

TEST REPORT

REPORT NUMBER: 109GE6624-FCC-SAR

ON

Type of Equipment:

GSM/GPRS/UMTS mobile phone

Type of Designation: Sonim XP2.10 Spirit

Manufacturer:

Sonim Technologies, Inc.

Type Name:

P32B003AA

ACCORDING TO

FCC Part 2.1093: Radiofrequency radiation exposure evaluation: portable devices, e-CFR April 24, 2009

FCC OET Bulletin 65 Supplement C (Edition 01-01): Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency **Emissions**

IEEE Std 1528™-2003: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications **Devices: Measurement Techniques**

China Telecommunication Technology Labs.

Month date, year Sep 14, 2009

Signature

He Guili Director

FCC ID: WYPP32B003AA **Report Date:** 2009-09-14

Test Firm Name: China Telecommunication Technology Labs

Registration Number: 840587

Statement

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported tests were carried out on a sample equipment to demonstrate limited compliance with FCC CFR 47 Part 2.1093. The sample tested was found to comply with the requirements defined in the applied rules.

Table of Contents

1. General Information	4
1.1 Notes	4
1.2 Testers	5
1.3 TESTING LABORATORY INFORMATION	6
1.4 DETAILS OF APPLICANT OR MANUFACTURER	7
2 Test Item	8
2.1 GENERAL INFORMATION	8
2.2 OUTLINE OF EUT	
2.3 Modifications Incorporated in EUT	
2.4 EQUIPMENT CONFIGURATION	
2.5 OTHER INFORMATION	
2.6 EUT PHOTOGRAPHS	
3 Measurement Systems1	0
3.1 SAR MEASUREMENT SYSTEMS SETUP	. 10
3.2 E-FIELD PROBE	
3.3 PHANTOM	
3.4 DEVICE HOLDER	
4 Test Results	
4.1 OPERATIONAL CONDITION	
4.2 TEST EQUIPMENT USED	
4.3 Applicable Limit Regulations	
4.4 Test Results	
4.5 TEST SETUP AND PROCEDURES	
4.6 TEST ENVIRONMENT AND LIQUID PARAMETERS	
4.7 SYSTEM VALIDATION CHECK	
4.8 MAXIMUM OUTPUT POWER MEASUREMENT	
4.9 Test Data	. 18
4.10 MEASUREMENT UNCERTAINTY	. 22
ANNEX A Photographs2	
ANNEX B Graphical Results2	9
Annex C System Performance Check Graphical Results 3	5
ANNEX D Probes Calibration Certificates 4	1
ANNEX E Deviations from Prescribed Test Methods5	1

1. General Information

1.1 Notes

All reported tests were carried out on a sample equipment to demonstrate limited compliance with the requirements of FCC CFR 47 Part 2.1093.

The test results of this test report relate exclusively to the item(s) tested as specified in section 2.

The following deviations from, additions to, or exclusions from the test specifications have been made. See Annex E.

China Telecommunication Technology Labs.(CTTL) authorizes the applicant or manufacturer (see section 1.4) to reproduce this report provided, and the test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTTL Mr. He Guili.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. CTTL accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Equipment: Sonim XP2.10 Spirit REPORT NO.: 109GE6624-FCC-SAR

1.2 Testers

Name: Li Wang

Position: Engineer

Department: Department of EMC test

Signature:

Name: Li Guoqing

Position: Engineer

Department: Department of EMC test

Signature:

Editor of this test report:

Name: Li Guoqing

Position: Engineer

Department: Department of EMC test

Date: 2009-09-14

Signature:

Technical responsibility for testing:

Name: Zou Dongyi

Position: Manager

Department: Department of EMC test

Date: 2009-09-14

Signature:

1.3 Testing Laboratory information

-	_	-				
7	~~	7	1 ~	\sim	tı/	۱n
1			LU	ca	LΙL	JΙΙ

Name: China Telecommunication Technology Labs.

Address: No. 11, Yue Tan Nan Jie, Xi Cheng District,

BEIJING

P. R. CHINA, 100045

Tel: +86 10 68094053

Fax: +86 10 68011404

Email: emc@chinattl.com

1.3.2 Details of accreditation status

Accredited by: China National Accreditation Service for Conformity

Assessment (CNAS)

Registration number: CNAS Registration No. CNAS L0570

Standard: ISO/IEC 17025:2005

1.3.3 Test location, where different from section 1.3.1

Name: -----

Street: -----

City: -----

Country: -----

Telephone: -----

Fax: -----

Postcode: -----

Address:

FCC Part 2.1093 (2009-4-24), FCC OET 65C (01-01), IEEE Std 1528™-2003 Equipment: Sonim XP2.10 Spirit REPORT NO.: I09GE6624-FCC-SAR

1.4 Details of applicant or manufacturer

1.4 Details of appli	icant of manufacturer
1.4.1 Applicant	
Name:	Sonim Technologies, Inc
Address:	1875 S. Grant Street, Suite 620, San Mateo, CA 94402
Country:	USA
Telephone:	+1 650 504 4411
Fax:	+1 650 378 8190
Contact:	Jasen Kolev
Telephone:	+1 650 504 4411
Email:	jasen@sonimtech.com
1.4.2 Manufacturer (if o	different from applicant in section 1.4.1)
Name:	
Address:	
1.4.3 Manufactory (if di	fferent from applicant in section 1.4.1)
Name:	\

Equipment: Sonim XP2.10 Spirit REPORT NO.: 109GE6624-FCC-SAR

2 Test Item

2.1 General Information

Manufacturer: Sonim Technologies, Inc Model Name: Sonim XP2.10 Spirit

Floder Name. Somm XF2.10 S

Type Name: P32B003AA

Product Name GSM/GPRS/UMTS mobile phone

Serial Number: 001080000000480

Production Status: Product
Receipt date of test item: 2009-07-09

2.2 Outline of EUT

EUT is a mobile phone supporting GSM900, DCS 1800, PCS 1900 and WCDMA FDD I. Only PCS 1900 band has been tested in this report. The EUT also supports GPRS and EGPRS with multi timeslot class 12.

2.3 Modifications Incorporated in EUT

The EUT has not been modified from what is described by the brand name and unique type identification stated above.

2.4 Equipment Configuration

Equipment configuration list:

Item	Generic Description	Manufacturer	Туре	Serial No.	Remarks
Α	handset	Sonim Technologies,	Sonim XP2.10	001080000	None
	manuset	Inc	Spirit	000480	None
В	adapter	Dee Van Enterprise	DSA-5W-05		None
	auaptei	Co.,LTD.	FUS 051055		None
С	battory	XWODA Electronic Co.,	XP2-0001100		None
	battery	Ltd	XP2-0001100		None
D	Earphone	MINAMI ACOUSTICS	ME-816B6		None
	Laiptione	LIMITED	ME-01000	_ _	None

Cables:

Item	Cable Type	Manufacturer	Length	Shield	Quantity	Remarks
1	DC cable on	Unknown	1.0m	No	1	None
1	Adapter	Olikilowii	1.0111	INO	1	None

2.5 Other Information

Version of hardware and software:

HW Version: 8420070T110

SW Version: MS0130

Adaptor information:

Input: 100-240V AC 50 - 60Hz 0.2A

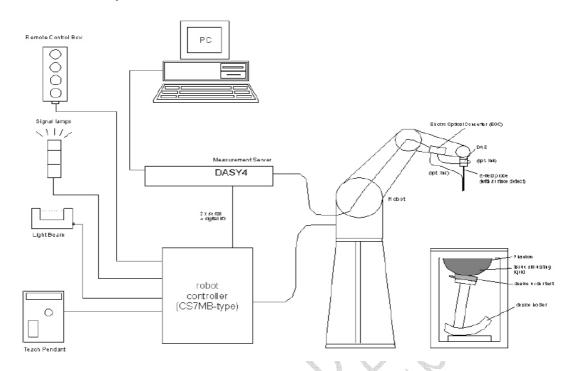
Output: 5.1V 0.55A

Battery information: 3.7VDC 1300mAh

2.6 EUT Photographs

Face view

Back view


3 Measurement Systems

3.1 SAR Measurement Systems Setup

All measurements were performed using the automated near-field scanning system, DASY5, from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision industrial robot which positions the probes with a positional repeatability of better than 0.02mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines (length =300mm) to the data acquisition unit.

A cell controller system containing the power supply, robot controller, teach pendant (Joystick) and remote control, is used to drive the robot motors. The PC consists of the Micron Pentium III 800 MHz computer with Windows 2000 system and SAR Measurement Software DASY5, A/D interface card, monitor, mouse, and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc., which is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical signal to digital electric signal of the DAE and transfers data to the PC plug-in card.

Demonstration of measurement system setup

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built-in VME-bus computer.

3.2 E-field Probe

3.2.1 E-field Probe Description

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the standard procedure with an accuracy of better than $\pm 10\%$. The spherical isotropy was evaluated and found to be better than ± 0.25 dB.

Items	Specification				
	Symmetrical design with triangular core				
	Built-in optical fiber for surface detection System				
Construction	Built-in shielding against static charges				
	PEEK enclosure material(resistant to				
	organic solvents, e.g., glycol)				
Calibration	In air from 10 MHz to 2.5 GHz				
Calibration	In brain and muscle simulating tissue at				

	frequencies of 450MHz, 900MHz and 1.8GHz	
	(accuracy±8%)	
	Calibration for other liquids and frequencies	
	upon request	
Fraguency	I 0 MHz to > 6 GHz; Linearity: ±0.2 dB	
Frequency	(30 MHz to 3 GHz)	
Divoctivity	±0.2 dB in brain tissue (rotation around probe axis)	
Directivity	±0.4 dB in brain tissue (rotation normal probe axis)	
Dynamic Range 5u W/g to > 100mW/g; Linearity: ±0.2dB		
Curfo on Doto ation	±0.2 mm repeatability in air and clear liquids	
Surface Detection	over diffuse reflecting surface	
	Overall length: 330mm	
	Tip length: 16mm	
Dimensions	Body diameter: 12mm	
	Tip diameter: 6.8mm	
	Distance from probe tip to dipole centers: 2.7mm	
	General dosimetry up to 3GHz	
Application	Compliance tests of mobile phones	
	Fast automatic scanning in arbitrary phantoms	

3.2.2 E-field Probe Calibration

The Annex C is the copy of the calibration certificate of the used probes. Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The free-space E-field measured in the medium correlates to temperature increase in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where: Δt = Exposure time (30 seconds), C = Heat capacity of tissue (brain or muscle), ΔT = Temperature increase due to RF exposure. Or

$$SAR = \frac{|E|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

3.3 Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Specifications:

Shell Thickness: 2±0.1mm Filling Volume: Approx. 20 liters

Dimensions: $810 \times 1000 \times 500 \text{ mm}$ (H x L x W) Liquid depth when testing: at least 150 mm

3.4 Device Holder

In combination with the Generic Twin Phantom V3.0, the Mounting Device (POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeat ably positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom etc).

Equipment: Sonim XP2.10 Spirit REPORT NO.: 109GE6624-FCC-SAR

4 Test Results

4.1 Operational Condition

Specifications FCC OET 65C (01-01), IEEE Std 1528^{TM} -2003

Date of Tests 2009-07-31, 2009-09-03/07

Operation Mode TX at the highest output peak power level

Method of measurement: FCC OET 65C (01-01), IEEE Std 1528[™]-2003

4.2 Test Equipment Used

ITEM	TYPE	S/N	CALIBRATION DATE	DUE DATE
probe	ES3DV3	3158	2009-04-14	2010-04-14
DAE	DAE4	797	2009-04-17	2010-04-16
D1900V2	dipole	5d024	2009-04-15	2010-04-14
Power Meter	NRVS	10023	2009-01-09	2010-01-08
Power Meter	NRVS	10085	2009-01-09	2010-01-08
Radio Communication	8820B	6220772659	NA	NA
Analyzer				
Signal Generator	SMP04	100064	NA	NA
Power Sensor	NRV-Z32	836471/003	2009-01-09	2010-01-08
Power Sensor	NRV-Z32	836471/004	2009-01-09	2010-01-08
Power Amplifier	150W1000	150W1000	NA	NA
Attenuator	20dB	836471/003	NA	NA
Attenuator	20dB	836471/004	NA	NA
Attenuator	2	BL1250	NA	NA
Attenuator	2	BK774	NA	NA
Dual directional coupler	4242-20	04200	NA	NA
Probe kit	85070E	3G-S-00139	NA	NA
Network Analyzer	E8362B	MY43021471	NA	NA

4.3 Applicable Limit Regulations

Item	Limit Level
Local	1.6W/kg
Specific Absorption Rate (SAR) (1g)	1.0W/kg

Equipment: Sonim XP2.10 Spirit REPORT NO.: 109GE6624-FCC-SAR

4.4 Test Results

The EUT complies.

Note:

All measurements are traceable to national standards.

4.5 Test Setup and Procedures

The test setup is showed as picture 1 in the annex A.

The evaluation was performed according to the following procedure:

- Step 1: The SAR value at a fixed location above the ear point was measured and was used as a reference value for assessing the power drift.
- Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was $10 \text{ mm } \times 10 \text{ mm}$. Based on these data, the area of the maximum absorption was determined by interpolation.
- Step 3: Around this point, a volume of 30 mm \times 30 mm \times 25 mm was assessed by measuring 7 \times 7 \times 6 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:
- a. The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on the least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
- b. The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot"-condition (in x \sim y and z-directions). The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
- c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- Step 4: Re-measurement the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation should be repeated.

4.6 Test Environment and Liquid Parameters

4.6.1 Test Environment

Date:	Liquid Temperature $(^{\circ}C)$	Ambient Temperature $(^{\circ}C)$	Ambient Humidity (%)			
	(0)	(0)	(70)			
	20~~24	20~~25	30~~70			
2009-03-05	21.7	22	43			
2009-03-06	21.6	22	43			

Equipment: Sonim XP2.10 Spirit REPORT NO.: I09GE6624-FCC-SAR

4.6.2 Liquid Parameters

2009-07-31

Eroguanav	Tissue Type	Туре	Dielectric Parameters			
Frequency			permittivity	conductivity		
1900 MHz	Hz Head	Target	40	1.4		
		±5% window	38.0~42.0	1.33~1.47		
		Measured	39.1	1.45		

2009-09-03

Fraguenav	Tissus Type	Tuno	Dielectric Parameters		
Frequency	Tissue Type	Туре	permittivity	conductivity	
1900 MHz		Target	53.3	1.52	
	Body	±5% window	50.64~55.97	1.44~1.60	
		Measured	52.15	1.59	

2009-09-07

			V WA	407			
Frequency		Tissue Type	Typo	Dielectric Parameters			
		rissue Type	Type	permittivity	conductivity		
		1 100	Target	53.3	1.52		
1900 1	ИНz	Body	±5% window	50.64~55.97	1.44~1.60		
	A T		Measured	52.12	1.56		

4.7 System Validation Check

Validation Method:

The setup of system validation check or performance check is demonstrated as figure 5. The amplifier, low pass filter and attenuators are optional. The dipole shall be positioned and centered below the phantom, paralleling to the longest side of the phantom. A low loss and low dielectric constant spacer on the dipole may be used to guarantee the correct distance between the dipole top surface and the phantom bottom surface.

The separation d, which is defined as the distance from the liquid bottom surface to the dipole's central axis at location of the feed-point, should be as following: for 835 MHz dipole, d=15 mm, and for 1900 MHz dipole, d=10 mm, and this can be obtained using two different size spacer. The dipole arms shall be parallel to the flat phantom surface.

First the power meter PM1 is connected to the cable and it measures the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the (Att1) value) and the power meter PM2 is read at that level. Then after connecting the cable to the dipole, the signal generator is readjusted for the same reading at the power meter PM2.

The system validation check procedures are the same as all measurement procedures used for compliance tests. A complete 1 g averaged SAR measurement is performed using the flat part of the phantom. The reference dipole input power is adjusted to produce a 1 g averaged SAR value falling in the range of 0.4 – 10 mW/g. The 1 g averaged SAR is measured at 835 MHz and 1900 MHz using corresponding dipole respectively. Then the results are normalized to 1 W forward input power and compared with the reference SAR values.

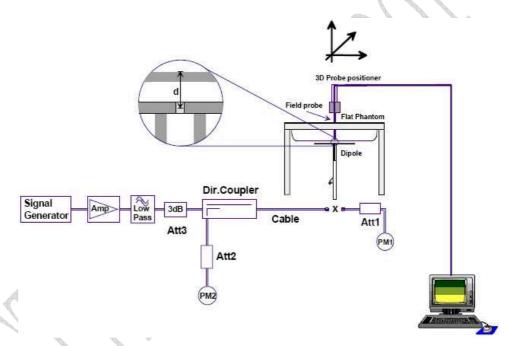


Figure 5 Illustration of system validation test setup

Validation Results

	7-3-17					
						Deviatio
	Tissue	Input	Measured	Normalized	Targeted	n
Date:	rissue	Power	SAR _{10g}	to 1W	SAR _{10g}	(%)
		(dBm)	(mW/g)	(mW/g)	(mW/g)	(<±10
						%)
2009-07-31	Head	24.00	9.33	37.32	40.5	-7.9
2009-07-31	1900MHz	24.00	9.33	37.32	40.5	-7.9
2000 00 03	Body	24.00	10.2	40.8	41.8	-2.4
2009-09-03	1900MHz	24.00	10.2	40.6	41.0	-2.4
2000 00 07	Body	24.00	0.49	27.02	<i>A</i> 1 0	-9.3
2009-09-07	1900MHz	24.00	9.48	37.92	41.8	-9.5

4.8 Maximum Output Power Measurement

According to FCC OET 65c, maximum output power shall be measured before and after each SAR test. The test setup and method are described as following.

Test setup

The output power measurement test setup is demonstrated as figure 6.

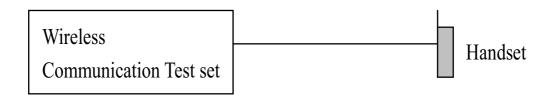


Figure 6 Demonstration of power measurement

The power control level settings and measurement value are as following table.

mode	PCL setting	Permissible max.values	Channel[low] 1850.2 MHz	Channel[mid] 1880.0 MHz	Channel[high] 1909.8 MHz
PCS 1900	0	30dBm	29.3dBm	29.3dBm	29.3dBm
GPRS 1900	0	30dBm	24.4	24.4	24.4
EGPRS 1900	0	30dBm	24.4	24.4	24.4

Note: for GPRS and EGPRS, the multi time slot configuration is class 12, i.e., the maximum up time slot is 4.

4.9 Test Data

4.9.1 Test Specifications

(a) Duty Factor and Crest Factor

For GSM mode, the duty factor is 1:8.3, and for GPRS and EGPRS they are 1:2 (multi time class 12).

(b) Test configurations pictures:

garacions procares:	
Configurations	pictures no. in Annex A
Head Right touch	2
position:	2
Head Right tilt position:	3
Head Left touch	4
position:	4
Head Left tilt position:	5
Body SAR Back to the	6
phantom:	0
Body SAR Front to the	7
phantom:	
Body SAR Back to the	
phantom with	8
earphone:	99110
Body SAR Back to the	
phantom with belt:	
Body SAR Front to the	10
phantom with belt:	10
Body SAR Front to the	
phantom with belt with	11
earphone:	

(c) Test description for body-worn mode

For common mode, the distance between the handset and the bottom of the flat section is 15 mm; for belt mode, the distance is constrained to the belt thickness.

(d) Liquid recipe

(a) E-quiu i squ	TISSUE TYPE								
INGREDIENTS	835MHz Head	835MHz body	1900MHz Head	1900MHz body					
Water	40.29	50.75	55.24	70.17					
DGBE	0	0	44.45	29.44					
Sugar	57.90	48.21	0	0					
Salt	1.38	0.94	0.31	0.39					
Cellulose	0.24	0.00	0	0					
Preventol	0.18	0.10	0	0					

Equipment: Sonim XP2.10 Spirit REPORT NO.: I09GE6624-FCC-SAR

(e) General Test procedure for body-worn mode

Step 1: GSM1900 band, test the middle channel of each of the front side and back side mode with the specified distance between the handset and the bottom of the phantom, including slip open and close. Find out the worst case.

Step 2: For the worst case of step 1, test the low and high channel.

Step 3: Find out the worst case of step 1 and 2, and for this case, test the mode with Bluetooth on, and then with earphone using voice traffic mode.

Step 4: Repeat all the above steps for other bands.

4.9.2 Test Data for Head mode

PCS1900 head

Test	Test	SAR _{1g} [W/kg] / Power Drift [dB]								
configuration	position	Channel 512 [low] 1850.2 MHz			Channel 661 [Mid] 1880.0 MHz			Channel 810 [high] 1909.8 MHz		
Right side of	Cheek	0.344	/	0.185	0.681	1	-0.081	0.434	/	-0.28
Head	Tilted	-	1		0.23	/	-0.242		/	
Left side of	Cheek	-		-	0.65	/	-0.047	-	/	
Head	Tilted		1	-	0.279	/	0.064		/	

4.9.3 Test Data for Body-Worn mode

PCS1900 band body without belt

	SAR _{1g} [W/kg] / Power Drift [dB]									
Test configuration			12 [low] MHz	Channel 661 [Mid] 1880.0 MHz			Channel 810 [high] 1909.8 MHz			
Front side, GPRS		/		0.14	/	0.005		/		
Back side, GPRS	0.272	/	-0.007	0.274	/	-0.118	0.248	/	-0.03	
Front side, EGPRS				0.168	/	0.313				
Back side, EGPRS	0.316	/	0.13	0.318	/	0.259	0.269	/	0.122	
Back side, handfree mode, GSM		/		0.152	/	0.025		/		
Back side, earphone mode, GSM		/		0.204		-0.263		/		

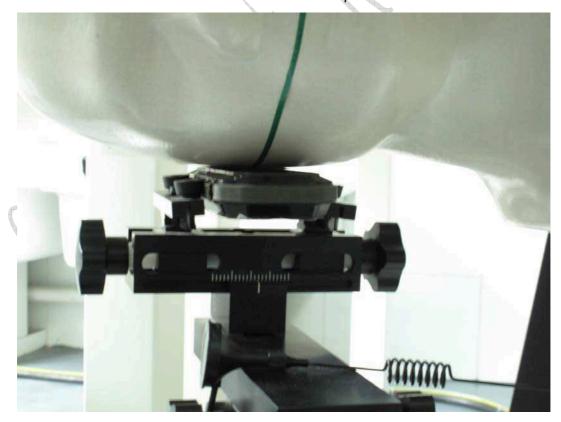
FCC Part 2.1093 (2009-4-24), FCC OET 65C (01-01), IEEE Std 1528™-2003 Equipment: Sonim XP2.10 Spirit RE

REPORT NO.: 109GE6624-FCC-SAR

PCS1900 band body with belt

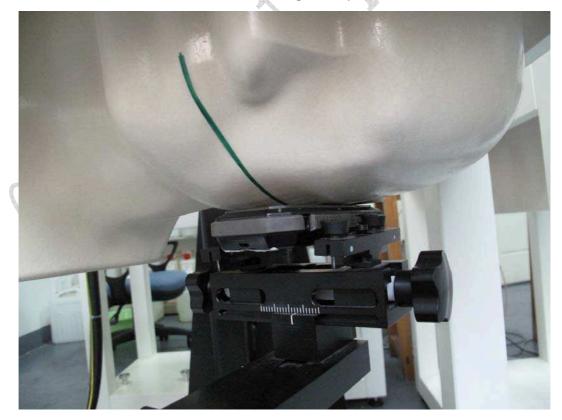
	SAR _{1g} [W/kg] / Power Drift [dB]									
Test configuration			12 [low] MHz	Channel 661 [Mid] 1880.0 MHz			Channel 810 [high] 1909.8 MHz			
Front side, GPRS	0.181	/	0.27	0.178	/	-0.116	0.119	/	0.014	
Back side, GPRS		/		0.085	/	0.184		/		
Front side, EGPRS	0.19		0.17	0.239	/	-0.287	0.103		-0.145	
Back side, EGPRS		/		0.090	/	-0.083	-	/	-	
Front side, handfree mode, GSM		/		0.030	/	0.021		/		
Front side, earphone mode, GSM		/		0.197	/	0.075		/		

4.10 Measurement uncertainty


Error Description	Unc.	Prob.	Div.	Ci	Ci	Std.Unc.	Std.Unc.	Vi
	value,	Dist.		1g	10g	±%,1g	±%,10g	V _{eff}
	±%							
Measurement System								
Probe Calibration	5.9	N	1	1	1	5.9	5.9	8
Axial Isotropy	0.5	R	$\sqrt{3}$	0.7	0.7	0.2	0.2	∞
Hemispherical Isotropy	2.6	R	$\sqrt{3}$	0.7	0.7	1.1	1.1	∞
Boundary Effects	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
Linearity	0.6	R	$\sqrt{3}$	1	1	0.3	0.3	8
System Detection Limits	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
Readout Electronics	0.7	N	1	1	1	0.7	0.7	_∞
Response Time	0	R	$\sqrt{3}$	1	1	0	0	8
Integration Time	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
RF Ambient Noise	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	8
RF Ambient Reflections	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	8
Probe Positioner	1.5	R	$\sqrt{3}$	1	1	0.9	0.9	8
Probe Positioning	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
Max. SAR Eval.	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
Test Sample Related								
Device Positioning	2.9	N	1	1	1	2.9	2.9	145
Device Holder	3.6	N	1	1	1	3.6	3.6	5
Power Drift	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
Dipole Positioning	2.0	2	1	1	1	2.0	2.0	8
Dipole Input Power	5.0	N	1	1	1	5.0	5.0	8
Phantom and Setup								
Phantom Uncertainty	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
Liquid Conductivity (target)	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
Liquid Conductivity (meas.)	2.5	N	1	0.64	0.43	1.6	1.1	8
Liquid Permittivity (target)	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
Liquid Permittivity (meas.)	2.5	N	1	0.6	0.49	1.5	1.2	8
Combined Std Uncertainty						±11.2%	±10.9%	387
Expanded Std Uncertainty						±22.4%	±21.8%	

ANNEX A Photographs

Picture 1 test setup



Picture 2: Head Right touch position

Picture 3: Head Right tilt position

Picture 4: Head Left touch position

Picture 5: Head Left tilt position

Picture 6: Body SAR Back to the phantom