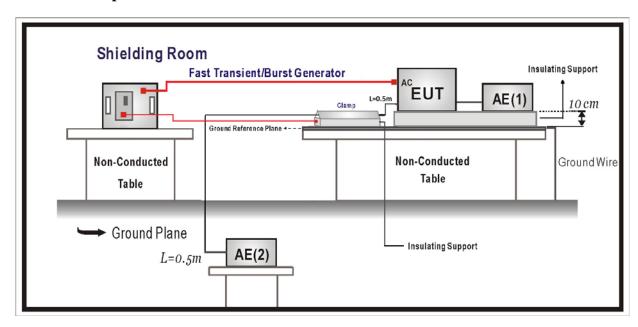
± 6.17 %

6.7. Test Result

The test result is shown in section 12.5.

The acceptance criterion is met and the EUT passed the test.

7. Electrical Fast Transient/Burst (EFT/B)


7.1. Test Equipment

	Instrument	Manufacturer	Type No.	Serial No	Cal. Date
	Schaffner NSG 2050 System Mainframe	Schaffner	N/A	N/A	Jan, 2013
	EMC immunity system	LThermo	EMCPRO PLUS	0411225	Mar, 2013
X	TRANSIENT TEST SYSTEM	EMC PARTNET	TRA2000IN6	1138	Mar, 2013

Note: 1. All equipments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

7.2. Test Setup

7.3. Test Level

Item	Environmental Phenomena	Units	Test Specification	Performance Criteria		
Ports f	For signal lines and control lines					
		kV (Peak)	<u>+</u> 0.5			
	Fast Transients Common Mode	Tr/Th ns	5/50	В		
		Rep. Frequency kHz	5			
Input l	Input DC Power Ports					
		kV (Peak)	<u>+</u> 0.5			
	Fast Transients Common Mode	Tr/Th ns	5/50	В		
		Rep. Frequency kHz	5			
Input A	AC Power Ports					
		kV (Peak)	<u>+</u> 1			
	Fast Transients Common Mode	Tr/Th ns	5/50	В		
		Rep. Frequency kHz	5			

7.4. Test Procedure

The EUT and load are placed on a table that is 0.8 meter above a metal ground plane measured 1m*1m min. and 0.65mm thick min. And projected beyond the EUT by at least 0.1m on all sides. For Signal Ports and Telecommunication Ports:

The EFT interference signal is through a coupling clamp device couples to the signal and control lines of the EUT with burst noise for 1min.

For Input DC and AC Power Ports:

The EUT is connected to the power mains through a coupling device that directly couples the EFT interference signal.

Each of the Line and Neutral conductors is impressed with burst noise for 1 min.

The length of power cord between the coupling device and the EUT shall be 1m.

7.5. Test Specification

According to IEC 61000-4-4: 2012

7.6. Uncertainty

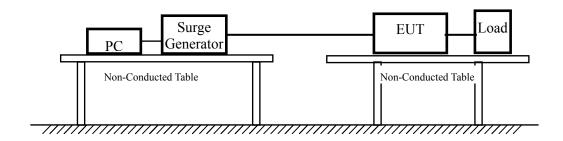
± 8.80 %

7.7. Test Result

The test result is shown in section 12.6.

The acceptance criterion is met and the EUT passed the test.

8. Surge


8.1. Test Equipment

	Instrument	Manufacturer	Type No.	Serial No	Cal. Date
	Schaffner NSG 2050 System Mainframe	Schaffner	N/A	N/A	Jan, 2013
	EMC immunity system	Thermo	EMCPRO PLUS	0411225	Mar, 2013
X	TRANSIENT TEST SYSTEM	EMC PARTNET	TRA2000IN6	1138	Mar, 2013

Note: 1. All equipments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

8.2. Test Setup

8.3. Test Level

Item	Environmental Phenomena	Units	Test Specification	Performance Criteria		
Teleco	Telecommunication Ports (See 1) and 2)					
	Surges	Tr/Th us	10/700	C		
	Line to Ground	kV	± 1	C		
Teleco	mmunication Ports in Telecor	n Centres (See 1) and 2)				
	Surges	Tr/Th us	10/700	C		
	Line to Ground	kV	± 0.5	C		
AC Inj	put and AC Output Power Por	ts	-			
	Surges	Tr/Th us	1.2/50 (8/20)			
	Line to Line	kV	±1	В		
	Line to Ground	kV	± 2			
AC Inj	put and AC Output Power Por	ts in Telecom Centres				
	Surges	Tr/Th us	1.2/50 (8/20)			
	Line to Line	kV	±0.5	В		
	Line to Ground	kV	± 1			

Notes:

- 1) Applicable only to ports which according to the manufacturer's may directly to outdoor cables.
- 2) Where normal functioning cannot be achieved because of the impact of the CDN on the EUT, no immunity test shall be required.

The EUT and its load are placed on a table that is 0.8 meter above a metal ground plane measured 1m*1m min. and 0.65mm thick min. And projected beyond the EUT by at least 0.1m on all sides. The length of power cord between the coupling device and the EUT shall be 2m or less.

For Signal Ports and Telecommunication Ports

The disturbance signal is through a coupling and decoupling networks (CDN) device couples to the signal and Telecommunication lines of the EUT.

For Input and Output AC Power or DC Input and DC Output Power Ports:

The EUT is connected to the power mains through a coupling device that directly couples the Surge interference signal.

The surge noise shall be applied synchronized to the voltage phase at 0^0 , 90^0 , 180^0 , 270^0 and the peak value of the a.c. voltage wave. (Positive and negative)

Each of Line-Earth and Line-Line is impressed with a sequence of five surge voltages with interval of 1 min.

8.5. Test Specification

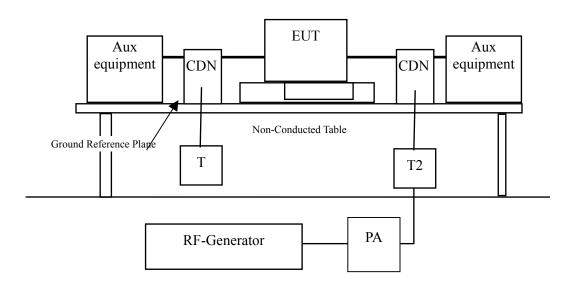
According to IEC 61000-4-5: 2005

8.6. Uncertainty

± 7.93 %

8.7. Test Result

Owing to the DC operation of EUT, this test item is not performed.


9. Conducted Susceptibility (CS)

9.1. Test Equipment

Item	Equipment	Manufacturer	Model No. / Serial No.	Last Cal.
1	CS SYSTEM	SCHAFFNER	NSG 2070	March, 2013
2	CDN	SCHAFFNER	CDN M016S / 20822	Dec., 2012
3	CDN	SCHAFFNER	CDN M016S / 20823	Dec., 2012
4	FIXED PAD	SCHAFFNER	INA 2070-1 / 2115	N/A
5	EM Clamp		KEMZ 801 / 21024	March, 2013
6	No.6 Shielded Room			

Note: All equipments are calibrated every one year.

9.2. Test Setup

9.3. Test Level

Item	Environmental Phenomena	Units	Test Specification	Performance Criteria
AC Input and AC Output & DC Input and DC output Power Ports & Functional Earth Ports				
	D 1' E	MHz	0.15-80	
	Radio-Frequency	V (rms, Unmodulated)	3	
	Common Mode.	% AM (1kHz)	80	A
	Amplitude Modulated	Source Impedance Ω	150	

The EUT are placed on a table that is 0.8 meter height, and a Ground reference plane on the table, EUT are placed upon table and use a 10cm insulation between the EUT and Ground reference plane.

For Signal Ports and Telecommunication Ports

The disturbance signal is through a coupling and decoupling networks (CDN) or EM-clamp device couples to the signal and Telecommunication lines of the EUT.

For Input DC and AC Power Ports

The EUT is connected to the power mains through a coupling and decoupling networks for power supply lines. And directly couples the disturbances signal into EUT.

Used CDN-M2 for two wires or CDN-M3 for three wires.

All the scanning conditions are as follows:

Condition of Test Remarks

1. Field Strength 130dBuV(3V) Level 2

2. Radiated Signal AM 80% Modulated with 1kHz sinusoidal audio signal

3. Scanning Frequency 0.15MHz – 80MHz

4 Dwell Time 3 Seconds

5. Frequency step size Δf : 1%

6. The rate of Swept of Frequency 1.5×10^{-3} decades/s

9.5. Test Specification

According to IEC 61000-4-6: 2008

9.6. Uncertainty

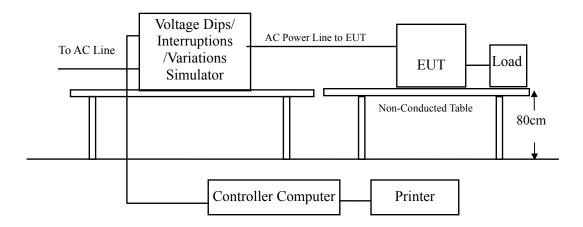
+ 6.17 %

9.7. Test Result

The test result is shown in section 12.8.

The acceptance criterion is met and the EUT passed the test.

10. Voltage Dips and Interruption


10.1. Test Equipment

	Instrument	Manufacturer	Type No.	Serial No	Cal. Date
	Schaffner NSG 2050 System Mainframe	Schaffner	N/A	N/A	Jan, 2013
	EMC immunity system	LThermo	EMCPRO PLUS	0411225	Mar, 2013
X	TRANSIENT TEST SYSTEM	EMC PARTNET	TRA2000IN6	1138	Mar, 2013

Note: 1. All equipments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

10.2. Test Setup

10.3. Test Level

Item	Environmental Phenomena	Units	Test Specification	Performance Criteria				
AC Inj	AC Input and AC Output Power Ports							
	Voltage Dips	% Reduction	100 %	В				
		(Cycle)	0.5					
	Voltage Dips	% Reduction	100 %	В				
		(Cycle)	1					
	Voltage Dips	% Reduction	30 %	В				
		(Cycle)	25					
	Voltage Interruptions	% Reduction	100 %	C (see note)				
		(Cycle)	250					

NOTE: Equipment is fitted with or connected to a battery back-up, the performance criteria is "B".

The EUT and its load are placed on a table which is 0.8 meter above a metal ground plane measured 1m*1m min. and 0.65mm thick min. And projected beyond the EUT by at least 0.1m on all sides. The power cord shall be used the shortest power cord as specified by the manufacturer.

For Voltage Dips/ Interruptions test:

The selection of test voltage is based on the rated power range. If the operation range is large than 20% of lower power range, both end of specified voltage shall be tested. Otherwise, the typical voltage specification is selected as test voltage.

The EUT is connected to the power mains through a coupling device that directly couples to the Voltage Dips and Interruption Generator.

The test levels shall be:

voltage dip: 0 % residual voltage for 0,5 cycle;

voltage dip: 0 % residual voltage for 1 cycle;

voltage dip: 70 % residual voltage for 25 cycles (at 50 Hz);

voltage interruption: 0 % residual voltage for 250 cycles (at 50 Hz).

Voltage phase shifting are shall occur at 0^{0} , 45^{0} , 90^{0} , 135^{0} , 180^{0} , 225^{0} , 270^{0} , 315^{0} of the voltage.

10.5. Test Specification

According to IEC 61000-4-11: 2004

10.6. Uncertainty

± 2.03 %

10.7. Test Result

Owing to the DC operation of EUT, this test item is not performed.

11. EMC Reduction Method During Compliance Testing

No modification was made during testing.

12. Test Result

The test results in the emission and the immunity were performed according to the requirements of measurement standard and process. Quietek Corporation is assumed full responsibility for the accuracy and completeness of these measurements. The test data of the emission is listed as below. All the tests were carried out with the EUT in normal operation, which was defined as:

EMI Mode	Normal Operation (WLAN Mode)
EMS Mode	Normal Operation (WLAN Mode)

12.1. Test Data of Conducted Emission

Product : AIS Class B Transponder
Test Item : Conducted Emission
Test Site : No.1 Shielded Room

Power Line : Line 1

Test Mode : Normal Operation (WLAN Mode) (DC 24V)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
LINE (+)					
Quasi-Peak					
0.542	0.150	39.860	40.010	-15.990	56.000
1.084	0.160	31.140	31.300	-24.700	56.000
1.627	0.170	30.880	31.050	-24.950	56.000
5.302	0.212	36.830	37.042	-22.958	60.000
13.392	0.484	43.790	44.274	-15.726	60.000
26.421	0.890	41.240	42.130	-17.870	60.000
Average					
0.542	0.150	39.850	40.000	-6.000	46.000
1.084	0.160	31.130	31.290	-14.710	46.000
1.627	0.170	30.870	31.040	-14.960	46.000
5.302	0.212	30.320	30.532	-19.468	50.000
13.392	0.484	38.270	38.754	-11.246	50.000
26.421	0.890	35.570	36.460	-13.540	50.000

Note:

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. " " means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product : AIS Class B Transponder

Test Item : Conducted Emission
Test Site : No.1 Shielded Room

Power Line : Line 2

Test Mode : Normal Operation (WLAN Mode) (DC 24V)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
LINE (-)					
Quasi-Peak					
0.297	0.224	31.610	31.834	-29.966	61.800
0.543	0.220	35.010	35.230	-20.770	56.000
5.302	0.262	35.020	35.282	-24.718	60.000
9.489	0.382	40.330	40.712	-19.288	60.000
13.954	0.527	45.680	46.207	-13.793	60.000
26.418	0.850	40.830	41.680	-18.320	60.000
Average					
0.297	0.224	31.600	31.824	-19.976	51.800
0.543	0.220	35.000	35.220	-10.780	46.000
5.302	0.262	28.680	28.942	-21.058	50.000
9.489	0.382	34.960	35.342	-14.658	50.000
13.954	0.527	40.280	40.807	-9.193	50.000
26.418	0.850	34.880	35.730	-14.270	50.000

Note:

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. " " means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product : AIS Class B Transponder
Test Item : Conducted Emission
Test Site : No.1 Shielded Room

Power Line : Line 1

Test Mode : Normal Operation (WLAN Mode) (DC 12V)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
LINE (+)					
Quasi-Peak					
0.542	0.150	40.150	40.300	-15.700	56.000
1.084	0.160	31.600	31.760	-24.240	56.000
1.626	0.170	31.200	31.370	-24.630	56.000
5.302	0.212	36.590	36.802	-23.198	60.000
13.396	0.484	44.260	44.744	-15.256	60.000
26.416	0.890	42.110	43.000	-17.000	60.000
Average					
0.542	0.150	40.140	40.290	-5.710	46.000
1.084	0.160	31.590	31.750	-14.250	46.000
1.626	0.170	31.190	31.360	-14.640	46.000
5.302	0.212	29.790	30.002	-19.998	50.000
13.396	0.484	38.620	39.104	-10.896	50.000
26.416	0.890	35.470	36.360	-13.640	50.000

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. " means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product : AIS Class B Transponder
Test Item : Conducted Emission
Test Site : No.1 Shielded Room

Power Line : Line 1

Test Mode : Normal Operation (WLAN Mode) (DC 12V)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
LINE (-)					
Quasi-Peak					
0.542	0.220	35.310	35.530	-20.470	56.000
2.478	0.230	20.910	21.140	-34.860	56.000
3.435	0.240	27.940	28.180	-27.820	56.000
6.880	0.296	35.960	36.256	-23.744	60.000
13.482	0.516	45.290	45.806	-14.194	60.000
25.869	0.840	40.320	41.160	-18.840	60.000
Average					
0.542	0.220	35.300	35.520	-10.480	46.000
2.478	0.230	15.120	15.350	-30.650	46.000
3.435	0.240	22.350	22.590	-23.410	46.000
6.880	0.296	29.780	30.076	-19.924	50.000
13.482	0.516	39.510	40.026	-9.974	50.000
25.869	0.840	32.990	33.830	-16.170	50.000

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. " means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

12.2. Test Data of Radiated Emission

Product : AIS Class B Transponder
Test Item : General Radiated Emission

Test Site : No.3 OATS

Test Mode : Normal Operation (WLAN Mode) (DC 24V)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
144.010	-19.397	43.200	23.802	-6.198	30.000
192.010	-20.080	45.700	25.621	-4.379	30.000
288.100	-15.077	48.200	33.123	-3.877	37.000
312.020	-14.561	44.400	29.840	-7.160	37.000
432.000	-10.289	42.200	31.912	-5.088	37.000
624.010	-6.600	41.840	35.240	-1.760	37.000
739.020	-5.393	36.780	31.388	-5.612	37.000
982.000	-2.062	34.550	32.489	-4.511	37.000
Vertical					
54.500	-23.487	52.680	29.193	-0.807	30.000
144.010	-19.397	48.900	29.502	-0.498	30.000
192.010	-20.080	49.000	28.921	-1.079	30.000
288.010	-15.080	49.930	34.850	-2.150	37.000
312.000	-14.561	44.350	29.789	-7.211	37.000
624.000	-6.600	38.310	31.710	-5.290	37.000
739.010	-5.393	35.110	29.718	-7.282	37.000
862.000	-3.530	35.310	31.780	-5.220	37.000
987.910	-1.990	34.360	32.371	-4.629	37.000
* *					

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product : AIS Class B Transponder

Test Item : General Radiated Emission (above 1GHz)

Test Site : No.3 OATS

Test Mode : Normal Operation (WLAN Mode) (DC 24V)

Frequency	Correct Reading Me		Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
1000.000	-6.701	53.710	47.009	-22.991	70.000
1680.000	-3.849	48.640	44.791	-25.209	70.000
2490.000	-0.096	48.000	47.904	-22.096	70.000
Average Detector:					
Vertical					
Peak Detector:					
1000.000	-6.701	50.930	44.229	-25.771	70.000
1320.000	-5.006	49.270	44.264	-25.736	70.000
1650.000	-4.025	55.680	51.655	-18.345	70.000
Average Detector:					
1650.000	-4.025	33.860	29.835	-20.165	50.000

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product : AIS Class B Transponder Test Item : Radiated Emission Test

Test Site : No.3 OATS

Test Mode : Normal Operation (WLAN Mode) (DC 12V)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
144.000	-19.396	43.100	23.703	-6.297	30.000
192.000	-20.080	45.600	25.520	-4.480	30.000
288.000	-15.081	48.000	32.919	-4.081	37.000
312.000	-14.561	44.000	29.439	-7.561	37.000
432.000	-10.289	42.300	32.012	-4.988	37.000
624.000	-6.600	41.900	35.300	-1.700	37.000
739.000	-5.393	36.600	31.207	-5.793	37.000
982.000	-2.062	34.600	32.539	-4.461	37.000
Vertical					
54.510	-23.489	52.500	29.011	-0.989	30.000
144.000	-19.396	48.800	29.403	-0.597	30.000
192.000	-20.080	48.800	28.720	-1.280	30.000
288.000	-15.081	49.780	34.699	-2.301	37.000
312.000	-14.561	44.000	29.439	-7.561	37.000
624.000	-6.600	38.000	31.400	-5.600	37.000
739.000	-5.393	35.000	29.607	-7.393	37.000
862.100	-3.530	35.100	31.570	-5.430	37.000
981.900	-2.064	34.600	32.537	-4.463	37.000

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product : AIS Class B Transponder Test Item : Radiated Emission Test

Test Site : No.3 OATS

Test Mode : Normal Operation (WLAN Mode) (DC 12V)

Frequency	Correct	Reading	Measurement	Margin	Limit
rrequency	Factor	Level	Level	wargiii	Limit
MII.				4D	dDayV/ee
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
(Peak)					
1000.000	-6.701	52.880	46.179	-23.821	70.000
1680.000	-3.849	50.160	46.311	-23.689	70.000
2500.000	-0.173	48.620	48.447	-21.553	70.000
Horizontal					
(Average)					
Vertical					
(Peak)					
1000.000	-6.701	51.270	44.569	-25.431	70.000
1320.000	-5.006	51.220	46.214	-23.786	70.000
1652.000	-3.978	56.310	52.332	-17.668	70.000
Vertical					
(Average)					
1652.000	-3.978	34.180	30.202	-19.798	50.000

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

12.3. Test Data of Power Harmonics, Voltage Flucturation and Flicker

Owing to the DC operation of EUT, this test item is not performed.

12.4. Test Data of Electrostatic Discharge

Product : AIS Class B Transponder
Test Item : Electrostatic Discharge
Test Site : No.3 Shielded Room

Test Mode : Normal Operation (WLAN Mode) (DC 24V)

Item	Amount of	Voltage	Required	Complied To Criteria	Results	
	Discharge	voltage	Criteria	(A, B, C)		
Air Discharge	10	+2KV ,+4KV ,+8kV	В	A	Pass	
All Discharge	10	-2KV ,-4KV ,-8kV	В	A	Pass	
C + + D' - 1	25	+2KV ,+4kV	В	A	Pass	
Contact Discharge	25	-2KV ,-4kV	В	A	Pass	
Indirect Discharge	25	+2KV ,+4kV	В	A	Pass	
(HCP)	25	-2KV ,-4kV	В	A	Pass	
Indirect Discharge	25	+2KV ,+4kV	В	A	Pass	
(VCP)	25	-2KV ,-4kV	В	A	Pass	

Note:

The testing performed is from lowest level up to the highest level as required by standard, but only highest level is shown on the report.

NR: No Requirement

\boxtimes	Meet criteria A: Operate as intended during and after the test	
	Meet criteria B: Operate as intended after the test	
	Meet criteria C: Loss/Error of function	
	Additional Information	
	☐ EUT stopped operation and <u>could</u> / <u>could not</u> be reset by operator at	kV.
	No false alarms or other malfunctions were observed during or after the te	est

Product : AIS Class B Transponder
Test Item : Electrostatic Discharge
Test Site : No.3 Shielded Room

Test Mode : Normal Operation (WLAN Mode) (DC 12V)

Item	Amount of	Voltage	Required	Complied To Criteria	Results	
	Discharge	voltage	Criteria	(A, B, C)	Results	
Air Diagharag	10	+2KV ,+4KV ,+8kV	В	A	Pass	
Air Discharge	10	-2KV ,-4KV ,-8kV	В	A	Pass	
Contact Discharge	25	+2KV ,+4kV	В	A	Pass	
Contact Discharge	25	-2KV ,-4kV	В	A	Pass	
Indirect Discharge	25	+2KV ,+4kV	В	A	Pass	
(HCP)	25	-2KV ,-4kV	В	A	Pass	
Indirect Discharge	25	+2KV ,+4kV	В	A	Pass	
(VCP)	25	-2KV ,-4kV	В	A	Pass	

Note:

The testing performed is from lowest level up to the highest level as required by standard, but only highest level is shown on the report.

NR: No Requirement

\boxtimes	Meet criteria A: Operate as intended during and after the test	
	Meet criteria B: Operate as intended after the test	
	Meet criteria C: Loss/Error of function	
	Additional Information	
	☐ EUT stopped operation and <u>could</u> / <u>could not</u> be reset by operator at	kV.
	No false alarms or other malfunctions were observed during or after the test	t.

12.5. Test Data of Radiated Susceptibility

Product : AIS Class B Transponder
Test Item : Radiated Susceptibility
Test Site : No.2 EMC fully Chamber

Test Mode : Normal Operation (WLAN Mode) (DC 24V)

Frequency (MHz)	Position (Angle)	Polarity (H or V)	Field Strength (V/m)	Required Criteria	Complied To Criteria (A, B, C)	Results
80-1000	0 °	Н	3	A	A	Pass
80-1000	0°	V	3	A	A	Pass
80-1000	$90\degree$	Н	3	A	A	Pass
80-1000	$90\degree$	V	3	A	A	Pass
80-1000	180°	Н	3	A	A	Pass
80-1000	180°	V	3	A	A	Pass
80-1000	$270\degree$	H	3	A	A	Pass
80-1000	$270\degree$	V	3	A	A	Pass
1400-2700	0°	H	3	A	A	Pass
1400-2700	0°	V	3	A	A	Pass
1400-2700	$90\degree$	H	3	A	A	Pass
1400-2700	$90\degree$	V	3	A	A	Pass
1400-2700	180°	H	3	A	A	Pass
1400-2700	180°	V	3	A	A	Pass
1400-2700	$270\degree$	Н	3	A	A	Pass
1400-2700	$270\degree$	V	3	A	A	Pass

Note:

The exclusion band for the transmitter and/or receiver part of the 2.45 GHz RLAM equipment under test shall extend from 2280 MHz to 2607.675 MHz.

\boxtimes	Meet criteria A: Operate as intended during and after the test	
	Meet criteria B: Operate as intended after the test	
	Meet criteria C: Loss/Error of function	
	Additional Information	
	☐ There was no observable degradation in performance.	
	☐ EUT stopped operation and <u>could</u> / <u>could not</u> be reset by operator at	V/m
	at frequencyMHz.	
	☑ No false alarms or other malfunctions were observed during or after the test.	

Product : AIS Class B Transponder
Test Item : Radiated Susceptibility
Test Site : No.2 EMC fully Chamber

Test Mode : Normal Operation (WLAN Mode) (DC 12V)

Frequency (MHz)	Position (Angle)	Polarity (H or V)	Field Strength (V/m)	Required Criteria	Complied To Criteria (A, B, C)	Results
80-1000	0 °	Н	3	A	A	Pass
80-1000	0°	V	3	Α	A	Pass
80-1000	$90\degree$	H	3	Α	A	Pass
80-1000	$90\degree$	V	3	Α	A	Pass
80-1000	$180\degree$	Н	3	Α	A	Pass
80-1000	$180\degree$	V	3	A	A	Pass
80-1000	$270\degree$	Н	3	A	A	Pass
80-1000	$270\degree$	V	3	A	A	Pass
1400-2700	$0\degree$	Н	3	A	A	Pass
1400-2700	$0\degree$	V	3	A	A	Pass
1400-2700	$90\degree$	Н	3	A	A	Pass
1400-2700	$90\degree$	V	3	A	A	Pass
1400-2700	$180\degree$	Н	3	A	A	Pass
1400-2700	$180\degree$	V	3	A	A	Pass
1400-2700	$270\degree$	Н	3	A	A	Pass
1400-2700	$270\degree$	V	3	A	A	Pass

Note:

The exclusion band = 13.56MHz ± 5 MHz

\boxtimes	Meet criteria A: Operate as intended during and after the test	
	Meet criteria B: Operate as intended after the test	
	Meet criteria C: Loss/Error of function	
	Additional Information	
	☐ There was no observable degradation in performance.	
	☐ EUT stopped operation and <u>could</u> / <u>could not</u> be reset by operator at V/m	
	at frequencyMHz.	
	No false alarms or other malfunctions were observed during or after the test.	

12.6. Test Data of Electrical Fast Transient

Product : AIS Class B Transponder
Test Item : Electrical Fast Transient
Test Site : No.3 Shielded Room

Test Mode : Normal Operation (WLAN Mode) (DC 24V)

Inject Line	Polarity	Voltage (kV)	Inject Time (Second)	Inject Method	Required Criteria	Complied to Criteria	Result
Power	±	1kV	300	Direct	В	A	Pass
Power Ground	±	1kV	300	Direct	В	A	Pass
Power-Power Ground	±	1kV	300	Direct	В	A	Pass
VHF	±	0.5kV	300	Clamp	В	A	Pass
GPS	±	0.5kV	300	Clamp	В	A	Pass
NMEA0183	±	0.5kV	300	Clamp	В	A	Pass
NMEA2000	±	0.5kV	300	Clamp	В	A	Pass

Note:

The testing performed is from lowest level up to the highest level as required by standard, but only highest level is shown on the report.

\boxtimes	M	eet criteria A : Operate as intended during and after the test	
	M	eet criteria B : Operate as intended after the test	
	M	eet criteria C : Loss/Error of function	
	Ac	dditional Information	
		EUT stopped operation and <u>could</u> / <u>could not</u> be reset by operator at	kV of
		Line	
	\boxtimes	No false alarms or other malfunctions were observed during or after the test.	

Product : AIS Class B Transponder
Test Item : Electrical Fast Transient
Test Site : No.3 Shielded Room

Test Mode : Normal Operation (WLAN Mode) (DC 12V)

Inject Line	Polarity	Voltage (kV)	Inject Time (Second)	Inject Method	Required Criteria	Complied to Criteria	Result
Power	±	1kV	300	Direct	В	A	Pass
Power Ground	±	1kV	300	Direct	В	A	Pass
Power-Power Ground	±	1kV	300	Direct	В	A	Pass
VHF	±	0.5kV	300	Clamp	В	A	Pass
GPS	±	0.5kV	300	Clamp	В	A	Pass
NMEA0183	±	0.5kV	300	Clamp	В	A	Pass
NMEA2000	±	0.5kV	300	Clamp	В	A	Pass

Note:

The testing performed is from lowest level up to the highest level as required by standard, but only highest level is shown on the report.

\boxtimes	Me	eet criteria A: Operate as intended during and after the test	
	Me	eet criteria B: Operate as intended after the test	
	Me	eet criteria C : Loss/Error of function	
	Ad	lditional Information	
		EUT stopped operation and <u>could</u> / <u>could not</u> be reset by operator at	kV of
		Line	
	\boxtimes	No false alarms or other malfunctions were observed during or after the test.	

12.7. Test Data of Surge

Owing to the DC operation of EUT, this test item is not performed.

12.8. Test Data of Conducted Susceptibility

Product : AIS Class B Transponder
Test Item : Conducted Susceptibility
Test Site : No. 6 Shielded Room

Test Mode : Normal Operation (WLAN Mode) (DC 24V)

	Frequency	Voltage	Inject	Tested Port of	Required	Performance	Result	
	Range	Applied	Method	EUT	Criteria	Criteria Complied		
_	(MHz)	dBuV(V)				То		
	0.15~80	130(3V)	CDN	DC 24V	A	A	PASS	
	0.15~80	130(3V)	Clamp	VHF	A	A	PASS	
	0.15~80	130(3V)	Clamp	GPS	A	A	PASS	
	0.15~80	130(3V)	Clamp	NMEA0183	A	A	PASS	
	0.15~80	130(3V)	Clamp	NMEA2000	A	A	PASS	

Note:

The testing performed is from lowest level up to the highest level as required by standard, but only highest level is shown on the report.

\boxtimes	M	eet criteria A: Operate as intended during and after the test
	M	eet criteria B: Operate as intended after the test
	M	eet criteria C: Loss/Error of function
	A	dditional Information
		EUT stopped operation and <u>could</u> / <u>could not</u> be reset by operator at kV of
		Line
	\boxtimes	No false alarms or other malfunctions were observed during or after the test. The acceptance
		criteria were met, and the EUT passed the test.

Product : AIS Class B Transponder
Test Item : Conducted Susceptibility
Test Site : No. 6 Shielded Room

Test Mode : Normal Operation (WLAN Mode) (DC 12V)

	Frequency	Voltage	Inject	Tested Port of	Required	Performance	Result
	Range	Applied	Method	EUT	Criteria	Criteria Complied	
_	(MHz)	dBuV(V)				То	
	0.15~80	130(3V)	CDN	DC 12V	A	A	PASS
	0.15~80	130(3V)	Clamp	VHF	A	A	PASS
	0.15~80	130(3V)	Clamp	GPS	A	A	PASS
	0.15~80	130(3V)	Clamp	NMEA0183	A	A	PASS
	0.15~80	130(3V)	Clamp	NMEA2000	A	A	PASS

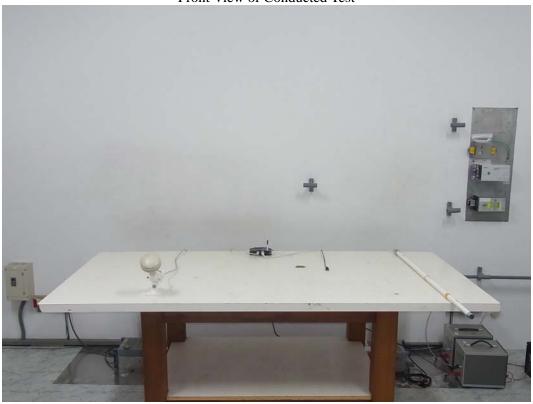
Note:

The testing performed is from lowest level up to the highest level as required by standard, but only highest level is shown on the report.

\boxtimes	M	eet criteria A: Operate as intended during and after the test
	M	eet criteria B: Operate as intended after the test
	M	eet criteria C: Loss/Error of function
	Ac	dditional Information
		EUT stopped operation and <u>could</u> / <u>could not</u> be reset by operator at kV of
		Line
	\boxtimes	No false alarms or other malfunctions were observed during or after the test. The acceptance
		criteria were met, and the EUT passed the test.

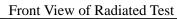
12.9. Test Data of Voltage Dips and Interruption

Owing to the DC operation of EUT, this test item is not performed.


Attachment 1: EUT Test Setup Photographs

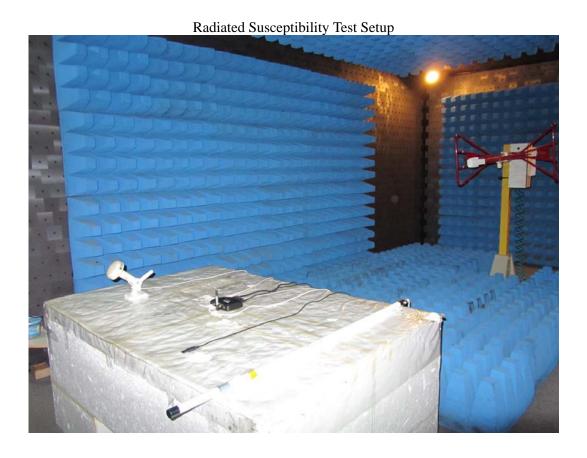
Page: 54 of 55

Attachment 1: EUT Test Setup Photographs


Front View of Conducted Test

Back View of Conducted Test

Back View of Radiated Test



ESD Test Setup

EFT/B Test Setup – Clamp

Conducted Susceptibility Test Setup - Clamp

Attachment 2: EUT Detailed Photographs

Page: 55 of 55

Attachment 2 : EUT Detailed Photographs

(1) EUT Photo

(2) EUT Photo

(3) EUT Photo

(4) EUT Photo

(5) EUT Photo

(6) EUT Photo

(7) EUT Photo

(8) EUT Photo

(9) EUT Photo

(10) EUT Photo

(11) EUT Photo



(12) EUT Photo

(13) EUT Photo

(14) EUT Photo

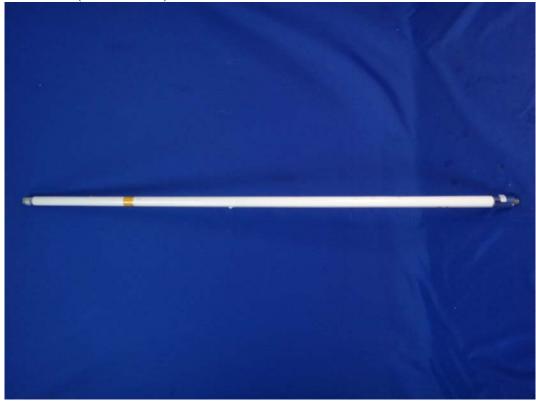
(15) EUT Photo

(16) EUT Photo

(17) EUT Photo

(18) EUT Photo (WLAN –ANT)

(19) EUT Photo (GPS Antenna-10m)



(21) EUT Photo (VHF Antenna)

(23) EUT Photo (VHF Antenna Cable-10m)

