

TEST REPORT

for

Class A AIS Transponder

MODEL: CAMINO-701

Test Report Number: T130218W04-E

Issued to:

Alltek Marine Electronics Corp.

7F, No.605, Ruei Guang Rd., Neihu, Taipei, Taiwan, 114 R.O.C.

Issued by:

Compliance Certification Services Inc.

Xindian Lab. No.163-1, Jhongsheng Rd., Xindian Dist., New Taipei City, 23151 Taiwan. TEL: 886-2-22170894

FAX: 886-2-22171029

Issued Date: April 30, 2013

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, A2LA, NVLAP, NIST or any government agencies. The test results in the report only apply to the tested sample.

Revision History

	Issue		Effect	
Rev.	Date	Revisions	Page	Revised By
00	January 14, 2013	Initial Issue	ALL	Joy Hsiao
01	March 22, 2013	 Sensor ports interface modifications; For conducted emissions, a 0.8m shielded power cord to the EUT is used for the retest. The 1.8m shielded data cable (to Junction Box) is changed from "with two cores" to "with one core". For immunity related retests, a second AIS transponder unit is used as auxilliary equipment to observe the communication between the two units during the tests. Item 8.9 Power Supply Failure Test is verified and re-described. 	ALL	Joy Hsiao
02	April 09, 2013	 Add model names and serial numbers for GPS antenna and Junction box. Modify Sections 7.1.3 and 7.2.3 - correct typo from "AC main power" to "DC power". Modify section 7.1.4 – indicate DC power supply in the diagram. Add Section 8.1.1 General EUT (AIS related) test setup environment. Add Section 8.1.2 Performance check method. Add the missed Satellite simulator in the report to reflect actual test environment. Revise Section 8.2 General performance criteria description in accordance with IEC 60945, clause 10.1. 	ALL	Joy Hsiao
03	April 30, 2013	 Add GPS simulator description in Section 8.1 Add Section 10, Method and Screenshots of EUT's Transmitting/Receiving Performance Check 	ALL	Joy Hsiao

TABLE OF CONTENTS

1	TEST CERTIFICATION	. 4
2	TEST RESULT SUMMARY	. 5
3	EUT DESCRIPTION	. 6
4	TEST METHODOLOGY	. 7
	4.1. DECISION OF FINAL TEST MODE	. 7
	4.2. EUT SYSTEM OPERATION	. 7
5	SETUP OF EQUIPMENT UNDER TEST	. 8
	5.1. DESCRIPTION OF SUPPORT UNITS	. 8
	5.2. CONFIGURATION OF SYSTEM UNDER TEST	. 8
6	FACILITIES AND ACCREDITATIONS	. 9
	6.1. FACILITIES	. 9
	6.2. ACCREDITATIONS	. 9
	6.3. MEASUREMENT UNCERTAINTY	. 9
7	EMISSION TEST	10
	7.1. CONDUCTED EMISSION MEASUREMENT	10
	7.2. RADIATED EMISSION MEASUREMENT	17
8	IMMUNITY TEST	29
	8.1. GENERAL DESCRIPTION	29
	8.2. GENERAL PERFORMANCE CRITERIA DESCRIPTION	31
	8.3. ELECTROSTATIC DISCHARGE (ESD)	32
	8.4. RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD (RS)	38
	8.5. ELECTRICAL FAST TRANSIENT (EFT)	41
	8.6. SURGE IMMUNITY TEST	43
	8.7. CONDUCTED RADIO FREQUENCY DISTURBANCES (CS)	45
	8.8. POWER SUPPLY SHORT-TERM VARIATION TEST	48
	8.9. POWER SUPPLY FAILURE TEST	50
9	PHOTOGRAPHS OF THE TEST CONFIGURATION	52
1	0 METHOD AND SCREENSHOTS OF EUT'S TRANSMITTING/RECEIVING	
	PERFORMANCE CHECK	59
Α	PPENDIX 1 - PHOTOGRAPHS OF EUT	-1

1 TEST CERTIFICATION

Class A AIS Transponder	
CAMINO-701	
AMEC	
Alltek Marine Electronics Corp. 7F, No.605, Ruei Guang Rd., Neihu, Taipei, Taiwan, 114 R.O.C.	
Alltek Marine Electronics Corp. 7F, No.605, Ruei Guang Rd., Neihu, Taipei, Taiwan, 114 R.O.C.	
January 03, 2013 ~ March 21, 2013	
EN 60945: 2002 (For Clause 9, 10) IEC 60945: 2002 (For Clause 9, 10) IEC 60945 corrigendum 1: 2008	IEC 61000-4-2: 2008 IEC 61000-4-3: 2006 + A1: 2007 + A2: 2010 IEC 61000-4-4: 2004 + A1: 2010 IEC 61000-4-5: 2005 IEC 61000-4-6: 2008 Power supply short-term variation Power supply failure
	Class A AIS Transponder CAMINO-701 AMEC Alltek Marine Electronics Corp. 7F, No.605, Ruei Guang Rd., Neihu, Taipei, Taiwan, 114 R.O.C. Alltek Marine Electronics Corp. 7F, No.605, Ruei Guang Rd., Neihu, Taipei, Taiwan, 114 R.O.C. January 03, 2013 ~ March 21, 2013 EN 60945: 2002 (For Clause 9, 10) IEC 60945: 2002 (For Clause 9, 10) IEC 60945 corrigendum 1: 2008

Deviation from Applicable Standard

None

The above equipment has been tested by Compliance Certification Services Inc., and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:

Sam Hu Section Manager

Reviewed by:

HSV.

Vesta Hsu Supervisor of report document dept.

2 TEST RESULT SUMMARY

EMISSION					
Standard	ltem	Result	Remarks		
EN 60945: 2002 (For Clause 9, 10) IEC 60945: 2002 (For Clause 9, 10)					
CISPR 16-1-1, CISPR 16-1-2 Conducted (Power Port) PASS Reference to EN 60945 clause 9.2 T			Reference to EN 60945 clause 9.2 Table 5		
CISPR 16-1-1, CISPR 16-1-4	Radiated	PASS	Reference to EN 60945 clause 9.3 Table 5		

IMMUNITY				
Standard	ltem	Result	Remarks	
IEC 61000-4-2: 2008	ESD	PASS	Reference to EN 60945 clause 10.9	
IEC 61000-4-3: 2006 + A1: 2007 + A2: 2010	RS	PASS	Reference to EN 60945 clause 10.4	
IEC 61000-4-4: 2004 + A1: 2010	EFT	PASS	Reference to EN 60945 clause 10.5	
IEC 61000-4-5: 2005	Surge	N/A	Please see the page 43	
IEC 61000-4-6: 2008	CS	PASS	Reference to EN 60945 clause 10.3	
POWER SUPPLY SHORT-TERM VARIATION	N/A	Please see the page 48		
POWER SUPPLY FAILURE TEST	PASS	Reference to EN 60945 clause 10.8		

3 EUT DESCRIPTION

Product	Class A AIS Transponder
Brand Name	AMEC
Model	CAMINO-701
Applicant	Alltek Marine Electronics Corp.
Housing material	Plastic w/ metal frame
Identify Number	T130102W05
Received Date	January 02, 2013
EUT Power Rating	12VDC/24VDC from DC Power Supply
Accessory Cable Type	37 Pin Cable: Shielded, 1.8m (Detachable, with a core) USB Cable: Shielded, 1.8m (Detachable)
Hardware	M-PCB-AISAMBV4; M-PCB-AISAPOWRV4
Software	1.0.6

I/O PORT

	I/O PORT TYPES	Q'TY	TESTED WITH
1.	37 Pin Port	1	1
2.	USB Port	1	1
3.	GPS Antenna Port	1	1
4.	VHF Antenna Port	1	1

Note: Client consigns only one sample to test (Model Number: CAMINO-701).

4 TEST METHODOLOGY

4.1. DECISION OF FINAL TEST MODE

The EUT was tested together with the above additional components, and a configuration, which produced the worst emission levels, was selected and recorded in this report.

The test configuration/ modes are as the following:

Conduction Modes:

1	12VDC MODE
2	24VDC MODE

Radiation Modes:

1	12VDC MODE
2	24VDC MODE

Conduction: Mode 2 Radiation: Mode 2

4.2. EUT SYSTEM OPERATION

1. All peripherals connect EUT to test.

Note: Test program is self-repeating throughout the test.

5 SETUP OF EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Peripherals Devices:

No.	Equipment	Model No.	Serial No.	FCC ID / BSMI ID	Brand Name	Data Cable	Power Cord
1	VHF Antenna	ANT-11 (TENTA-11)(AMEC P/N: AMEC-ANT-MFB-1200V)	N/A	N/A	AMEC	Shielded, 10m	N/A
2	Junction Box	JB-712	JB2A01099	N/A	AMEC	Shielded, 1.8m with a core	N/A
3	GPS Antenna	ANT-21 (AGGRESSOR-21) (AGGRESSOR-111-C) (AMEC P/N: M-ANT-C1283-570001-A)	A2K090052	N/A	AMEC	Shielded, 10m	N/A
4	DC Power Supply	SPD-3606	N/A	N/A	GWINSTEK	N/A	To EUT: Shielded, 0.8m
5	USB Cable	N/A	N/A	N/A	AMEC	Shielded, 1.8m	N/A

Note:

1) All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2) Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

5.2. CONFIGURATION OF SYSTEM UNDER TEST

6 FACILITIES AND ACCREDITATIONS

6.1. FACILITIES

All measurement facilities used to collect the measurement data are located at CCSrf Taiwan Xindian Lab. at No.163-1, Jhongsheng Rd., Xindian Dist., New Taipei City, 23151 Taiwan.

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR 16-1-1, CISPR 16-1-2, CISPR 16-1-3, CISPR 16-1-4 and CISPR 16-1-5.

6.2. ACCREDITATIONS

Our laboratories are accredited and approved by the following accreditation body according to ISO/IEC 17025.

Taiwan	TAF
USA	A2LA

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

Canada	Industry Canada
Norway	Nemko
Japan	VCCI
Taiwan	BSMI
USA	FCC

Copies of granted accreditation certificates are available for downloading from our web site, <u>http:///www.ccsrf.com</u>

6.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Uncertainty
Conducted emissions	0.10MHz ~ 30MHz	± 1.56
Padiated omissions	30MHz ~ 1000MHz	± 3.81
Radialed emissions	1000MHz ~ 2000MHz	± 3.23

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Consistent with industry standard (e.g. CISPR 22: 2005, clause 11, Measurement Uncertainty) determining compliance with the limits shall be base on the results of the compliance measurement. Consequently the measure emissions being less than the maximum allowed emission result in this be a compliant test or passing test.

The acceptable measurement uncertainty value without requiring revision of the compliance statement is base on conducted and radiated emissions being less than U_{CISPR} which is 3.6dB and 5.2dB respectively. CCS values (called U_{Lab} in CISPR 16-4-2) is less than U_{CISPR} as shown in the table above. Therefore, MU need not be considered for compliance.

7 EMISSION TEST

7.1. CONDUCTED EMISSION MEASUREMENT

7.1.1. LIMITS

TEST STANDARD: Reference to EN 60945 clause 9.2 Table 5

FREQUENCY (MHz)	Quasi-peak
0.10 – 0.15	96~50
0.15 - 0.35	60~50
0.35 - 30.0	50

NOTE: 1. The lower limit shall apply at the transition frequencies.

2. All emanations from digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

7.1.2. TEST INSTRUMENTS

Conducted Emission room # A								
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due				
TEST RECEIVER	R&S	ESCI	101201	09/10/2013				
LISN (EUT)	SCHWARZBECK	NSLK 8127	8127527	12/11/2013				
LISN	SCHWARZBECK	NSLK 8127	8127526	12/11/2013				
BNC CABLE	EMCI	5Dr	BNC A6	12/11/2013				
Pulse Limiter	R&S	ESH3-Z2	C3010026-2	09/07/2013				
THERMO- HYGRO METER	WISEWIND	201A	No. 02	05/14/2013				
Satellite Simulator	HJC	GPS-101	EN001	No Calibration Required				
Test S/W		EZ-I	EMC					

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R = No Calibration Request.

7.1.3. TEST PROCEDURES (please refer to measurement standard or CCS SOP PA-031)

Procedure of Preliminary Test

- The EUT was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per CISPR 16-2-1, 7.4.1 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 15 cm non-conductive covering to insulate the EUT from the ground plane.
- Support equipment, if needed, was placed as per CISPR 16-2-1, 7.4.1.
- All I/O cables were positioned to simulate typical actual usage as per CISPR 16-2-1, 7.4.1.
- The test equipment EUT installed received DC power, through a Line Impedance Stabilization Network (LISN), which supplied power source and was grounded to the ground plane.
- All support equipment received power from a second LISN.
- The EUT test program was started. Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.
- The Receiver scanned from 10kHz to 30MHz for emissions in each of the test modes.
- During the above scans, the emissions were maximized by cable manipulation.
- The test mode(s) described in Item 4.1 were scanned during the preliminary test.
- After the preliminary scan, we found the test mode described in Item 4.1 producing the highest emission level.
- The EUT configuration and cable configuration of the above highest emission level were recorded for reference of the final test.
- The power input cables between the a.c. and the d.c. power ports of the EUT and the artificial mains network shall be screened and not exceed 0.8 m in length.

Procedure of Final Test

- EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.
- The test data of the worst-case condition(s) was recorded.

7.1.4. TEST SETUP

• For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

7.1.5. DATA SAMPLE

Freq.	Reading	Factor	Result	Limit	Margin	Detector	Line
(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	(P/Q/A)	(L1/L2)
X.XX	42.95	0.55	43.50	73	-29.50	Q	

Freq.	= Emission frequency in MHz
Reading	= Uncorrected Analyzer/Receiver reading
Factor	= Insertion loss of LISN + Cable Loss + Pulse Limit
Result	= Read Level + Factor
Limit	= Limit stated in standard
Margin	= Reading in reference to limit
Ρ	= Peak Reading
Q	= Quasi-peak Reading
А	= Average Reading
L1	= Hot side
L2	= Neutral side

Calculation Formula

Margin (dB) = Result (dBuV) – Limit (dBuV)

7.1.6. TEST RESULTS

Model No.	CAMINO-701	6dB Bandwidth	200 Hz
Environmental Conditions	22°C, 55% RH	Test Mode	Mode 2
Tested by	John Yen	Phase	L1
Standard	EN 60945		

100.0 dBuV

Conducted Emission Readings							
Frequ	uency Rang	je Investig	gated		10 kHz to	150 kHz	
Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector (P/Q/A)	Line (L1/L2)
0.0285	28.62	10.26	38.88	78.21	-39.33	Q	L1
0.0352	41.59	10.20	51.79	74.62	-22.83	Q	L1
0.0425	10.86	10.18	21.04	71.42	-50.38	Q	L1
0.0570	8.24	10.12	18.36	66.43	-48.07	Q	L1
0.0742	9.56	10.09	19.65	61.95	-42.30	Q	L1
0.0988	3.50	10.08	13.58	57.08	-43.50	Q	L1

Note: 1. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line).

Model No.	CAMINO-701	6dB Bandwidth	200 Hz
Environmental Conditions	22°C, 55% RH	Test Mode	Mode 2
Tested by	John Yen	Phase	L2
Standard	EN 60945		

100.0 dBuV

Conducted Emission Readings							
Frequ	uency Rang	je Investig	gated		10 kHz to	150 kHz	
Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector (P/Q/A)	Line (L1/L2)
0.0285	29.73	10.27	40.00	78.21	-38.21	Q	L2
0.0352	43.24	10.20	53.44	74.62	-21.18	Q	L2
0.0425	12.48	10.17	22.65	71.42	-48.77	Q	L2
0.0570	13.90	10.10	24.00	66.43	-42.43	Q	L2
0.0742	11.21	10.07	21.28	61.95	-40.67	Q	L2
0.0989	-0.77	10.06	9.29	57.07	-47.78	Q	L2

Note: 1. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line).

Model No.	CAMINO-701	6dB Bandwidth	9 kHz
Environmental Conditions	22°C, 55% RH	Test Mode	Mode 2
Tested by	John Yen	Phase	L1
Standard	EN 60945		

80.0 dBuV

Conducted Emission Readings							
Frequ	lency Rang	je Investig	gated		150 kHz to	30 MHz	
Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector (P/Q/A)	Line (L1/L2)
0.3980	25.06	10.07	35.13	50.00	-14.87	Q	L1
0.5940	25.59	10.10	35.69	50.00	-14.31	Q	L1
0.7900	22.06	10.11	32.17	50.00	-17.83	Q	L1
0.9900	19.23	10.13	29.36	50.00	-20.64	Q	L1
20.2860	14.16	10.89	25.05	50.00	-24.95	Q	L1
29.7780	26.52	11.20	37.72	50.00	-12.28	Q	L1

Note: 1. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line).

Model No.	CAMINO-701	6dB Bandwidth	9 kHz
Environmental Conditions	22°C, 55% RH	Test Mode	Mode 2
Tested by	John Yen	Phase	L2
Standard	EN 60945		

Conducted Emission Readings									
Frequency Range Investigated				150 kHz to	30 MHz				
Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector (P/Q/A)	Line (L1/L2)		
0.3940	26.05	10.05	36.10	50.00	-13.90	Q	L2		
0.5940	25.50	10.08	35.58	50.00	-14.42	Q	L2		
0.7900	22.36	10.09	32.45	50.00	-17.55	Q	L2		
0.9900	19.08	10.11	29.19	50.00	-20.81	Q	L2		
20.2700	26.44	10.89	37.33	50.00	-12.67	Q	L2		
29.7580	30.90	11.20	42.10	50.00	-7.90	Q	L2		

Note: 1. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line).

7.2. RADIATED EMISSION MEASUREMENT

7.2.1. LIMITS

TEST STANDARD: Reference to EN 60945 clause 9.3 Table 5

FREQUENCY (MHz)	dBuV/m (At 3m)
0.15 - 0.30	80 ~ 52 (Quasi-peak)
0.30 - 30	52 ~ 34 (Quasi-peak)
30 - 2000	54 (Quasi-peak)
156 - 165	30 (Peak) or 24 (Quasi-peak)

NOTE: 1. The lower limit shall apply at the transition frequencies.

2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

7.2.2. TEST INSTRUMENTS

Test Site # Chamber D								
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due				
MEASURE RECEIVER	R&S	ESCI	101202	09/06/2013				
ANTENNA (30-1000MHz)	SUNOL	JB1	A022310	09/26/2013				
PRE- AMPLIFIER	EMCI	EMC330H	980111	09/11/2013				
CABLE (20-1000MHz)	EMCI	EMCI-C-14	CH-D#13	01/29/2014				
ATTENUATOR	MCL	BW-S6W5	CH-D#14	12/02/2013				
SPECTRUM ANALYZER (9kHz-30GHz)	R&S	FSP 30	100112	10/21/2013				
ANTENNA (1-18GHz)	ETS	3117	00139062	11/04/2013				
AMPLIFIER (1-26.5GHz)	HP	8449B	3008A01266	12/16/2013				
CABLE (1-40GHz)	HUBER +SUHNER	SUCOFLEX 102	33106/2	12/16/2013				
CABLE (1-40GHz)	HUBER +SUHNER	SUCOFLEX 102	33633/2	12/16/2013				
CABLE (1-26.5GHz)	HUBER +SUHNER	SUCOFLEX 104PEA	33960/4PEA	12/16/2013				
THERMO- HYGRO METER	WISEWIND	201A	No. 02	05/14/2013				
Satellite Simulator	HJC	GPS-101	EN001	No Calibration Required				
Test S/W		EZ-EM						

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R = No Calibration Request.

7.2.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-031)

Procedure of Preliminary Test

- The equipment was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane. When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 15 cm non-conductive covering to insulate the EUT from the ground plane.
- Support equipment, if needed, was placed as per CISPR 16-2-3.
- All I/O cables were positioned to simulate typical usage as per CISPR 16-2-3.
- The EUT received DC power source from the outlet socket under the turntable. All support equipment power received from another socket under the turntable.
- The antenna was placed at 3 meter away from the EUT as stated in CISPR 16-2-3. The antenna connected to the Spectrum Analyzer via a cable and at times a pre-amplifier would be used.
- The Analyzer / Receiver quickly scanned from 150KHz to 2000MHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- The test mode(s) described in Item 4.1 were scanned during the preliminary test:
- After the preliminary scan, we found the test mode described in Item 4.1 producing the highest emission level.
- The EUT and cable configuration, antenna position, polarization and turntable position of the above highest emission level were recorded for the final test.

Procedure of Final Test

- EUT and support equipment were set up on the turntable as per the configuration with highest emission level in the preliminary test.
- The Analyzer / Receiver scanned from 150KHz to 2000MHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- Recorded at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and only Q.P. reading is presented.
- The test data of the worst-case condition(s) was recorded.

7.2.4. TEST SETUP

150kHz ~ 30MHz

30MHz ~ 1GHz

1GHz ~ 2GHz

For the actual test configuration, please refer to the related item - Photographs of the • Test Configuration.

7.2.5. DATA SAMPLE

30MHz ~ 1GHz

Freq.	Reading	Factor	Result	Limit	Margin	Detector	Pol.
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(P/Q)	(H/V)
X.XX	14.0	12.2	26.2	40	-13.8	Q	Н

1GHz ~ 2GHz

Freq.	Reading	Factor	Result	Limit	Margin	Detector	Pol.
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(P/A)	(H/V)
x.xx	42.95	0.55	43.50	60	-16.50	А	Н

Freq. = Emission frequency in MHz

- Reading = Uncorrected Analyzer/Receiver reading
- Factor = Antenna Factor + Cable Loss - Amplifier Gain
- Result = Reading + Factor
- = Limit stated in standard Limit
- = Reading in reference to limit Margin
- Ρ = Peak Reading Q
 - = Quasi-peak Reading
- = Antenna Polarization: Horizontal Н
 - = Antenna Polarization: Vertical

Calculation Formula

V

Margin (dB) = Result (dBuV/m) – Limit (dBuV/m)

7.2.6. TEST RESULTS

150kHz ~ 30MHz

Model No.	CAMINO-701	Test Mode	Mode 2
Environmental Conditions	26°C, 60% RH	6dB Bandwidth	9 kHz
Antenna Pole	Vertical	Antenna Distance	3m
Detector Function	Quasi-peak.	Tested by	Kevin Chang
Standard	EN 60945		

120.0 dBuV/m

Radiated Emission Readings								
Frequency Range Investigated			15	0kHz to 30	MHz at 3n	n		
Freq. (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector (P/Q)	Pol. (H/V)	
0.2455	32.92	10.38	43.30	60.07	-16.77	Q	V	
0.6574	26.07	10.35	36.42	48.93	-12.51	Q	V	
1.1649	20.81	10.44	31.25	46.70	-15.45	Q	V	
11.8214	16.02	10.95	26.97	37.64	-10.67	Q	V	
21.5823	20.70	10.46	31.16	35.29	-4.13	Q	V	
29.2836	16.87	8.66	25.53	34.09	-8.56	Q	V	

Note: 1. The other emission levels were very low against the limit.

2. P= Peak Reading; Q= Quasi-peak Reading.

Model No.	CAMINO-701	Test Mode	Mode 2
Environmental Conditions	26°C, 60% RH	6dB Bandwidth	9 kHz
Antenna Pole	Horizontal	Antenna Distance	3m
Detector Function	Quasi-peak.	Tested by	Kevin Chang
Standard	EN 60945		

120.0 dBuV/m

Radiated Emission Readings								
Frequency Range Investigated				15	50kHz to 30)MHz at 3n	n	
Freq. (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector (P/Q)	Pol. (H/V)	
0.2117	33.39	10.41	43.80	66.06	-22.26	Q	Н	
0.3751	32.13	10.33	42.46	51.12	-8.66	Q	Н	
0.6276	27.02	10.35	37.37	49.11	-11.74	Q	Н	
7.4334	14.97	10.99	25.96	39.45	-13.49	Q	Н	
22.0897	15.81	10.38	26.19	35.20	-9.01	Q	Н	
27.8806	18.88	9.08	27.96	34.29	-6.33	Q	Н	

Note: 1. The other emission levels were very low against the limit.

2. P= Peak Reading; Q= Quasi-peak Reading.

156MHz ~ 165MHz

Model No.	CAMINO-701	Test Mode	Mode 2
Environmental Conditions	26°C, 60% RH	6dB Bandwidth	9 kHz
Antenna Pole	Vertical	Antenna Distance	3m
Detector Function	Peak	Tested by	Kevin Chang
Standard	EN 60945		

80.0 dBuV/m

Radiated Emission Readings								
Frequency Range Investigated				156	6MHz to 16	5MHz at 3	m	
Freq. (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector (P)	Pol. (H/V)	
157.8810	37.59	-12.33	25.26	30.00	-4.74	Р	V	
158.1959	37.59	-12.36	25.23	30.00	-4.77	Р	V	
158.7990	38.07	-12.41	25.66	30.00	-4.34	Р	V	
159.5190	37.18	-12.48	24.70	30.00	-5.30	Р	V	
159.8519	36.66	-12.51	24.15	30.00	-5.85	Р	V	
161.5980	34.56	-12.53	22.03	30.00	-7.97	Р	V	

Model No.	CAMINO-701	Test Mode	Mode 2
Environmental Conditions	26°C, 60% RH	6dB Bandwidth	9 kHz
Antenna Pole	Horizontal	Antenna Distance	3m
Detector Function	Peak	Tested by	Kevin Chang
Standard	EN 60945		

80.0 dBuV/m

Radiated Emission Readings							
Frequency Range Investigated			150	6MHz to 16	5MHz at 3	m	
Freq. (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector (P)	Pol. (H/V)
156.8550	37.58	-12.23	25.35	30.00	-4.65	Р	Н
157.2690	37.89	-12.27	25.62	30.00	-4.38	Р	Н
158.4840	40.46	-12.38	28.08	30.00	-1.92	Р	Н
159.0420	39.52	-12.43	27.09	30.00	-2.91	Р	Н
159.6270	40.93	-12.49	28.44	30.00	-1.56	Р	Н
160.1580	38.06	-12.52	25.54	30.00	-4.46	Р	Η

30MHz ~ 1GHz

Model No.	CAMINO-701	Test Mode	Mode 2
Environmental Conditions	26°C, 60% RH	6dB Bandwidth	120 kHz
Antenna Pole	Vertical	Antenna Distance	3m
Detector Function	Quasi-peak.	Tested by	Kevin Chang
Standard	EN 60945		

80.0 dBuV/m

Radiated Emission Readings							
Frequency Range Investigated			301	MHz to 100	0MHz at 3	m	
Freq. (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector (P/Q)	Pol. (H/V)
46.4900	63.20	-14.97	48.23	54.00	-5.77	Q	V
124.0900	62.30	-10.64	51.66	54.00	-2.34	Q	V
224.9699	60.47	-13.10	47.37	54.00	-6.63	Q	V
620.7300	52.76	-3.79	48.97	54.00	-5.03	Q	V
676.0198	54.20	-2.82	51.38	54.00	-2.62	Q	V
726.4600	48.66	-1.98	46.68	54.00	-7.32	Q	V

Model No.	CAMINO-701	Test Mode	Mode 2
Environmental Conditions	26°C, 60% RH	6dB Bandwidth	120 kHz
Antenna Pole	Horizontal	Antenna Distance	3m
Detector Function	Quasi-peak.	Tested by	Kevin Chang
Standard	EN 60945		

Radiated Emission Readings							
Frequency Range Investigated			30	MHz to 100	0MHz at 3	m	
Freq. (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector (P/Q)	Pol. (H/V)
224.9700	62.30	-13.10	49.20	54.00	-4.80	Q	Н
563.5000	53.11	-4.74	48.37	54.00	-5.63	Q	Н
676.0200	54.80	-2.82	51.98	54.00	-2.02	Q	Н
788.5400	51.60	-0.52	51.08	54.00	-2.92	Q	Н
788.5400	52.40	-0.52	51.88	54.00	-2.12	Q	Н
901.0600	47.90	0.75	48.65	54.00	-5.35	Q	Н

1GHz ~ 2GHz

Model No.	CAMINO-701	Test Mode	Mode 2
Environmental Conditions	26°C, 60% RH	6dB Bandwidth	120 kHz
Antenna Pole	Vertical	Antenna Distance	3m
Detector Function	Quasi-peak.	Tested by	Kevin Chang
Standard	EN 60945		

100.0 dBuV/m

Radiated Emission Readings							
Frequency Range Investigated			1000	MHz to 20	00MHz at	3m	
Freq. (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector (P/Q)	Pol. (H/V)
1126.000	47.09	-10.16	36.93	54.00	-17.07	Q	V
1239.000	40.53	-9.28	31.25	54.00	-22.75	Q	V
1464.000	40.68	-7.06	33.62	54.00	-20.38	Q	V
1687.000	38.58	-5.04	33.54	54.00	-20.46	Q	V
1828.000	43.40	-4.10	39.30	54.00	-14.70	Q	V
1969.000	41.87	-3.52	38.35	54.00	-15.65	Q	V

Model No.	CAMINO-701	Test Mode	Mode 2
Environmental Conditions	26°C, 60% RH	6dB Bandwidth	120 kHz
Antenna Pole	Horizontal	Antenna Distance	3m
Detector Function	Quasi-peak.	Tested by	Kevin Chang
Standard	EN 60945		

Radiated Emission Readings							
Frequency Range Investigated			100	OMHz to 20	00MHz at	3m	
Freq. (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector (P/Q)	Pol. (H/V)
1014.000	47.46	-11.38	36.08	54.00	-17.92	Q	Н
1065.000	47.46	-10.98	36.48	54.00	-17.52	Q	Н
1126.000	45.80	-10.16	35.64	54.00	-18.36	Q	Н
1464.000	41.39	-7.06	34.33	54.00	-19.67	Q	Н
1828.000	41.82	-4.10	37.72	54.00	-16.28	Q	Н
1969.000	42.02	-3.52	38.50	54.00	-15.50	Q	Н

8 IMMUNITY TEST

8.1. GENERAL DESCRIPTION

Product Standard	EN 60945: 2002 (For Clause 9, 10) IEC 60945: 2002 (For Clause 9, 10) IEC 60945 corrigendum 1: 2008			
	Test Type	Minimum Requirement		
	IEC 61000-4-2	Electrostatic Discharge – ESD: 8kV air discharge, 6kV Contact discharge, Performance Criterion B		
	IEC 61000-4-3	Radio-Frequency Electromagnetic Field Susceptibility Test – RS: 80 ~ 2000 MHz, 10V/m, 80% AM(400Hz), Performance Criterion A		
	IEC 61000-4-4	Electrical Fast Transient/Burst - EFT, AC Power line: 2kV, Common On Signal/Control line: 1 kV, Performance Criterion B		
Basic Standard, Specification, and Performance Criterion required	IEC 61000-4-5	Surge Immunity Test: 1.2/50 µs Open Circuit Voltage, 8/20 µs Short Circuit Current, AC Power Port ~ Line to line: 0.5kV, Line to ground: 1kV Performance Criterion B		
	IEC 61000-4-6	Conducted Radio Frequency Disturbances Test – CS, AC Power Port; DC Power Port; Signal Ports and Telecommunication Ports: 0.15 ~ 80 MHz, 3Vrms, 80% AM, 400Hz, Other frequency: 2MHz, 3MHz, 4MHz, 6.2MHz, 8.2MHz, 12.6MHz, 16.5MHz, 18.8MHz, 22MHz and 25MHz, 10Vrms, 80% AM, 400Hz Performance Criterion A		
	power supply short-term variation (all equipment categories except portable)	Voltage: nominal \pm (20 \pm 1) %, duration 1,5 s \pm 0,2 s, Frequency: nominal \pm (10 \pm 0,5) %, duration 5 s \pm 0,5 s, superimposed Performance Criterion B		
	power supply failure (all equipment categories except portable)	60 s interruption a.c. and d.c. power ports Performance criterion C		

8.1.1. GENERAL EUT (AIS RELATED) TEST SETUP ENVIRONMENT

In order to do performance-check during the EMC immunity tests, an equipment setup (AIS related) as shown in the following diagram is used in general. A Satellite Simulator is used during the tests to emulate GPS signal source for the EUT.

The Satellite Simulator (GPS simulator model GPS-101) is put outside the EMC chamber with a cable connecting to a Tx antenna placed inside the EMC chamber. This GPS-101's Tx antenna transmits simulated-GPS-source-signal wirelessly to the GPS antenna (AMEC model ANT-21/Aggressor-111-C) connected to the EUT.

8.1.2. PERFORMANCE CHECK METHOD

The EUT is set into autonomous mode using channels AIS 1 and AIS 2 with a reporting interval of 2 s in the test environment in Section 8.1.1. An additional AIS transponder is used to monitor the content of reports and the reporting intervals of EUT. The EUT performance shall not be degraded during or after the test. A PC software tool is used in parallel to record the AIS transmitting rate and receiving rate. The data is used to check if there is any degradation of performance or loss of function.

An IEC-61162-Datalogger software is used (running on PC) to check the EUT performance during and after the test together with the additional AIS transponder. The method and screenshots on how to verify the transmitting/receiving performance of the EUT are described in Section 10.

8.2. GENERAL PERFORMANCE CRITERIA DESCRIPTION

Criteria A:	The EUT shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed, as defined in the relevant equipment standard and in the technical specification published by the manufacturer.
Criteria B:	The EUT shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed, as defined in the relevant equipment standard and in the technical specification published by the manufacturer. During the test, degradation or loss of function or performance which is self-recoverable is however, allowed, but no change of actual operating state or stored data is allowed.
Criteria C:	Temporary degradation or loss of function or performance is allowed during the test, provided the function is self-recoverable, or can be restored at the end of the test by the operation of the controls, as defined in the relevant equipment standard and in the technical specification published by the manufacturer.

NOTE: Reference to EN 60945 clause 10.1

8.3. ELECTROSTATIC DISCHARGE (ESD)

8.3.1. TEST SPECIFICATION (Reference to EN 60945 clause 10.9)

Basic Standard:	IEC 61000-4-2
Discharge Impedance:	330 ohm / 150 pF
Discharge Voltage:	Air Discharge: 2 ; 4 ; 8 kV (Direct) Contact Discharge: 2 ; 4 ; 6 kV (Direct/Indirect)
Polarity:	Positive & Negative
Number of Discharge:	Minimum 10 times at each test point
Discharge Mode:	Single Discharge 1 second minimum

8.3.2. TEST INSTRUMENT

IMMUNITY SHIELDED ROOM								
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due				
ESD Generator	Teseq	NSG 437	249	12/18/2013				
Aneroid Barometer	Sato	7610-20	89090	11/04/2013				
Thermo-Hygro meter	TECPEL	DTM-303	080269	05/07/2013				
Satellite Simulator	HJC	GPS-101	EN001	No Calibration Required				

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

8.3.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-022)

The discharges shall be applied in two ways:

a) Contact discharges to the conductive surfaces and coupling planes:

The EUT shall be exposed to at least 20 discharges, 10 each at negative and positive polarity, at a minimum of four test points. One of the test points shall be subjected to at least 10 indirect discharges to the center of the front edge of the Horizontal Coupling Plane (HCP). The remaining three test points shall each receive at least 10 direct contact discharges. If no direct contact test points are available, then at least 20 indirect discharges shall be applied in the indirect mode. Test shall be performed at a maximum repetition rate of one discharge per second.

b) Air discharges at slots and apertures and insulating surfaces:

On those parts of the EUT where it is not possible to perform contact discharge testing, the equipment should be investigated to identify user accessible points where breakdown may occur. Such points are tested using the air discharge method. This investigation should be restricted to those area normally handled by the user. A minimum of 10 single air discharges shall be applied to the selected test point for each such area.

The basic test procedure was in accordance with IEC 61000-4-2:

- a) The EUT was located 0.1 m minimum from all side of the **HCP** (dimensions 1.6m x 0.8m).
- b) The support units were located another table 30 cm away from the EUT, but direct support unit was/were located at same location as EUT on the HCP and keep at a distance of 10 cm with EUT.
- c) The time interval between two successive single discharges was at least 1 second.
- d) Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- e) Air discharges were applied with the round discharge tip of the discharge electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator was removed from the EUT and re-triggered for a new single discharge. The test was repeated until all discharges were complete.
- f) At least ten single discharges (in the most sensitive polarity) were applied at the front edge of each HCP opposite the center point of each unit of the EUT and 0.1 meters from the front of the EUT. The long axis of the discharge electrode was in the plane of the HCP and perpendicular to its front edge during the discharge.
- g) At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the Vertical Coupling Plane (VCP) in sufficiently different positions that the four faces of the EUT were completely illuminated. The VCP (dimensions 0.5m x 0.5m) was placed vertically to and 0.1 meters from the EUT.

8.3.4. TEST SETUP

Ground Reference Plane

 For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

NOTE:

TABLE-TOP EQUIPMENT

The configuration consisted of a wooden table 0.8 meters high standing on the **G**round **R**eference **P**lane. The **GRP** consisted of a sheet of aluminum at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system. A Horizontal Coupling Plane ($1.6m \times 0.8m$) was placed on the table and attached to the **GRP** by means of a cable with 940k _ total impedance. The equipment under test, was installed in a representative system as described in section 7 of IEC 61000-4-2, and its cables were placed on the **HCP** and isolated by an insulating support of 0.5mm thickness. A distance of 1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

FLOOR-STANDING EQUIPMENT

The equipment under test was installed in a representative system as described in section 7 of IEC 61000-4-2, and its cables were isolated from the Ground Reference Plane by an insulating support of 0.1-meter thickness. The GRP consisted of a sheet of aluminum that is at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system and extended at least 0.5 meters from the EUT on all sides.

8.3.5. TEST RESULTS

Temperature	17°C	Humidity	58% RH
Pressure	1009mbar	Tested By	Frank Liao
Required Pa	ssing Performance		Criterion B

Air Discharge								
Test Test Levels				Results				
Points	± 2 kV	± 4 kV	± 8 kV	Pass	Fail	Performance Criterion	Observation	
Front	\square	\square	\square	\square		A B	Note ⊠1	
Back	\boxtimes	\square	\square	\square		A B	Note □ 1 ⊠2	
Left	\boxtimes	\square	\square	\square		A B	Note □ 1 ⊠ 2	
Right							Note 1 2	
Тор	\square						Note 🗌 1 🛛 🛛 2	

Contact Discharge							
	Test Levels Results						
Test Points	± 2 kV	± 4 kV	± 6 kV	Pass	Fail	Performance Criterion	Observation
Back	\square	\square	\square	\square		A B	Note ⊠1
Left	\square	\square	\square	\square		A B	Note ⊠1
Right	\square	\square	\square	\square		A B	Note ⊠1

Please refer to ESD test photo on next page for detail discharge point

Discharge To Horizontal Coupling Plane									
	Test Levels Results								
Side of EUT	± 2 kV	± 4 kV	± 6 kV	Pass	Fail	Performance Criterion		Observat	tion
Front	\square	\square	\square	\square		A	В	Note 🖂1	2
Back	\square	\square	\square	\square		A	B	Note 🖂1	2
Left	\square	\square	\square	\square		⊠A	□в	Note 🖂1	2
Right	\square	\square	\square	\square		A	В	Note 🖂1	2

Discharge To Vertical Coupling Plane										
	Test Levels Results						Test Levels			
Side of EUT	± 2 kV	± 4 kV	± 6 kV	Pass	Fail	Performance Criterion	Observation			
Front	\square	\square	\square	\square		A B	Note ⊠1			
Back	\square	\boxtimes	\square	\boxtimes		A B	Note ⊠1			
Left							Note ⊠1			
Right	\square	\boxtimes	\square	\square		A B	Note ⊠1			

NOTE: 1. There was no degradation of performance or loss of function found on EUT during and after the test.

2. No discharge point.

The Photo for Discharge Points of EUT

Front

Red Dot —Air Discharged Blue Dot —Contact Discharged

Left

Right

Red Dot —Air Discharged Blue Dot —Contact Discharged

8.4. RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD (RS)

8.4.1. TEST SPECIFICATION (Reference to EN 60945 clause 10.4)

Basic Standard:	IEC 61000-4-3
Frequency Range:	80 ~ 2000 MHz
Field Strength:	10 V/m
Modulation:	400Hz Sine Wave, 80%, AM Modulation
Frequency Step:	1 % of preceding frequency value
Polarity of Antenna:	Horizontal and Vertical
Test Distance:	3 m
Antenna Height:	1.5 m

8.4.2. TEST INSTRUMENT

844 RS Chamber								
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due				
Calibration of Field	N/A	Chamber#RS	80-1000MHz	04/19/2013				
Signal Generator	Agilent	E4421B	MY43350597	05/27/2013				
Electric Field Probe	AR	FL7006	0330722	08/06/2013				
RF Power Meter	Boonton	4242-01-02	14357	02/28/2013				
Amplifier	AR	500W1000A	320994	No Calibration Required				
Direction Coupler	AR	DC6180A	312189	No Calibration Required				
Broadband Antenna	AR	AT1080	311819	No Calibration Required				
Thermo-Hygro meter	TFA	N/A	NO.6	11/11/2013				
Calibration of Field	N/A	Chamber#RS	1000-3000MHz	04/25/2013				
Amplifier	AR	60S1G3	302728	No Calibration Required				
Horn Antenna	EMCO	3115	5761	No Calibration Required				
Direction Coupler	AR	DC7144A	306217	No Calibration Required				
Satellite Simulator	HJC	GPS-101	EN001	No Calibration Required				
Software	Emcware Ver. 2.6.0.16							

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R.= No Calibration required

8.4.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-023)

The test procedure was in accordance with IEC 61000-4-3

- a) The testing was performed in a fully anechoic chamber. The transmit antenna was located at a distance of 3 meter from the EUT.
- b) The frequency range is swept from 80 MHz to 2000 MHz with the signal 80% amplitude modulated with a 400Hz sine-wave. The rate of sweep did not exceed 1.5 x 10⁻³ decade/s, where the frequency range is swept incrementally, the step size was 1% of preceding frequency value.
- c) The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- d) The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

8.4.4. TEST SETUP

• For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

NOTE:

TABLETOP EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC 61000-4-3 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

FLOOR STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC 61000-4-3 was placed on a non-conductive wood support 0.1 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

8.4.5. TEST RESULTS

Temperature	17°C	Humidity	58% RH
Pressure	1009mbar	Dwell Time	3 sec.
Tested By	Frank Liao	Required Passing Performance	Criterion A

Frequency (MHz)	Polarity	Azimuth	Field Strength (V/m)	Observation	Result
80 ~ 2000	V&H	0	10	Note	PASS
80 ~ 2000	V&H	90	10	Note	PASS
80 ~ 2000	V&H	180	10	Note	PASS
80 ~ 2000	V&H	270	10	Note	PASS

NOTE: There was no degradation of performance or loss of function found on EUT during and after the test.

8.5. ELECTRICAL FAST TRANSIENT (EFT)

8.5.1. TEST SPECIFICATION (Reference to EN 60945 clause 10.5)

Basic Standard:	IEC 61000-4-4
Test Voltage:	Common On Signal/Control line: 1 kV
Polarity:	Positive & Negative
Impulse Frequency:	5 kHz at 1kV & 2.5kHz at 2kV
Impulse Wave-shape:	5/50 ns
Burst Duration:	15 ms
Burst Period:	300 ms
Test Duration:	3 min to 5 min for each of positive and negative polarity pulses

8.5.2. TEST INSTRUMENT

Immunity Shield Room								
Name of Equipment Manufacturer		Model	Serial Number	Calibration Due				
EMC Immunity Tester	EMC Partner	TRANSIENT 2000	1117	03/05/2013				
Capacitive Clamp	EMC-Partner	CN-EFT1000	589	No Calibration Required				
Satellite Simulator	HJC	GPS-101	EN001	No Calibration Required				
Software	Genecs Ver. 3.27							

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R.= No Calibration required

8.5.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-024)

- a) Both positive and negative polarity discharges were applied.
- b) The length of the "hot wire" from the coaxial output of the EFT generator to the terminals on the EUT should not exceed 0.5 meter.
- c) The duration time of each test sequential was 3 to 5 minute.
- d) The transient/burst waveform was in accordance with IEC 61000-4-4, 5/50ns.

8.5.4. TEST SETUP

• For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

NOTE:

TABLETOP EQUIPMENT

The configuration consisted of a wooden table (0.1m high) standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system. A minimum distance of 0.5m was provided between the EUT and the walls of the laboratory or any other metallic structure.

FLOOR STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC 61000-4-4 and its cables, were isolated from the Ground Reference Plane by an insulating support that is 0.1-meter thick. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system.

8.5.5. TEST RESULTS

Temperature	17°C	Humidity	58% RH
Pressure	1009mbar	Tested By	Frank Liao
Required Passing Performance		Criterion B	

Test Point	Polarity	Test Level (kV)	Performa Criteri	Performance Criterion Observation		Result	
37 Pin	+/-	1	A	B	Note 🖂1	2	PASS
USB	+/-	1	A	В	Note 🖂1	2	PASS
GPS	+/-	1	A	В	Note 🖂1	2	PASS
VHF	+/-	1	A	В	Note 🖂1	2	PASS

NOTE: 1. There was no degradation of performance or loss of function found on EUT during and after the test.

8.6. SURGE IMMUNITY TEST

8.6.1. TEST SPECIFICATION (Reference to EN 60945 clause 10.6)

Basic Standard:	IEC 61000-4-5	
Wave-Shape:	Combination Wave 1.2/50 μs Open Circuit Voltage 8 /20 μs Short Circuit Current,	
Test Voltage:	AC Power: Power Line ~ Line to Line: 0.5 kV; Line to Ground: 1 kV	
Surge Input/Output:	Power Line: L-N / L-PE / N-PE	
Generator Source Impedance:	2 ohm between networks 12 ohm between network and ground	
Polarity:	Positive/Negative	
Phase Angle:	:: AC Power: 0° / 90° / 180° / 270°	
Pulse Repetition Rate:	1 time / min. (maximum)	
Number of Tests:	5 min for each of positive and negative polarity pulses	

8.6.2. TEST INSTRUMENT

Immunity Shield Room							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
EMC Immunity Tester	EMC Partner	TRANSIENT 2000	1117	03/05/2013			
CDN	EMC Partner	CDN-UTP8	CDN-UTP8-1505	03/07/2013			
DCN	EMC Partner	CN-R40C05	1504	No Calibration Required			
CDN	EMC Partner	CDN2000-06-32	0170	No Calibration Required			
Satellite Simulator	HJC	GPS-101	EN001	No Calibration Required			
Software		Genecs Ver. 3.27					

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R.= No Calibration required

8.6.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-025)

a) For EUT power supply:

The surge is applied to the EUT power supply terminals via the capacitive coupling network. Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave. The power cord between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.

- b) For test applied to unshielded un-symmetrically operated interconnection lines of EUT: The surge was applied to the lines via the capacitive coupling. The coupling / decoupling networks didn't influence the specified functional conditions of the EUT. The interconnection line between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.
- c) For test applied to unshielded symmetrically operated interconnection / telecommunication lines of EUT:

The surge was applied to the lines via gas arrestors coupling. Test levels below the ignition point of the coupling arrestor were not specified. The interconnection line between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.

8.6.4. TEST SETUP

• For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

8.6.5. TEST RESULTS

Temperature	N/A	Humidity	N/A
Pressure	N/A	Tested By	N/A
Required Passing Performance		С	riterion B

Test Point	Polarity	Test Level (kV)	Performance Criterion	Observation	Result
L - N	+/-	0.5	□A □B	Note ⊠1	N/A
L - PE	+/-	1	□A □B	Note ⊠1	N/A
N - PE	+/-	1	□A □B	Note ⊠1	N/A

Note: 1. The subject equipment is not intended to be connected to AC mains supply. Therefore, this test is not applicable.

8.7. CONDUCTED RADIO FREQUENCY DISTURBANCES (CS)

8.7.1. TEST SPECIFICATION (Reference to EN 60945 clause 10.3)

Basic Standard:	IEC 61000-4-6
Frequency Range:	 (1) 0.15MHz~80MHz (2) 2MHz, 3MHz, 4MHz, 6.2MHz, 8.2MHz, 12.6MHz, 16.5MHz 18.8MHz, 22MHz, 25MHz
Field Strength:	(1) 3Vrms; (2) 10Vrms
Modulation:	400Hz Sine Wave, 80%, AM Modulation
Frequency Step:	1 % of preceding frequency value
Coupled cable:	DC Power Mains, Unshielded; All I/O Line, Unshielded
Coupling device:	CDN-M2 (2 wires); EM-Clamp

8.7.2. TEST INSTRUMENT

CS Room						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
CWS Generator	EM Test	CWS 500N1	V0395105080	10/01/2013		
CDN	Schaffner	CDN M216	19294	07/30/2013		
EM Clamp	Schaffner	KEMZ 801	19227	03/12/2013		
Attenuator	EMCI	SA3NL	10006F	No Calibration Required		
Satellite Simulator	HJC	GPS-101	EN001	No Calibration Required		
Software	icd.control Ver. 5.1.9					

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R.= No Calibration required

8.7.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-026)

The EUT shall be tested within its intended operating and climatic conditions.

The test shell performed with the test generator connected to each of the coupling and decoupling devices in turn, while the other non-excited RF input ports of the coupling devices are terminated by a 50-ohm load resistor.

The frequency range was swept from 150 kHz to 80 MHz, using the signal level established during the setting process and with a disturbance signal of 80 % amplitude. The signal was modulated with a 400Hz sine wave, pausing to adjust the RF signal level or the switch coupling devices as necessary. The sweep rate was 1.5×10^{-3} decades/s. Where the frequency range is swept incrementally, the step size was 1 % of preceding frequency value from 150 kHz to 80 MHz.

Additionally the following fixed frequencies 2 ,3 ,4 ,6.2 ,8.2 ,12.6 ,16.5 ,18.8 ,22 and 25 MHz

The dwell time at each frequency was less than the time necessary for the EUT to be exercised, and able to respond. Sensitive frequencies such as clock frequency(ies) and harmonics or frequencies of dominant interest, was analyzed separately.

Attempts was made to fully exercise the EUT during testing, and to fully interrogate all exercise modes selected for susceptibility.

8.7.4. TEST SETUP

- **Note:** 1. The CDNs and / or EM clamp used for real test depends on ports and cables configuration of EUT. 2. The EUT clearance from any metallic obstacles shall be at least 0.5m
- For the actual test configuration, please refer to the related item Photographs of the Test Configuration.

NOTE:

TABLE-TOP AND FLOOR-STANDING EQUIPMENT

The equipment to be tested is placed on an insulating support of 0.1 meters height above a ground reference plane. All relevant cables shall be provided with the appropriate coupling and decoupling devices at a distance between 0.1 meters and 0.3 meters from the projected geometry of the EUT on the ground reference plane.

8.7.5. TEST RESULTS

Temperature	•	17°C		Humidity		58% RH	58% RH	
Pressure		1009mbar		Tested By Frank Liao				
Red	quired Pa	assing Performan	ce			Criterion A		
Frequency Band (MHz)	Field Strengt (Vrms)	h Cable	Injection Method	Perfor Crite	mance erion	Observation	Result	
0.15 ~ 80	3	DC Power Line (0.3m)	CDN-M2	A	□В	Note ⊠1	PASS	
2	10	DC Power Line (0.3m)	CDN-M2	A	□в	Note ⊠1	PASS	
3	10	DC Power Line (0.3m)	CDN-M2	A	□в	Note ⊠1	PASS	
4	10	DC Power Line (0.3m)	CDN-M2	A	□В	Note ⊠1	PASS	
6.2	10	DC Power Line (0.3m)	CDN-M2	A	□в	Note ⊠1	PASS	
8.2	10	DC Power Line (0.3m)	CDN-M2	A	□в	Note ⊠1	PASS	
12.6	10	DC Power Line (0.3m)	CDN-M2	A	□в	Note ⊠1	PASS	
16.5	10	DC Power Line (0.3m)	CDN-M2	A	□в	Note ⊠1	PASS	
18.8	10	DC Power Line (0.3m)	CDN-M2	A	□в	Note ⊠1	PASS	
22	10	DC Power Line (0.3m)	CDN-M2	A	□в	Note ⊠1	PASS	
25	10	DC Power Line (0.3m)	CDN-M2	A	□в	Note ⊠1	PASS	
0.15 ~ 80	3	All I/O Line (0.3m)	EM-Clamp	A	□в	Note ⊠1	PASS	
2	10	All I/O Line (0.3m)	EM-Clamp	A	□в	Note ⊠1	PASS	
3	10	All I/O Line (0.3m)	EM-Clamp	A	□в	Note ⊠1	PASS	
4	10	All I/O Line (0.3m)	EM-Clamp	A	□в	Note ⊠1	PASS	
6.2	10	All I/O Line (0.3m)	EM-Clamp	A	□в	Note ⊠1	PASS	
8.2	10	All I/O Line (0.3m)	EM-Clamp	A	□в	Note ⊠1	PASS	
12.6	10	All I/O Line (0.3m)	EM-Clamp	A	□в	Note ⊠1	PASS	
16.5	10	All I/O Line (0.3m)	EM-Clamp	A	□в	Note ⊠1	PASS	
18.8	10	All I/O Line (0.3m)	EM-Clamp	A	□в	Note ⊠1	PASS	
22	10	All I/O Line (0.3m)	EM-Clamp	A	□в	Note ⊠1	PASS	
25	10	All I/O Line (0.3m)	EM-Clamp	A	□в	Note ⊠1	PASS	

NOTE: 1. There was no degradation of performance or loss of function found on EUT during and after the test.

8.8. POWER SUPPLY SHORT-TERM VARIATION TEST

8.8.1. TEST SPECIFICATION (Reference to EN 60945 clause 10.7)

Basic Standard:	IMMUNITY TO POWER SUPPLY SHORT-TERM VARIATION
Test duration time:	Minimum three test events in sequence
Interval between event:	1/10 min
Voltage and frequency variation rise and decay:	Voltage: nominal \pm (20 \pm 1) %, duration 1,5 s \pm 0,2 s, Frequency: nominal \pm (10 \pm 0,5) %, duration 5 s \pm 0,5 s, superimposed

8.8.2. TEST INSTRUMENT

Immunity shielded room						
Name of Equipment Manufacturer Model Serial Number Calibrat						
EMC Immunity Tester	EMC Partner	TRANSIENT 2000	1117	03/05/2013		
AC/DC Clamp Meter	Lutron	CM-9930R	I.200121	06/03/2013		
Satellite Simulator	HJC	GPS-101	EN001	No Calibration Required		
Software	Genecs Ver. 3.27					

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R.= No Calibration required

8.8.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-028)

- 1. The EUT and support units were located on a wooden table, 0.8 m away from ground floor.
- 2. Setting the parameter of tests and then perform the test software of test simulator.
- 3. Recording the test result in test record form.

8.8.4. TEST SETUP

• For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

8.8.5. TEST RESULTS

Temperature	N/A	Humidity	N/A
Pressure	N/A	Tested By	N/A
Required Passing Performance		Criterion B	

Test Power: 230Vac, 50Hz					
POWER	Duration (Sec)	Performance Criterion Observation		Test Result	
276/55	1.5/5		Note ⊠1 □2 □3	N/A	
184/45	1.5/5		Note ⊠1 □2 □3	N/A	

NOTE: 1. The subject equipment is not intended to be connected to AC mains supply. Therefore, this test is not applicable.

8.9. POWER SUPPLY FAILURE TEST

8.9.1. TEST SPECIFICATION (Reference to EN 60945 clause 10.8)

Basic Standard:IMMUNITY TO POWER SUPPLY FAILURETest duration time:60 SecRequirement:3 TIMES

8.9.2. TEST INSTRUMENT

Immunity shielded room						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
EMC Immunity Tester	EMC Partner	TRANSIENT 2000	1117	03/05/2013		
AC/DC Clamp Meter	Lutron	CM-9930R	I.200121	06/03/2013		
Satellite Simulator	HJC	GPS-101	EN001	No Calibration Required		
Software	Genecs Ver. 3.27					

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R.= No Calibration required

8.9.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-028)

- 1. The EUT and support units were located on a wooden table, 0.1 m away from ground floor.
- 2. Setting the parameter of tests and then perform the test software of test simulator.
- 3. Conditions changes to occur at 0 degree crossover point of the voltage waveform.
- 4. Recording the test result in test record form.

8.9.4. TEST SETUP

• For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

8.9.5. TEST RESULTS

Temperature	18°C	Humidity	59% RH	
Pressure	1010mbar	Tested By	David Cheng	
Required Passing Performance		Criterion C		

Test Power: 230Vac, 50Hz				
Voltage (% Reduction)	Duration (Sec)	Performance Criterion	Observation	Test Result
100	60	□A □B ⊠C	Note ⊠1	PASS

NOTE: 1. During power supply failure tests, EUT operates automatically and normally each time after power is restored.

9 PHOTOGRAPHS OF THE TEST CONFIGURATION CONDUCTED EMISSION TEST

RADIATED EMISSION TEST

150kHz ~ 30MHz

1GHz ~ 2GHz

ESD Test

RS Test

EFT For I/O Test

CS Test

CS For I/O Test

POWER SUPPLY FAILURE TEST

10 METHOD AND SCREENSHOTS OF EUT'S TRANSMITTING/RECEIVING PERFORMANCE CHECK

Screenshot of CS:

On the screenshot below, the transmitting packet quantity (of the additional AIS transponder) is marked by "Tx-packet" which is 1369 on the screenshot. The receiving packet quantity of the EUT is marked by "Rx-packet" which is 1364 on the screenshot. So the PER (packet error rate) of the EUT receiving performance under this test is 0.37%.

On the screenshot below, the transmitting packet quantity (of the additional AIS transponder) is marked by "Tx-packet" which is 5457 on the screenshot. The receiving packet quantity of the EUT is marked by "Rx-packet" which is 5444 on the screenshot. So the PER (packet error rate) of the EUT receiving performance under this test is 0.24%.

Screenshot of EFT:

On the screenshot below, the transmitting packet quantity (of the additional AIS transponder) is marked by "Tx-packet" which is 1395 on the screenshot. The receiving packet quantity of the EUT is marked by "Rx-packet" which is 1393 on the screenshot. So the PER (packet error rate) of the EUT receiving performance under this test is 0.14%.

Screenshot of ESD:

On the screenshot below, the transmitting packet quantity (of the additional AIS transponder) is marked by "Tx-packet" which is 431 on the screenshot. The receiving packet quantity of the EUT is marked by "Rx-packet" which is 430 on the screenshot. So the PER (packet error rate) of the EUT receiving performance under this test is 0.23%.

