Hearing Aid Compatibility (HAC) RF Emissions Test Report APPLICANT: Sonim Technologies, Inc. **EQUIPMENT**: LTE Phone BRAND NAME : Sonim MODEL NAME : XP5800(PG2112) FCC ID : WYPPG2132 STANDARD : FCC 47 CFR §20.19 ANSI C63.19-2011 We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the procedures and had been in compliance with the applicable technical standards. The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full. Mark Qu Approved by: Mark Qu / Manager Sporton International (Kunshan) Inc. No.3-2 Ping-Xiang Rd, Kunshan Development Zone Kunshan City Jiangsu Province 215335 China Sporton International (Kunshan) Inc. TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: WYPPG2132 Page Number : 1 of 28 Report Issued Date : Dec. 05, 2017 Report No.: HA792101-01A Report Version : Rev. 01 NVLAP LAB CODE 600155-0 # **Table of Contents** | 1. | Attestation of Test Results | 4 | | | | | |-----|---|----|--|--|--|--| | 2. | | | | | | | | 3. | Equipment Under Test Information | 5 | | | | | | | 3.1 General Information | 5 | | | | | | | 3.2 Air Interface and Operating Mode | 6 | | | | | | | 3.3 Applied Standards | 7 | | | | | | 4. | HAC RF Emission | 8 | | | | | | 5. | Measurement System Specification | 9 | | | | | | | 5.1 Test Arch Phantom | | | | | | | | 5.2 E-Field Probe System | 10 | | | | | | | 5.3 System Hardware | 10 | | | | | | | 5.4 Data Storage and Evaluation | | | | | | | | 5.5 Test Equipment List | | | | | | | 6. | | | | | | | | | 6.1 Purpose of System Performance Check | | | | | | | | 6.2 System Setup | | | | | | | | 6.3 Verification Results | | | | | | | 7. | | | | | | | | 8. | Modulation Interference Factor | 19 | | | | | | 9. | Low-power Exemption | 21 | | | | | | 10. | . Conducted RF Output Power (Unit: dBm)23 | | | | | | | | . HAC RF Emission Test Results25 | | | | | | | 12. | Uncertainty Assessment | | | | | | | | Poforoncos 28 | | | | | | Appendix A. Plots of System Performance Check Appendix B. Plots of RF Emission Measurement Appendix C. DASY Calibration Certificate Appendix D. Test Setup Photos TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: WYPPG2132 Report No. : HA792101-01A # **Revision History** | REPORT NO. | VERSION | DESCRIPTION | ISSUED DATE | |--------------|---------|-------------------------|---------------| | HA792101-01A | Rev. 01 | Initial issue of report | Dec. 05, 2017 | Sporton International (Kunshan) Inc. TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: WYPPG2132 Page Number : 3 of 28 Report Issued Date : Dec. 05, 2017 Report Version : Rev. 01 Report No. : HA792101-01A # 1. Attestation of Test Results | Applicant Name | Sonim Technologies, Inc. | |----------------|--| | Equipment Name | LTE Phone | | Brand Name | Sonim | | Model Name | XP5800(PG2112) | | FCC ID | WYPPG2132 | | IMEI Code | SIM1: 001080001911412
SIM2: 001080001911420 | | HW Version | A | | SW Version | 5SA.0.0-00-7.1.2-10.32.01 | | EUT Stage | Identical Prototype | | HAC Rating | M3 | | Date Tested | 2017/11/3~2017/11/25 | | Test Result | Pass | Report No. : HA792101-01A This device is compliance with HAC limits specified in guidelines FCC 47 CFR §20.19 and ANSI Standard ANSI C63.19. # 2. Administration Data | Testing Site | | | | | |--------------------|---|--|--|--| | Test Site | Sporton International (Kunshan) Inc. | | | | | Test Site Location | No.3-2 Ping-Xiang Rd, Kunshan Development Zone Kunshan City Jiangsu Province 215335 China TEL: +86-512-57900158 FAX: +86-512-57900958 | | | | | Test Site No. | Sporton Site No. : SAR01-KS | | | | | | Applicant | | | | | Company Name | Sonim Technologies, Inc. | | | | | Address | 1825 S. Grant St., Suite 200., San Mateo, CA, 94402 | | | | | Manufacturer | | | | | | Company Name | Sonim Technologies (Shenzhen) Limited | | | | | Address | 2nd Floor, No. 2 Building Phase B, Daqian Industrial park, Longchang Road, 67 District, Baoan, Shenzhen, P. R. China | | | | Sporton International (Kunshan) Inc. Page Number : 4 of 28 TEL: +86-512-57900158 Report Issued Date : Dec. 05, 2017 FAX: +86-512-57900958 Report Version : Rev. 01 # 3. Equipment Under Test Information # 3.1 General Information | | | |--|--| | | Product Feature & Specification | | Wireless Technology
and Frequency Range | GSM850: 824.2 MHz ~ 848.8 MHz GSM1900: 1850.2 MHz ~ 1909.8 MHz WCDMA Band II: 1852.4 MHz ~ 1752.6 MHz WCDMA Band IV: 1712.4 MHz ~ 1752.6 MHz WCDMA Band V: 826.4 MHz ~ 846.6 MHz LTE Band 2: 1850.7 MHz ~ 1909.3 MHz LTE Band 4: 1710.7 MHz ~ 1754.3 MHz LTE Band 5: 824.7 MHz ~ 848.3 MHz LTE Band 7: 2502.5 MHz ~ 2567.5 MHz LTE Band 12: 699.7 MHz ~ 715.3 MHz LTE Band 13: 779.5 MHz ~ 784.5 MHz LTE Band 14: 790.5 MHz ~ 795.5 MHz LTE Band 25: 1850.7 MHz ~ 1914.3 MHz LTE Band 30: 2307.5 MHz ~ 2312.5 MHz LTE Band 38: 2572.5 MHz ~ 2617.5 MHz LTE Band 38: 2572.5 MHz ~ 2687.5 MHz LTE Band 66: 1710.7 MHz ~ 1779.3 MHz WLAN 2.4GHz Band: 5180 MHz ~ 2462 MHz WLAN 5.2GHz Band: 5500 MHz ~ 5320 MHz WLAN 5.5GHz Band: 5500 MHz ~ 5720 MHz WLAN 5.5GHz Band: 5745 MHz ~ 5825 MHz | | Mode | GSM/GPRS/EGPRS RMC/AMR 12.2Kbps HSDPA HSUPA DC-HSDPA HSPA+ (16QAM uplink is not supported) LTE: QPSK, 16QAM WLAN 2.4GHz 802.11b/g/n HT20/HT40 WLAN 5GHz 802.11a/n HT20/HT40 Bluetooth v3.0+EDR, Bluetooth v4.0 LE, Bluetooth v4.2 LE | | Wireless Technology
and Frequency Range | LTE Band 4: 1710.7 MHz ~ 1754.3 MHz LTE Band 5: 824.7 MHz ~ 848.3 MHz LTE Band 7: 2502.5 MHz ~ 2567.5 MHz LTE Band 12: 699.7 MHz ~ 715.3 MHz LTE Band 13: 779.5 MHz ~ 784.5 MHz LTE Band 14: 790.5 MHz ~ 795.5 MHz LTE Band 25: 1850.7 MHz ~ 1914.3 MHz LTE Band 26: 814.7 MHz ~ 848.3 MHz LTE Band 30: 2307.5 MHz ~ 2312.5 MHz LTE Band 38: 2572.5 MHz ~ 2617.5 MHz LTE Band 38: 2572.5 MHz ~ 2687.5 MHz LTE Band 66: 1710.7 MHz ~1779.3 MHz LTE Band 66: 1710.7 MHz ~1779.3 MHz WLAN 2.4GHz Band: 5180 MHz ~ 2462 MHz WLAN 5.2GHz Band: 5500 MHz ~ 5320 MHz WLAN 5.3GHz Band: 5500 MHz ~ 5720 MHz WLAN 5.6Hz Band: 5745 MHz ~ 2885 MHz Bluetooth: 2402 MHz ~ 2480 MHz GSM/GPRS/EGPRS RMC/AMR 12.2Kbps HSDPA HSDPA HSPA+ (16QAM uplink is not supported) LTE: QPSK, 16QAM WLAN 2.4GHz 802.11a/n HT20/HT40 WLAN 5.GHz 802.11a/n HT20/HT40 | Report No.: HA792101-01A - 1. This device supports VoIP in GPRS, EGPRS, WCDMA and LTE (e.g. for 3rd-party VoIP), LTE supports VoLTE - 2. This device WLAN 2.4GHz supports hotspot operation and Bluetooth support tethering applications. - 3. This device 2.4GHz WLAN/5.2GHz WLAN/5.8GHz WLAN support hotspot operation, and 5.2GHz WLAN/5.8GHz WLAN supports WiFi Direct (GC/GO), and 5.3GHz / 5.5GHz supports WiFi Direct (GC only). - 4. This device does not support DTM operation and supports GRPS/EGRPS mode up to multi-slot class 12. - 5. The device has two SIM slots and supports dual SIM dual standby. The WWAN radio transmission will be enabled by either one SIM at a time (single active). After pre-scan two SIM cards power, we found test result of the SIM1 was the worse, so we chose SIM1 slot to perform all tests. - 6. For WWAN transmitter Hotspot exposure condition: When hotspot mode is enabled, power reduction will be activated to limit the maximum power of WCDMA B2 / B4 and LTE B2 / B4 / B25 / B66. 7. For WLAN transmitter Head exposure conditions: While the device is in talking mode and receiver worked, then power reduction will be implemented immediately at WLAN5.5GHz and WLAN5.8GHz. 8. This is a variant report for XP5800(PG2112). The difference between the previous and current is disabled CDMA2000 bands. Based on the similarity between two models, only the worse cases from reference report (Sporton Report Number HA792101A) were verified and found the original HAC RF value can represent this application. Page Number Report Version : 5 of 28 : Rev. 01 Report Issued Date: Dec. 05, 2017 Sporton International (Kunshan) Inc. TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: WYPPG2132 # 3.2 Air Interface and Operating Mode | Air
Interface | | | C63.19
Tested | Simultaneous
Transmitter | ОТТ | Power
Reduction | |------------------|-----------|------|---------------------|-----------------------------|-----|--------------------| | | 850 | VO | V0 | WLAN, BT | NA | No | | GSM | 1900 | VO | Yes | WLAN, BT | NA | No | | | GPRS/EDGE | DT | No | WLAN, BT | Yes | No | | | Band V | | | WLAN, BT | NA | No | | MODMA | Band IV | VO | No ⁽¹⁾ | WLAN, BT | NA | Yes | | WCDMA | Band II | | | WLAN, BT | NA | Yes | | | HSPA | DT | No | WLAN, BT | Yes | Yes | | | Band 2 | | | WLAN, BT | | Yes | | | Band 4 | | | WLAN, BT | | Yes | | | Band 5 | | No ⁽¹⁾ | WLAN, BT | | No | | | Band 7 | | | WLAN, BT | Yes | No | | | Band 12 |
VD | | WLAN, BT | | No | | LTE-FDD | Band 13 | | | WLAN, BT | | No | | | Band 14 | | | WLAN, BT | | No | | | Band 25 | | | WLAN, BT | | Yes | | | Band 26 | | | WLAN, BT | | No | | | Band 30 | | | WLAN, BT | | No | | | Band 66 | | | WLAN, BT | | Yes | | - TE TO 0 | Band 38 | \ (D | V. | WLAN, BT | | No | | LTE-TDD | Band 41 | VD | Yes | WLAN, BT | | No | | | 2.4GHz | | | GSM,WCDMA,LTE | | No | | | 5.2GHz | | | GSM,WCDMA,LTE | | No | | WLAN | 5.3GHz | VD | No ^(2,3) | GSM,WCDMA,LTE | Yes | No | | | 5.5GHz | | | GSM,WCDMA,LTE | | Yes | | | 5.8GHz | | | GSM,WCDMA,LTE | | Yes | | ВТ | 2.4GHz | DT | No | GSM,WCDMA,LTE | NA | No | VO=CMRS Voice Service DT=Digital Transport VD=CMRS IP Voice Service and Digital Transport #### Remark - 1. WCDMA and LTE is exempted from testing by low power exemption that its average antenna input power plus its MIF is ≤17 dBm, and is rated as M4. - 2. For 2.4GHz WLAN RF emissions testing exemption shall be applied to an RF air interface technology in a device whose Peak antenna input power, averaged over intervals ≤50 µs, is ≤23 dBm. - 3. No Associated T-Coil measurement has been made in accordance with KDB 285076 D02 T-Coil testing for CMRS IP. Sporton International (Kunshan) Inc. TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: WYPPG2132 Page Number : 6 of 28 Report Issued Date : Dec. 05, 2017 Report No.: HA792101-01A # 3.3 Applied Standards - FCC CFR47 Part 20.19 - · ANSI C63.19 2011-version - · FCC KDB 285076 D01 HAC Guidance v04r01 - FCC KDB 285076 D02 T Coil testing for CMRS IP v02 Sporton International (Kunshan) Inc. TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: WYPPG2132 Page Number : 7 of 28 Report Issued Date : Dec. 05, 2017 Report Version : Rev. 01 Report No. : HA792101-01A # 4. HAC RF Emission FCC wireless hearing aid compatibility rules ensure that consumers with hearing loss are able to access wireless communications services through a wide selection of handsets without experiencing disabling radio frequency (RF) interference or other technical obstacles. Report No.: HA792101-01A To define and measure the hearing aid compatibility of handsets, in CFR47 part 20.19 ANSI C63.19 is referenced. A handset is considered hearing aid-compatible for acoustic coupling if it meets a rating of at least M3 under ANSI C63.19, and A handset is considered hearing aid compatible for inductive coupling if it meets a rating of at least T3. According to ANSI C63.19 2011 version, for acoustic coupling, the RF electric field emissions of wireless communication devices should be measured and rated according to the emission level as below. | Emission Categories | E-field emissions | | | | | |----------------------|-------------------|-------------------|--|--|--| | Ellission Categories | <960Mhz | >960Mhz | | | | | M1 | 50 to 55 dB (V/m) | 40 to 45 dB (V/m) | | | | | M2 | 45 to 50 dB (V/m) | 35 to 40 dB (V/m) | | | | | М3 | 40 to 45 dB (V/m) | 30 to 35 dB (V/m) | | | | | M4 | <40 dB (V/m) | <30 dB (V/m) | | | | Table 4.1 Telephone near-field categories in linear units Sporton International (Kunshan) Inc. Page Number : 8 of 28 TEL: +86-512-57900158 Report Issued Date : Dec. 05, 2017 FAX: +86-512-57900958 Report Version : Rev. 01 # 5. Measurement System Specification Fig 5.1 SPEAG DASY5 System Configurations # 5.1 Test Arch Phantom | Construction: | Enables easy and well defined positioning of
the phone and validation dipoles as well as
simple teaching of the robot. | | |---------------|--|-------------------------------| | Dimensions : | 370 x 370 x 370 mm | Fig 5.2 Photo of Arch Phantom | Sporton International (Kunshan) Inc. TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: WYPPG2132 Page Number : 9 of 28 Report Issued Date : Dec. 05, 2017 Report No.: HA792101-01A # 5.2 E-Field Probe System # E-Field Probe Specification <ER3DV6> | Construction | One dipole parallel, two dipoles normal to probe axis Built-in shielding against static charges | |---------------|--| | Calibration | In air from 100 MHz to 3.0 GHz
(absolute accuracy ±6.0%, k=2) | | Frequency | 100 MHz to 6 GHz;
Linearity: ± 2.0 dB (100 MHz to 3 GHz) | | Directivity | ± 0.2 dB in air (rotation around probe axis)
± 0.4 dB in air (rotation normal to probe axis) | | Dynamic Range | 2 V/m to 1000 V/m
(M3 or better device readings fall well below
diode compression point) | | Linearity | ± 0.2 dB | | Dimensions | Overall length: 330 mm (Tip: 16 mm) Tip diameter: 8 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.5 mm | Report No.: HA792101-01A Fig 5.3 Photo of E-field Probe #### **Probe Tip Description:** HAC field measurements take place in the close near field with high gradients. Increasing the measuring distance from the source will generally decrease the measured field values (in case of the validation dipole approx. 10% per mm). # 5.3 System Hardware #### DAE The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. #### **Robot** The SPEAG DASY system uses the high precision robots (DASY5: TX90XL) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY5: CS8c) from Stäubli is used. Sporton International (Kunshan) Inc. Page Number : 10 of 28 TEL: +86-512-57900158 Report Issued Date : Dec. 05, 2017 FAX: +86-512-57900958 Report Version : Rev. 01 # 5.4 Data Storage and Evaluation The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, and device frequency and modulation data) in measurement files. Report No.: HA792101-01A **Probe parameters**: - Sensitivity Norm_i, a_{i0} , a_{i1} , a_{i2} $\begin{tabular}{lll} - Conversion factor & ConvF_i \\ - Diode compression point & dcp_i \end{tabular}$ **Device parameters**: - Frequency f - Crest factor cf **Media parameters**: - Conductivity σ - Density ρ The formula for each channel can be given as : $$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$ with V_i = compensated signal of channel i, (i = x, y, z) U_i = input signal of channel i, (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dcp_i = diode compression point (DASY parameter) From the compensated input signals, the primary field data for each channel can be evaluated: $$\text{E-field Probes}: E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$ with V_i = compensated signal of channel i, (i = x, y, z) Norm_i = sensor sensitivity of channel i, (i = x, y, z), $\mu V/(V/m)^2$ for E-field Probes ConvF = sensitivity enhancement in solution f = carrier frequency [GHz] E_i = electric field strength of channel i in V/m The RSS value of the field components gives the total field strength (Hermitian magnitude): $$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$ Page Number Report Version : 11 of 28 : Rev. 01 Report Issued Date: Dec. 05, 2017 The primary field data are used to calculate the derived field units. Sporton International (Kunshan) Inc. TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: WYPPG2132 # 5.5 Test Equipment List | Manufacturer | Name of Eminance | Type/Model | Serial | Calibration | | |--------------|--------------------------------------|-------------|------------|-------------|------------| | Manufacturer | Name of Equipment | | Number | Last Cal. | Due Date | | SPEAG | Dipole | CD835V3 | 1171 | 2017/3/20 | 2018/3/19 | | SPEAG | Dipole | CD1880V3 | 1155 | 2017/3/20 | 2018/3/19 | | SPEAG | Dipole | CD2600V3 | 1010 | 2017/11/22 | 2018/11/21 | | SPEAG | Data Acquisition Electronics | DAE4 | 1326 | 2017/9/15 | 2018/9/14 | | SPEAG | Probe | ER3DV6 | 2476 | 2016/11/23 | 2017/11/22 | | SPEAG | Probe | ER3DV6 | 2476 | 2017/1/25 | 2018/1/24 | | SPEAG | Test Arch Phantom | Par phantom | 1105 | NCR | NCR | | SPEAG | Phone Positioner | N/A | N/A | NCR | NCR | | Agilent | Wireless Communication Test Set | E5515C | MY48367160 | 2017/1/19 | 2018/1/18 | | R&S | Universal Radio Communication Tester | CMW500 | 143030 | 2017/8/17 | 2018/8/16 | | AR | Amplifier | 551G4 | 333096 | NCR | NCR | | Anritsu | Power Senor | MA2411B | 1644003 | 2016/12/23 | 2017/12/22 | | Anritsu | Power Meter | ML2495A | 1531197 | 2016/12/23 | 2017/12/22 | | ARRA | Power Divider | A3200-2 | N/A | NA | NA | | MCL | Attenuation | BW-S10W5 | N/A | NA | NA | Report No. : HA792101-01A **Table 5.1 Test Equipment List** Note: NCR: "No-Calibration Required". Sporton International (Kunshan) Inc. Page Number : 12 of 28 TEL: +86-512-57900158 Report Issued Date : Dec. 05, 2017 FAX: +86-512-57900958 Report Version : Rev. 01 # 6. Measurement System Validation Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the test Arch and a corresponding distance holder. # 6.1 Purpose of System Performance Check The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal HAC measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not
intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure. # 6.2 System Setup - 1. In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator. - 2. The center point of the probe element(s) is 15mm from the closest surface of the dipole elements. - 3. The calibrated dipole must be placed beneath the arch phantom. The equipment setup is shown below: Fig. 6.1 System Validation Setup Sporton International (Kunshan) Inc. TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: WYPPG2132 Page Number : 13 of 28 Report Issued Date : Dec. 05, 2017 Report No.: HA792101-01A The output power on dipole port must be calibrated to 20dBm (100mW) before dipole is connected. Fig 7.2 Dipole Setup # 6.3 Verification Results Comparing to the original E-field value provided by SPEAG, the verification data should be within its specification of 25 %. Table 6.1 shows the target value and measured value. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to appendix A of this report. | Frequency
(MHz) | Input
Power
(dBm) | Target Value
(V/m) | E-Field above high end (V/m) | E-Field above low
end (V/m) | Average
Value
(V/m) | Deviation
(%) | Date | |--------------------|-------------------------|-----------------------|------------------------------|--------------------------------|---------------------------|------------------|------------| | 835 | 20 | 105.8 | 107.8 | 98.36 | 103.08 | -2.57 | 2017/11/3 | | 1880 | 20 | 90.7 | 87.66 | 81.13 | 84.395 | -6.95 | 2017/11/3 | | 2600 | 20 | 85.4 | 92.54 | 85.17 | 88.855 | 4.05 | 2017/11/25 | **Table 6.1 Test Results of System Validation** Note: Deviation = ((Average E-field Value) - (Target value)) / (Target value) * 100% Sporton International (Kunshan) Inc. TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: WYPPG2132 Page Number : 14 of 28 Report Issued Date : Dec. 05, 2017 Report Version : Rev. 01 Report No.: HA792101-01A # 7. <u>RF Emissions Test Procedure</u> Referenced from ANSI C63.19 -2011 section 5.5.1 Confirm the proper operation of the field probe, probe measurement system, and other instrumentation and the positioning system. Report No.: HA792101-01A - b) Position the WD in its intended test position. - c) Set the WD to transmit a fixed and repeatable combination of signal power and modulation characteristic that is representative of the worst case (highest interference potential) encountered in normal use. Transiently occurring start-up, changeover, or termination conditions, or other operations likely to occur less than 1% of the time during normal operation, may be excluded from consideration. - d) The center sub-grid shall be centered on the T-Coil mode perpendicular measurement point or the acoustic output, as appropriate. Locate the field probe at the initial test position in the 50 mm by 50 mm grid, which is contained in the measurement plane, refer to illustrated in Figure 8.2. If the field alignment method is used, align the probe for maximum field reception. - e) Record the reading at the output of the measurement system. - f) Scan the entire 50 mm by 50 mm region in equality spaced increments and record the reading at each measurement point, The distance between measurement points shall be sufficient to assure the identification of the maximum reading. - g) Identify the five contiguous sub-grids around the center sub-grid whose maximum reading is the lowest of all available choices. This eliminates the three sub-grids with the maximum readings. Thus, the six areas to be used to determine the WD's highest emissions are identified. - h) Identify the maximum reading within the non-excluded sub-grids identified in step g). - i) Indirect measurement method - The RF audio interference level in dB (V/m) is obtained by adding the MIF (in dB) to the maximum steady-state rms field-strength reading, in dB (V/m) - j) Compare this RF audio interference level with the categories in ANSI C63.19-2011 clause 8 and record the resulting WD category rating. - k) For the T-Coil mode M-rating assessment, determine whether the chosen perpendicular measurement point is contained in an included sub-grid of the first scan. If so, then a second scan is not necessary. The first scan and resultant category rating may be used for the T-Coil mode M rating. Otherwise, repeat step a) through step i), with the grid shifted so that it is centered on the perpendicular measurement point. Record the WD category rating. Sporton International (Kunshan) Inc. Page Number : 15 of 28 TEL: +86-512-57900158 Report Issued Date : Dec. 05, 2017 FAX: +86-512-57900958 Report Version : Rev. 01 Referenced from ANSI C63.19 -2011 section 5.5.1 Confirm the proper operation of the field probe, probe measurement system, and other instrumentation and the positioning system. Report No.: HA792101-01A - b) Position the WD in its intended test position. - c) Set the WD to transmit a fixed and repeatable combination of signal power and modulation characteristic that is representative of the worst case (highest interference potential) encountered in normal use. Transiently occurring start-up, changeover, or termination conditions, or other operations likely to occur less than 1% of the time during normal operation, may be excluded from consideration. - d) The center sub-grid shall be centered on the T-Coil mode perpendicular measurement point or the acoustic output, as appropriate. Locate the field probe at the initial test position in the 50 mm by 50 mm grid, which is contained in the measurement plane, refer to illustrated in Figure 8.2. If the field alignment method is used, align the probe for maximum field reception. - e) Record the reading at the output of the measurement system. - f) Scan the entire 50 mm by 50 mm region in equality spaced increments and record the reading at each measurement point, The distance between measurement points shall be sufficient to assure the identification of the maximum reading. - g) Identify the five contiguous sub-grids around the center sub-grid whose maximum reading is the lowest of all available choices. This eliminates the three sub-grids with the maximum readings. Thus, the six areas to be used to determine the WD's highest emissions are identified. - h) Identify the maximum reading within the non-excluded sub-grids identified in step g). - i) Indirect measurement method - The RF audio interference level in dB (V/m) is obtained by adding the MIF (in dB) to the maximum steady-state rms field-strength reading, in dB (V/m) - j) Compare this RF audio interference level with the categories in ANSI C63.19-2011 clause 8 and record the resulting WD category rating. - k) For the T-Coil perpendicular measurement location is ≥5.0 mm from the center of the acoustic output, then two different 50 mm by 50 mm areas may need to be scanned, the first for the microphone mode assessment and the second for the T-Coil assessment. - I) The second for the T-Coil assessment, with the grid shifted so that it is centered on the perpendicular measurement point. Record the WD category rating. Sporton International (Kunshan) Inc. Page Number : 16 of 28 TEL: +86-512-57900158 Report Issued Date : Dec. 05, 2017 FAX: +86-512-57900958 Report Version : Rev. 01 # **Test Instructions** Fig 8.1 Flow Chart of HAC RF Emission TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: WYPPG2132 Page Number : 17 of 28 Report Issued Date : Dec. 05, 2017 Report No.: HA792101-01A Fig 8.2 EUT reference and plane for HAC RF emission measurements Fig. 8.3 Gauge block with E-field probe Sporton International (Kunshan) Inc. TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: WYPPG2132 Page Number : 18 of 28 Report Issued Date : Dec. 05, 2017 # 8. Modulation Interference Factor The HAC Standard ANSI C63.19-2011 defines a new scaling using the Modulation Interference Factor (MIF). For any specific fixed and repeatable modulated signal, a modulation interference factor (MIF, expressed in dB) may be developed that relates its interference potential to its steady-state rms signal level or average power level. This factor is a function only of the audio-frequency amplitude modulation characteristics of the signal and is the same for field-strength and conducted power measurements. It is important to emphasize that the MIF is valid only for a specific repeatable audio-frequency amplitude modulation characteristic. Any change in modulation characteristic requires determination and application of a new MIF The Modulation Interference factor (MIF, in dB) is added to the measured average E-field (in dBV/m) and converts it to the RF Audio Interference level (in dBV/m). This level considers the audible amplitude modulation components in the RF E-field. CW fields without amplitude modulation are assumed to not interfere with the hearing aid electronics. Modulations without time slots and low fluctuations at low frequencies have low MIF values, TDMA modulations with narrow transmission and repetition rates of few 100 Hz have high MIF values and give similar classifications as ANSI C63.19-2011. ER3D, EF3D and EU2D E-field probes have a bandwidth <10 kHz and can therefore not evaluate the RF envelope in the full audio band. DASY52 is therefore using the indirect measurement method according to ANSI C63.19-2011 which is the primary method. These near field probes read the averaged E-field measurement. Especially for the new high peak-to-average (PAR) signal types, the probes shall be linearized by PMR calibration in order to not overestimate the field reading. Probe Modulation Response (PMR) calibration linearizes the probe response over its dynamic range for specific modulations which are characterized by their UID and result in an uncertainty specified in the probe
calibration certificate. The MIF is characteristic for a given waveform envelope and can be used as a constant conversion factor if the probe has been PMR calibrated. The evaluation method for the MIF is defined in ANSI C63.19-2011 section D.7. An RMS demodulated RF signal is fed to a spectral filter (similar to an A weighting filter) and forwarded to a temporal filter acting as a quasi-peak detector. The averaged output of these filtering is scaled to a 1 kHz 80% AM signal as reference. MIF measurement requires additional instrumentation and is not well suited for evaluation by the end user with reasonable uncertainty. It may alliteratively be determined through analysis and simulation, because it is constant and characteristic for a communication signal. DASY52 uses well-defined signals for PMR calibration. The MIF of these signals has been determined by simulation and it is automatically applied. Sporton International (Kunshan) Inc. TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: WYPPG2132 Page Number : 19 of 28 Report Issued Date : Dec. 05, 2017 Report No.: HA792101-01A MIF values applied in this test report were provided by the HAC equipment provider, SPEAG, and the values are listed below Report No.: HA792101-01A | UID | Communication System Name | MIF(dB) | |-------|---------------------------------------|---------| | 10021 | GSM-FDD(TDMA,GMSK) | 3.63 | | 10011 | UMTS-FDD(WCDMA) | -27.23 | | 10100 | LTE-FDD(SC-FDMA,100%RB,20MHz,QPSK) | -23.48 | | 10101 | LTE-FDD(SC-FDMA,100%RB,20MHz,16-QAM) | -17.86 | | 10108 | LTE-FDD(SC-FDMA,100%RB,10MHz,QPSK) | -21.57 | | 10109 | LTE-FDD(SC-FDMA,100%RB,10MHz,16-QAM) | -16.87 | | 10110 | LTE-FDD(SC-FDMA,100%RB,5MHz,QPSK) | -23.39 | | 10111 | LTE-FDD(SC-FDMA,100%RB,5MHz,16-QAM) | -16.35 | | 10139 | LTE-FDD(SC-FDMA,100%RB,15MHz,QPSK) | -18.25 | | 10140 | LTE-FDD(SC-FDMA,100%RB,15MHz,16-QAM) | -19.37 | | 10142 | LTE-FDD(SC-FDMA,100%RB,3MHz,QPSK) | -22.36 | | 10143 | LTE-FDD(SC-FDMA,100%RB,3MHz,16-QAM) | -14.75 | | 10145 | LTE-FDD(SC-FDMA,100%RB,1.4MHz,QPSK) | -17.39 | | 10146 | LTE-FDD(SC-FDMA,100%RB,1.4MHz,16-QAM) | -13.6 | | 10148 | LTE-FDD(SC-FDMA,50%RB,20MHz,QPSK) | -18.28 | | 10149 | LTE-FDD(SC-FDMA,50%RB,20MHz,16-QAM) | -16.87 | | 10154 | LTE-FDD(SC-FDMA,50%RB,10MHz,QPSK) | -23.42 | | 10155 | LTE-FDD(SC-FDMA,50%RB,10MHz,16-QAM | -16.36 | | 10156 | LTE-FDD(SC-FDMA,50%RB,5MHz,QPSK) | -21.71 | | 10157 | LTE-FDD(SC-FDMA,50%RB,5MHz,16-QAM) | -15.78 | | 10160 | LTE-FDD(SC-FDMA,50%RB,15MHz,QPSK) | -17.95 | | 10161 | LTE-FDD(SC-FDMA,50%RB,15MHz,16-QAM) | -17.54 | | 10163 | LTE-FDD(SC-FDMA,50%RB,3MHz,QPSK) | -19.99 | | 10164 | LTE-FDD(SC-FDMA,50%RB,3MHz,16-QAM) | -14.41 | | 10166 | LTE-FDD(SC-FDMA,50%RB,1.4MHz,QPSK) | -18.1 | | 10167 | LTE-FDD(SC-FDMA,50%RB,1.4MHz,16-QAM) | -12.15 | | 10169 | LTE-FDD(SC-FDMA,1RB,20MHz,QPSK) | -15.63 | | 10170 | LTE-FDD(SC-FDMA,1RB,20MHz,16-QAM) | -9.76 | | 10175 | LTE-FDD(SC-FDMA,1RB,10MHz,QPSK) | -15.63 | | 10176 | LTE-FDD(SC-FDMA,1RB,10MHz,16-QAM) | -9.76 | | 10177 | LTE-FDD(SC-FDMA,1RB,5MHz,QPSK) | -15.63 | | 10178 | LTE-FDD(SC-FDMA,1RB,5MHz,16-QAM | -9.76 | | 10181 | LTE-FDD(SC-FDMA,1RB,15MHz,QPSK) | -15.63 | | 10182 | LTE-FDD(SC-FDMA,1RB,15MHz,16-QAM) | -9.76 | | 10184 | LTE-FDD(SC-FDMA,1RB,3MHz,QPSK) | -15.62 | | 10185 | LTE-FDD(SC-FDMA,1RB,3MHz,16-QAM) | -9.76 | | 10187 | LTE-FDD(SC-FDMA,1RB,1.4MHz,QPSK) | -15.62 | | 10188 | LTE-FDD(SC-FDMA,1RB,1.4MHz,16-QAM) | -9.76 | The MIF measurement uncertainty is estimated as follows, declared by HAC equipment provider SPEAG, for modulation frequencies from slotted waveforms with fundamental frequency and at least 2 harmonics within 10 kHz: i) 0.2 dB for MIF: -7 to +5 dB, ii) 0.5 dB for MIF: -13 to +11 dB iii) 1 dB for MIF: > -20 dB Sporton International (Kunshan) Inc. Page Number : 20 of 28 TEL: +86-512-57900158 Report Issued Date : Dec. 05, 2017 FAX: +86-512-57900958 Report Version : Rev. 01 # 9. <u>Low-power Exemption</u> <Max Tune-up Limit> | M | ode | | Average Power (dBm) | | |----------------|---------|------------|---------------------------------|----------------------------------| | | | Full Power | Reduced Power for
Hotspot On | Reduced Power for
Receiver On | | GSM | GSM850 | 32.50 | | | | GSIVI | GSM1900 | 30.50 | | | | | Band V | 23.00 | | | | WCDMA | Band IV | 23.50 | 20.50 | | | | Band II | 23.50 | 21.00 | | | | Band 2 | 24.00 | 21.00 | | | | Band 4 | 24.00 | 20.50 | | | | Band 5 | 23.00 | | | | | Band 7 | 24.00 | | | | | Band 12 | 24.00 | | | | | Band 13 | 24.00 | | | | LTE | Band 14 | 24.00 | | | | | Band 25 | 24.00 | 21.00 | | | | Band 26 | 23.00 | | | | | Band 30 | 23.00 | | | | | Band 38 | 24.00 | | | | | Band 41 | 24.00 | | | | | Band 66 | 24.00 | 20.50 | | | 2.4GH | z WLAN | 19.00 | | | | 5.2GHz WLAN | | 17.50 | | | | 5.3GH | z WLAN | 17.50 | | | | 5.5GH | z WLAN | 17.00 | | 15.00 | | 5. <u>8G</u> H | z WLAN | 17.00 | | 14.50 | Sporton International (Kunshan) Inc. TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: WYPPG2132 Page Number : 21 of 28 Report Issued Date : Dec. 05, 2017 Report Version : Rev. 01 Report No. : HA792101-01A # FCC HAC RF Emissions Test Report <Low Power Exemption> | Air Interface | Max Average
Antenna Input
Power (dBm) | Worst Case
MIF (dB) | Power +
MIF(dB) | C63.19 test
required | |---------------|---|------------------------|--------------------|-------------------------| | GSM850 | 32.50 | 3.63 | 36.13 | Yes | | GSM1900 | 30.50 | 3.63 | 34.13 | Yes | | WCDMA Band V | 23.00 | -27.23 | -4.23 | No | | WCDMA Band IV | 23.50 | -27.23 | -3.73 | No | | WCDMA Band II | 23.50 | -27.23 | -3.73 | No | | LTE - FDD | 24.00 | -9.76 | 14.24 | No | | LTE-TDD | 24.00 | -1.44 | 22.56 | Yes | | 2.4GHz WLAN | 19.00 | | | No | | 5GHz WLAN | 17.50 | | | No | #### **General Note:** - 1. According to ANSI C63.19 2011-version, for WWAN RF air interface technology of a device is exempt from testing when its average antenna input power plus its MIF is ≤17 dBm for any of its operating modes. - 2. For LTE operation the worst case MIF plus the worst case average antenna input power for all modes are investigated to determine the testing requirements for this device. - 3. Chose WWAN full power to do HAC exemption analysis representatively reduced power. - 4. According to ANSI C63.19 2011, for WLAN RF emissions testing exemption shall be applied to an RF air interface technology in a device whose Peak antenna input power, averaged over intervals ≤50 μs, is ≤23 dBm. - 5. Chose the maximum power of all bands to calculate low power exemption. - 6. HAC RF rating is M4 for the air interface which meets the low power exemption. **Sporton International (Kunshan) Inc.** TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: WYPPG2132 Page Number : 22 of 28 Report Issued Date : Dec. 05, 2017 Report Version : Rev. 01 Report No.: HA792101-01A # 10. Conducted RF Output Power (Unit: dBm) # <Full Power Mode> | Average Antenna Input Power(dBm) | | | | | | | |----------------------------------|------------------------------|-------|-------|--------|--------|--------| | Air Interface | Air Interface GSM850 GSM1900 | | | | | | | Channel | 128 | 189 | 251 | 512 | 661 | 810 | | Frequency (MHz) | 824.2 | 836.4 | 848.8 | 1850.2 | 1880.0 | 1909.8 | | GSM (GMSK, 1 Tx slot) | 32.06 | 31.85 | 32.06 | 29.62 | 29.69 | 29.68 | Sporton International (Kunshan) Inc. TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: WYPPG2132 Page Number : 23 of 28 Report Issued Date : Dec. 05, 2017 Report Version : Rev. 01 Report No. : HA792101-01A # <LTE Band 38> | BW [MHz] | Modulation | RB Size | RB Offset | Power
Low
Ch. / Freq. | Power
Middle
Ch. / Freq. | Power
High
Ch. / Freq. | |----------|------------|----------|-----------|-----------------------------|--------------------------------|------------------------------| | | Cha | nnel | | 37850 | 38000 | 38150 | | | Frequen | cy (MHz) | | 2580 | 2595 | 2610 | | 20 | QPSK | 1 | 0 | 23.09 | 22.87 | 23.02 | | 20 | QPSK | 1 | 49 | 22.97 | 22.81 | 22.84 | | 20 | QPSK | 1 | 99 | 23.21 | 23.52 | 23.14 | | 20 | QPSK | 50 | 0 | 22.09 | 22.10 | 22.07 | | 20 | QPSK | 50 | 24 | 21.98 | 21.91 | 22.06 | | 20 | QPSK | 50 | 50 | 22.07 | 21.99 | 22.06 | | 20 | QPSK | 100 | 0 | 21.88 | 21.95 | 21.90 | | 20 | 16QAM | 1 | 0 | 22.07 | 22.15 | 22.07 | | 20 | 16QAM | 1 | 49 | 22.37 | 22.07 | 21.96 | | 20 | 16QAM | 1 | 99 | 22.36 | 22.10 | 22.25 | | 20 | 16QAM | 50 | 0 | 20.95 | 20.95 | 21.02 | | 20 | 16QAM | 50 | 24 | 21.18 | 20.99 | 20.75 | | 20 | 16QAM | 50 | 50 | 21.00 | 21.08 | 21.13 | | 20 | 16QAM | 100 | 0 | 21.06 | 20.96 | 20.93 | # <LTE Band 41> | BW [MHz] | Modulation | RB Size | RB Offset | Power
Low
Ch. / Freq. | Power
Low Middle
Ch. / Freq. | Power
Middle
Ch. / Freq. | Power
High Middle
Ch. / Freq. | Power
High
Ch. / Freq. | |----------|------------|---------|-----------|-----------------------------|------------------------------------|--------------------------------|-------------------------------------|------------------------------| | | Chanı | nel | | 39750 | 40185 | 40620 | 41055 | 41490 | | | Frequency | (MHz) | | 2506 | 2549.5 | 2593 | 2636.5 | 2680 | | 20 | QPSK | 1 | 0 | 22.90 | 23.14 | 23.11 | 23.10 | 23.33 | | 20 | QPSK | 1 | 49 | 22.92 | 23.08 | 23.12 | 23.18 | 23.05 | | 20 | QPSK | 1 | 99 | 22.95 | 23.33 | 23.35 | 23.62 | 23.46 | | 20 | QPSK | 50 | 0 | 22.12 | 22.25 | 22.14 | 22.33 | 22.24 | | 20 | QPSK | 50 | 24 | 22.01 | 22.12 | 22.11 | 22.18 | 22.19 | | 20 | QPSK | 50 | 50 | 22.11 | 22.24 | 21.99 | 22.30 | 22.21 | | 20 | QPSK | 100 | 0 | 22.07 | 22.12 | 22.24 | 22.30 | 22.28 | | 20 | 16QAM | 1 | 0 | 21.92 | 22.17 | 22.01 | 22.32 | 22.64 | | 20 | 16QAM | 1 | 49 | 21.89 | 22.13 | 22.14 | 22.32 | 22.20 | | 20 | 16QAM | 1 | 99 | 22.51 | 22.39 | 22.38 | 22.73 | 22.67 | | 20 | 16QAM | 50 | 0 | 21.02 | 21.29 | 21.22 | 21.31 | 21.35 | | 20 | 16QAM | 50 | 24 | 20.99 | 21.24 | 21.19 | 21.19 | 21.17 | | 20 | 16QAM | 50 | 50 | 21.17 | 21.36 | 21.28 | 21.34 |
21.06 | | 20 | 16QAM | 100 | 0 | 21.14 | 21.29 | 21.29 | 21.30 | 21.31 | Sporton International (Kunshan) Inc. TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: WYPPG2132 Page Number : 24 of 28 Report Issued Date : Dec. 05, 2017 Report Version : Rev. 01 Report No. : HA792101-01A # 11. HAC RF Emission Test Results | Plot
No. | Air Interface | Operating Mode | Channel | Average
Antenna
Input
Power
(dBm) | MIF | RF audio
interference
level
dB(V/m) | M-Rating | |-------------|---------------|-----------------------------|---------|---|-------|--|----------| | 1 | GSM850 | GSM Voice | 128 | 32.06 | 3.63 | 40.38 | M3 | | 2 | GSM850 | GSM Voice | 189 | 31.85 | 3.63 | 40.17 | M3 | | 3 | GSM850 | GSM Voice | 251 | 32.06 | 3.63 | 40.22 | M3 | | 4 | GSM1900 | GSM Voice | 512 | 29.62 | 3.63 | 28.71 | M4 | | 5 | GSM1900 | GSM Voice | 661 | 29.69 | 3.63 | 28.81 | M4 | | 6 | GSM1900 | GSM Voice | 810 | 29.68 | 3.63 | 28.32 | M4 | | 16 | TDD Band 41 | 20M_QPSK_1RB,99Offset_Voice | 39750 | 22.95 | -1.62 | 23.80 | M4 | | 17 | TDD Band 41 | 20M_QPSK_1RB,99Offset_Voice | 40185 | 23.33 | -1.62 | 23.95 | M4 | | 18 | TDD Band 41 | 20M_QPSK_1RB,99Offset_Voice | 40620 | 23.35 | -1.62 | 22.13 | M4 | | 19 | TDD Band 41 | 20M_QPSK_1RB,99Offset_Voice | 41055 | 23.62 | -1.62 | 21.71 | M4 | | 20 | TDD Band 41 | 20M_QPSK_1RB,99Offset_Voice | 41490 | 23.46 | -1.62 | 19.28 | M4 | | 21 | TDD Band 41 | 20M_16QAM_1RB_0Offset_Voice | 39750 | 22.51 | -1.44 | 23.13 | M4 | | 22 | TDD Band 41 | 20M_16QAM_1RB_0Offset_Voice | 40185 | 22.39 | -1.44 | 23.03 | M4 | | 23 | TDD Band 41 | 20M_16QAM_1RB_0Offset_Voice | 40620 | 22.38 | -1.44 | 22.74 | M4 | | 24 | TDD Band 41 | 20M_16QAM_1RB_0Offset_Voice | 41055 | 22.73 | -1.44 | 20.98 | M4 | | 25 | TDD Band 41 | 20M_16QAM_1RB_0Offset_Voice | 41490 | 22.67 | -1.44 | 18.45 | M4 | #### Remark: - 1. The HAC measurement system applies MIF value onto the measured RMS E-field, which is indirect method in ANSI C63.19 2011 version, and reports the RF audio interference level. - 2. LTE Band 38 frequency band is covered by LTE Band 41, also the same tune up power, so chose LTE Band 41 to do HAC RF testing and can represent LTE Band 38. - 3. The uncertainty is 0.2dB of MIF ranges from -7dB to +5dB.GSM850/GSM1900 with rating M4 would not be affected considering the MIF uncertainty. - 4. There is special HAC mode software on this EUT. Test Engineer: Nick Hu. **Sporton International (Kunshan) Inc.** TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: WYPPG2132 Page Number : 25 of 28 Report Issued Date : Dec. 05, 2017 Report No.: HA792101-01A # 12. <u>Uncertainty Assessment</u> The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance. The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances. Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is showed in Table 12.1. Sporton International (Kunshan) Inc. TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: WYPPG2132 Page Number : 26 of 28 Report Issued Date : Dec. 05, 2017 Report Version : Rev. 01 Report No.: HA792101-01A | Error Description | Uncertainty
Value
(±%) | Probability
Distribution | Divisor | Ci
(E) | Standard
Uncertainty
(E) | |------------------------------|------------------------------|-----------------------------|---------|-----------|--------------------------------| | Measurement System | | | | | | | Probe Calibration | 5.1 | Normal | 1 | 1 | ± 5.1 % | | Axial Isotropy | 4.7 | Rectangular | √3 | 1 | ± 2.7 % | | Sensor Displacement | 16.5 | Rectangular | √3 | 1 | ± 9.5 % | | Boundary Effects | 2.4 | Rectangular | √3 | 1 | ± 1.4 % | | Phantom Boundary Effects | 7.2 | Rectangular | √3 | 1 | ± 4.1 % | | Linearity | 4.7 | Rectangular | √3 | 1 | ± 2.7 % | | Scaling with PMR Calibration | 10.0 | Rectangular | √3 | 1 | ± 5.77 % | | System Detection Limit | 1.0 | Rectangular | √3 | 1 | ± 0.6 % | | Readout Electronics | 0.3 | Normal | 1 | 1 | ± 0.3 % | | Response Time | 0.8 | Rectangular | √3 | 1 | ± 0.5 % | | Integration Time | 2.6 | Rectangular | √3 | 1 | ± 1.5 % | | RF Ambient Conditions | 3.0 | Rectangular | √3 | 1 | ± 1.7 % | | RF Reflections | 12.0 | Rectangular | √3 | 1 | ± 6.9 % | | Probe Positioner | 1.2 | Rectangular | √3 | 1 | ± 0.7 % | | Probe Positioning | 4.7 | Rectangular | √3 | 1 | ± 2.7 % | | Extrap. and Interpolation | 1.0 | Rectangular | √3 | 1 | ± 0.6 % | | Test Sample Related | | | | | | | Device Positioning Vertical | 4.7 | Rectangular | √3 | 1 | ± 2.7 % | | Device Positioning Lateral | 1.0 | Rectangular | √3 | 1 | ± 0.6 % | | Device Holder and Phantom | 2.4 | Rectangular | √3 | 1 | ± 1.4 % | | Power Drift | 5.0 | Rectangular | √3 | 1 | ± 2.9 % | | Phantom and Setup Related | | | | | | | Phantom Thickness | 2.4 | Rectangular | √3 | 1 | ± 1.4 % | | Combined Standard Uncertain | ± 16.30 % | | | | | | Coverage Factor for 95 % | K = 2 | | | | | | Expanded Std. Uncertainty on | ± 32.6 % | | | | | | Expanded Std. Uncertainty on | ± 16.3 % | | | | | Table 12.1 Uncertainty Budget of HAC free field assessment #### Remark: Worst-Case uncertainty budget for HAC free field assessment according to ANSIC63.19 [1], [2]. The budget is valid for the frequency range 700 MHz - 3 GHz and represents a worst case analysis. Sporton International (Kunshan) Inc. TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: WYPPG2132 Page Number : 27 of 28 Report Issued Date : Dec. 05, 2017 Report No.: HA792101-01A # 13. References - [1] ANSI C63.19-2011, "American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids", 27 May 2011. - [2] FCC KDB 285076 D01v04r01, "Equipment Authorization Guidance for Hearing Aid Compatibility", Apr 2016 - [3] FCC KDB 285076 D02v02, "Guidance for Performing T-Coil tests for Air Interfaces Supporting Voice over IP", Apr 2016 - [4] SPEAG DASY System Handbook Sporton International (Kunshan) Inc. TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: WYPPG2132 Page Number : 28 of 28 Report Issued Date: Dec. 05, 2017 Report No.: HA792101-01A # Appendix A. Plots of System Performance Check The plots are shown as follows. Sporton International (Kunshan) Inc. TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: WYPPG2132 Page Number : A1 of A1 Report Issued Date : Dec. 05, 2017 Report Version : Rev. 01 Report No.: HA792101-01A Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2017.11.3 ### HAC E Dipole 835 # **DUT: HAC-Dipole 835 MHz** Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Ambient Temperature : 23.3 °C # DASY5 Configuration: - Probe: ER3DV6 - SN2476; ConvF(1, 1, 1); Calibrated: 2016.11.23; - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn1326; Calibrated: 2017.9.15 - Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) # E Scan - measurement distance from the probe sensor center to CD835 = 15mm/Hearing Aid Compatibility Test at 15mm distance (41x361x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 98.49 V/m; Power Drift = 0.01 dB PMR not calibrated. PMF = 1.000 is applied. E-field emissions = 107.8 V/m Average value of Total=(107.8+98.36)/2=103.08 V/m #### PMF scaled E-field | Grid 1 M4 | | | |------------------|------------------|------------------| | 106.3 V/m | 107.8 V/m | 104.5 V/m | | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 65.35 V/m | 65.73 V/m | 63.59 V/m | | Grid 7 M4 | Grid 8 M4 | Grid 9 M4 | | 97.28 V/m | 98.36 V/m | 95.78 V/m | ### **Cursor:** Total = 107.8 V/m E Category: M4 Location: 1, -69.5, 9.7 mm 0 dB = 107.8 V/m = 40.65 dBV/m Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2017.11.3 ### HAC E Dipole 1880 # **DUT: HAC Dipole 1880 MHz** Communication System: UID 0, CW (0); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Ambient Temperature: 23.3 °C # DASY5 Configuration: - Probe: ER3DV6 - SN2476; ConvF(1, 1, 1); Calibrated: 2016.11.23; - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn1326; Calibrated: 2017.9.15 - Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) # E Scan - measurement distance from the probe sensor center to CD1880 = 15mm/Hearing Aid Compatibility Test at 15mm distance (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 134.8 V/m; Power Drift = -0.04 dB PMR not calibrated. PMF = 1.000 is applied.
E-field emissions = 87.66 V/m Average value of Total=(87.66+81.13)/2=84.395 V/m #### PMF scaled E-field | Grid 1 M3 | Grid 2 M3 | Grid 3 M3 | |------------------|------------------|------------------| | 86.38 V/m | 87.66 V/m | 85.48 V/m | | Grid 4 M3 | Grid 5 M3 | Grid 6 M3 | | 72.16 V/m | 72.35 V/m | 70.66 V/m | | Grid 7 M3 | Grid 8 M3 | Grid 9 M3 | | 79.77 V/m | 81.13 V/m | 79.33 V/m | ### **Cursor:** Total = 87.66 V/m E Category: M3 Location: 0.5, -30, 9.7 mm 0 dB = 87.96 V/m = 38.89 dBV/m Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2017.11.25 ### HAC E Dipole 2600 # **DUT: HAC Dipole 2600 MHz** Communication System: UID 0, CW (0); Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Ambient Temperature: 23.3 °C # DASY5 Configuration: - Probe: ER3DV6 - SN2476; ConvF(1, 1, 1); Calibrated: 2017.1.25; - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn1326; Calibrated: 2017.9.15 - Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) # E Scan - measurement distance from the probe sensor center to CD2600 = 15mm/Hearing Aid Compatibility Test at 15mm distance (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 69.29 V/m; Power Drift = -0.01 dB PMR not calibrated. PMF = 1.000 is applied. E-field emissions = 82.07 V/m Average value of Total=(92.54+85.17)/2=88.855 V/m #### PMF scaled E-field | Grid 1 M3 | Grid 2 M3 | Grid 3 M3 | |------------------|------------------|-----------| | 84.23 V/m | 85.17 V/m | 83.51 V/m | | Grid 4 M3 | Grid 5 M3 | Grid 6 M3 | | 86.39 V/m | 88.55 V/m | 87.63 V/m | | Grid 7 M3 | Grid 8 M3 | Grid 9 M3 | | 90.56 V/m | 92.54 V/m | 91.01 V/m | #### **Cursor:** Total = 92.54 V/m E Category: M3 Location: 0, 20.5, 9.7 mm 0 dB = 92.54 V/m = 39.33 dBV/m # Appendix B. Plots of RF Emission Measurement The plots are shown as follows. Sporton International (Kunshan) Inc. TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: WYPPG2132 Page Number : B1 of B1 Report Issued Date : Dec. 05, 2017 Report Version : Rev. 01 Report No.: HA792101-01A ## 1 HAC RF GSM850_Voice_Ch128_E Communication System: UID 10021 - DAB, GSM-FDD (TDMA, GMSK); Frequency: 824.2 MHz; Duty Cycle: 1:8.3 Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Ambient Temperature: 23.3 °C ## DASY5 Configuration: - Probe: ER3DV6 - SN2476; ConvF(1, 1, 1); Calibrated: 2016.11.23; - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn1326; Calibrated: 2017.9.15 - Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ## Ch128/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 92.63 V/m; Power Drift = 0.02 dB Applied MIF = 3.63 dB RF audio interference level = 40.38 dBV/m **Emission category: M3** ## MIF scaled E-field | Grid 1 M4
39.11 dBV/m | Grid 3 M4
39.15 dBV/m | |--|--| | Grid 4 M3
40.01 dBV/m |
Grid 6 M4
39.95 dBV/m | | Grid 7 M3
40.07 dBV/m | Grid 9 M4
39.95 dBV/m | #### **Cursor:** Total = 40.38 dBV/m E Category: M3 Location: 0.5, 14.5, 9.7 mm ## 2 HAC RF GSM850_Voice_Ch189_E Communication System: UID 10021 - DAB, GSM-FDD (TDMA, GMSK); Frequency: 836.4 MHz; Duty Cycle: 1:8.3 Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Ambient Temperature: 23.3 °C ## DASY5 Configuration: - Probe: ER3DV6 - SN2476; ConvF(1, 1, 1); Calibrated: 2016.11.23; - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn1326; Calibrated: 2017.9.15 - Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ## Ch189/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 90.66 V/m; Power Drift = -0.10 dB Applied MIF = 3.63 dB RF audio interference level = 40.17 dBV/m **Emission category: M3** ## MIF scaled E-field | Grid 1 M4
38.92 dBV/m | Grid 3 M4
39.04 dBV/m | |--|---| | Grid 4 M4
39.68 dBV/m |
Grid 6 M4
39.8 dBV/m | | Grid 7 M4
39.67 dBV/m | Grid 9 M4
39.75 dBV/m | #### **Cursor:** Total = 40.17 dBV/m E Category: M3 Location: -1, 7, 9.7 mm ## 3 HAC RF GSM850_Voice_Ch251_E Communication System: UID 10021 - DAB, GSM-FDD (TDMA, GMSK); Frequency: 848.8 MHz; Duty Cycle: 1:8.3 Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Ambient Temperature: 23.3 °C ## DASY5 Configuration: - Probe: ER3DV6 - SN2476; ConvF(1, 1, 1); Calibrated: 2016.11.23; - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn1326; Calibrated: 2017.9.15 - Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ## Ch251/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 91.34 V/m; Power Drift = -0.01 dB Applied MIF = 3.63 dB RF audio interference level = 40.22 dBV/m **Emission category: M3** ## MIF scaled E-field | Grid 1 M4 38.98 dBV/m | Grid 3 M4
39.25 dBV/m | |--|--| | Grid 4 M4
39.62 dBV/m |
Grid 6 M4
39.87 dBV/m | | Grid 7 M4
39.59 dBV/m | Grid 9 M4
39.86 dBV/m | #### **Cursor:** Total = 40.22 dBV/m E Category: M3 Location: -1.5, 6, 9.7 mm 0 dB = 102.5 V/m = 40.21 dBV/m ## 4 HAC RF GSM1900_Voice_Ch512_E Communication System: UID 10021 - DAB, GSM-FDD (TDMA, GMSK); Frequency: 1850.2 MHz;Duty Cycle: 1:8.3 Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Ambient Temperature: 23.3 °C ## DASY5 Configuration: - Probe: ER3DV6 - SN2476; ConvF(1, 1, 1); Calibrated: 2016.11.23; - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn1326; Calibrated: 2017.9.15 - Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ## Ch512/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 19.31 V/m; Power Drift = 0.12 dB Applied MIF = 3.63 dB RF audio interference level = 28.71 dBV/m **Emission category: M4** ## MIF scaled E-field | Grid 1 M4 | Grid 2 M4 | Grid 3 M4 | |------------------|------------------|------------------| | 23.75 dBV/m | 27.58 dBV/m | 27.67 dBV/m | | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 27.86 dBV/m | 28.62 dBV/m | 28.71 dBV/m | | Grid 7 M3 | Grid 8 M4 | Grid 9 M4 | | 31.18 dBV/m | 29.8 dBV/m | 28.81 dBV/m | #### **Cursor:** Total = 31.18 dBV/m E Category: M3 Location: 25, 25, 9.7 mm ## 5 HAC RF GSM1900_Voice_Ch661_E Communication System: UID 10021 - DAB, GSM-FDD (TDMA, GMSK); Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Ambient Temperature : 23.3 ℃ ## DASY5 Configuration: - Probe: ER3DV6 - SN2476; ConvF(1, 1, 1); Calibrated: 2016.11.23; - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn1326; Calibrated: 2017.9.15 - Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ## Ch661/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 19.78 V/m; Power Drift = -0.07 dB Applied MIF = 3.63 dB RF audio interference level = 28.81 dBV/m **Emission category: M4** ## MIF scaled E-field | Grid 1 M4 24.89 dBV/m | Grid 3 M4
28.08 dBV/m | |---------------------------------|--| | Grid 4 M4
28.28 dBV/m |
Grid 6 M4
28.81 dBV/m | | Grid 7 M3
31.22 dBV/m | Grid 9 M4
28.77 dBV/m | #### **Cursor:** Total = 31.22 dBV/m E Category: M3 Location: 25, 25, 9.7 mm 0 dB = 36.39 V/m = 31.22 dBV/m ## 6 HAC RF GSM1900_Voice_Ch810_E Communication System: UID 10021 - DAB, GSM-FDD (TDMA, GMSK); Frequency: 1909.8 MHz;Duty Cycle: 1:8.3 Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Ambient Temperature: 23.3 °C ## DASY5 Configuration: - Probe: ER3DV6 - SN2476; ConvF(1, 1, 1); Calibrated: 2016.11.23; - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn1326; Calibrated: 2017.9.15 - Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ## Ch810/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 17.75 V/m; Power Drift = 0.19 dB Applied MIF = 3.63 dB RF audio interference level = 28.32 dBV/m **Emission category: M4** ## MIF scaled E-field | Grid 1 M4
25.14 dBV/m | Grid 3 M4
27.99 dBV/m | |--|--| | Grid 4 M4
28.16 dBV/m | Grid 6 M4
28.32 dBV/m | | Grid 7 M3
30.94 dBV/m | Grid 9 M4
28.21 dBV/m | #### **Cursor:** Total = 30.94 dBV/m E Category: M3
Location: 25, 25, 9.7 mm ## 16 HAC RF TDD LTE 41_Voice,QPSK,1RB,99Offset_Ch39750_E Communication System: UID 0, LTE-TDD(SC-FDMA,1RB,2OMHz,QPSK) (0); Frequency: 2506 MHz;Duty Cycle: 1:8.3 Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Ambient Temperature: 23.3 °C ## DASY5 Configuration: - Probe: ER3DV6 - SN2476; ConvF(1, 1, 1); Calibrated: 2017.1.25; - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn1326; Calibrated: 2017.9.15 - Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) # Ch39750/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 18.04 V/m; Power Drift = -0.06 dB Applied MIF = -1.62 dB RF audio interference level = 23.80 dBV/m **Emission category: M4** ## MIF scaled E-field | Grid 1 M4 22.61 dBV/m | Grid 3 M4
24.83 dBV/m | |--|--| | Grid 4 M4
21.09 dBV/m |
Grid 6 M4
23.78 dBV/m | | Grid 7 M4
22.65 dBV/m | Grid 9 M4
20.74 dBV/m | #### **Cursor:** Total = 24.98 dBV/m E Category: M4 Location: -5.5, -20.5, 9.7 mm 0 dB = 17.74 V/m = 24.98 dBV/m ## 17 HAC RF TDD LTE 41 Voice, QPSK, 1RB, 99Offset Ch40185 E Communication System: UID 0, LTE-TDD(SC-FDMA,1RB,2OMHz,QPSK) (0); Frequency: 2549.5 MHz;Duty Cycle: 1:8.3 Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Ambient Temperature : 23.3 °C ## DASY5 Configuration: - Probe: ER3DV6 - SN2476; ConvF(1, 1, 1); Calibrated: 2017.1.25; - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn1326; Calibrated: 2017.9.15 - Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) # Ch40185/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 17.98 V/m; Power Drift = -0.01 dB Applied MIF = -1.62 dB RF audio interference level = 23.95 dBV/m **Emission category: M4** ## MIF scaled E-field | Grid 1 M4
22.38 dBV/m | | Grid 3 M4 24 89 dRV/m | |--|------------------|--| | | Grid 5 M4 | Grid 6 M4 | | Grid 7 M4
22.99 dBV/m | | Grid 9 M4
21.14 dBV/m | #### Cursor: Total = 24.89 dBV/mE Category: M4 Location: -7.5, -21, 9.7 mm 0 dB = 17.57 V/m = 24.90 dBV/m ## 18 HAC RF TDD LTE 41_Voice,QPSK,1RB,99Offset_Ch40620_E Communication System: UID 0, LTE-TDD(SC-FDMA,1RB,2OMHz,QPSK) (0); Frequency: 2593 MHz;Duty Cycle: 1:8.3 Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Ambient Temperature: 23.3 °C ## DASY5 Configuration: - Probe: ER3DV6 - SN2476; ConvF(1, 1, 1); Calibrated: 2017.1.25; - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn1326; Calibrated: 2017.9.15 - Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) # Ch40620/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 11.70 V/m; Power Drift = -0.03 dB Applied MIF = -1.62 dB RF audio interference level = 22.13 dBV/m **Emission category: M4** ## MIF scaled E-field | Grid 1 M4 21.42 dBV/m | Grid 3 M4 22.8 dBV/m | |--|--| | Grid 4 M4
20.97 dBV/m | Grid 6 M4
21.31 dBV/m | | |
Grid 9 M4
19.42 dBV/m | #### **Cursor:** Total = 22.80 dBV/m E Category: M4 Location: -10, -23, 9.7 mm 0 dB = 13.80 V/m = 22.80 dBV/m ## 19 HAC RF TDD LTE 41_Voice,QPSK,1RB,99Offset_Ch41055_E Communication System: UID 0, LTE-TDD(SC-FDMA,1RB,2OMHz,QPSK) (0); Frequency: 2636.5 MHz;Duty Cycle: 1:8.3 Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Ambient Temperature: 23.3 °C ## DASY5 Configuration: - Probe: ER3DV6 - SN2476; ConvF(1, 1, 1); Calibrated: 2017.1.25; - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn1326; Calibrated: 2017.9.15 - Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) # Ch41055/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 9.788 V/m; Power Drift = -0.07 dB Applied MIF = -1.62 dB RF audio interference level = 21.71 dBV/m **Emission category: M4** ## MIF scaled E-field | Grid 1 M4 21.44 dBV/m | Grid 3 M4
21.71 dBV/m | |--|--| | Grid 4 M4
21.56 dBV/m | Grid 6 M4
20.52 dBV/m | | Grid 7 M4
22.44 dBV/m | Grid 9 M4
19.47 dBV/m | #### **Cursor:** Total = 22.44 dBV/m E Category: M4 Location: 25, 25, 9.7 mm $\overline{0 \text{ dB}} = 13.24 \text{ V/m} = 22.44 \text{ dBV/m}$ ## 20 HAC RF TDD LTE 41 Voice, QPSK, 1RB, 99Offset Ch41490 E Communication System: UID 0, LTE-TDD(SC-FDMA,1RB,2OMHz,QPSK) (0); Frequency: 2680 MHz;Duty Cycle: 1:8.3 Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Ambient Temperature : 23.3 °C ## DASY5 Configuration: - Probe: ER3DV6 - SN2476; ConvF(1, 1, 1); Calibrated: 2017.1.25; - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn1326; Calibrated: 2017.9.15 - Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ## Ch41490/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dv=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 9.174 V/m; Power Drift = 0.06 dB Applied MIF = -1.62 dB RF audio interference level = 19.28 dBV/m **Emission category: M4** ## MIF scaled E-field | Grid 1 M4
19.22 dBV/m | Grid 3 M4
19.28 dBV/m | |--|--| | Grid 4 M4
19.95 dBV/m |
Grid 6 M4
18.99 dBV/m | | Grid 7 M4
21.18 dBV/m | Grid 9 M4
19.22 dBV/m | #### Cursor: Total = 21.18 dBV/mE Category: M4 Location: 22.5, 25, 9.7 mm 0 dB = 11.46 V/m = 21.18 dBV/m ## 21 HAC RF TDD LTE 41 Voice,16QAM,1RB,99Offset Ch39750 E Communication System: UID 0, LTE-TDD(SC-FDMA,1RB,2OMHz,QPSK) (0); Frequency: 2506 MHz;Duty Cycle: 1:8.3 Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Ambient Temperature : 23.3 °C ## DASY5 Configuration: - Probe: ER3DV6 - SN2476; ConvF(1, 1, 1); Calibrated: 2017.1.25; - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn1326; Calibrated: 2017.9.15 - Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) # Ch39750/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dv=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 15.99 V/m; Power Drift = 0.08 dB Applied MIF = -1.62 dB RF audio interference level = 23.13 dBV/m **Emission category: M4** ## MIF scaled E-field | Grid 1 M4
21.81 dBV/m | Grid 3 M4
24.08 dBV/m | |--|--| | Grid 4 M4
20.31 dBV/m | Grid 6 M4
23.06 dBV/m | | Grid 7 M4
21.66 dBV/m | Grid 9 M4
20.13 dBV/m | #### Cursor: Total = 24.18 dBV/mE Category: M4 Location: -5.5, -23, 9.7 mm 0 dB = 16.19 V/m = 24.18 dBV/m ## 22 HAC RF TDD LTE 41_Voice,16QAM,1RB,99Offset_Ch40185_E Communication System: UID 0, LTE-TDD(SC-FDMA,1RB,2OMHz,QPSK) (0); Frequency: 2549.5 MHz;Duty Cycle: 1:8.3 Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Ambient Temperature: 23.3 °C ## DASY5 Configuration: - Probe: ER3DV6 - SN2476; ConvF(1, 1, 1); Calibrated: 2017.1.25; - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn1326; Calibrated: 2017.9.15 - Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) # Ch40185/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 16.31 V/m; Power Drift = -0.08 dB Applied MIF = -1.62 dB RF audio interference level = 23.03 dBV/m **Emission category: M4** ## MIF scaled E-field | | | Grid 3 M4 | |------------------|------------------|------------------| | 21.54 dBV/m | 24.04 dBV/m | 23.92 dBV/m | | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 20.73 dBV/m | 23.03 dBV/m | 22.96 dBV/m | | Grid 7 M4 | Grid 8 M4 | Grid 9 M4 | | 22.04 dBV/m | 20.4 dBV/m | 20.27 dBV/m | #### **Cursor:** Total = 24.04 dBV/m E Category: M4 Location: -6, -20.5, 9.7 mm 0 dB = 15.93 V/m = 24.04 dBV/m ## 23 HAC RF TDD LTE 41_Voice,16QAM,1RB,99Offset_Ch40620_E Communication System: UID 0, LTE-TDD(SC-FDMA,1RB,2OMHz,QPSK) (0); Frequency: 2593 MHz;Duty Cycle: 1:8.3 Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Ambient Temperature: 23.3 °C ## DASY5 Configuration: - Probe: ER3DV6 - SN2476; ConvF(1, 1, 1); Calibrated: 2017.1.25; - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn1326; Calibrated: 2017.9.15 - Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) # Ch40620/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device
Reference Point: 0, 0, -6.3 mm Reference Value = 10.48 V/m; Power Drift = 0.05 dB Applied MIF = -1.62 dB RF audio interference level = 22.74 dBV/m **Emission category: M4** ## MIF scaled E-field | Grid 1 M4 21.77 dBV/m | Grid 3 M4
23.22 dBV/m | |--|---| | Grid 4 M4
21.35 dBV/m |
Grid 6 M4
21.8 dBV/m | | Grid 7 M4
22.74 dBV/m | Grid 9 M4
20.06 dBV/m | #### **Cursor:** Total = 23.22 dBV/m E Category: M4 Location: -9, -25, 9.7 mm $\overline{0 \text{ dB}} = 14.49 \text{ V/m} = 23.22 \text{ dBV/m}$ ## 24 HAC RF TDD LTE 41_Voice,16QAM,1RB,99Offset_Ch41055_E Communication System: UID 0, LTE-TDD(SC-FDMA,1RB,2OMHz,QPSK) (0); Frequency: 2636.5 MHz;Duty Cycle: 1:8.3 Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Ambient Temperature: 23.3 °C ## DASY5 Configuration: - Probe: ER3DV6 - SN2476; ConvF(1, 1, 1); Calibrated: 2017.1.25; - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn1326; Calibrated: 2017.9.15 - Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) # Ch41055/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 12.40 V/m; Power Drift = -0.06 dB Applied MIF = -1.62 dB RF audio interference level = 20.98 dBV/m **Emission category: M4** ## MIF scaled E-field | Grid 1 M4
20.75 dBV/m | Grid 3 M4
20.98 dBV/m | |--|--| | Grid 4 M4
20.94 dBV/m | Grid 6 M4
19.81 dBV/m | | Grid 7 M4
21.72 dBV/m | Grid 9 M4
18.62 dBV/m | #### **Cursor:** Total = 21.72 dBV/m E Category: M4 Location: 25, 25, 9.7 mm $\overline{0 \text{ dB}} = 12.19 \text{ V/m} = 21.72 \text{ dBV/m}$ ## 25 HAC RF TDD LTE 41_Voice,16QAM,1RB,99Offset_Ch41490_E Communication System: UID 0, LTE-TDD(SC-FDMA,1RB,2OMHz,QPSK) (0); Frequency: 2680 MHz;Duty Cycle: 1:8.3 Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Ambient Temperature: 23.3 °C ## DASY5 Configuration: - Probe: ER3DV6 - SN2476; ConvF(1, 1, 1); Calibrated: 2017.1.25; - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn1326; Calibrated: 2017.9.15 - Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) # Ch41490/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 7.082 V/m; Power Drift = 0.04 dB Applied MIF = -1.62 dB RF audio interference level = 18.45 dBV/m **Emission category: M4** ## MIF scaled E-field | | Grid 3 M4
18.44 dBV/m | |--|--| | Grid 4 M4
18.72 dBV/m | Grid 6 M4
18.06 dBV/m | | Grid 7 M4
20.01 dBV/m | Grid 9 M4
18.45 dBV/m | #### **Cursor:** Total = 20.01 dBV/m E Category: M4 Location: 23.5, 25, 9.7 mm 0 dB = 10.01 V/m = 20.01 dBV/m # Appendix C. DASY Calibration Certificate The DASY calibration certificates are shown as follows. Sporton International (Kunshan) Inc. TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: WYPPG2132 Page Number : C1 of C1 Report Issued Date : Dec. 05, 2017 Report Version : Rev. 01 Report No.: HA792101-01A ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton-KS (Auden) Accreditation No.: SCS 0108 Certificate No: CD835V3-1171_Mar17 ## **CALIBRATION CERTIFICATE** Object CD835V3 - SN: 1171 Calibration procedure(s) QA CAL-20.v6 Calibration procedure for dipoles in air Calibration date: March 20, 2017 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 06-Apr-16 (No. 217-02288/02289) | Apr-17 | | Power sensor NRP-Z91 | SN: 103244 | 06-Apr-16 (No. 217-02288) | Apr-17 | | Power sensor NRP-Z91 | SN: 103245 | 06-Apr-16 (No. 217-02289) | Apr-17 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 05-Apr-16 (No. 217-02292) | Apr-17 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 05-Apr-16 (No. 217-02295) | Apr-17 | | Probe ER3DV6 | SN: 2336 | 30-Dec-16 (No. ER3-2336_Dec16) | Dec-17 | | Probe H3DV6 | SN: 6065 | 30-Dec-16 (No. H3-6065_Dec16) | Dec-17 | | DAE4 | SN: 781 | 02-Sep-16 (No. DAE4-781_Sep16) | Sep-17 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter Agilent 4419B | SN: GB42420191 | 09-Oct-09 (in house check Sep-14) | In house check: Oct-17 | | Power sensor HP E4412A | SN: US38485102 | 05-Jan-10 (in house check Sep-14) | In house check: Oct-17 | | Power sensor HP 8482A | SN: US37295597 | 09-Oct-09 (in house check Sep-14) | In house check: Oct-17 | | RF generator R&S SMT-06 | SN: 832283/011 | 27-Aug-12 (in house check Oct-15) | In house check: Oct-17 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-16) | In house check: Oct-17 | | | Name | Function | Signature | | Calibrated by: | Johannes Kurikka | Laboratory Technician | you len | | Approved by: | Katja Pokovic | Technical Manager | BOME. | Issued: March 20, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### References [1] ANSI-C63.19-2011 American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. #### Methods Applied and Interpretation of Parameters: - Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms. - Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level. - Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy. - Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles. - E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement
plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: CD835V3-1171_Mar17 Page 2 of 5 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------------|-----------------|---------| | Phantom | HAC Test Arch | | | Distance Dipole Top - Probe Center | 15 mm | | | Scan resolution | dx, dy = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | | Input power drift | < 0.05 dB | | ### Maximum Field values at 835 MHz | E-field 15 mm above dipole surface | condition | Interpolated maximum | |------------------------------------|--------------------|--------------------------| | Maximum measured above high end | 100 mW input power | 107.3 V/m = 40.61 dBV/m | | Maximum measured above low end | 100 mW input power | 104.3 V/m = 40.37 dBV/m | | Averaged maximum above arm | 100 mW input power | 105.8 V/m ± 12.8 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) ## **Antenna Parameters** | Frequency | Return Loss | Impedance | |-----------|-------------|-----------------------------| | 800 MHz | 16.9 dB | 40.2 Ω - 8.4 jΩ | | 835 MHz | 26.3 dB | $52.3 \Omega + 4.4 j\Omega$ | | 900 MHz | 16.2 dB | 51.0 Ω - 15.7 jΩ | | 950 MHz | 22.5 dB | 48.3 Ω + 7.2 jΩ | | 960 MHz | 16.7 dB | 58.5 Ω + 13.6 jΩ | ## 3.2 Antenna Design and Handling The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth. The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals. Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected. After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. # **Impedance Measurement Plot** Date: 17.03.2017 Test Laboratory: SPEAG Lab2 #### DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: CD835V3 - SN: 1171 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: ER3DV6 - SN2336; ConvF(1, 1, 1); Calibrated: 30.12.2016; Sensor-Surface: (Fix Surface) Electronics: DAE4 Sn781; Calibrated: 02.09.2016 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole E-Field measurement @ 835MHz/E-Scan - 835MHz d=15mm/Hearing Aid Compatibility Test (41x361x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 106.2 V/m; Power Drift = -0.03 dB Applied MIF = 0.00 dB RF audio interference level = 40.61 dBV/m Emission category: M3 #### MIF scaled E-field | Grid 1 M3
40.18 dBV/m | Committee of the commit | |--------------------------|--| | Grid 4 M4
35.82 dBV/m | | | Grid 7 M3
40.21 dBV/m | | 0 dB = 107.3 V/m = 40.61 dBV/m # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton-KS (Auden) Certificate No: CD1880V3-1155_Mar17 Accreditation No.: SCS 0108 # **CALIBRATION CERTIFICATE** Object CD1880V3 - SN: 1155 Calibration procedure(s) QA CAL-20.v6 Calibration procedure for dipoles in air Calibration date: March 20, 2017 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 06-Apr-16 (No. 217-02288/02289) | Apr-17 | | Power sensor NRP-Z91 | SN: 103244 | 06-Apr-16 (No. 217-02288) | Apr-17 | | Power sensor NRP-Z91 | SN: 103245 | 06-Apr-16 (No. 217-02289) | Apr-17 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 05-Apr-16 (No. 217-02292) | Apr-17 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 05-Apr-16 (No. 217-02295) | Apr-17 | | Probe ER3DV6 | SN: 2336 | 30-Dec-16 (No. ER3-2336_Dec16) | Dec-17 | | Probe H3DV6 | SN: 6065 | 30-Dec-16 (No. H3-6065_Dec16) | Dec-17 | | DAE4 | SN: 781 | 02-Sep-16 (No. DAE4-781_Sep16) | Sep-17 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter Agilent 4419B | SN: GB42420191 | 09-Oct-09 (in house check Sep-14) | In house check: Oct-17 | | Power sensor HP E4412A | SN: US38485102 | 05-Jan-10 (in house check Sep-14) | In house check: Oct-17 | | Power sensor HP 8482A | SN: US37295597 | 09-Oct-09 (in house check Sep-14) | In house check: Oct-17 | | RF generator R&S SMT-06 | SN: 832283/011 | 27-Aug-12 (in house check Oct-15) | In house check: Oct-17 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-16) | In house check: Oct-17 | | | Name | Function | Signature | | Calibrated by: | Johannes Kurikka | Laboratory Technician | yeur lun | | Approved by: | Katja Pokovic | Technical Manager | 10 ME | Issued: March 20, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### References [1] ANSI-C63.19-2011 American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. #### Methods Applied and Interpretation of Parameters: - Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms. - Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level. - Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom
using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy. - Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles. - E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------------|------------------|---------| | Phantom | HAC Test Arch | | | Distance Dipole Top - Probe Center | 15 mm | | | Scan resolution | dx, dy = 5 mm | | | Frequency | 1880 MHz ± 1 MHz | | | Input power drift | < 0.05 dB | | #### Maximum Field values at 1880 MHz | E-field 15 mm above dipole surface | condition | Interpolated maximum | |------------------------------------|--------------------|-------------------------| | Maximum measured above high end | 100 mW input power | 91.4 V/m = 39.22 dBV/m | | Maximum measured above low end | 100 mW input power | 90.1 V/m = 39.09 dBV/m | | Averaged maximum above arm | 100 mW input power | 90.7 V/m ± 12.8 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) ### **Antenna Parameters** | Frequency | Return Loss | Impedance | |-----------|-------------|-------------------------| | 1730 MHz | 36.7 dB | 50.2 Ω - 1.5 jΩ | | 1880 MHz | 18.2 dB | 51.1 Ω + 12.5 jΩ | | 1900 MHz | 18.6 dB | 54.3 Ω + 11.6 jΩ | | 1950 MHz | 22.9 dB | 55.3 Ω + 5.3 jΩ | | 2000 MHz | 19.6 dB | $50.6 \Omega + 10.6 jΩ$ | #### 3.2 Antenna Design and Handling The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth. The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals. Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected. After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. # Impedance Measurement Plot #### **DASY5 E-field Result** Test Laboratory: SPEAG Lab2 Date: 17.03.2017 #### DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: CD1880V3 - SN: 1062 Communication System: UID 0 - CW ; Frequency: 1880 MHz Medium parameters used: $\sigma = 0$ S/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: ER3DV6 - SN2336; ConvF(1, 1, 1); Calibrated: 30.12.2016; Sensor-Surface: (Fix Surface) • Electronics: DAE4 Sn781; Calibrated: 02.09.2016 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ## Dipole E-Field measurement @ 1880MHz/E-Scan - 1880MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 160.8 V/m; Power Drift = 0.01 dB Applied MIF = 0.00 dB RF audio interference level = 39.22 dBV/m **Emission category: M2** #### MIF scaled E-field | Grid 1 M2 | Grid 2 M2 | Grid 3 M2 | |------------------|------------------|------------------| | 38.94 dBV/m | 39.22 dBV/m | 39.15 dBV/m | | Grid 4 M2 | Grid 5 M2 | Grid 6 M2 | | 36.86 dBV/m | 37.05 dBV/m | 36.96 dBV/m | | Grid 7 M2 | Grid 8 M2 | Grid 9 M2 | | 38.81 dBV/m | 39.09 dBV/m | 39.05 dBV/m | 0 dB = 91.45 V/m = 39.22 dBV/m Certificate No: CD1880V3-1155_Mar17 Page 5 of 5 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton-TW (Auden) Certificate No: CD2600V3-1010_Nov17 # **CALIBRATION CERTIFICATE** Object CD2600V3 - SN: 1010 Calibration procedure(s) QA CAL-20.v6 Calibration procedure for dipoles in air Calibration date: November 22, 2017 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) **Primary Standards** Approved by: ID# | | | The second secon | | |---|--
--|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-17 (No. 217-02521/02522) | Apr-18 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-17 (No. 217-02521) | Apr-18 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-17 (No. 217-02522) | Apr-18 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 07-Apr-17 (No. 217-02528) | Apr-18 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 07-Apr-17 (No. 217-02529) | Apr-18 | | Probe EF3DV3 | SN: 4013 | 14-Jun-17 (No. EF3-4013_Jun17) | Jun-18 | | DAE4 | SN: 781 | 13-Jul-17 (No. DAE4-781_Jul17) | Jul-18 | | Secondary Standards Power meter Agilent 4419B | ID #
SN: GB42420191 | Check Date (in house) | Scheduled Check | | | | | | | | A STATE OF THE STA | 09-Oct-09 (in house check Oct-17) | In house check: Oct-20 | | Power sensor HP E4412A | SN: US38485102 | 05-Jan-10 (in house check Oct-17) | In house check: Oct-20 | | Power sensor HP 8482A | SN: US37295597 | 09-Oct-09 (in house check Oct-17) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 832283/011 | 27-Aug-12 (in house check Oct-17) | In house check: Oct-20 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-17) | In house check: Oct-18 | | | Name | Function | Signature | | Calibrated by: | Leif Klysner | Laboratory Technician | Seif Elgen | | | | | 0// | Technical Manager Cal Date (Certificate No.) Issued: November 23, 2017 Scheduled Calibration This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Katja Pokovic Certificate No: CD2600V3-1010_Nov17 Page 1 of 5 # **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### References [1] ANSI-C63.19-2011 American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. #### Methods Applied and Interpretation of Parameters: - Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms. - Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level. - Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy. - Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles. - E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: CD2600V3-1010_Nov17 Page 2 of 5 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.0 | |------------------------------------|------------------|----------| | Phantom | HAC Test Arch | | | Distance Dipole Top - Probe Center | 15 mm | | | Scan resolution | dx, dy = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | | Input power drift | < 0.05 dB | | ### Maximum Field values at 2600 MHz | E-field 15 mm above dipole surface | condition | Interpolated maximum | |------------------------------------|--------------------|-------------------------| | Maximum measured above high end | 100 mW input power | 85.8 V/m = 38.67 dBV/m | | Maximum measured above low end | 100 mW input power | 84.9 V/m = 38.58 dBV/m | | Averaged maximum above arm | 100 mW input power | 85.4 V/m ± 12.8 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters** | Frequency | Return Loss | Impedance | |-----------|-------------|-----------------------------| | 2450 MHz | 23,6 dB | 44.6 Ω - 3.3 jΩ | | 2550 MHz | 29.4 dB | $52.0 \Omega + 2.8 j\Omega$ | | 2600 MHz | 26.8 dB | 54.7 Ω - 0.7 jΩ | | 2650 MHz | 25.3 dB | 53.5 Ω - 4.4 jΩ | | 2750 MHz | 19.4 dB | 45.4 Ω - 9.2 jΩ | ### 3.2 Antenna Design and Handling The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth. The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals. Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected. After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. # **Impedance Measurement Piot** #### **DASY5 E-field Result** Date: 21.11.2017 Test Laboratory: SPEAG Lab2 ### DUT: HAC Dipole 2600 MHz; Type: CD2600V3; Serial: CD2600V3 - SN: 1010 Communication System: UID 0 - CW ; Frequency: 2600 MHz Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52
Configuration: Probe: EF3DV3 - SN4013; ConvF(1, 1, 1); Calibrated: 14.06.2017; Sensor-Surface: (Fix Surface) Electronics: DAE4 Sn781; Calibrated: 13.07.2017 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) # Dipole E-Field measurement @ 2600MHz - with EF_4013/E-Scan - 2600MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 64.99 V/m; Power Drift = -0.04 dB Applied MIF = 0.00 dB RF audio interference level = 38.67 dBV/m **Emission category: M2** #### MIF scaled E-field | Grid 1 M2 | Grid 2 M2 | Grid 3 M2 | |------------------|------------------|------------------| | 38.26 dBV/m | 38.58 dBV/m | 38.53 dBV/m | | Grid 4 M2 | Grid 5 M2 | Grid 6 M2 | | 37.93 dBV/m | 38.15 dBV/m | 38.12 dBV/m | | Grid 7 M2 | Grid 8 M2 | Grid 9 M2 | | 38.42 dBV/m | 38.67 dBV/m | 38.61 dBV/m | 0 dB = 85.84 V/m = 38.67 dBV/m